Polynomial regression: Difference between revisions

 
(41 intermediate revisions by 23 users not shown)
Line 11:
 
This task is intended as a subtask for [[Measure relative performance of sorting algorithms implementations]].
 
=={{header|11l}}==
{{trans|Swift}}
 
<syntaxhighlight lang="11l">F average(arr)
R sum(arr) / Float(arr.len)
 
F poly_regression(x, y)
V xm = average(x)
V ym = average(y)
V x2m = average(x.map(i -> i * i))
V x3m = average(x.map(i -> i ^ 3))
V x4m = average(x.map(i -> i ^ 4))
V xym = average(zip(x, y).map((i, j) -> i * j))
V x2ym = average(zip(x, y).map((i, j) -> i * i * j))
V sxx = x2m - xm * xm
V sxy = xym - xm * ym
V sxx2 = x3m - xm * x2m
V sx2x2 = x4m - x2m * x2m
V sx2y = x2ym - x2m * ym
V b = (sxy * sx2x2 - sx2y * sxx2) / (sxx * sx2x2 - sxx2 * sxx2)
V c = (sx2y * sxx - sxy * sxx2) / (sxx * sx2x2 - sxx2 * sxx2)
V a = ym - b * xm - c * x2m
 
F abc(xx)
R (@a + @b * xx) + (@c * xx * xx)
 
print("y = #. + #.x + #.x^2\n".format(a, b, c))
print(‘ Input Approximation’)
print(‘ x y y1’)
 
L(i) 0 .< x.len
print(‘#2 #3 #3.1’.format(x[i], y[i], abc(i)))
 
V x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
V y = [1, 6, 17, 34, 57, 86, 121, 162, 209, 262, 321]
poly_regression(x, y)</syntaxhighlight>
 
{{out}}
<pre>
y = 1 + 2x + 3x^2
 
Input Approximation
x y y1
0 1 1.0
1 6 6.0
2 17 17.0
3 34 34.0
4 57 57.0
5 86 86.0
6 121 121.0
7 162 162.0
8 209 209.0
9 262 262.0
10 321 321.0
</pre>
 
=={{header|Ada}}==
<langsyntaxhighlight lang="ada">with Ada.Numerics.Real_Arrays; use Ada.Numerics.Real_Arrays;
 
function Fit (X, Y : Real_Vector; N : Positive) return Real_Vector is
Line 24 ⟶ 80:
end loop;
return Solve (A * Transpose (A), A * Y);
end Fit;</langsyntaxhighlight>
The function Fit implements least squares approximation of a function defined in the points as specified by the arrays ''x''<sub>''i''</sub> and ''y''<sub>''i''</sub>. The basis &phi;<sub>''j''</sub> is ''x''<sup>''j''</sup>, ''j''=0,1,..,''N''. The implementation is straightforward. First the plane matrix A is created. A<sub>ji</sub>=&phi;<sub>''j''</sub>(''x''<sub>''i''</sub>). Then the linear problem AA<sup>''T''</sup>''c''=A''y'' is solved. The result ''c''<sub>''j''</sub> are the coefficients. Constraint_Error is propagated when dimensions of X and Y differ or else when the problem is ill-defined.
===Example===
<langsyntaxhighlight lang="ada">with Fit;
with Ada.Float_Text_IO; use Ada.Float_Text_IO;
 
Line 41 ⟶ 97:
Put (C (1), Aft => 3, Exp => 0);
Put (C (2), Aft => 3, Exp => 0);
end Fitting;</langsyntaxhighlight>
{{out}}
<pre>
Line 54 ⟶ 110:
 
<!-- {{does not work with|ELLA ALGOL 68|Any (with appropriate job cards AND formatted transput statements removed) - tested with release 1.8.8d.fc9.i386 - ELLA has no FORMATted transput}} -->
<langsyntaxhighlight lang="algol68">MODE FIELD = REAL;
 
MODE
Line 167 ⟶ 223:
);
print polynomial(d)
END # fitting #</langsyntaxhighlight>
{{out}}
<pre>
3x**2+2x+1
1.0848x**2+10.3552x-0.6164
</pre>
 
=={{header|AutoHotkey}}==
{{trans|Lua}}
<syntaxhighlight lang="autohotkey">
regression(xa,ya){
n := xa.Count()
xm := ym := x2m := x3m := x4m := xym := x2ym := 0
loop % n {
i := A_Index
xm := xm + xa[i]
ym := ym + ya[i]
x2m := x2m + xa[i] * xa[i]
x3m := x3m + xa[i] * xa[i] * xa[i]
x4m := x4m + xa[i] * xa[i] * xa[i] * xa[i]
xym := xym + xa[i] * ya[i]
x2ym := x2ym + xa[i] * xa[i] * ya[i]
}
xm := xm / n
ym := ym / n
x2m := x2m / n
x3m := x3m / n
x4m := x4m / n
xym := xym / n
x2ym := x2ym / n
 
sxx := x2m - xm * xm
sxy := xym - xm * ym
sxx2 := x3m - xm * x2m
sx2x2 := x4m - x2m * x2m
sx2y := x2ym - x2m * ym
 
b := (sxy * sx2x2 - sx2y * sxx2) / (sxx * sx2x2 - sxx2 * sxx2)
c := (sx2y * sxx - sxy * sxx2) / (sxx * sx2x2 - sxx2 * sxx2)
a := ym - b * xm - c * x2m
result := "Input`tApproximation`nx y`ty1`n"
loop % n
i := A_Index, result .= xa[i] ", " ya[i] "`t" eval(a, b, c, xa[i]) "`n"
return "y = " c "x^2" " + " b "x + " a "`n`n" result
}
eval(a,b,c,x){
return a + (b + c*x) * x
}</syntaxhighlight>
Examples:<syntaxhighlight lang="autohotkey">xa := [0, 1, 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10]
ya := [1, 6, 17, 34, 57, 86, 121, 162, 209, 262, 321]
MsgBox % result := regression(xa, ya)
return</syntaxhighlight>
{{out}}
<pre>y = 3.000000x^2 + 2.000000x + 1.000000
 
Input Approximation
x y y1
0, 1 1.000000
1, 6 6.000000
2, 17 17.000000
3, 34 34.000000
4, 57 57.000000
5, 86 86.000000
6, 121 121.000000
7, 162 162.000000
8, 209 209.000000
9, 262 262.000000
10, 321 321.000000</pre>
 
=={{header|AWK}}==
{{trans|Lua}}
<syntaxhighlight lang="awk">
BEGIN{
i = 0;
xa[i] = 0; i++;
xa[i] = 1; i++;
xa[i] = 2; i++;
xa[i] = 3; i++;
xa[i] = 4; i++;
xa[i] = 5; i++;
xa[i] = 6; i++;
xa[i] = 7; i++;
xa[i] = 8; i++;
xa[i] = 9; i++;
xa[i] = 10; i++;
i = 0;
ya[i] = 1; i++;
ya[i] = 6; i++;
ya[i] = 17; i++;
ya[i] = 34; i++;
ya[i] = 57; i++;
ya[i] = 86; i++;
ya[i] =121; i++;
ya[i] =162; i++;
ya[i] =209; i++;
ya[i] =262; i++;
ya[i] =321; i++;
exit;
}
{
# (nothing to do)
}
END{
a = 0; b = 0; c = 0; # globals - will change by regression()
regression(xa,ya);
 
printf("y = %6.2f x^2 + %6.2f x + %6.2f\n",c,b,a);
printf("%-13s %-8s\n","Input","Approximation");
printf("%-6s %-6s %-8s\n","x","y","y^")
for (i=0;i<length(xa);i++) {
printf("%6.1f %6.1f %8.3f\n",xa[i],ya[i],eval(a,b,c,xa[i]));
}
}
 
function eval(a,b,c,x) {
return a+b*x+c*x*x;
}
# locals
function regression(x,y, n,xm,ym,x2m,x3m,x4m,xym,x2ym,sxx,sxy,sxx2,sx2x2,sx2y) {
n = 0
xm = 0.0;
ym = 0.0;
x2m = 0.0;
x3m = 0.0;
x4m = 0.0;
xym = 0.0;
x2ym = 0.0;
 
for (i in x) {
xm += x[i];
ym += y[i];
x2m += x[i] * x[i];
x3m += x[i] * x[i] * x[i];
x4m += x[i] * x[i] * x[i] * x[i];
xym += x[i] * y[i];
x2ym += x[i] * x[i] * y[i];
n++;
}
xm = xm / n;
ym = ym / n;
x2m = x2m / n;
x3m = x3m / n;
x4m = x4m / n;
xym = xym / n;
x2ym = x2ym / n;
 
sxx = x2m - xm * xm;
sxy = xym - xm * ym;
sxx2 = x3m - xm * x2m;
sx2x2 = x4m - x2m * x2m;
sx2y = x2ym - x2m * ym;
 
b = (sxy * sx2x2 - sx2y * sxx2) / (sxx * sx2x2 - sxx2 * sxx2);
c = (sx2y * sxx - sxy * sxx2) / (sxx * sx2x2 - sxx2 * sxx2);
a = ym - b * xm - c * x2m;
}
</syntaxhighlight>
{{out}}
<pre>
y = 3.00 x^2 + 2.00 x + 1.00
Input Approximation
x y y^
0.0 1.0 1.000
1.0 6.0 6.000
2.0 17.0 17.000
3.0 34.0 34.000
4.0 57.0 57.000
5.0 86.0 86.000
6.0 121.0 121.000
7.0 162.0 162.000
8.0 209.0 209.000
9.0 262.0 262.000
10.0 321.0 321.000
</pre>
 
Line 179 ⟶ 406:
and fits an order-5 polynomial, so the test data for this task
is hardly challenging!
<langsyntaxhighlight lang="bbcbasic"> INSTALL @lib$+"ARRAYLIB"
Max% = 10000
Line 227 ⟶ 454:
FOR term% = 5 TO 0 STEP -1
PRINT ;vector(term%) " * x^" STR$(term%)
NEXT</langsyntaxhighlight>
{{out}}
<pre>
Line 243 ⟶ 470:
 
'''Include''' file (to make the code reusable easily) named <tt>polifitgsl.h</tt>
<langsyntaxhighlight lang="c">#ifndef _POLIFITGSL_H
#define _POLIFITGSL_H
#include <gsl/gsl_multifit.h>
Line 250 ⟶ 477:
bool polynomialfit(int obs, int degree,
double *dx, double *dy, double *store); /* n, p */
#endif</langsyntaxhighlight>
'''Implementation''' (the examples [http://www.gnu.org/software/gsl/manual/html_node/Fitting-Examples.html here] helped alot to code this quickly):
<langsyntaxhighlight lang="c">#include "polifitgsl.h"
 
bool polynomialfit(int obs, int degree,
Line 292 ⟶ 519:
return true; /* we do not "analyse" the result (cov matrix mainly)
to know if the fit is "good" */
}</langsyntaxhighlight>
'''Testing''':
<langsyntaxhighlight lang="c">#include <stdio.h>
 
#include "polifitgsl.h"
Line 314 ⟶ 541:
}
return 0;
}</langsyntaxhighlight>
{{out}}
<pre>1.000000
Line 322 ⟶ 549:
=={{header|C sharp|C#}}==
{{libheader|Math.Net}}
<langsyntaxhighlight lang="csharp"> public static double[] Polyfit(double[] x, double[] y, int degree)
{
// Vandermonde matrix
Line 336 ⟶ 563:
var p = r.Inverse().Multiply(q.TransposeThisAndMultiply(yv));
return p.Column(0).ToArray();
}</langsyntaxhighlight>
Example:
<langsyntaxhighlight Clang="c sharp"> static void Main(string[] args)
{
const int degree = 2;
Line 349 ⟶ 576:
Console.WriteLine("{0} => {1} diff {2}", x[i], Polynomial.Evaluate(x[i], p), y[i] - Polynomial.Evaluate(x[i], p));
Console.ReadKey(true);
}</langsyntaxhighlight>
 
=={{header|C++}}==
{{trans|Java}}
<langsyntaxhighlight lang="cpp">#include <algorithm>
#include <iostream>
#include <numeric>
Line 414 ⟶ 641:
 
return 0;
}</langsyntaxhighlight>
{{out}}
<pre>y = 1 + 2x + 3x^2
Line 434 ⟶ 661:
Uses the routine (lsqr A b) from [[Multiple regression]] and (mtp A) from [[Matrix transposition]].
 
<langsyntaxhighlight lang="lisp">;; Least square fit of a polynomial of order n the x-y-curve.
(defun polyfit (x y n)
(let* ((m (cadr (array-dimensions x)))
Line 442 ⟶ 669:
(setf (aref A i j)
(expt (aref x 0 i) j))))
(lsqr A (mtp y))))</langsyntaxhighlight>
 
Example:
 
<langsyntaxhighlight lang="lisp">(let ((x (make-array '(1 11) :initial-contents '((0 1 2 3 4 5 6 7 8 9 10))))
(y (make-array '(1 11) :initial-contents '((1 6 17 34 57 86 121 162 209 262 321)))))
(polyfit x y 2))
 
#2A((0.9999999999999759d0) (2.000000000000005d0) (3.0d0))</langsyntaxhighlight>
 
=={{header|D}}==
{{trans|Kotlin}}
<langsyntaxhighlight Dlang="d">import std.algorithm;
import std.range;
import std.stdio;
Line 500 ⟶ 727:
auto y = [1, 6, 17, 34, 57, 86, 121, 162, 209, 262, 321];
polyRegression(x, y);
}</langsyntaxhighlight>
{{out}}
<pre>y = 1 + 2x + 3x^2
Line 516 ⟶ 743:
9 262 262.0
10 321 321.0</pre>
 
=={{header|EasyLang}}==
{{trans|Lua}}
<syntaxhighlight lang=easylang>
func eval a b c x .
return a + (b + c * x) * x
.
proc regression xa[] ya[] . .
n = len xa[]
for i = 1 to n
xm = xm + xa[i]
ym = ym + ya[i]
x2m = x2m + xa[i] * xa[i]
x3m = x3m + xa[i] * xa[i] * xa[i]
x4m = x4m + xa[i] * xa[i] * xa[i] * xa[i]
xym = xym + xa[i] * ya[i]
x2ym = x2ym + xa[i] * xa[i] * ya[i]
.
xm = xm / n
ym = ym / n
x2m = x2m / n
x3m = x3m / n
x4m = x4m / n
xym = xym / n
x2ym = x2ym / n
#
sxx = x2m - xm * xm
sxy = xym - xm * ym
sxx2 = x3m - xm * x2m
sx2x2 = x4m - x2m * x2m
sx2y = x2ym - x2m * ym
#
b = (sxy * sx2x2 - sx2y * sxx2) / (sxx * sx2x2 - sxx2 * sxx2)
c = (sx2y * sxx - sxy * sxx2) / (sxx * sx2x2 - sxx2 * sxx2)
a = ym - b * xm - c * x2m
print "y = " & a & " + " & b & "x + " & c & "x^2"
numfmt 0 3
for i = 1 to n
print xa[i] & " " & ya[i] & " " & eval a b c xa[i]
.
.
xa[] = [ 0 1 2 3 4 5 6 7 8 9 10 ]
ya[] = [ 1 6 17 34 57 86 121 162 209 262 321 ]
regression xa[] ya[]
</syntaxhighlight>
 
=={{header|Emacs Lisp}}==
 
{{libheader|Calc}}
Simple solution by Emacs Lisp and built-in Emacs Calc.
<syntaxhighlight lang="lisp">(let ((x '(0 1 2 3 4 5 6 7 8 9 10))
(y '(1 6 17 34 57 86 121 162 209 262 321)))
(calc-eval "fit(a*x^2+b*x+c,[x],[a,b,c],[$1 $2])" nil (cons 'vec x) (cons 'vec y)))</syntaxhighlight>
 
{{out}}
<lang emacs-lisp>
(setq x '[0 1 2 3 4 5 6 7 8 9 10])
(setq y '[1 6 17 34 57 86 121 162 209 262 321])
(calc-eval
(format "fit(a*x^2+b*x+c,[x],[a,b,c],[%s %s])" x y))
</lang>
 
"3. x^2 + 1.99999999996 x + 1.00000000006"
{{out}}
<pre>
"3. x^2 + 1.99999999996 x + 1.00000000006"
</pre>
 
=={{header|Fortran}}==
{{libheader|LAPACK}}
<langsyntaxhighlight lang="fortran">module fitting
contains
 
Line 598 ⟶ 865:
end function
end module</langsyntaxhighlight>
 
===Example===
<langsyntaxhighlight lang="fortran">program PolynomalFitting
use fitting
implicit none
Line 619 ⟶ 886:
write (*, '(F9.4)') a
 
end program</langsyntaxhighlight>
 
{{out}} (lower powers first, so this seems the opposite of the Python output):
Line 629 ⟶ 896:
 
=={{header|FreeBASIC}}==
General regressions for different polynomials, here it is for degree 2, (3 terms).
<lang FreeBASIC>Sub GaussJordan(matrix() As Double,rhs() As Double,ans() As Double)
<syntaxhighlight lang="freebasic">#Include "crt.bi" 'for rounding only
Dim As Integer n=Ubound(matrix,1)
 
Redim ans(0):Redim ans(1 To n)
Type vector
Dim As Double b(1 To n,1 To n),r(1 To n)
Dim As Double element(Any)
For c As Integer=1 To n 'take copies
End Type
r(c)=rhs(c)
 
For d As Integer=1 To n
Type b(c,d)=matrix(c,d)
Dim As Double Next delement(Any,Any)
Declare Function inverse() As matrix
Next c
Declare Function transpose() As matrix
private:
Declare Function GaussJordan(As vector) As vector
End Type
 
'mult operators
Operator *(m1 As matrix,m2 As matrix) As matrix
Dim rows As Integer=Ubound(m1.element,1)
Dim columns As Integer=Ubound(m2.element,2)
If Ubound(m1.element,2)<>Ubound(m2.element,1) Then
Print "Can't do"
Exit Operator
End If
Dim As matrix ans
Redim ans.element(rows,columns)
Dim rxc As Double
For r As Integer=1 To rows
For c As Integer=1 To columns
rxc=0
For k As Integer = 1 To Ubound(m1.element,2)
rxc=rxc+m1.element(r,k)*m2.element(k,c)
Next k
ans.element(r,c)=rxc
Next c
Next r
Operator= ans
End Operator
 
Operator *(m1 As matrix,m2 As vector) As vector
Dim rows As Integer=Ubound(m1.element,1)
Dim columns As Integer=Ubound(m2.element,2)
If Ubound(m1.element,2)<>Ubound(m2.element) Then
Print "Can't do"
Exit Operator
End If
Dim As vector ans
Redim ans.element(rows)
Dim rxc As Double
For r As Integer=1 To rows
rxc=0
For k As Integer = 1 To Ubound(m1.element,2)
rxc=rxc+m1.element(r,k)*m2.element(k)
Next k
ans.element(r)=rxc
Next r
Operator= ans
End Operator
 
Function matrix.transpose() As matrix
Dim As matrix b
Redim b.element(1 To Ubound(this.element,2),1 To Ubound(this.element,1))
For i As Long=1 To Ubound(this.element,1)
For j As Long=1 To Ubound(this.element,2)
b.element(j,i)=this.element(i,j)
Next
Next
Return b
End Function
 
Function matrix.GaussJordan(rhs As vector) As vector
Dim As Integer n=Ubound(rhs.element)
Dim As vector ans=rhs,r=rhs
Dim As matrix b=This
#macro pivot(num)
For p1 As Integer = num To n - 1
For p2 As Integer = p1 + 1 To n
If Abs(b.element(p1,num))<Abs(b.element(p2,num)) Then
Swap r.element(p1),r.element(p2)
For g As Integer=1 To n
Swap b.element(p1,g),b.element(p2,g)
Next g
End If
Next p2
Next p1
#endmacro
For k As Integer=1 To n-1
pivot(k) 'full pivoting
For row As Integer =k To n-1
If b.element(row+1,k)=0 Then Exit For
Var f=b.element(k,k)/b.element(row+1,k)
r.element(row+1)=r.element(row+1)*f-r.element(k)
For g As Integer=1 To n
b.element((row+1),g)=b.element((row+1),g)*f-b.element(k,g)
Next g
Next row
Next k
'back substitute
For z As Integer=n To 1 Step -1
ans.element(z)=r.element(z)/b.element(z,z)
For j As Integer = n To z+1 Step -1
ans.element(z)=ans.element(z)-(b.element(z,j)*ans.element(j)/b.element(z,z))
Next j
Next z
EndFunction Sub= ans
End Function
'Interpolate through points.
Sub Interpolate(x_values() As Double,y_values() As Double,p() As Double)
Var n=Ubound(x_values)
Redim p(0):Redim p(1 To n)
Dim As Double matrix(1 To n,1 To n),rhs(1 To n)
For a As Integer=1 To n
rhs(a)=y_values(a)
For b As Integer=1 To n
matrix(a,b)=x_values(a)^(b-1)
Next b
Next a
'Solve the linear equations
GaussJordan(matrix(),rhs(),p())
End Sub
'======================== SET UP THE POINTS ===============
Dim As Double x(1 To ...)={0,1,2,3,4,5,6,7,8,9,10}
Dim As Double y(1 To ...)={1,6,17,34,57,86,121,162,209,262,321}
Redim As Double Poly(0)
'Get the polynomial Poly()
Interpolate(x(),y(),Poly())
'print coefficients to console
print "Polynomial Coefficients:"
print
For z As Integer=1 To Ubound(Poly)
If z=1 Then
Print "constant term ";tab(20);Poly(z)
Else
Print tab(8); "x^";z-1;" = ";tab(20);Poly(z)
End If
Next z
sleep</lang>
{{out}}
<pre>Polynomial Coefficients:
 
Function matrix.inverse() As matrix
constant term 1
Var ub1=Ubound(this.element,1),ub2=Ubound(this.element,2)
x^ 1 = 2
Dim As matrix x^ 2 = 3ans
Dim As vector x^ 3 = 0temp,null_
Redim temp.element(1 To ub1):Redim null_.element(1 To ub1)
x^ 4 = 0
Redim ans.element(1 To ub1,1 To ub2)
x^ 5 = 0
For a As x^ 6 Integer=1 To 0ub1
x^ 7 temp= 0null_
x^ 8 temp.element(a)= 01
x^ 9 temp= 0GaussJordan(temp)
x^ 10 = For b As Integer=1 To 0</pre>ub1
ans.element(b,a)=temp.element(b)
Next b
Next a
Return ans
End Function
 
'vandermode of x
Function vandermonde(x_values() As Double,w As Long) As matrix
Dim As matrix mat
Var n=Ubound(x_values)
Redim mat.element(1 To n,1 To w)
For a As Integer=1 To n
For b As Integer=1 To w
mat.element(a,b)=x_values(a)^(b-1)
Next b
Next a
Return mat
End Function
 
'main preocedure
Sub regress(x_values() As Double,y_values() As Double,ans() As Double,n As Long)
Redim ans(1 To Ubound(x_values))
Dim As matrix m1= vandermonde(x_values(),n)
Dim As matrix T=m1.transpose
Dim As vector y
Redim y.element(1 To Ubound(ans))
For n As Long=1 To Ubound(y_values)
y.element(n)=y_values(n)
Next n
Dim As vector result=(((T*m1).inverse)*T)*y
Redim Preserve ans(1 To n)
For n As Long=1 To Ubound(ans)
ans(n)=result.element(n)
Next n
End Sub
 
'Evaluate a polynomial at x
Function polyeval(Coefficients() As Double,Byval x As Double) As Double
Dim As Double acc
For i As Long=Ubound(Coefficients) To Lbound(Coefficients) Step -1
acc=acc*x+Coefficients(i)
Next i
Return acc
End Function
 
Function CRound(Byval x As Double,Byval precision As Integer=30) As String
If precision>30 Then precision=30
Dim As zstring * 40 z:Var s="%." &str(Abs(precision)) &"f"
sprintf(z,s,x)
If Val(z) Then Return Rtrim(Rtrim(z,"0"),".")Else Return "0"
End Function
 
Function show(a() As Double,places as long=10) As String
Dim As String s,g
For n As Long=Lbound(a) To Ubound(a)
If n<3 Then g="" Else g="^"+Str(n-1)
if val(cround(a(n),places))<>0 then
s+= Iif(Sgn(a(n))>=0,"+","")+cround(a(n),places)+ Iif(n=Lbound(a),"","*x"+g)+" "
end if
Next n
Return s
End Function
 
 
dim as double x(1 to ...)={0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
dim as double y(1 to ...)={1, 6, 17, 34, 57, 86, 121, 162, 209, 262, 321}
 
Redim As Double ans()
regress(x(),y(),ans(),3)
 
print show(ans())
sleep</syntaxhighlight>
{{out}}
<pre>+1 +2*x +3*x^2</pre>
 
=={{header|GAP}}==
<langsyntaxhighlight lang="gap">PolynomialRegression := function(x, y, n)
local a;
a := List([0 .. n], i -> List(x, s -> s^i));
Line 734 ⟶ 1,100:
# Return coefficients in ascending degree order
PolynomialRegression(x, y, 2);
# [ 1, 2, 3 ]</langsyntaxhighlight>
 
=={{header|gnuplot}}==
 
<langsyntaxhighlight lang="gnuplot"># The polynomial approximation
f(x) = a*x**2 + b*x + c
 
Line 761 ⟶ 1,127:
e
 
print sprintf("\n --- \n Polynomial fit: %.4f x^2 + %.4f x + %.4f\n", a, b, c)</langsyntaxhighlight>
 
=={{header|Go}}==
===Library gonum/matrix===
<langsyntaxhighlight lang="go">package main
 
import (
"fmt"
"log"
 
"gonum.org/v1/gonum/mat"
"github.com/gonum/matrix/mat64"
)
 
func main() {
var (
var (
x = []float64{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
y x = []float64{10, 61, 172, 343, 574, 865, 1216, 1627, 2098, 2629, 32110}
y = []float64{1, 6, 17, 34, 57, 86, 121, 162, 209, 262, 321}
 
degree = 2
)
 
a = Vandermonde(x, degree+1)
func main() {
b = mat.NewDense(len(y), 1, y)
a := Vandermonde(x, degree)
c b := mat64mat.NewDense(len(y)degree+1, 1, ynil)
)
c := mat64.NewDense(degree+1, 1, nil)
 
var qr := new(mat64mat.QR)
qr.Factorize(a)
 
const trans = false
err := c.SolveQR(qr, false, b)
err := qr.SolveTo(c, trans, b)
if err != nil {
if err != nil {
fmt.Println(err)
log.Fatalf("could not solve QR: %+v", err)
} else {
}
fmt.Printf("%.3f\n", mat64.Formatted(c))
fmt.Printf("%.3f\n", mat.Formatted(c))
}
}
 
func Vandermonde(a []float64, degreed int) *mat64mat.Dense {
x := mat64mat.NewDense(len(a), degree+1d, nil)
for i := range a {
for j, p := 0, 1.0; j <= degreed; j, p = j+1, p*a[i] {
x.Set(i, j, p)
}
}
}
}
return x
}</langsyntaxhighlight>
{{out}}
<pre>
Line 814 ⟶ 1,181:
===Library go.matrix===
Least squares solution using QR decomposition and package [http://github.com/skelterjohn/go.matrix go.matrix].
<langsyntaxhighlight lang="go">package main
 
import (
Line 854 ⟶ 1,221:
}
fmt.Println(c)
}</langsyntaxhighlight>
{{out}} (lowest order coefficient first)
<pre>
Line 862 ⟶ 1,229:
=={{header|Haskell}}==
Uses module Matrix.LU from [http://hackage.haskell.org/package/dsp hackageDB DSP]
<langsyntaxhighlight lang="haskell">import Data.List
import Data.Array
import Control.Monad
Line 872 ⟶ 1,239:
polyfit d ry = elems $ solve mat vec where
mat = listArray ((1,1), (d,d)) $ liftM2 concatMap ppoly id [0..fromIntegral $ pred d]
vec = listArray (1,d) $ take d ry</langsyntaxhighlight>
{{out}} in GHCi:
<langsyntaxhighlight lang="haskell">*Main> polyfit 3 [1,6,17,34,57,86,121,162,209,262,321]
[1.0,2.0,3.0]</langsyntaxhighlight>
 
=={{header|HicEst}}==
<langsyntaxhighlight lang="hicest">REAL :: n=10, x(n), y(n), m=3, p(m)
 
x = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
Line 892 ⟶ 1,259:
! called by the solver of the SOLVE function. All variables are global
Theory = p(1)*x(nr)^2 + p(2)*x(nr) + p(3)
END</langsyntaxhighlight>
{{out}}
<pre>SOLVE performs a (nonlinear) least-square fit (Levenberg-Marquardt):
Line 898 ⟶ 1,265:
 
=={{header|Hy}}==
<langsyntaxhighlight lang="lisp">(import [numpy [polyfit]])
 
(setv x (range 11))
(setv y [1 6 17 34 57 86 121 162 209 262 321])
 
(print (polyfit x y 2))</langsyntaxhighlight>
 
=={{header|J}}==
 
<langsyntaxhighlight lang="j"> Y=:1 6 17 34 57 86 121 162 209 262 321
(%. ^/~@x:@i.@#) Y
1 2 3 0 0 0 0 0 0 0 0</langsyntaxhighlight>
 
Note that this implementation does not use floating point numbers,
Line 916 ⟶ 1,283:
but for small problems like this it is inconsequential.
 
The above solution fits a polynomial of order 11 (or, more specifically, a polynomial whose order matches the length of its argument sequence).
If the order of the polynomial is known to be 3
(as is implied in the task description)
then the following solution is probably preferable:
<langsyntaxhighlight lang="j"> Y %. (i.3) ^/~ i.#Y
1 2 3</langsyntaxhighlight>
(note that this time we used floating point numbers, so that result is approximate rather than exact - it only looks exact because of how J displays floating point numbers (by default, J assumes six digits of accuracy) - changing (i.3) to (x:i.3) would give us an exact result, if that mattered.)
 
Line 927 ⟶ 1,294:
{{trans|D}}
{{works with|Java|8}}
<langsyntaxhighlight Javalang="java">import java.util.Arrays;
import java.util.function.IntToDoubleFunction;
import java.util.stream.IntStream;
Line 934 ⟶ 1,301:
private static void polyRegression(int[] x, int[] y) {
int n = x.length;
int[] r = IntStream.range(0, n).toArray();
double xm = Arrays.stream(x).average().orElse(Double.NaN);
double ym = Arrays.stream(y).average().orElse(Double.NaN);
double x2m = Arrays.stream(rx).map(a -> a * a).average().orElse(Double.NaN);
double x3m = Arrays.stream(rx).map(a -> a * a * a).average().orElse(Double.NaN);
double x4m = Arrays.stream(rx).map(a -> a * a * a * a).average().orElse(Double.NaN);
double xym = 0.0;
for (int i = 0; i < x.length && i < y.length; ++i) {
Line 976 ⟶ 1,342:
polyRegression(x, y);
}
}</langsyntaxhighlight>
{{out}}
<pre>y = 1.0 + 2.0x + 3.0x^2
Line 992 ⟶ 1,358:
9 262 262.0
10 321 321.0</pre>
 
=={{header|jq}}==
'''Adapted from [[#Wren|Wren]]'''
 
'''Works with jq, the C implementation of jq'''
 
'''Works with gojq, the Go implementation of jq'''
 
'''Works with jaq, the Rust implementation of jq'''
<syntaxhighlight lang="jq">
def mean: add/length;
 
def inner_product($y):
. as $x
| reduce range(0; length) as $i (0; . + ($x[$i] * $y[$i]));
 
# $x and $y should be arrays of the same length
# Emit { a, b, c, z}
# Attempt to avoid overflow
def polynomialRegression($x; $y):
($x | length) as $length
| ($length * $length) as $l2
| ($x | map(./$length)) as $xs
| ($xs | add) as $xm
| ($y | mean) as $ym
| ($xs | map(. * .) | add * $length) as $x2m
| ($x | map( (./$length) * . * .) | add) as $x3m
| ($xs | map(. * . | (.*.) ) | add * $l2 * $length) as $x4m
| ($xs | inner_product($y)) as $xym
| ($xs | map(. * .) | inner_product($y) * $length) as $x2ym
| ($x2m - $xm * $xm) as $sxx
| ($xym - $xm * $ym) as $sxy
| ($x3m - $xm * $x2m) as $sxx2
| ($x4m - $x2m * $x2m) as $sx2x2
| ($x2ym - $x2m * $ym) as $sx2y
| {z: ([$x,$y] | transpose) }
| .b = ($sxy * $sx2x2 - $sx2y * $sxx2) / ($sxx * $sx2x2 - $sxx2 * $sxx2)
| .c = ($sx2y * $sxx - $sxy * $sxx2) / ($sxx * $sx2x2 - $sxx2 * $sxx2)
| .a = $ym - .b * $xm - .c * $x2m ;
 
# Input: {a,b,c,z}
def report:
def lpad($len): tostring | ($len - length) as $l | (" " * $l) + .;
def abc($x): .a + .b * $x + .c * $x * $x;
def print($p): "\($p[0] | lpad(3)) \($p[1] | lpad(4)) \(abc($p[0]) | lpad(5))";
"y = \(.a) + \(.b)x + \(.c)x^2\n",
" Input Approximation",
" x y y\u0302",
print(.z[]) ;
def x: [range(0;11)];
def y: [1, 6, 17, 34, 57, 86, 121, 162, 209, 262, 321];
 
polynomialRegression(x; y)
| report
</syntaxhighlight>
{{output}}
<pre>
y = 1 + 2x + 3x^2
 
Input Approximation
x y ŷ
0 1 1
1 6 6
2 17 17
3 34 34
4 57 57
5 86 86
6 121 121
7 162 162
8 209 209
9 262 262
10 321 321
</pre>
 
=={{header|Julia}}==
Line 997 ⟶ 1,439:
The least-squares fit problem for a degree <i>n</i>
can be solved with the built-in backslash operator (coefficients in increasing order of degree):
<langsyntaxhighlight lang="julia">polyfit(x::Vector, y::Vector, deg::Int) = collect(v ^ p for v in x, p in 0:deg) \ y
 
x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
y = [1, 6, 17, 34, 57, 86, 121, 162, 209, 262, 321]
@show polyfit(x, y, 2)</langsyntaxhighlight>
 
{{out}}
Line 1,008 ⟶ 1,450:
=={{header|Kotlin}}==
{{trans|REXX}}
<langsyntaxhighlight lang="scala">// version 1.1.51
 
fun polyRegression(x: IntArray, y: IntArray) {
val n = x.size
val r = 0 until n
val xm = x.average()
val ym = y.average()
val x2m = rx.map { it * it }.average()
val x3m = rx.map { it * it * it }.average()
val x4m = rx.map { it * it * it * it }.average()
val xym = x.zip(y).map { it.first * it.second }.average()
val x2ym = x.zip(y).map { it.first * it.first * it.second }.average()
Line 1,036 ⟶ 1,476:
println(" Input Approximation")
println(" x y y1")
for (i(xi, yi) in 0x untilzip ny) {
System.out.printf("%2d %3d %5.1f\n", x[i]xi, y[i]yi, abc(x[i]xi))
}
}
 
fun main(args: Array<String>) {
val x = IntArray(11) { it }
val y = intArrayOf(1, 6, 17, 34, 57, 86, 121, 162, 209, 262, 321)
polyRegression(x, y)
}</langsyntaxhighlight>
 
{{out}}
Line 1,068 ⟶ 1,508:
=={{header|Lua}}==
{{trans|Modula-2}}
<langsyntaxhighlight lang="lua">function eval(a,b,c,x)
return a + (b + c * x) * x
end
Line 1,119 ⟶ 1,559:
local xa = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
local ya = {1, 6, 17, 34, 57, 86, 121, 162, 209, 262, 321}
regression(xa, ya)</langsyntaxhighlight>
{{out}}
<pre>y = 1 + 2x + 3x^2
Line 1,135 ⟶ 1,575:
 
=={{header|Maple}}==
<langsyntaxhighlight Maplelang="maple">with(CurveFitting);
PolynomialInterpolation([[0, 1], [1, 6], [2, 17], [3, 34], [4, 57], [5, 86], [6, 121], [7, 162], [8, 209], [9, 262], [10, 321]], 'x');
</syntaxhighlight>
</lang>
Result:
<pre>3*x^2+2*x+1</pre>
 
=={{header|Mathematica}}/{{header|Wolfram Language}}==
Using the built-in "Fit" function.
<syntaxhighlight lang="mathematica">data = Transpose@{Range[0, 10], {1, 6, 17, 34, 57, 86, 121, 162, 209, 262, 321}};
 
Fit[data, {1, x, x^2}, x]</syntaxhighlight>
<lang Mathematica>data = Transpose@{Range[0, 10], {1, 6, 17, 34, 57, 86, 121, 162, 209, 262, 321}};
Fit[data, {1, x, x^2}, x]</lang>
 
Second version: using built-in "InterpolatingPolynomial" function.
<langsyntaxhighlight Mathematicalang="mathematica">Simplify@InterpolatingPolynomial[{{0, 1}, {1, 6}, {2, 17}, {3, 34}, {4, 57}, {5, 86}, {6, 121}, {7, 162}, {8, 209}, {9, 262}, {10, 321}}, x]</langsyntaxhighlight>
WolframAlpha version:
<syntaxhighlight lang="mathematica">curve fit (0,1), (1,6), (2,17), (3,34), (4,57), (5,86), (6,121), (7,162), (8,209), (9,262), (10,321)</syntaxhighlight>
Result:
<pre>1 + 2x + 3x^2</pre>
Line 1,157 ⟶ 1,597:
The output of this function is the coefficients of the polynomial which best fit these x,y value pairs.
 
<langsyntaxhighlight MATLABlang="matlab">>> x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
>> y = [1, 6, 17, 34, 57, 86, 121, 162, 209, 262, 321];
>> polyfit(x,y,2)
Line 1,163 ⟶ 1,603:
ans =
 
2.999999999999998 2.000000000000019 0.999999999999956</langsyntaxhighlight>
 
=={{header|МК-61/52}}==
Part 1:
<syntaxhighlight lang="text">ПC С/П ПD ИП9 + П9 ИПC ИП5 + П5
ИПC x^2 П2 ИП6 + П6 ИП2 ИПC * ИП7
+ П7 ИП2 x^2 ИП8 + П8 ИПC ИПD *
ИПA + ПA ИП2 ИПD * ИПB + ПB ИПD
КИП4 С/П БП 00</langsyntaxhighlight>
 
''Input'': В/О x<sub>1</sub> С/П y<sub>1</sub> С/П x<sub>2</sub> С/П y<sub>2</sub> С/П ...
 
Part 2:
<syntaxhighlight lang="text">ИП5 ПC ИП6 ПD П2 ИП7 П3 ИП4 ИПD *
ИПC ИП5 * - ПD ИП4 ИП7 * ИПC ИП6
* - П7 ИП4 ИПA * ИПC ИП9 * -
Line 1,184 ⟶ 1,624:
ИПD ИП8 * ИП7 ИП3 * - / ПB ИПA
ИПB ИП7 * - ИПD / ПA ИП9 ИПB ИП6
* - ИПA ИП5 * - ИП4 / П9 С/П</langsyntaxhighlight>
 
''Result'': Р9 = a<sub>0</sub>, РA = a<sub>1</sub>, РB = a<sub>2</sub>.
 
=={{header|Modula-2}}==
<langsyntaxhighlight lang="modula2">MODULE PolynomialRegression;
FROM FormatString IMPORT FormatString;
FROM RealStr IMPORT RealToStr;
Line 1,275 ⟶ 1,715:
 
ReadChar;
END PolynomialRegression.</langsyntaxhighlight>
 
=={{header|OctaveNim}}==
{{trans|Kotlin}}
<syntaxhighlight lang="nim">import lenientops, sequtils, stats, strformat
 
proc polyRegression(x, y: openArray[int]) =
<lang octave>x = [0:10];
y = [1, 6, 17, 34, 57, 86, 121, 162, 209, 262, 321];
coeffs = polyfit(x, y, 2)</lang>
 
let xm = mean(x)
=={{header|PARI/GP}}==
let ym = mean(y)
Lagrange interpolating polynomial:
let x2m = mean(x.mapIt(it * it))
<lang parigp>polinterpolate([0,1,2,3,4,5,6,7,8,9,10],[1,6,17,34,57,86,121,162,209,262,321])</lang>
let x3m = mean(x.mapIt(it * it * it))
In newer versions, this can be abbreviated:
let x4m = mean(x.mapIt(it * it * it * it))
<lang parigp>polinterpolate([0..10],[1,6,17,34,57,86,121,162,209,262,321])</lang>
let xym = mean(zip(x, y).mapIt(it[0] * it[1]))
{{out}}
let x2ym = mean(zip(x, y).mapIt(it[0] * it[0] * it[1]))
<pre>3*x^2 + 2*x + 1</pre>
 
let sxx = x2m - xm * xm
Least-squares fit:
let sxy = xym - xm * ym
<lang parigp>V=[1,6,17,34,57,86,121,162,209,262,321]~;
let sxx2 = x3m - xm * x2m
M=matrix(#V,3,i,j,(i-1)^(j-1));Polrev(matsolve(M~*M,M~*V))</lang>
let sx2x2 = x4m - x2m * x2m
<small>Code thanks to [http://pari.math.u-bordeaux.fr/archives/pari-users-1105/msg00006.html Bill Allombert]</small>
let sx2y = x2ym - x2m * ym
{{out}}
<pre>3*x^2 + 2*x + 1</pre>
 
let b = (sxy * sx2x2 - sx2y * sxx2) / (sxx * sx2x2 - sxx2 * sxx2)
Least-squares polynomial fit in its own function:
let c = (sx2y * sxx - sxy * sxx2) / (sxx * sx2x2 - sxx2 * sxx2)
<lang parigp>lsf(X,Y,n)=my(M=matrix(#X,n+1,i,j,X[i]^(j-1))); Polrev(matsolve(M~*M,M~*Y~))
let a = ym - b * xm - c * x2m
lsf([0..10], [1,6,17,34,57,86,121,162,209,262,321], 2)</lang>
 
func abc(x: int): float = a + b * x + c * x * x
=={{header|Perl}}==
This script depends on the <tt>Math::MatrixReal</tt> CPAN module to compute matrix determinants.
<lang Perl>use strict;
use warnings;
use feature 'say';
 
echo &"y = {a} + {b}x + {c}x²\n"
#This is a script to calculate an equation for a given set of coordinates.
echo " Input Approximation"
#Input will be taken in sets of x and y. It can handle a grand total of 26 pairs.
echo " x y y1"
#For matrix functions, we depend on the Math::MatrixReal package.
for (xi, yi) in zip(x, y):
use Math::MatrixReal;
echo &"{xi:2} {yi:3} {abc(xi):5}"
 
=pod
 
let x = toSeq(0..10)
Step 1: Get each x coordinate all at once (delimited by " ") and each for y at once
let y = [1, 6, 17, 34, 57, 86, 121, 162, 209, 262, 321]
on the next prompt in the same format (delimited by " ").
polyRegression(x, y)</syntaxhighlight>
=cut
 
{{out}}
sub getPairs() {
<pre>y = 1.0 + 2.0x + 3.0x²
my $buffer = <STDIN>;
chomp($buffer);
return split(" ", $buffer);
}
say("Please enter the values for the x coordinates, each delimited by a space. \(Ex: 0 1 2 3\)");
my @x = getPairs();
say("Please enter the values for the y coordinates, each delimited by a space. \(Ex: 0 1 2 3\)");
my @y = getPairs();
#This whole thing depends on the number of x's being the same as the number of y's
my $pairs = scalar(@x);
 
Input Approximation
=pod
x y y1
0 1 1
1 6 6
2 17 17
3 34 34
4 57 57
5 86 86
6 121 121
7 162 162
8 209 209
9 262 262
10 321 321</pre>
 
=={{header|OCaml}}==
Step 2: Devise the base equation of our polynomial using the following idea
{{trans|Kotlin}}
There is some polynomial of degree n (n == number of pairs - 1) such that
{{libheader|Base}}
f(x)=ax^n + bx^(n-1) + ... yx + z
<syntaxhighlight lang="ocaml">open Base
=cut
open Stdio
 
let mean fa =
#Create an array of coefficients and their degrees with the format ("coefficent degree")
let open Float in
my @alphabet;
(Array.reduce_exn fa ~f:(+)) / (of_int (Array.length fa))
my @degrees;
for(my $alpha = "a", my $degree = $pairs - 1; $degree >= 0; $degree--, $alpha++) {
push(@alphabet, "$alpha");
push(@degrees, "$degree");
}
 
let regression xs ys =
let open Float in
let xm = mean xs in
let ym = mean ys in
let x2m = Array.map xs ~f:(fun x -> x * x) |> mean in
let x3m = Array.map xs ~f:(fun x -> x * x * x) |> mean in
let x4m = Array.map xs ~f:(fun x -> let x2 = x * x in x2 * x2) |> mean in
let xzipy = Array.zip_exn xs ys in
let xym = Array.map xzipy ~f:(fun (x, y) -> x * y) |> mean in
let x2ym = Array.map xzipy ~f:(fun (x, y) -> x * x * y) |> mean in
 
let sxx = x2m - xm * xm in
=pod
let sxy = xym - xm * ym in
let sxx2 = x3m - xm * x2m in
let sx2x2 = x4m - x2m * x2m in
let sx2y = x2ym - x2m * ym in
 
let b = (sxy * sx2x2 - sx2y * sxx2) / (sxx * sx2x2 - sxx2 * sxx2) in
Step 3: Using the array of coeffs and their degrees, set up individual equations solving for
let c = (sx2y * sxx - sxy * sxx2) / (sxx * sx2x2 - sxx2 * sxx2) in
each coordinate pair. Why put it in this format? It interfaces witht he Math::MatrixReal package better this way.
let a = ym - b * xm - c * x2m in
=cut
 
let abc xx = a + b * xx + c * xx * xx in
my @coeffs;
for(my $count = 0; $count < $pairs; $count++) {
my $buffer = "[ ";
foreach (@degrees) {
$buffer .= (($x[$count] ** $_) . " ");
}
push(@coeffs, ($buffer . "]"));
}
my $row;
foreach (@coeffs) {
$row .= ("$_\n");
}
 
printf "y = %.1f + %.1fx + %.1fx^2\n\n" a b c;
=pod
printf " Input Approximation\n";
printf " x y y1\n";
Array.iter xzipy ~f:(fun (xi, yi) ->
printf "%2g %3g %5.1f\n" xi yi (abc xi)
)
 
let () =
Step 4: We now have rows of x's raised to powers. With this in mind, we create a coefficient matrix.
let x = Array.init 11 ~f:Float.of_int in
=cut
let y = [| 1.; 6.; 17.; 34.; 57.; 86.; 121.; 162.; 209.; 262.; 321. |] in
regression x y</syntaxhighlight>
 
{{out}}
my $matrix = Math::MatrixReal->new_from_string($row);
<pre>
my $buffMatrix = $matrix->new_from_string($row);
y = 1.0 + 2.0x + 3.0x^2
 
Input Approximation
=pod
x y y1
0 1 1.0
1 6 6.0
2 17 17.0
3 34 34.0
4 57 57.0
5 86 86.0
6 121 121.0
7 162 162.0
8 209 209.0
9 262 262.0
10 321 321.0
</pre>
 
=={{header|Octave}}==
Step 5: Now that we've gotten the matrix to do what we want it to do, we need to calculate the various determinants of the matrices
=cut
 
<syntaxhighlight lang="octave">x = [0:10];
my $coeffDet = $matrix->det();
y = [1, 6, 17, 34, 57, 86, 121, 162, 209, 262, 321];
coeffs = polyfit(x, y, 2)</syntaxhighlight>
 
=={{header|PARI/GP}}==
=pod
Lagrange interpolating polynomial:
<syntaxhighlight lang="parigp">polinterpolate([0,1,2,3,4,5,6,7,8,9,10],[1,6,17,34,57,86,121,162,209,262,321])</syntaxhighlight>
In newer versions, this can be abbreviated:
<syntaxhighlight lang="parigp">polinterpolate([0..10],[1,6,17,34,57,86,121,162,209,262,321])</syntaxhighlight>
{{out}}
<pre>3*x^2 + 2*x + 1</pre>
 
Least-squares fit:
Step 6: Now that we have the determinant of the coefficient matrix, we need to find the determinants of the coefficient matrix with each column (1 at a time) replaced with the y values.
<syntaxhighlight lang="parigp">V=[1,6,17,34,57,86,121,162,209,262,321]~;
=cut
M=matrix(#V,3,i,j,(i-1)^(j-1));Polrev(matsolve(M~*M,M~*V))</syntaxhighlight>
<small>Code thanks to [http://pari.math.u-bordeaux.fr/archives/pari-users-1105/msg00006.html Bill Allombert]</small>
{{out}}
<pre>3*x^2 + 2*x + 1</pre>
 
Least-squares polynomial fit in its own function:
#NOTE: Unlike in Perl, matrix indices start at 1, not 0.
<syntaxhighlight lang="parigp">lsf(X,Y,n)=my(M=matrix(#X,n+1,i,j,X[i]^(j-1))); Polrev(matsolve(M~*M,M~*Y~))
for(my $rows = my $column = 1; $column <= $pairs; $column++) {
lsf([0..10], [1,6,17,34,57,86,121,162,209,262,321], 2)</syntaxhighlight>
#Reassign the values in the current column to the y values
foreach (@y) {
$buffMatrix->assign($rows, $column, $_);
$rows++;
}
#Find the values for the variables a, b, ... y, z in the original polynomial
#To round the difference of the determinants, I had to get creative
my $buffDet = $buffMatrix->det() / $coeffDet;
my $tempDet = int(abs($buffDet) + .5);
$alphabet[$column - 1] = $buffDet >= 0 ? $tempDet : 0 - $tempDet;
#Reset the buffer matrix and the row counter
$buffMatrix = $matrix->new_from_string($row);
$rows = 1;
}
 
=={{header|Perl}}==
This code identical to that of [[Multiple regression]] task.
<syntaxhighlight lang="perl">use strict;
use warnings;
use Statistics::Regression;
 
my @x = <0 1 2 3 4 5 6 7 8 9 10>;
=pod
my @y = <1 6 17 34 57 86 121 162 209 262 321>;
 
my @model = ('const', 'X', 'X**2');
Step 7: Now that we've found the values of a, b, ... y, z of the original polynomial, it's time to form our polynomial!
=cut
 
my $reg = Statistics::Regression->new( '', [@model] );
my $polynomial;
$reg->include( $y[$_], [ 1.0, $x[$_], $x[$_]**2 ]) for 0..@y-1;
for(my $i = 0; $i < $pairs-1; $i++) {
my @coeff = $reg->theta();
if($alphabet[$i] == 0) {
next;
}
if($alphabet[$i] == 1) {
$polynomial .= ($degrees[$i] . " + ");
}
if($degrees[$i] == 1) {
$polynomial .= ($alphabet[$i] . "x" . " + ");
}
else {
$polynomial .= ($alphabet[$i] . "x^" . $degrees[$i] . " + ");
}
}
#Now for the last piece of the poly: the y-intercept.
$polynomial .= $alphabet[scalar(@alphabet)-1];
 
printf "%-6s %8.3f\n", $model[$_], $coeff[$_] for 0..@model-1;</syntaxhighlight>
print("An approximating polynomial for your dataset is $polynomial.\n");
</lang>
{{output}}
<pre>const 1.000
<pre>Please enter the values for the x coordinates, each delimited by a space. (Ex: 0 1 2 3)
0X 1 2 3 4 5 6 7 8 9 102.000
X**2 3.000</pre>
Please enter the values for the y coordinates, each delimited by a space. (Ex: 0 1 2 3)
1 6 17 34 57 86 121 162 209 262 321
An approximating polynomial for your dataset is 3x^2 + 2x + 1.</pre>
 
PDL Alternative:
=={{header|Phix}}==
<syntaxhighlight lang="perl">#!/usr/bin/perl -w
{{trans|REXX}}
use strict;
<lang Phix>constant x = {0,1,2,3,4,5,6,7,8,9,10}
constant y = {1,6,17,34,57,86,121,162,209,262,321}
constant n = length(x)
 
use PDL;
function regression()
use PDL::Math;
atom {xm, ym, x2m, x3m, x4m, xym, x2ym} @= 0
use PDL::Fit::Polynomial;
for i=1 to n do
atom xi = x[i],
yi = y[i]
xm += xi
ym += yi
x2m += power(xi,2)
x3m += power(xi,3)
x4m += power(xi,4)
xym += xi*yi
x2ym += power(xi,2)*yi
end for
xm /= n
ym /= n
x2m /= n
x3m /= n
x4m /= n
xym /= n
x2ym /= n
atom Sxx = x2m-power(xm,2),
Sxy = xym-xm*ym,
Sxx2 = x3m-xm*x2m,
Sx2x2 = x4m-power(x2m,2),
Sx2y = x2ym-x2m*ym,
B = (Sxy*Sx2x2-Sx2y*Sxx2)/(Sxx*Sx2x2-power(Sxx2,2)),
C = (Sx2y*Sxx-Sxy*Sxx2)/(Sxx*Sx2x2-power(Sxx2,2)),
A = ym-B*xm-C*x2m
return {C,B,A}
end function
 
my $x = float [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
atom {a,b,c} = regression()
my $y = float [1, 6, 17, 34, 57, 86, 121, 162, 209, 262, 321];
# above will output: 3.00000037788248 * $x**2 + 1.99999750988868 * $x + 1.00000180493936
 
# $x = float [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
function f(atom x)
# $y = float [ 2.7, 2.8, 31.4, 38.1, 58.0, 76.2, 100.5, 130.0, 149.3, 180.0];
return a*x*x+b*x+c
# above correctly returns: " 1.08484845125187 * $x**2 + 10.3551513321297 * $x-0.616363852007752 "
end function
 
my ($yfit, $coeffs) = fitpoly1d $x, $y, 3; # 3rd degree
printf(1,"y=%gx^2+%gx+%g\n",{a,b,c})
 
printf(1,"\n x y f(x)\n")
foreach (reverse(0..$coeffs->dim(0)-1)) {
for i=1 to n do
print " +" unless(($coeffs->at($_) <0) || $_==$coeffs->dim(0)-1); # let the unary minus replace the + operator
printf(1," %2d %3d %3g\n",{x[i],y[i],f(x[i])})
print " ";
end for</lang>
print $coeffs->at($_);
print " * \$x" if($_);
print "**$_" if($_>1);
print "\n" unless($_)
}
</syntaxhighlight>
{{output}}
<pre> 3.00000037788248 * $x**2 + 1.99999750988868 * $x + 1.00000180493936</pre>
 
=={{header|Phix}}==
{{trans|REXX}}
{{libheader|Phix/online}}
{{libheader|Phix/pGUI}}
You can run this online [http://phix.x10.mx/p2js/Polynomial_regression.htm here].
<!--<syntaxhighlight lang="phix">(phixonline)-->
<span style="color: #000080;font-style:italic;">-- demo\rosetta\Polynomial_regression.exw</span>
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #008080;">constant</span> <span style="color: #000000;">x</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">0</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">2</span><span style="color: #0000FF;">,</span><span style="color: #000000;">3</span><span style="color: #0000FF;">,</span><span style="color: #000000;">4</span><span style="color: #0000FF;">,</span><span style="color: #000000;">5</span><span style="color: #0000FF;">,</span><span style="color: #000000;">6</span><span style="color: #0000FF;">,</span><span style="color: #000000;">7</span><span style="color: #0000FF;">,</span><span style="color: #000000;">8</span><span style="color: #0000FF;">,</span><span style="color: #000000;">9</span><span style="color: #0000FF;">,</span><span style="color: #000000;">10</span><span style="color: #0000FF;">},</span>
<span style="color: #000000;">y</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">6</span><span style="color: #0000FF;">,</span><span style="color: #000000;">17</span><span style="color: #0000FF;">,</span><span style="color: #000000;">34</span><span style="color: #0000FF;">,</span><span style="color: #000000;">57</span><span style="color: #0000FF;">,</span><span style="color: #000000;">86</span><span style="color: #0000FF;">,</span><span style="color: #000000;">121</span><span style="color: #0000FF;">,</span><span style="color: #000000;">162</span><span style="color: #0000FF;">,</span><span style="color: #000000;">209</span><span style="color: #0000FF;">,</span><span style="color: #000000;">262</span><span style="color: #0000FF;">,</span><span style="color: #000000;">321</span><span style="color: #0000FF;">},</span>
<span style="color: #000000;">n</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">regression</span><span style="color: #0000FF;">()</span>
<span style="color: #004080;">atom</span> <span style="color: #000000;">xm</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">ym</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">x2m</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">x3m</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">x4m</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">xym</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">x2ym</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #000000;">n</span> <span style="color: #008080;">do</span>
<span style="color: #004080;">atom</span> <span style="color: #000000;">xi</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">x</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">],</span>
<span style="color: #000000;">yi</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">y</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]</span>
<span style="color: #000000;">xm</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">xi</span>
<span style="color: #000000;">ym</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">yi</span>
<span style="color: #000000;">x2m</span> <span style="color: #0000FF;">+=</span> <span style="color: #7060A8;">power</span><span style="color: #0000FF;">(</span><span style="color: #000000;">xi</span><span style="color: #0000FF;">,</span><span style="color: #000000;">2</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">x3m</span> <span style="color: #0000FF;">+=</span> <span style="color: #7060A8;">power</span><span style="color: #0000FF;">(</span><span style="color: #000000;">xi</span><span style="color: #0000FF;">,</span><span style="color: #000000;">3</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">x4m</span> <span style="color: #0000FF;">+=</span> <span style="color: #7060A8;">power</span><span style="color: #0000FF;">(</span><span style="color: #000000;">xi</span><span style="color: #0000FF;">,</span><span style="color: #000000;">4</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">xym</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">xi</span><span style="color: #0000FF;">*</span><span style="color: #000000;">yi</span>
<span style="color: #000000;">x2ym</span> <span style="color: #0000FF;">+=</span> <span style="color: #7060A8;">power</span><span style="color: #0000FF;">(</span><span style="color: #000000;">xi</span><span style="color: #0000FF;">,</span><span style="color: #000000;">2</span><span style="color: #0000FF;">)*</span><span style="color: #000000;">yi</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #000000;">xm</span> <span style="color: #0000FF;">/=</span> <span style="color: #000000;">n</span>
<span style="color: #000000;">ym</span> <span style="color: #0000FF;">/=</span> <span style="color: #000000;">n</span>
<span style="color: #000000;">x2m</span> <span style="color: #0000FF;">/=</span> <span style="color: #000000;">n</span>
<span style="color: #000000;">x3m</span> <span style="color: #0000FF;">/=</span> <span style="color: #000000;">n</span>
<span style="color: #000000;">x4m</span> <span style="color: #0000FF;">/=</span> <span style="color: #000000;">n</span>
<span style="color: #000000;">xym</span> <span style="color: #0000FF;">/=</span> <span style="color: #000000;">n</span>
<span style="color: #000000;">x2ym</span> <span style="color: #0000FF;">/=</span> <span style="color: #000000;">n</span>
<span style="color: #004080;">atom</span> <span style="color: #000000;">Sxx</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">x2m</span><span style="color: #0000FF;">-</span><span style="color: #7060A8;">power</span><span style="color: #0000FF;">(</span><span style="color: #000000;">xm</span><span style="color: #0000FF;">,</span><span style="color: #000000;">2</span><span style="color: #0000FF;">),</span>
<span style="color: #000000;">Sxy</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">xym</span><span style="color: #0000FF;">-</span><span style="color: #000000;">xm</span><span style="color: #0000FF;">*</span><span style="color: #000000;">ym</span><span style="color: #0000FF;">,</span>
<span style="color: #000000;">Sxx2</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">x3m</span><span style="color: #0000FF;">-</span><span style="color: #000000;">xm</span><span style="color: #0000FF;">*</span><span style="color: #000000;">x2m</span><span style="color: #0000FF;">,</span>
<span style="color: #000000;">Sx2x2</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">x4m</span><span style="color: #0000FF;">-</span><span style="color: #7060A8;">power</span><span style="color: #0000FF;">(</span><span style="color: #000000;">x2m</span><span style="color: #0000FF;">,</span><span style="color: #000000;">2</span><span style="color: #0000FF;">),</span>
<span style="color: #000000;">Sx2y</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">x2ym</span><span style="color: #0000FF;">-</span><span style="color: #000000;">x2m</span><span style="color: #0000FF;">*</span><span style="color: #000000;">ym</span><span style="color: #0000FF;">,</span>
<span style="color: #000000;">B</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">(</span><span style="color: #000000;">Sxy</span><span style="color: #0000FF;">*</span><span style="color: #000000;">Sx2x2</span><span style="color: #0000FF;">-</span><span style="color: #000000;">Sx2y</span><span style="color: #0000FF;">*</span><span style="color: #000000;">Sxx2</span><span style="color: #0000FF;">)/(</span><span style="color: #000000;">Sxx</span><span style="color: #0000FF;">*</span><span style="color: #000000;">Sx2x2</span><span style="color: #0000FF;">-</span><span style="color: #7060A8;">power</span><span style="color: #0000FF;">(</span><span style="color: #000000;">Sxx2</span><span style="color: #0000FF;">,</span><span style="color: #000000;">2</span><span style="color: #0000FF;">)),</span>
<span style="color: #000000;">C</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">(</span><span style="color: #000000;">Sx2y</span><span style="color: #0000FF;">*</span><span style="color: #000000;">Sxx</span><span style="color: #0000FF;">-</span><span style="color: #000000;">Sxy</span><span style="color: #0000FF;">*</span><span style="color: #000000;">Sxx2</span><span style="color: #0000FF;">)/(</span><span style="color: #000000;">Sxx</span><span style="color: #0000FF;">*</span><span style="color: #000000;">Sx2x2</span><span style="color: #0000FF;">-</span><span style="color: #7060A8;">power</span><span style="color: #0000FF;">(</span><span style="color: #000000;">Sxx2</span><span style="color: #0000FF;">,</span><span style="color: #000000;">2</span><span style="color: #0000FF;">)),</span>
<span style="color: #000000;">A</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">ym</span><span style="color: #0000FF;">-</span><span style="color: #000000;">B</span><span style="color: #0000FF;">*</span><span style="color: #000000;">xm</span><span style="color: #0000FF;">-</span><span style="color: #000000;">C</span><span style="color: #0000FF;">*</span><span style="color: #000000;">x2m</span>
<span style="color: #008080;">return</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">C</span><span style="color: #0000FF;">,</span><span style="color: #000000;">B</span><span style="color: #0000FF;">,</span><span style="color: #000000;">A</span><span style="color: #0000FF;">}</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #004080;">atom</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #000000;">b</span><span style="color: #0000FF;">,</span><span style="color: #000000;">c</span><span style="color: #0000FF;">}</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">regression</span><span style="color: #0000FF;">()</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">f</span><span style="color: #0000FF;">(</span><span style="color: #004080;">atom</span> <span style="color: #000000;">x</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">return</span> <span style="color: #000000;">a</span><span style="color: #0000FF;">*</span><span style="color: #000000;">x</span><span style="color: #0000FF;">*</span><span style="color: #000000;">x</span><span style="color: #0000FF;">+</span><span style="color: #000000;">b</span><span style="color: #0000FF;">*</span><span style="color: #000000;">x</span><span style="color: #0000FF;">+</span><span style="color: #000000;">c</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"y=%gx^2+%gx+%g\n"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #000000;">b</span><span style="color: #0000FF;">,</span><span style="color: #000000;">c</span><span style="color: #0000FF;">})</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"\n x y f(x)\n"</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #000000;">n</span> <span style="color: #008080;">do</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">" %2d %3d %3g\n"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">x</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">],</span><span style="color: #000000;">y</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">],</span><span style="color: #000000;">f</span><span style="color: #0000FF;">(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">])})</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #000080;font-style:italic;">-- And a simple plot (re-using x,y from above)</span>
<span style="color: #008080;">include</span> <span style="color: #000000;">pGUI</span><span style="color: #0000FF;">.</span><span style="color: #000000;">e</span>
<span style="color: #008080;">include</span> <span style="color: #000000;">IupGraph</span><span style="color: #0000FF;">.</span><span style="color: #000000;">e</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">get_data</span><span style="color: #0000FF;">(</span><span style="color: #004080;">Ihandle</span> <span style="color: #000000;">graph</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">integer</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">w</span><span style="color: #0000FF;">,</span><span style="color: #000000;">h</span><span style="color: #0000FF;">}</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">IupGetIntInt</span><span style="color: #0000FF;">(</span><span style="color: #000000;">graph</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"DRAWSIZE"</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">IupSetInt</span><span style="color: #0000FF;">(</span><span style="color: #000000;">graph</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"YTICK"</span><span style="color: #0000FF;">,</span><span style="color: #008080;">iff</span><span style="color: #0000FF;">(</span><span style="color: #000000;">h</span><span style="color: #0000FF;"><</span><span style="color: #000000;">240</span><span style="color: #0000FF;">?</span><span style="color: #008080;">iff</span><span style="color: #0000FF;">(</span><span style="color: #000000;">h</span><span style="color: #0000FF;"><</span><span style="color: #000000;">150</span><span style="color: #0000FF;">?</span><span style="color: #000000;">80</span><span style="color: #0000FF;">:</span><span style="color: #000000;">40</span><span style="color: #0000FF;">):</span><span style="color: #000000;">20</span><span style="color: #0000FF;">))</span>
<span style="color: #008080;">return</span> <span style="color: #0000FF;">{{</span><span style="color: #000000;">x</span><span style="color: #0000FF;">,</span><span style="color: #000000;">y</span><span style="color: #0000FF;">,</span><span style="color: #004600;">CD_RED</span><span style="color: #0000FF;">}}</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #7060A8;">IupOpen</span><span style="color: #0000FF;">()</span>
<span style="color: #004080;">Ihandle</span> <span style="color: #000000;">graph</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">IupGraph</span><span style="color: #0000FF;">(</span><span style="color: #000000;">get_data</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"RASTERSIZE=640x440"</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">IupSetAttributes</span><span style="color: #0000FF;">(</span><span style="color: #000000;">graph</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"XTICK=1,XMIN=0,XMAX=10"</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">IupSetAttributes</span><span style="color: #0000FF;">(</span><span style="color: #000000;">graph</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"YTICK=20,YMIN=0,YMAX=320"</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">Ihandle</span> <span style="color: #000000;">dlg</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">IupDialog</span><span style="color: #0000FF;">(</span><span style="color: #000000;">graph</span><span style="color: #0000FF;">,</span><span style="color: #008000;">`TITLE="simple plot"`</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">IupSetAttributes</span><span style="color: #0000FF;">(</span><span style="color: #000000;">dlg</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"MINSIZE=245x150"</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">IupShow</span><span style="color: #0000FF;">(</span><span style="color: #000000;">dlg</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">if</span> <span style="color: #7060A8;">platform</span><span style="color: #0000FF;">()!=</span><span style="color: #004600;">JS</span> <span style="color: #008080;">then</span>
<span style="color: #7060A8;">IupMainLoop</span><span style="color: #0000FF;">()</span>
<span style="color: #7060A8;">IupClose</span><span style="color: #0000FF;">()</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<!--</syntaxhighlight>-->
{{out}}
(plus a simple graphical plot, as per [[Polynomial_regression#Racket|Racket]])
<pre>
y=3x^2+2x+1
Line 1,501 ⟶ 2,007:
10 321 321
</pre>
===plot===
Alternatively, a simple plot, (as per [[Polynomial_regression#Racket|Racket]]):
{{libheader|Phix/pGUI}}
<lang Phix>include pGUI.e
 
constant x = {0,1,2,3,4,5,6,7,8,9,10}
constant y = {1,6,17,34,57,86,121,162,209,262,321}
 
IupOpen()
 
Ihandle plot = IupPlot("GRID=YES, MARGINLEFT=50, MARGINBOTTOM=40")
-- (just add ", AXS_YSCALE=LOG10" for a nice log scale)
IupPlotBegin(plot, 0)
for i=1 to length(x) do
IupPlotAdd(plot, x[i], y[i])
end for
{} = IupPlotEnd(plot)
 
Ihandle dlg = IupDialog(plot)
IupSetAttributes(dlg, "RASTERSIZE=%dx%d", {640, 480})
IupSetAttribute(dlg, "TITLE", "simple plot")
IupShow(dlg)
 
IupMainLoop()
IupClose()</lang>
 
=={{header|PowerShell}}==
<syntaxhighlight lang="powershell">
<lang PowerShell>
function qr([double[][]]$A) {
$m,$n = $A.count, $A[0].count
Line 1,609 ⟶ 2,090:
"X^2 X constant"
"$(polyfit $x $y 2)"
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 1,620 ⟶ 2,101:
 
{{libheader|NumPy}}
<langsyntaxhighlight lang="python">>>> x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> y = [1, 6, 17, 34, 57, 86, 121, 162, 209, 262, 321]
>>> coeffs = numpy.polyfit(x,y,deg=2)
>>> coeffs
array([ 3., 2., 1.])</langsyntaxhighlight>
Substitute back received coefficients.
<langsyntaxhighlight lang="python">>>> yf = numpy.polyval(numpy.poly1d(coeffs), x)
>>> yf
array([ 1., 6., 17., 34., 57., 86., 121., 162., 209., 262., 321.])</langsyntaxhighlight>
Find max absolute error:
<langsyntaxhighlight lang="python">>>> '%.1g' % max(y-yf)
'1e-013'</langsyntaxhighlight>
 
===Example===
For input arrays `x' and `y':
<langsyntaxhighlight lang="python">>>> x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> y = [2.7, 2.8, 31.4, 38.1, 58.0, 76.2, 100.5, 130.0, 149.3, 180.0]</langsyntaxhighlight>
 
<langsyntaxhighlight lang="python">>>> p = numpy.poly1d(numpy.polyfit(x, y, deg=2), variable='N')
>>> print p
2
1.085 N + 10.36 N - 0.6164</langsyntaxhighlight>
Thus we confirm once more that for already sorted sequences
the considered quick sort implementation has
Line 1,653 ⟶ 2,134:
which will find the least squares solution via a QR decomposition:
 
<syntaxhighlight lang="r">
<lang R>
x <- c(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
y <- c(1, 6, 17, 34, 57, 86, 121, 162, 209, 262, 321)
coef(lm(y ~ x + I(x^2)))</langsyntaxhighlight>
 
{{out}}
Line 1,666 ⟶ 2,147:
Alternately, use poly:
 
<langsyntaxhighlight Rlang="r">coef(lm(y ~ poly(x, 2, raw=T)))</langsyntaxhighlight>{{out}}
<pre> (Intercept) poly(x, 2, raw = T)1 poly(x, 2, raw = T)2
1 2 3</pre>
 
=={{header|Racket}}==
<langsyntaxhighlight lang="racket">
#lang racket
(require math plot)
Line 1,690 ⟶ 2,171:
(plot (list (points (map vector xs ys))
(function (poly (fit xs ys 2)))))
</syntaxhighlight>
</lang>
{{out}}
[[File:polyreg-racket.png]]
Line 1,696 ⟶ 2,177:
=={{header|Raku}}==
(formerly Perl 6)
We'll use a Clifford algebra library. Very slow.
 
Rationale (in French for some reason):
<lang perl6>use Clifford;
 
Le système d'équations peut s'écrire :
<math>\left(a + b x_i + cx_i^2 = y_i\right)_{i=1\ldots N}</math>, où on cherche <math>(a,b,c)\in\mathbb{R}^3</math>. On considère <math>\mathbb{R}^N</math> et on répartit chaque équation sur chaque dimension:
 
<math> (a + b x_i + cx_i^2)\mathbf{e}_i = y_i\mathbf{e}_i</math>
 
Posons alors :
 
<math>
\mathbf{x}_0 = \sum_{i=1}^N \mathbf{e}_i,\,
\mathbf{x}_1 = \sum_{i=1}^N x_i\mathbf{e}_i,\,
\mathbf{x}_2 = \sum_{i=1}^N x_i^2\mathbf{e}_i,\,
\mathbf{y} = \sum_{i=1}^N y_i\mathbf{e}_i
</math>
 
Le système d'équations devient : <math>a\mathbf{x}_0+b\mathbf{x}_1+c\mathbf{x}_2 = \mathbf{y}</math>.
 
D'où :
<math>\begin{align}
a = \mathbf{y}\and\mathbf{x}_1\and\mathbf{x}_2/(\mathbf{x}_0\and\mathbf{x_1}\and\mathbf{x_2})\\
b = \mathbf{y}\and\mathbf{x}_2\and\mathbf{x}_0/(\mathbf{x}_1\and\mathbf{x_2}\and\mathbf{x_0})\\
c = \mathbf{y}\and\mathbf{x}_0\and\mathbf{x}_1/(\mathbf{x}_2\and\mathbf{x_0}\and\mathbf{x_1})\\
\end{align}</math>
 
<syntaxhighlight lang="raku" line>use MultiVector;
 
constant @x1 = <0 1 2 3 4 5 6 7 8 9 10>;
Line 1,708 ⟶ 2,214:
 
constant $y = [+] @y Z* @e;
 
my $J = $x1 ∧ $x2;
my $I = $x0 ∧ $J;
 
my $I2 = ($I·$I.reversion).Real;
 
.say for
$y∧$x1∧$x2/($x0∧$x1∧$x2),
(($y ∧ $J)·$I.reversion)/$I2,
$y∧$x2∧$x0/($x1∧$x2∧$x0),
(($y ∧ ($x2 ∧ $x0))·$I.reversion)/$I2,
$y∧$x0∧$x1/($x2∧$x0∧$x1);
(($y ∧ ($x0 ∧ $x1))·$I.reversion)/$I2;</lang>
</syntaxhighlight>
{{out}}
<pre>1
Line 1,725 ⟶ 2,227:
 
=={{header|REXX}}==
<langsyntaxhighlight lang="rexx">/* REXX ---------------------------------------------------------------
* Implementation of http://keisan.casio.com/exec/system/14059932254941
*--------------------------------------------------------------------*/
Line 1,775 ⟶ 2,277:
fun:
Parse Arg x
Return a+b*x+c*x**2 </langsyntaxhighlight>
{{out}}
<pre>y=1+2*x+3*x**2
Line 1,791 ⟶ 2,293:
9 262 262.000
10 321 321.000</pre>
 
=={{header|RPL}}==
{{trans|Ada}}
≪ 1 + → x y n
≪ { } n + x SIZE + 0 CON
1 x SIZE '''FOR''' j
1 n '''FOR''' k
{ } k + j + x j GET k 1 - ^ PUT
'''NEXT NEXT'''
DUP y * SWAP DUP TRN * /
<span style="color:grey">@ the following lines convert the resulting vector into a polynomial equation</span>
DUP 'x' STO 1 GET
2 x SIZE '''FOR''' j 'X' * x j GET + '''NEXT'''
EXPAN COLCT
≫ ≫ '<span style="color:blue">FIT</span>' STO
 
[1 2 3 4 5 6 7 8 9 10] [1 6 17 34 57 86 121 162 209 262 321] 2 <span style="color:blue">FIT</span>
{{out}}
<pre>
1: '3+2*X+1*X^2'
</pre>
 
=={{header|Ruby}}==
<langsyntaxhighlight lang="ruby">require 'matrix'
 
def regress x, y, degree
Line 1,802 ⟶ 2,325:
 
((mx.t * mx).inv * mx.t * my).transpose.to_a[0].map(&:to_f)
end</langsyntaxhighlight>
'''Testing:'''
<langsyntaxhighlight lang="ruby">p regress([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
[1, 6, 17, 34, 57, 86, 121, 162, 209, 262, 321],
2)</langsyntaxhighlight>
{{out}}
<pre>[1.0, 2.0, 3.0]</pre>
Line 1,815 ⟶ 2,338:
{{libheader|Scastie qualified}}
{{works with|Scala|2.13}}
<langsyntaxhighlight Scalalang="scala">object PolynomialRegression extends App {
private def xy = Seq(1, 6, 17, 34, 57, 86, 121, 162, 209, 262, 321).zipWithIndex.map(_.swap)
 
Line 1,848 ⟶ 2,371:
polyRegression(xy)
 
}</langsyntaxhighlight>
 
=={{header|Sidef}}==
{{trans|Ruby}}
<langsyntaxhighlight lang="ruby">func regress(x, y, degree) {
var A = Matrix.build(x.len, degree+1, {|i,j|
x[i]**j
Line 1,871 ⟶ 2,394:
)
 
say coeff</langsyntaxhighlight>
{{out}}
<pre>[1, 2, 3]</pre>
Line 1,877 ⟶ 2,400:
=={{header|Stata}}==
See '''[http://www.stata.com/help.cgi?fvvarlist Factor variables]''' in Stata help for explanations on the ''c.x##c.x'' syntax.
<langsyntaxhighlight lang="stata">. clear
. input x y
0 1
Line 1,909 ⟶ 2,432:
|
_cons | 1 . . . . .
------------------------------------------------------------------------------</langsyntaxhighlight>
 
=={{header|Swift}}==
{{trans|Kotlin}}
<syntaxhighlight lang="swift">
<lang Swift>
 
let x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
Line 1,956 ⟶ 2,479:
 
polyRegression(x: x, y: y)
</syntaxhighlight>
</lang>
 
{{out}}
Line 1,981 ⟶ 2,504:
<!-- This implementation from Emiliano Gavilan;
posted here with his explicit permission -->
<langsyntaxhighlight lang="tcl">package require math::linearalgebra
 
proc build.matrix {xvec degree} {
Line 2,029 ⟶ 2,552:
set coeffs [math::linearalgebra::solveGauss $A $b]
# show results
puts $coeffs</langsyntaxhighlight>
This will print:
1.0000000000000207 1.9999999999999958 3.0
which is a close approximation to the correct solution.
 
=={{header|TI-83 BASIC}}==
<syntaxhighlight lang="ti83b">DelVar X
seq(X,X,0,10) → L1
{1,6,17,34,57,86,121,162,209,262,321} → L2
QuadReg L1,L2</syntaxhighlight>
 
{{out}}
<pre>y=ax²+bx+c
a=3
b=2
c=1
</pre>
 
 
=={{header|TI-89 BASIC}}==
<langsyntaxhighlight lang="ti89b">DelVar x
seq(x,x,0,10) → xs
{1,6,17,34,57,86,121,162,209,262,321} → ys
QuadReg xs,ys
Disp regeq(x)</langsyntaxhighlight>
 
<code>seq(''expr'',''var'',''low'',''high'')</code> evaluates ''expr'' with ''var'' bound to integers from ''low'' to ''high'' and returns a list of the results. <code> →</code> is the assignment operator.
Line 2,057 ⟶ 2,594:
whereby the data can be passed as lists rather than arrays,
and all memory management is handled automatically.
<langsyntaxhighlight Ursalalang="ursala">#import std
#import nat
#import flo
 
(fit "n") ("x","y") = ..dgelsd\"y" (gang \/*pow float*x iota successor "n")* "x"</langsyntaxhighlight>
test program:
<langsyntaxhighlight Ursalalang="ursala">x = <0.,1.,2.,3.,4.,5.,6.,7.,8.,9.,10.>
y = <1.,6.,17.,34.,57.,86.,121.,162.,209.,262.,321.>
 
#cast %eL
 
example = fit2(x,y)</langsyntaxhighlight>
{{out}}
<pre><3.000000e+00,2.000000e+00,1.000000e+00></pre>
Line 2,074 ⟶ 2,611:
=={{header|VBA}}==
Excel VBA has built in capability for line estimation.
<langsyntaxhighlight lang="vb">Option Base 1
Private Function polynomial_regression(y As Variant, x As Variant, degree As Integer) As Variant
Dim a() As Double
Line 2,103 ⟶ 2,640:
Debug.Print "Degrees of freedom:"; result(4, 2)
Debug.Print "Standard error of y estimate:"; result(3, 2)
End Sub</langsyntaxhighlight>{{out}}
<pre>coefficients : 1, 2, 3,
standard errors: 0, 0, 0,
Line 2,111 ⟶ 2,648:
Degrees of freedom: 8
Standard error of y estimate: 2,79482284961344E-14 </pre>
 
=={{header|Wren}}==
{{trans|REXX}}
{{libheader|Wren-math}}
{{libheader|Wren-seq}}
{{libheader|Wren-fmt}}
<syntaxhighlight lang="wren">import "./math" for Nums
import "./seq" for Lst
import "./fmt" for Fmt
 
var polynomialRegression = Fn.new { |x, y|
var xm = Nums.mean(x)
var ym = Nums.mean(y)
var x2m = Nums.mean(x.map { |e| e * e })
var x3m = Nums.mean(x.map { |e| e * e * e })
var x4m = Nums.mean(x.map { |e| e * e * e * e })
var z = Lst.zip(x, y)
var xym = Nums.mean(z.map { |p| p[0] * p[1] })
var x2ym = Nums.mean(z.map { |p| p[0] * p[0] * p[1] })
 
var sxx = x2m - xm * xm
var sxy = xym - xm * ym
var sxx2 = x3m - xm * x2m
var sx2x2 = x4m - x2m * x2m
var sx2y = x2ym - x2m * ym
 
var b = (sxy * sx2x2 - sx2y * sxx2) / (sxx * sx2x2 - sxx2 * sxx2)
var c = (sx2y * sxx - sxy * sxx2) / (sxx * sx2x2 - sxx2 * sxx2)
var a = ym - b * xm - c * x2m
 
var abc = Fn.new { |xx| a + b * xx + c * xx * xx }
 
System.print("y = %(a) + %(b)x + %(c)x^2\n")
System.print(" Input Approximation")
System.print(" x y y1")
for (p in z) Fmt.print("$2d $3d $5.1f", p[0], p[1], abc.call(p[0]))
}
 
var x = List.filled(11, 0)
for (i in 1..10) x[i] = i
var y = [1, 6, 17, 34, 57, 86, 121, 162, 209, 262, 321]
polynomialRegression.call(x, y)</syntaxhighlight>
 
{{out}}
<pre>
y = 1 + 2x + 3x^2
 
Input Approximation
x y y1
0 1 1.0
1 6 6.0
2 17 17.0
3 34 34.0
4 57 57.0
5 86 86.0
6 121 121.0
7 162 162.0
8 209 209.0
9 262 262.0
10 321 321.0
</pre>
 
=={{header|zkl}}==
Using the GNU Scientific Library
<langsyntaxhighlight lang="zkl">var [const] GSL=Import("zklGSL"); // libGSL (GNU Scientific Library)
xs:=GSL.VectorFromData(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
ys:=GSL.VectorFromData(1, 6, 17, 34, 57, 86, 121, 162, 209, 262, 321);
Line 2,120 ⟶ 2,718:
v.format().println();
GSL.Helpers.polyString(v).println();
GSL.Helpers.polyEval(v,xs).format().println();</langsyntaxhighlight>
{{out}}
<pre>
Line 2,132 ⟶ 2,730:
 
Example:
<langsyntaxhighlight lang="zkl">polyfit(T(T(0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0)),
T(T(1.0,6.0,17.0,34.0,57.0,86.0,121.0,162.0,209.0,262.0,321.0)), 2)
.flatten().println();</langsyntaxhighlight>
{{out}}<pre>L(1,2,3)</pre>
2,442

edits