Parametric polymorphism: Difference between revisions

Content added Content deleted
(Added PicoLisp)
Line 34: Line 34:
end Replace_All;
end Replace_All;
end Container;</lang>
end Container;</lang>

=={{header|C}}==
If the goal is to separate algorithms from types at compile type, C may do it by macros. Here's sample code implementing binary tree with node creation and insertion:<lang C>#include <stdio.h>
#include <stdlib.h>

#define decl_tree_type(T) \
typedef struct node_##T##_t node_##T##_t, *node_##T; \
struct node_##T##_t { node_##T left, right; T value; }; \
\
node_##T node_##T##_new(T v) { \
node_##T node = malloc(sizeof(node_##T##_t)); \
node->value = v; \
node->left = node->right = 0; \
return node; \
} \
node_##T node_##T##_insert(node_##T root, T v) { \
node_##T n = node_##T##_new(v); \
while (root) { \
if (root->value < n->value) \
if (!root->left) return root->left = n; \
else root = root->left; \
else \
if (!root->right) return root->right = n; \
else root = root->right; \
} \
return 0; \
}

#define tree_node(T) node_##T
#define node_insert(T, r, x) node_##T##_insert(r, x)
#define node_new(T, x) node_##T##_new(x)

decl_tree_type(double);
decl_tree_type(int);

int main()
{
int i;
tree_node(double) root_d = node_new(double, (double)rand() / RAND_MAX);

for (i = 0; i < 10000; i++)
node_insert(double, root_d, (double)rand() / RAND_MAX);

tree_node(int) root_i = node_new(int, rand());
for (i = 0; i < 10000; i++)
node_insert(int, root_i, rand());

return 0;
}</lang>
Comments: It's ugly looking, but it gets the job done. It has the drawback that all methods need to be re-created for each tree data type used, but hey, C++ template does that, too.

Arguably more interesting is run time polymorphism, which can't be trivially done; if you are confident in your coding skill, you could keep track of data types and method dispatch at run time yourself -- but then, you are probably too confident to not realize you might be better off using some higher level languages.


=={{header|C++}}==
=={{header|C++}}==