Object serialization: Difference between revisions

Added FreeBASIC
(omit autohotkey: not object oriented)
(Added FreeBASIC)
 
(83 intermediate revisions by 49 users not shown)
Line 4:
=={{header|Ada}}==
This file contains the package specification containing the public definitions of the inheritance tree rooted at the type ''Message''. Each type in the inheritance tree has its own print procedure.
<langsyntaxhighlight lang="ada">with Ada.Calendar; use Ada.Calendar;
 
package Messages is
Line 28:
procedure Print(Item : Control_Message);
end Messages;</langsyntaxhighlight>
 
The next portion contains the implementation of the procedures defined in the package specification.
<langsyntaxhighlight lang="ada">with Ada.Text_Io; use Ada.Text_Io;
with Ada.Integer_Text_Io; use Ada.Integer_Text_Io;
with Ada.Float_Text_IO; use Ada.Float_Text_IO;
Line 98:
end Display;
end Messages;</langsyntaxhighlight>
 
The final section of code creates objects of the three message types and performs the printing, writing, and reading. The Ada attributes '' 'Class'Output'' serialize the object and write it to the specified stream. The '' 'Class'Input'' attributes call a function automatically provided by the compiler which reads from the specified stream file and returns the object read. The ''Display'' procedure takes an object in the inheritance tree rooted at ''Message'' and dispatches the correct print procedure.
 
<langsyntaxhighlight lang="ada">with Messages; use Messages;
with Ada.Streams.Stream_Io; use Ada.Streams.Stream_Io;
with Ada.Calendar; use Ada.Calendar;
Line 141:
end loop;
Close(The_File);
end Streams_Example;</langsyntaxhighlight>
Output results:
Time Stamp:2007-3-9
Line 163:
{{trans|python}}
 
Serialization in '''ALGOL 68''' is achieved through a technique called
''straightening''.
<syntaxhighlight lang="algol68">MODE ENTITY = STRUCT([6]CHAR name, INT creation);
<pre>
MODE ENTITY = STRUCT([6]CHAR name, INT creation);
FORMAT entity repr = $"Name: "g", Created:"g$;
MODE PERSON = STRUCT(ENTITY entity, STRING email);
Line 180 ⟶ 179:
INT errno := open(target, "rows.dat", stand back channel); # open file #
# SerializeSerialise #
put(target,(instance1, new line, instance2, new line));
printf(($"SerializedSerialised..."l$));
 
close(target); # flush file stream #
errno := open(target, "rows.dat", stand back channel); # load again #
 
# UnserializeUnserialise #
PERSON i1;
ENTITY i2;
get(target,(i1, new line, i2, new line));
printf(($"UnserializedUnserialised..."l$));
printf((person repr, i1, $l$));
printf((entity repr, i2, $l$))</presyntaxhighlight>
FLEXible'''flex'''ible length arrays (including STRINGs'''string'''s), and tagged-UNION'''union'''
types are problematic as the lengths of the arrays, and the ''tag'' of the
union is not stored in the '''file'''. Sometimes a FORMAT'''format''' can be manually created to handle
these lengths and tags. Also note that ''ALGOL 68'' is strongly typestyped and
the type ('''mode''') of the objectisobjects notenot stored, but compiled into the
code itself.
 
Output:<pre>
Output:
<pre>
Cletus
Entity
SerializedSerialised...
Unserialised...
Unserialized...
Name: Cletus, Created: +20080808, Email: test+1@localhost.localdomain
Name: Entity, Created: +20111111</pre>
</pre>
{{omit from|AutoHotkey}}
 
=={{header|C sharp|C#}}==
<syntaxhighlight lang="csharp">using System;
using System.IO;
using System.Collections.Generic;
using System.Runtime.Serialization.Formatters.Binary;
 
namespace Object_serialization
{
[Serializable] public class Being
{
public bool Alive { get; set; }
}
 
[Serializable] public class Animal: Being
{
public Animal() { }
 
public Animal(long id, string name, bool alive = true)
{
Id = id;
Name = name;
Alive = alive;
}
 
public long Id { get; set; }
public string Name { get; set; }
 
public void Print() { Console.WriteLine("{0}, id={1} is {2}",
Name, Id, Alive ? "alive" : "dead"); }
}
 
 
internal class Program
{
private static void Main()
{
string path =
Environment.GetFolderPath(Environment.SpecialFolder.Desktop)+"\\objects.dat";
 
var n = new List<Animal>
{
new Animal(1, "Fido"),
new Animal(2, "Lupo"),
new Animal(7, "Wanda"),
new Animal(3, "Kiki", alive: false)
};
 
foreach(Animal animal in n)
animal.Print();
 
using(var stream = new FileStream(path, FileMode.Create, FileAccess.Write))
new BinaryFormatter().Serialize(stream, n);
 
n.Clear();
Console.WriteLine("---------------");
List<Animal> m;
 
using(var stream = new FileStream(path, FileMode.Open, FileAccess.Read))
m = (List<Animal>) new BinaryFormatter().Deserialize(stream);
 
foreach(Animal animal in m)
animal.Print();
}
}
}</syntaxhighlight>
<pre>Fido, id=1 is alive
Lupo, id=2 is alive
Wanda, id=7 is alive
Kiki, id=3 is dead
---------------
Fido, id=1 is alive
Lupo, id=2 is alive
Wanda, id=7 is alive
Kiki, id=3 is dead</pre>
 
=={{header|C++}}==
compiled with g++ -lboost_serialization serializationtest3.cpp -o serializationtest3
 
<syntaxhighlight lang="cpp">#include <string>
#include <fstream>
#include <boost/serialization/string.hpp>
#include <boost/archive/text_oarchive.hpp>
#include <boost/archive/text_iarchive.hpp>
#include <boost/serialization/base_object.hpp>
#include <iostream>
 
class Employee {
public :
Employee( ) { }
 
Employee ( const std::string &dep , const std::string &namen )
: department( dep ) , name( namen ) {
my_id = count++ ;
}
 
std::string getName( ) const {
return name ;
}
 
std::string getDepartment( ) const {
return department ;
}
 
int getId( ) const {
return my_id ;
}
 
void setDepartment( const std::string &dep ) {
department.assign( dep ) ;
}
 
virtual void print( ) {
std::cout << "Name: " << name << '\n' ;
std::cout << "Id: " << my_id << '\n' ;
std::cout << "Department: " << department << '\n' ;
}
 
virtual ~Employee( ) { }
static int count ;
private :
std::string name ;
std::string department ;
int my_id ;
friend class boost::serialization::access ;
 
template <class Archive>
void serialize( Archive &ar, const unsigned int version ) {
ar & my_id ;
ar & name ;
ar & department ;
}
 
} ;
 
class Worker : public Employee {
public :
Worker( const std::string & dep, const std::string &namen ,
double hourlyPay ) : Employee( dep , namen ) , salary( hourlyPay) { }
 
Worker( ) { }
 
double getSalary( ) {
return salary ;
}
 
void setSalary( double pay ) {
if ( pay > 0 )
salary = pay ;
}
virtual void print( ) {
Employee::print( ) ;
std::cout << "wage per hour: " << salary << '\n' ;
}
private :
double salary ;
friend class boost::serialization::access ;
template <class Archive>
void serialize ( Archive & ar, const unsigned int version ) {
ar & boost::serialization::base_object<Employee>( *this ) ;
ar & salary ;
}
} ;
int Employee::count = 0 ;
 
int main( ) {
std::ofstream storefile( "/home/ulrich/objects.dat" ) ; //creating objects of base class
const Employee emp1( "maintenance" , "Fritz Schmalstieg" ) ;
const Employee emp2( "maintenance" , "John Berry" ) ;
const Employee emp3( "repair" , "Pawel Lichatschow" ) ;
const Employee emp4( "IT" , "Marian Niculescu" ) ;
const Worker worker1( "maintenance" , "Laurent Le Chef" , 20 ) ;//creating objects of derived class
const Worker worker2 ( "IT" , "Srinivan Taraman" , 55.35 ) ;
boost::archive::text_oarchive oar ( storefile ) ;//starting serialization into designated file
oar << emp1 ;
oar << emp2 ;
oar << emp3 ;
oar << emp4 ;
oar << worker1 ;
oar << worker2 ;
storefile.close( ) ;
std::cout << "Reading out the data again\n" ;
Employee e1 , e2 , e3 , e4 ; //creating instances of base class objects for deserialization
Worker w1, w2 ; // same for objects of derived class
std::ifstream sourcefile( "/home/ulrich/objects.dat" ) ;
boost::archive::text_iarchive iar( sourcefile ) ;//starting deserialization
iar >> e1 >> e2 >> e3 >> e4 ;
iar >> w1 >> w2 ;
sourcefile.close( ) ;
std::cout << "And here are the data after deserialization!( abridged):\n" ;
e1.print( ) ;
e3.print( ) ;
w2.print( ) ;
return 0 ;
}</syntaxhighlight>
creating the following output:
<pre>
Reading out the data again
And here are the data after deserialization!( abridged):
Name: Fritz Schmalstieg
Id: 0
Department: maintenance
Name: Pawel Lichatschow
Id: 2
Department: repair
Name: Srinivan Taraman
Id: 5
Department: IT
wage per hour: 55.35
</pre>
 
=={{header|Caché ObjectScript}}==
 
<syntaxhighlight lang="cos">Class Serialize.Employee Extends %SerialObject
{
 
Method %OnNew(ByRef pId As %Integer = 0, pDepartment As %String, pName As %String) As %Status
{
Do ..IDSet(pId)
Set pId=pId+1
Do ..DepartmentSet(pDepartment)
Do ..NameSet(pName)
Quit $$$OK
}
 
Method Print()
{
Write "[", ..%ClassName(), "]", !
Write "- ID: "_..IDGet(), !
Write "- Name: "_..NameGet(), !
Write "- Department: "_..DepartmentGet(), !
Quit
}
 
Property ID As %Integer [ Private ];
Property Name As %String [ Private ];
Property Department As %String [ Private ];
 
}</syntaxhighlight>
 
<syntaxhighlight lang="cos">Class Serialize.Worker Extends Employee
{
 
Method %OnNew(ByRef pId As %Integer = 0, pDepartment As %String, pName As %String, pHourlyPay As %Numeric) As %Status
{
Do ..HourlyPaySet(pHourlyPay)
Quit ##super(.pId, pDepartment, pName)
}
 
Method Print()
{
Do ##super()
Write "- Hourly Pay: ", $FNumber(..HourlyPayGet(), ",", 2), !
Quit
}
 
Method HourlyPaySet(pHourlyPay As %Numeric) As %Status [ ServerOnly = 1 ]
{
Set i%HourlyPay=$Select(pHourlyPay<0: 0, 1: pHourlyPay)
Quit $$$OK
}
 
Property HourlyPay As %Numeric [ Private ];
 
}</syntaxhighlight>
 
<syntaxhighlight lang="cos">Class Serialize.Example Extends %SerialObject
{
 
ClassMethod Main()
{
Do ..Save("/temp/objects.dat")
Do ..Load("/temp/objects.dat")
Quit
}
 
ClassMethod Save(pFilename As %String)
{
// creating objects of base class
Set emp1 = ##class(Employee).%New(.id, "Maintenance", "Fritz Schmalstieg")
Set emp2 = ##class(Employee).%New(.id, "Maintenance", "John Berry")
Set emp3 = ##class(Employee).%New(.id, "Repair", "Pawel Lichatschow")
Set emp4 = ##class(Employee).%New(.id, "IT", "Marian Niculescu")
// creating objects of derived class
Set worker1 = ##class(Worker).%New(.id, "Maintenance", "Laurent Le Chef", 20)
Set worker2 = ##class(Worker).%New(.id, "IT", "Srinivan Taraman", 55.35)
// put objects into collections
Set example = ..%New()
Set sc = example.Employees.Insert(emp1)
Set sc = example.Employees.Insert(emp2)
Set sc = example.Employees.Insert(emp3)
Set sc = example.Employees.Insert(emp4)
Set sc = example.Workers.Insert(worker1)
Set sc = example.Workers.Insert(worker2)
// serialize the data and save to a file
Set sc=example.%GetSwizzleObject(,.oid)
Set fs=##class(%Stream.FileBinary).%New()
Set fs.Filename=pFilename
Set sc=fs.Write(oid)
Set sc=fs.%Save()
Quit
}
 
ClassMethod Load(pFilename As %String)
{
// read serialized data from file
Set fs=##class(%Stream.FileBinary).%New()
Set fs.Filename=pFilename
Set oid=fs.Read(.len, .sc)
// open the example object
Set example = ..%Open(oid,, .sc)
Do example.Employees.GetAt(1).Print()
Do example.Employees.GetAt(3).Print()
Do example.Workers.GetAt(2).Print()
Quit
}
 
Property Employees As list Of Employee;
Property Workers As list Of Worker;
 
}</syntaxhighlight>
 
{{out|Examples}}
 
<pre>
USER>Do ##class(Serialize.Example).Main()
[Employee]
- ID: 0
- Name: Fritz Schmalstieg
- Department: Maintenance
[Employee]
- ID: 2
- Name: Pawel Lichatschow
- Department: Repair
[Worker]
- ID: 5
- Name: Srinivan Taraman
- Department: IT
- Hourly Pay: 55.35
</pre>
 
=={{header|Common Lisp}}==
 
{{libheader|cl-serializer}}
 
<syntaxhighlight lang="lisp">(defmacro with-serialization-to-file ((stream pathname) &body body)
`(with-open-file (,stream ,pathname
:element-type '(unsigned-byte 8)
:direction :output
:if-exists :supersede)
,@body))
 
(defclass entity ()
((name :initarg :name :initform "Some entity")))
 
(defclass person (entity)
((name :initarg :name :initform "The Nameless One")))</syntaxhighlight>
 
And now the REPL log:
 
<syntaxhighlight lang="lisp">CL-USER> (list (make-instance 'entity)
(make-instance 'person))
 
(#<ENTITY {1004B13141}> #<PERSON {1004B142B1}>)
CL-USER> (mapc #'describe *)
#<ENTITY {1004B13141}>
[standard-object]
 
Slots with :INSTANCE allocation:
NAME = "Some entity"
#<PERSON {1004B142B1}>
[standard-object]
 
Slots with :INSTANCE allocation:
NAME = "The Nameless One"
(#<ENTITY {1004B13141}> #<PERSON {1004B142B1}>)
CL-USER> (with-serialization-to-file (stream "/tmp/objects.dat")
(cl-serializer:serialize * :output stream)
;; SERIALIZE shows an octet-vector as its return value
(values))
; No value
CL-USER> (mapc #'describe (with-open-file (stream "/tmp/objects.dat"
:element-type '(unsigned-byte 8))
(cl-serializer:deserialize stream)))
#<ENTITY {1003C12911}>
[standard-object]
 
Slots with :INSTANCE allocation:
NAME = "Some entity"
#<PERSON {1003C12A81}>
[standard-object]
 
Slots with :INSTANCE allocation:
NAME = "The Nameless One"
(#<ENTITY {1003C12911}> #<PERSON {1003C12A81}>)</syntaxhighlight>
 
=={{header|D}}==
{{libheader|ProtocolBuffer}}
 
If the requirement was not for binary, the [http://www.dsource.org/projects/doost doost library] would be a better fit for this task.
First, create a file named test.proto with the following contents:
<pre>
package test;
message base1 {
required int32 i32 = 1;
}
message base2 {
repeated base1 rep = 1;
}
</pre>
Run "pbcompiler test.proto" to generate the serializable code. It should generate a D code file named test.d.
In your main file, use the following code:
<syntaxhighlight lang="d">import test1;
import std.stdio;
import std.file;
class full2:base2 {
this(byte[]manip,bool isroot=true) {super(manip,isroot);}
this(){super();}
void print() {
foreach(item;rep) {
writefln(item.i32);
}
}
}
 
void main() {
full2 base = new full2();
base1 tmp = new base1;
tmp.i32 = 34;
base.add_rep(tmp);
tmp = new base1;
tmp.i32 = 32;
base.add_rep(tmp);
tmp = new base1;
tmp.i32 = 33;
base.add_rep(tmp);
tmp = new base1;
tmp.i32 = 36;
base.add_rep(tmp);
writefln("Input data:");
base.print;
write("objects.dat",base.Serialize());
byte[]filedata = cast(byte[])read("objects.dat");
base = new full2(filedata);
writefln("Output data:");
base.print;
}</syntaxhighlight>
 
=={{header|E}}==
 
(Inheritance, while supported by various features and patterns, is not a preferred design component in [[E]]; nor are simple record data structures.)
 
<syntaxhighlight lang="e">def makeEvent(time :int) {
return def event {
to __printOn(out) { out.print(`@@$time`) }
to __optUncall() { return [makeEvent, "run", [time]] }
to getTime() { return time }
}
}
 
def makeArrival(time :int, what :any, position :int) {
return def arrival extends makeEvent(time) {
to __printOn(out) {
out.print(`$what to $position $super`)
}
to __optUncall() {
return [makeArrival, "run", [time, what, position]]
}
to getWhat() { return what }
to getPosition() { return position }
}
}</syntaxhighlight>
}
 
After defining our data types, we can prepare to serialize them.
 
<syntaxhighlight lang="e">def surgeon := <import:org.erights.e.elib.serial.makeSurgeon>().diverge()
surgeon.addExit(makeEvent, "makeEvent")
surgeon.addExit(makeArrival, "makeArrival")</syntaxhighlight>
 
The 'exits' of the surgeon (so called because it cuts and joins object subgraphs) specify the points at which serialization should stop, instead replacing references to the objects with the specified names. On unserialization, the names are looked up and replaced with the corresponding objects. (The surgeon provides default exits for such things as <tt>false</tt>, <tt>true</tt>, <tt>null</tt>, and the list constructor.)
<syntaxhighlight lang="e">def objs := [makeEvent(timer.now()),
makeArrival(timer.now(), "Smith", 7)]
 
stdout.println(objs)
<file:objects.dat>.setBytes(surgeon.serialize(objs))
stdout.println(surgeon.unserialize(<file:objects.dat>.getBytes()))</syntaxhighlight>
 
=={{header|EchoLisp}}==
Our classes will be 'struct' objects, with custom #:tostring procedures, as required. The instances are saved/restored to/from local storage. Serialization is performed by JSONifying the objects. References between instances of struct's are kept in the process. Auto-references and circular references are correctly maintained since EchoLisp version 2.11.
<syntaxhighlight lang="lisp">
(define (person->string self) (format "%a : person." (person-name self)))
(define (writer->string self) (format "%a: writer of %a."
(person-name self)
(writer-books self)))
(define (father->string self) (format "%a: father of %a."
(person-name self)
(map person-name (father-children self))))
; 'classes' definition, with inheritance.
; a writer is a person, too.
(struct person (name) #:tostring person->string)
(struct writer person (books) #:tostring writer->string)
(struct father person (children) #:tostring father->string)
 
(define simon (writer "Simon" '(my-life my-wife my-bike)))
(define elvis (person "Elvis"))
(define papa (father "papa" (list simon elvis)))
 
(local-put-value 'simon simon "objects.dat")
📕 local-db: local-put:unknown store : "objects.dat"
;; forgot to create the store. Create it :
(local-make-store "objects.dat") → "objects.dat"
 
(local-put-value 'simon simon "objects.dat")
(local-put-value 'elvis elvis "objects.dat")
(local-put-value 'papa papa "objects.dat")
 
;; inspect
simon → Simon: writer of (my-life my-wife my-bike).
papa → papa: father of (Simon Elvis).
elvis → Elvis : person.
</syntaxhighlight>
{{output}}
<syntaxhighlight lang="lisp">
;; reboot (close the browser window)
; inspect objects.dat :
(local-keys 'objects.dat) → ("elvis" "papa" "simon")
 
(define simon (local-get-value 'simon "objects.dat"))
(define elvis (local-get-value 'elvis "objects.dat"))
(define papa (local-get-value 'papa "objects.dat"))
 
; data are restored
simon → Simon: writer of (my-life my-wife my-bike).
papa → papa: father of (Simon Elvis).
 
;; check if references (pointers) are restored
(set-writer-name! simon "Antoinette") → "Antoinette"
simon→ Antoinette: writer of (my-life my-wife my-bike).
 
;; inspect
papa → papa: father of (Antoinette Elvis). ; YES 😳 !
 
;; - Self-referencing (EchoLisp version 2.11)
;; add 'papa' to the chidren of 'papa' - whatever this means - and print it :
(set-father-children! papa (list simon papa elvis))
papa → papa: father of (Antoinette papa Elvis).
 
; save/restore
(local-put-value 'papa papa "objects.dat")
(define papa (local-get-value 'papa "objects.dat"))
papa → papa: father of (Antoinette papa Elvis).
</syntaxhighlight>
 
=={{header|Erlang}}==
Erlang is not object oriented. This code is based upon my understanding of the Algol 68 example above.
<syntaxhighlight lang="erlang">
-module( object_serialization ).
 
-export( [task/0] ).
 
-record( entity, {name, date} ).
-record( person, {entity, email} ).
 
task() ->
Person = #person{entity=#entity{name="Cletus", date=20080808}, email="test+1@localhost.localdomain"},
print( Person ),
Entity = #entity{name="Entity", date=20111111},
print( Entity ),
ok = file:write_file( "objects.dat", erlang:term_to_binary([Person, Entity]) ),
{ok, Binary} = file:read_file( "objects.dat" ),
[New_person, New_entity] = erlang:binary_to_term( Binary ),
io:fwrite( "Deserialized\n" ),
print( New_person ),
print( New_entity ).
 
 
print( #entity{name=Name, date=Date} ) ->
io:fwrite( "Entity: " ),
io:fwrite( "name: ~p, date: ~p~n", [Name, Date] );
print( #person{entity=Entity, email=Email} ) ->
io:fwrite( "Person: " ),
print( Entity ),
io:fwrite( "\temail: ~p~n", [Email] ).
</syntaxhighlight>
{{out}}
<pre>
<9> object_serialization:task().
Person: Entity: name: "Cletus", date: 20080808
email: "test+1@localhost.localdomain"
Entity: name: "Entity", date: 20111111
Deserialized
Person: Entity: name: "Cletus", date: 20080808
email: "test+1@localhost.localdomain"
Entity: name: "Entity", date: 20111111
</pre>
 
=={{header|Factor}}==
The <code>serialize</code> vocabulary provides words for serializing and deserializing any Factor object other than continuations. This example demonstrates that objects may be serialized individually, one at a time. In practice, it's probably easier to serialize a collection of objects.
<syntaxhighlight lang="factor">USING: accessors combinators.extras io io.encodings.binary
io.files io.files.info kernel prettyprint serialize ;
IN: rosetta-code.object-serialization
 
! Define two classes, item and armor. armor is a subclass of
! item.
 
TUPLE: item name value ;
TUPLE: armor < item physical-resistance fire-resistance ;
 
! Define boa constructors for both classes using C: shorthand.
! boa means By Order of Arguments, and yes, this is a pun on boa
! constrictors.
 
C: <item> item
C: <armor> armor
 
! Create three example items and print them out
! non-destructively.
 
"Fish scales" 0.05 <item>
"Gold piece" 1 <item>
"Breastplate of Ashannar" 50,000 55 30 <armor>
[ [ . ] keep ] tri@ nl
 
! Serialize the three objects to a binary file named
! objects.dat.
 
"Serializing objects to objects.dat . . . " print
"objects.dat" binary [ [ serialize ] tri@ ] with-file-writer
 
! Check that objects.dat exists.
 
"objects.dat exists? " write "objects.dat" exists? .
"Size on disk: " write "objects.dat" file-info size>> pprint
" bytes" print nl
 
! Deserialize three objects from objects.dat.
 
"Deserializing objects from objects.dat . . . " print nl
"objects.dat" binary [ [ deserialize ] thrice ] with-file-reader
 
! Print out deserialized objects.
 
[ . ] tri@</syntaxhighlight>
{{out}}
<pre>
T{ item { name "Fish scales" } { value 0.05 } }
T{ item { name "Gold piece" } { value 1 } }
T{ armor
{ name "Breastplate of Ashannar" }
{ value 50000 }
{ physical-resistance 55 }
{ fire-resistance 30 }
}
 
Serializing objects to objects.dat . . .
objects.dat exists? t
Size on disk: 206 bytes
 
Deserializing objects from objects.dat . . .
 
T{ item { name "Fish scales" } { value 0.05 } }
T{ item { name "Gold piece" } { value 1 } }
T{ armor
{ name "Breastplate of Ashannar" }
{ value 50000 }
{ physical-resistance 55 }
{ fire-resistance 30 }
}
</pre>
 
=={{header|FreeBASIC}}==
FreeBASIC does not support object-oriented programming such as classes and inheritance directly. However, we can simulate some aspects of object-oriented programming using procedures and user-defined types (UDTs).
 
For serialization, FreeBASIC does not have built-in support for this. We need to manually write and read each field of your UDTs to and from a file.
<syntaxhighlight lang="vbnet">Type Person
nombre As String
edad As Integer
End Type
 
Sub PrintPerson(p As Person)
Print "Name: "; p.nombre
Print "Age: "; p.edad
End Sub
 
Sub Serialize(p As Person, filename As String)
Open filename For Binary As #1
Put #1, , p.nombre
Put #1, , p.edad
Close #1
End Sub
 
Sub Deserialize(p As Person, filename As String)
Open filename For Binary As #1
Get #1, , p.nombre
Get #1, , p.edad
Close #1
End Sub
 
Dim pp As Person
pp.nombre = "Juan Hdez."
pp.edad = 52
 
Serialize(pp, "objects.dat")
Deserialize(pp, "objects.dat")
 
PrintPerson(pp)
 
Sleep</syntaxhighlight>
{{out}}
<pre>Name: Juan Hdez.
Age: 52</pre>
 
=={{header|Go}}==
Go has a few choices for serialization. The method shown here is the native method, which is compact and type-aware.
 
A note on object oriented stuff, the object hierarchy required by the task description is implemented here with embedded structs. The polymorphism required by the task description is handled nicely with an interface. The functional polymorphism is orthogonal to the object hierarchy, not conflated with it.
<syntaxhighlight lang="go">package main
 
import (
"encoding/gob"
"fmt"
"os"
)
 
type printable interface {
print()
}
 
func main() {
// create instances
animals := []printable{
&Animal{Alive: true},
&Cat{},
&Lab{
Dog: Dog{Animal: Animal{Alive: true}},
Color: "yellow",
},
&Collie{Dog: Dog{
Animal: Animal{Alive: true},
ObedienceTrained: true,
}},
}
 
// display
fmt.Println("created:")
for _, a := range animals {
a.print()
}
 
// serialize
f, err := os.Create("objects.dat")
if err != nil {
fmt.Println(err)
return
}
for _, a := range animals {
gob.Register(a)
}
err = gob.NewEncoder(f).Encode(animals)
if err != nil {
fmt.Println(err)
return
}
f.Close()
 
// read
f, err = os.Open("objects.dat")
if err != nil {
fmt.Println(err)
return
}
var clones []printable
gob.NewDecoder(f).Decode(&clones)
if err != nil {
fmt.Println(err)
return
}
 
// display
fmt.Println("\nloaded from objects.dat:")
for _, c := range clones {
c.print()
}
}
 
type Animal struct {
Alive bool
}
 
func (a *Animal) print() {
if a.Alive {
fmt.Println(" live animal, unspecified type")
} else {
fmt.Println(" dead animal, unspecified type")
}
}
 
type Dog struct {
Animal
ObedienceTrained bool
}
 
func (d *Dog) print() {
switch {
case !d.Alive:
fmt.Println(" dead dog")
case d.ObedienceTrained:
fmt.Println(" trained dog")
default:
fmt.Println(" dog, not trained")
}
}
 
type Cat struct {
Animal
LitterBoxTrained bool
}
func (c *Cat) print() {
switch {
case !c.Alive:
fmt.Println(" dead cat")
case c.LitterBoxTrained:
fmt.Println(" litter box trained cat")
default:
fmt.Println(" cat, not litter box trained")
}
}
 
type Lab struct {
Dog
Color string
}
 
func (l *Lab) print() {
var r string
if l.Color == "" {
r = "lab, color unspecified"
} else {
r = l.Color + " lab"
}
switch {
case !l.Alive:
fmt.Println(" dead", r)
case l.ObedienceTrained:
fmt.Println(" trained", r)
default:
fmt.Printf(" %s, not trained\n", r)
}
}
 
type Collie struct {
Dog
CatchesFrisbee bool
}
 
func (c *Collie) print() {
switch {
case !c.Alive:
fmt.Println(" dead collie")
case c.ObedienceTrained && c.CatchesFrisbee:
fmt.Println(" trained collie, catches frisbee")
case c.ObedienceTrained && !c.CatchesFrisbee:
fmt.Println(" trained collie, but doesn't catch frisbee")
case !c.ObedienceTrained && c.CatchesFrisbee:
fmt.Println(" collie, not trained, but catches frisbee")
case !c.ObedienceTrained && !c.CatchesFrisbee:
fmt.Println(" collie, not trained, doesn't catch frisbee")
}
}</syntaxhighlight>
Output:
<pre>created:
live animal, unspecified type
dead cat
yellow lab, not trained
trained collie, but doesn't catch frisbee
 
loaded from objects.dat:
live animal, unspecified type
dead cat
yellow lab, not trained
trained collie, but doesn't catch frisbee</pre>
 
=={{header|Groovy}}==
Sample Serializable Classes (borrowed from Java example. Sorta.):
<syntaxhighlight lang="groovy">class Entity implements Serializable {
static final serialVersionUID = 3504465751164822571L
String name = 'Thingamabob'
public String toString() { return name }
}
class Person extends Entity implements Serializable {
stdout.println(objs)
static final serialVersionUID = -9170445713373959735L
<file:objects.dat>.setBytes(surgeon.serialize(objs))
Person() { name = 'Clement' }
stdout.println(surgeon.unserialize(<file:objects.dat>.getBytes()))
Person(name) { this.name = name }
}</syntaxhighlight>
 
Writing objects:
<syntaxhighlight lang="groovy">File objectStore = new File('objectStore.ser')
if (objectStore.exists()) { objectStore.delete() }
assert ! objectStore.exists()
def os
try {
os = objectStore.newObjectOutputStream()
os << new Person()
os << 10.5
os << new Person('Cletus')
os << new Date()
os << new Person('Pious')
os << java.awt.Color.RED
os << new Person('Linus')
os << 'just random garbage'
os << new Person('Lucy')
os << ['lists', 'are', 'serializable']
os << new Person('Schroeder')
} catch (e) { throw new Exception(e) } finally { os?.close() }
assert objectStore.exists()</syntaxhighlight>
 
Reading objects:
<syntaxhighlight lang="groovy">def is
try {
is = objectStore.newObjectInputStream(this.class.classLoader)
is.eachObject { println it }
} catch (e) { throw new Exception(e) } finally { is?.close() }
 
objectStore.delete()
assert ! objectStore.exists()</syntaxhighlight>
 
Output:
<pre>Clement
10.5
Cletus
Wed Jan 18 02:07:29 CST 2012
Pious
java.awt.Color[r=255,g=0,b=0]
Linus
just random garbage
Lucy
[lists, are, serializable]
Schroeder</pre>
 
=={{header|Haskell}}==
 
Example uses [https://hackage.haskell.org/package/binary <tt>binary</tt>] package. Since Haskell doesn't directly support OO-style inheritance, we use a sum type instead:
 
<syntaxhighlight lang="haskell">{-# LANGUAGE DeriveGeneric #-}
 
module Main (main) where
 
import qualified Data.ByteString.Lazy as ByteString (readFile, writeFile)
import Data.Binary (Binary)
import qualified Data.Binary as Binary (decode, encode)
import GHC.Generics (Generic)
 
data Employee =
Manager String String
| IndividualContributor String String
deriving (Generic, Show)
instance Binary Employee
 
main :: IO ()
main = do
ByteString.writeFile "objects.dat" $ Binary.encode
[ IndividualContributor "John Doe" "Sales"
, Manager "Jane Doe" "Engineering"
]
 
bytes <- ByteString.readFile "objects.dat"
let employees = Binary.decode bytes
print (employees :: [Employee])</syntaxhighlight>
 
=={{Header|Insitux}}==
 
Insitux does not have OOP-style objects, nor a recommended way to serialise into binary. The recommended serialisation/deserialisation method ([https://www.rosettacode.org/wiki/JSON#Insitux as JSON is not fully capable]) is <code>str</code> to serialise into a string, and <code>safe-eval</code> to deserialise from string. If <code>eval</code> was used it would be vulnerable to arbitrary code execution.
 
 
<syntaxhighlight lang="insitux">
(var object {:a 1 :b "Hello, world!" [1 2 3] :c}
serialised (str object)
deserialised (safe-eval serialised))
 
(print "Object: " object)
(print "Serialised: " serialised)
(str "Deserialised: " deserialised)
</syntaxhighlight>
 
{{out}}
 
<pre>
Object: {:a 1, :b "Hello, world!", [1 2 3] :c}
Serialised: {:a 1, :b "Hello, world!", [1 2 3] :c}
Deserialised: {:a 1, :b "Hello, world!", [1 2 3] :c}
</pre>
 
=={{header|J}}==
 
This should be sufficient for this task:
 
<syntaxhighlight lang="j">lin_z_=:5!:5
serializeObject=:3 :0
p=. copath y
d=. ;LF;"1(,'=:';lin__y)"0 nl__y i.4
'(',(5!:5<'p'),')(copath[cocurrent@])cocreate ''''',,d,LF
)
 
deserializeObject=:3 :0
o=.conl 1
0!:100 y
(conl 1)-.o
)
 
coclass'room'
create=:3 :'size=:y'
print=:3 :'''room size '',":size'
 
coclass'kitchen'
coinsert'room'
print=:3 :'''kitchen size '',":size'
 
coclass'kitchenWithSink'
coinsert'kitchen'
print=:3 :'''kitchen with sink size '',":size'
 
cocurrent'base'
 
R=:'small' conew 'room'
K=:'medium' conew 'kitchen'
S=:'large' conew 'kitchenWithSink'
print__R''
print__K''
print__S''
 
 
(;<@serializeObject"0 R,K,S) 1!:2 <'objects.dat'
 
'r1 k1 s1'=: <"0 deserializeObject 1!:1<'objects.dat'
print__r1''
print__k1''
print__s1''</syntaxhighlight>
 
Here is how the last part looks in action:
 
<syntaxhighlight lang="j"> print__R''
room size small
print__K''
kitchen size medium
print__S''
kitchen with sink size large
(;<@serializeObject"0 R,K,S) 1!:2 <'objects.dat'
'r1 k1 s1'=: <"0 deserializeObject 1!:1<'objects.dat'
print__r1''
room size small
print__k1''
kitchen size medium
print__s1''
kitchen with sink size large</syntaxhighlight>
 
Note also that J does not attempt to distinguish, at the language level, between an object reference and something that looks like an object reference but is not. This must be done at the application level, which in turn can create a variety of opportunities and/or burdens for the program designer.
 
(And this is more than adequate for the use case J's object system was designed for, which is to provide a mechanism where independent programmers can work on different modules of a program with well defined interfaces. Of course, if you try to make it complicated, or try to design something with incomprehensible interfaces, that will create problems.)
 
=={{header|Java}}==
<langsyntaxhighlight lang="java">import java.io.*;
 
// classes must implement java.io.Serializable in order to be serializable
Line 310 ⟶ 1,344:
}
}
}</langsyntaxhighlight>
 
=={{header|Julia}}==
<syntaxhighlight lang="julia">
abstract type Hello end
 
struct HelloWorld <: Hello
name::String
HelloWorld(s) = new(s)
end
 
struct HelloTime <: Hello
name::String
tnew::DateTime
HelloTime(s) = new(s, now())
end
 
sayhello(hlo) = println("Hello to this world, $(hlo.name)!")
 
sayhello(hlo::HelloTime) = println("It is now $(now()). Hello from back in $(hlo.tnew), $(hlo.name)!")
 
h1 = HelloWorld("world")
h2 = HelloTime("new world")
 
sayhello(h1)
sayhello(h2)
 
fh = open("objects.dat", "w")
serialize(fh, h1)
serialize(fh,h2)
close(fh)
 
sleep(10)
 
fh = open("objects.dat", "r")
hh1 = deserialize(fh)
hh2 = deserialize(fh)
close(fh)
 
sayhello(hh1)
sayhello(hh2)
</syntaxhighlight>
 
=={{header|Kotlin}}==
{{trans|Java}}
<syntaxhighlight lang="scala">// version 1.2.0
 
import java.io.*
 
open class Entity(val name: String = "Entity"): Serializable {
override fun toString() = name
 
companion object {
val serialVersionUID = 3504465751164822571L
}
}
 
class Person(name: String = "Brian"): Entity(name), Serializable {
companion object {
val serialVersionUID = -9170445713373959735L
}
}
 
fun main(args: Array<String>) {
val instance1 = Person()
println(instance1)
 
val instance2 = Entity()
println(instance2)
 
// serialize
try {
val out = ObjectOutputStream(FileOutputStream("objects.dat"))
out.writeObject(instance1)
out.writeObject(instance2)
out.close()
println("Serialized...")
}
catch (e: IOException) {
println("Error occurred whilst serializing")
System.exit(1)
}
 
// deserialize
try {
val inp = ObjectInputStream(FileInputStream("objects.dat"))
val readObject1 = inp.readObject()
val readObject2 = inp.readObject()
inp.close()
println("Deserialized...")
println(readObject1)
println(readObject2)
}
catch (e: IOException) {
println("Error occurred whilst deserializing")
System.exit(1)
}
catch (e: ClassNotFoundException) {
println("Unknown class for deserialized object")
System.exit(1)
}
}</syntaxhighlight>
 
{{out}}
<pre>
Brian
Entity
Serialized...
Deserialized...
Brian
Entity
</pre>
 
=={{header|Neko}}==
<syntaxhighlight lang="actionscript">/* Object serialization, in Neko */
 
var file_open = $loader.loadprim("std@file_open", 2)
var file_write = $loader.loadprim("std@file_write", 4)
var file_read = $loader.loadprim("std@file_read", 4)
var file_close = $loader.loadprim("std@file_close", 1)
 
var serialize = $loader.loadprim("std@serialize", 1)
var unserialize = $loader.loadprim("std@unserialize", 2)
 
/* Inheritance by prototype */
proto = $new(null)
proto.print = function () { $print(this, "\n") }
 
obj = $new(null)
obj.msg = "Hello"
obj.dest = $array("Town", "Country", "World")
 
$objsetproto(obj, proto)
$print("Original:\n")
obj.print()
 
/* Serialize the object */
var thing = serialize(obj)
var len = $ssize(thing)
 
/* To disk */
var f = file_open("object-serialization.bin", "w")
file_write(f, thing, 0, len)
file_close(f)
 
/* Load the binary data into a new string space */
f = file_open("object-serialization.bin", "r")
var buff = $smake(len)
file_read(f, buff, 0, len)
file_close(f)
 
/* Unserialize the object into a new variable */
var other = unserialize(buff, $loader)
$print("deserialized:\n")
other.print()</syntaxhighlight>
 
{{out}}
<pre>prompt$ nekoc object-serialization.neko
prompt$ neko object-serialization
Original:
{ dest => [Town,Country,World], msg => Hello }
deserialized:
{ dest => [Town,Country,World], msg => Hello }
prompt$ xxd object-serialization.bin
00000000: 6f62 5e66 c261 0300 0000 7304 0000 0054 ob^f.a....s....T
00000010: 6f77 6e73 0700 0000 436f 756e 7472 7973 owns....Countrys
00000020: 0500 0000 576f 726c 6441 1a53 0073 0500 ....WorldA.S.s..
00000030: 0000 4865 6c6c 6f00 0000 0070 6f2d 588b ..Hello....po-X.
00000040: c84c 7314 0000 006f 626a 6563 742d 7365 .Ls....object-se
00000050: 7269 616c 697a 6174 696f 6e02 0000 0000 rialization.....
00000060: 0000 0061 0000 0000 0000 0000 7a ...a........z</pre>
 
=={{header|Nim}}==
<syntaxhighlight lang="nim">import marshal, streams
type
Base = object of RootObj
name: string
Descendant = object of Base
proc newBase(): Base = Base(name: "base")
proc newDescendant(): Descendant = Descendant(name: "descend")
proc print(obj: Base) =
echo(obj.name)
 
var
base = newBase()
descendant = newDescendant()
print(base)
print(descendant)
 
var strm = newFileStream("objects.dat", fmWrite)
store(strm, (base, descendant))
strm.close()
 
var t: (Base, Descendant)
load(newFileStream("objects.dat", fmRead), t)
print(t[0])
print(t[1])
</syntaxhighlight>
{{out}}
<pre>
base
descend
base
descend
</pre>
 
=={{header|Objeck}}==
<syntaxhighlight lang="objeck">
bundle Default {
class Thingy {
@id : Int;
 
New(id : Int) {
@id := id;
}
 
method : public : Print() ~ Nil {
@id->PrintLine();
}
}
 
class Person from Thingy {
@name : String;
 
New(id : Int, name : String) {
Parent(id);
@name := name;
}
 
method : public : Print() ~ Nil {
@id->PrintLine();
@name->PrintLine();
}
}
 
class Serial {
function : Main(args : String[]) ~ Nil {
t := Thingy->New(7);
p := Person->New(13, "Bush");
 
s := IO.Serializer->New();
s->Write(t->As(Base));
s->Write(p->As(Base));
 
writer := IO.FileWriter->New("objects.dat");
writer->WriteBuffer(s->Serialize());
writer->Close();
 
buffer := IO.FileReader->ReadBinaryFile("objects.dat");
d := IO.Deserializer->New(buffer);
 
t2 := d->ReadObject()->As(Thingy);
t2->Print();
p2 := d->ReadObject()->As(Person);
p2->Print();
}
}
}
</syntaxhighlight>
 
=={{header|Objective-C}}==
Line 322 ⟶ 1,615:
There exists also a way of serializing without the GNUstep/Cocoa framework, using the runtime of Objective-C (so it could be slightly implementation dependent, see [[wp:Serialization#Objective-C|Serialization on Wikipedia]]). (I will work on it and will put here a full working example compatible with the task).
 
<langsyntaxhighlight lang="objc">#import <Foundation/Foundation.h>
 
// a fantasy two level hierarchy
Line 330 ⟶ 1,623:
int numberOfLegs;
}
- (instancetype) initWithName: (NSString*)name andLegs: (NSInteger)legs;
- (id) init;
- (id) initWithName: (NSString*)name andLegs: (NSInteger)legs;
- (void) dump;
// the following allows "(de)archiving" of the object
- (void) encodeWithCoder: (NSCoder*)coder;
- (id) initWithCoder: (NSCoder*)coder;
@end
 
@implementation Animal
- (instancetype) initWithName: (NSString*)name andLegs: (NSInteger)legs
- (id) init
{
if ((self = [super init];)) {
animalName = nilname;
numberOfLegs = 0legs;
}
return self;
}
- (id) initWithName: (NSString*)name andLegs: (NSInteger)legs
{
self = [super init];
animalName = [name retain];
numberOfLegs = legs;
return self;
}
Line 363 ⟶ 1,646:
[coder encodeInt: numberOfLegs forKey: @"Animal.legs"];
}
- (idinstancetype) initWithCoder: (NSCoder*)coder
{
if ((self = [super init];)) {
animalName = [[coder decodeObjectForKey: @"Animal.name"] retain];
numberOfLegs = [coder decodeIntForKey: @"Animal.legs"];
}
return self;
}
Line 377 ⟶ 1,661:
NSMutableArray *eatenList;
}
- (instancetype) initWithName: (NSString*)name hasFur: (BOOL)fur;
- (id) init;
- (id) initWithName: (NSString*)name hasFur: (BOOL)fur;
- (void) addEatenThing: (NSString*)thing;
- (void) dump;
// for archiving / dearchiving:
- (void) encodeWithCoder: (NSCoder*)coder;
- (id) initWithCoder: (NSCoder*)coder;
@end
 
@implementation Mammal
- (idinstancetype) init
{
if ((self = [super init];)) {
hasFur = NO;
eatenList = [[NSMutableArray alloc] initWithCapacity: 10];
}
return self;
}
- (idinstancetype) initWithName: (NSString*)name hasFur: (BOOL)fur
{
if ((self = [super initWithName: name andLegs: 4];)) {
hasFur = fur;
eatenList = [[NSMutableArray alloc] initWithCapacity: 10];
}
return self;
}
- (void) addEatenThing: (NSString*)thing
{
[thing retain];
[eatenList addObject: thing];
}
Line 410 ⟶ 1,690:
[super dump];
NSLog(@"has fur? %@", (hasFur) ? @"yes" : @"no" );
// fast enum not implemented yet in gcc 4.3, at least
// without a patch that it seems to exist...
NSEnumerator *en = [eatenList objectEnumerator];
id element;
NSLog(@"it has eaten %d things:", [eatenList count]);
for ( id element in eatenList )
while( (element = [en nextObject]) != nil )
NSLog(@"it has eaten a %@", element);
NSLog(@"end of eaten things list");
Line 426 ⟶ 1,702:
[coder encodeObject: eatenList forKey: @"Mammal.eaten"];
}
- (idinstancetype) initWithCoder: (NSCoder*)coder
{
if ((self = [super initWithCoder: coder];)) {
hasFur = [coder decodeBoolForKey: @"Mammal.hasFur"];
eatenList = [[coder decodeObjectForKey: @"Mammal.eaten"] retain];
}
return self;
}
Line 438 ⟶ 1,715:
int main()
{
@autoreleasepool {
Mammal *aMammal;
Animal *anAnimal;
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
// let us create a fantasy animal
Animal *anAnimal = [[Animal alloc]
initWithName: @"Eptohippos"
andLegs: 7
];
// for some reason an Eptohippos is not an horse with 7 legs,
// and it is not a mammal, of course...
 
// let us create a fantasy mammal (which is an animal too)
Mammal *aMammal = [[Mammal alloc]
initWithName: @"Mammaluc"
hasFur: YES
];
// let us add some eaten stuff...
[aMammal addEatenThing: @"lamb"];
[aMammal addEatenThing: @"table"];
[aMammal addEatenThing: @"web page"];
 
// dump anAnimal
NSLog(@"----- original Animal -----");
[anAnimal dump];
 
// dump aMammal...
NSLog(@"----- original Mammal -----");
[aMammal dump];
 
// now let us store the objects...
NSMutableData *data = [[NSMutableData dataalloc] init];
NSKeyedArchiver *arch = [[NSKeyedArchiver alloc]
initForWritingWithMutableData: data];
[arch encodeObject: anAnimal forKey: @"Eptohippos"];
[arch encodeObject: aMammal forKey: @"Mammaluc"];
[arch finishEncoding];
[data writeToFile: @"objects.dat" atomically: YES];
 
// now we want to retrieve the saved objects...
NSData *ldata = [[NSData alloc]
initWithContentsOfFile: @"objects.dat"];
NSKeyedUnarchived *darch = [[NSKeyedUnarchiver alloc]
initForReadingWithData: ldata];
Animal *archivedAnimal = [darch decodeObjectForKey: @"Eptohippos"];
Mammal *archivedMammal = [darch decodeObjectForKey: @"Mammaluc"];
[darch finishDecoding];
[ldata release];
 
// now let's dump/print the objects...
NSLog(@"\n");
NSLog(@"----- the archived Animal -----");
[archivedAnimal dump];
NSLog(@"----- the archived Mammal -----");
[archivedMammal dump];
 
}
[pool release];
return EXIT_SUCCESS;
}</langsyntaxhighlight>
 
=={{header|OCaml}}==
Line 502 ⟶ 1,776:
Objects which contain methods are difficult to serialize because it will want to serialize those methods too, but functions usually cannot be serialized. Instead, here we perform the task on non-object datatypes, with an outside function to print them.
 
<langsyntaxhighlight lang="ocaml">type entity = { name : string }
 
let create_entity () = { name = "Entity" }
Line 524 ⟶ 1,798:
 
print_entity result1;;
print_entity result2;;</langsyntaxhighlight>
 
The module which provides functions to encode arbitrary data structures as sequences of bytes is [http://caml.inria.fr/pub/docs/manual-ocaml/libref/Marshal.html the module Marshal].
 
=={{header|Ol}}==
All objects (values and references) can be serialized using `fasl-save` (by `fasl-encode`) and deserialized using `fasl-load` (by `fasl-decode`).
 
<syntaxhighlight lang="scheme">
$ ol
Welcome to Otus Lisp 1.2,
type ',help' to help, ',quit' to end session.
> (define Object (tuple
'(1 2 3 4) ; list
#(4 3 2 1) ; bytevector
"hello" ; ansi string
"こんにちは" ; unicode string
(list->ff '(; associative array
(1 . 123456)
(2 . second)
(3 . "-th-")))
{(4 . 'sym) ; alternatively declared..
(5 . +)} ; ..associative array
#false ; value
-123 ; short number
123456789012345678901234567890123456789 ; long number
)
;; Defined Object
#((1 2 3 4) #(4 3 2 1) hello こんにちは #ff((1 . 123456) (2 . second) (3 . -th-))
#ff((4 . sym) (5 . #<function>)) #false -123
123456789012345678901234567890123456789)
 
> (fasl-save Object "/tmp/object.bin")
#true
 
> (define New (fasl-load "/tmp/object.bin" #false))
;; Defined New
#((1 2 3 4) #(4 3 2 1) hello こんにちは #ff((1 . 123456) (2 . second) (3 . -th-))
#ff((4 . sym) (5 . #<function>)) #false -123
123456789012345678901234567890123456789)
 
> (equal? Object New)
#true
 
> ,quit
bye-bye :/
$
</syntaxhighlight>
 
=={{header|Oz}}==
Stateless values can easily be serialized with functions from the [https://mozart.github.io/mozart-v1/doc-1.4.0/system/node57.html Pickle] module. Objects are not stateless, though.
 
Some objects can be converted to a stateless chunk by using [https://mozart.github.io/mozart-v1/doc-1.4.0/system/node96.html#section.objectsupport.reflect ObjectSupport.reflect]. For technical reasons, this will only work for a small subset of classes.
 
For a general solution, see [[Object Serialization/Oz]].
 
=={{header|Perl}}==
{{libheader|Storable}}
<langsyntaxhighlight lang="perl">{
package Greeting;
sub new {
my $v = '"Hello world!'\n";
bless \$v, shift;
};
Line 542 ⟶ 1,869:
use base qw(Greeting); # inherit methods
sub new { # overwrite method of super class
my $v = '"Hello world from Junior!'\n";
bless \$v, shift;
};
Line 562 ⟶ 1,889:
print $g2->stringify;
print $s2->stringify;
};</langsyntaxhighlight>
 
{{libheader|MooseX}}
 
The same, using [[MooseX]] to serialize to [[uses format::JSON]].
<syntaxhighlight lang="perl">use MooseX::Declare;
 
class Greeting {
use MooseX::Storage;
with Storage('format' => 'JSON', io => 'File');
has string => (is => 'ro', default => "Hello world!\n");
}
class Son::Of::Greeting extends Greeting {
has string => (is => 'ro', default => "Hello from Junior!\n");
}
 
my $g1 = Greeting->new;
my $s1 = Son::Of::Greeting->new;
 
print $g1->string;
print $s1->string;
 
$g1->store('object1.json');
my $g2 = Greeting->load('object1.json');
 
$s1->store('object2.json');
my $s2 = Son::Of::Greeting->load('object2.json');
 
print $g2->string;
print $s2->string;
</syntaxhighlight>
This time the objects were serialized to the [http://www.json.org/ JSON] format. Other supported formats are [http://search.cpan.org/perldoc?Storable Storable] and [http://www.yaml.org/ YAML].
 
=={{header|Phix}}==
The serialize() and deserialize() functions handle any kind of data. Whether they are binary, text, data types, classes,
or whatever you choose to treat as such, is up to you.
 
<!--<syntaxhighlight lang="phix">-->
<span style="color: #008080;">include</span> <span style="color: #008000;">"builtins/serialize.e"</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">randobj</span><span style="color: #0000FF;">()</span>
<span style="color: #000080;font-style:italic;">-- test function (generate some random garbage)</span>
<span style="color: #004080;">object</span> <span style="color: #000000;">res</span>
<span style="color: #008080;">if</span> <span style="color: #7060A8;">rand</span><span style="color: #0000FF;">(</span><span style="color: #000000;">10</span><span style="color: #0000FF;">)<=</span><span style="color: #000000;">3</span> <span style="color: #008080;">then</span> <span style="color: #000080;font-style:italic;">-- make sequence[1..3]</span>
<span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{}</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #7060A8;">rand</span><span style="color: #0000FF;">(</span><span style="color: #000000;">3</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span>
<span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">append</span><span style="color: #0000FF;">(</span><span style="color: #000000;">res</span><span style="color: #0000FF;">,</span><span style="color: #000000;">randobj</span><span style="color: #0000FF;">())</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #008080;">elsif</span> <span style="color: #7060A8;">rand</span><span style="color: #0000FF;">(</span><span style="color: #000000;">10</span><span style="color: #0000FF;">)<=</span><span style="color: #000000;">3</span> <span style="color: #008080;">then</span> <span style="color: #000080;font-style:italic;">-- make string</span>
<span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">repeat</span><span style="color: #0000FF;">(</span><span style="color: #008000;">'A'</span><span style="color: #0000FF;">+</span><span style="color: #7060A8;">rand</span><span style="color: #0000FF;">(</span><span style="color: #000000;">10</span><span style="color: #0000FF;">),</span><span style="color: #7060A8;">rand</span><span style="color: #0000FF;">(</span><span style="color: #000000;">10</span><span style="color: #0000FF;">))</span>
<span style="color: #008080;">else</span>
<span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">rand</span><span style="color: #0000FF;">(</span><span style="color: #000000;">10</span><span style="color: #0000FF;">)/</span><span style="color: #000000;">2</span> <span style="color: #000080;font-style:italic;">-- half int/half float</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">return</span> <span style="color: #000000;">res</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #004080;">object</span> <span style="color: #000000;">o1</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">randobj</span><span style="color: #0000FF;">(),</span>
<span style="color: #000000;">o2</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">randobj</span><span style="color: #0000FF;">(),</span>
<span style="color: #000000;">o3</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">randobj</span><span style="color: #0000FF;">()</span>
<span style="color: #7060A8;">pp</span><span style="color: #0000FF;">({</span><span style="color: #000000;">o1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">o2</span><span style="color: #0000FF;">,</span><span style="color: #000000;">o3</span><span style="color: #0000FF;">},{</span><span style="color: #000000;">pp_Nest</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1</span><span style="color: #0000FF;">})</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">fh</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">open</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"objects.dat"</span><span style="color: #0000FF;">,</span> <span style="color: #008000;">"wb"</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">puts</span><span style="color: #0000FF;">(</span><span style="color: #000000;">fh</span><span style="color: #0000FF;">,</span> <span style="color: #7060A8;">serialize</span><span style="color: #0000FF;">(</span><span style="color: #000000;">o1</span><span style="color: #0000FF;">))</span>
<span style="color: #7060A8;">puts</span><span style="color: #0000FF;">(</span><span style="color: #000000;">fh</span><span style="color: #0000FF;">,</span> <span style="color: #7060A8;">serialize</span><span style="color: #0000FF;">(</span><span style="color: #000000;">o2</span><span style="color: #0000FF;">))</span>
<span style="color: #7060A8;">puts</span><span style="color: #0000FF;">(</span><span style="color: #000000;">fh</span><span style="color: #0000FF;">,</span> <span style="color: #7060A8;">serialize</span><span style="color: #0000FF;">(</span><span style="color: #000000;">o3</span><span style="color: #0000FF;">))</span>
<span style="color: #7060A8;">close</span><span style="color: #0000FF;">(</span><span style="color: #000000;">fh</span><span style="color: #0000FF;">)</span>
<span style="color: #0000FF;">?</span><span style="color: #008000;">"==="</span>
<span style="color: #000000;">fh</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">open</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"objects.dat"</span><span style="color: #0000FF;">,</span> <span style="color: #008000;">"rb"</span><span style="color: #0000FF;">)</span>
<span style="color: #0000FF;">?</span><span style="color: #7060A8;">deserialize</span><span style="color: #0000FF;">(</span><span style="color: #000000;">fh</span><span style="color: #0000FF;">)</span>
<span style="color: #0000FF;">?</span><span style="color: #7060A8;">deserialize</span><span style="color: #0000FF;">(</span><span style="color: #000000;">fh</span><span style="color: #0000FF;">)</span>
<span style="color: #0000FF;">?</span><span style="color: #7060A8;">deserialize</span><span style="color: #0000FF;">(</span><span style="color: #000000;">fh</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">close</span><span style="color: #0000FF;">(</span><span style="color: #000000;">fh</span><span style="color: #0000FF;">)</span>
<span style="color: #0000FF;">{}</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">delete_file</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"objects.dat"</span><span style="color: #0000FF;">)</span>
<!--</syntaxhighlight>-->
 
{{out}}
<pre>
{1.5,
{"JJJJJJJJ", "FFFF", {4}},
{{{0.5}, 3}, 3,1}}
"==="
1.5
{"JJJJJJJJ","FFFF",{4}}
{{{0.5},3},3,1}
</pre>
 
=={{header|PHP}}==
Serialization in PHP is straightforward. The built-in function [http://www.php.net/manual/en/function.serialize.php serialize()] handles it in a single statement.
<langsyntaxhighlight lang="php">$myObj = new Object();
$serializedObj = serialize($myObj);</langsyntaxhighlight>
In order to un-serialize the object, use the [http://www.php.net/manual/en/function.unserialize.php unserialize()] function. Note that the class of object must be defined in the script where un-serialization takes place, or the class' methods will be lost.
 
=={{header|PicoLisp}}==
The built-in function [http://software-lab.de/doc/refP.html#pr pr] serializes
any kind of data, and [http://software-lab.de/doc/refR.html#rd rd] reads it
back. This functionality is also used internally for database access and
interprocess-communication.
<syntaxhighlight lang="picolisp">(class +Point)
# x y
 
(dm T (X Y)
(=: x (or X 0))
(=: y (or Y 0)) )
 
(dm print> ()
(prinl "Point " (: x) "," (: y)) )
 
(class +Circle +Point)
# r
 
(dm T (X Y R)
(super X Y)
(=: r (or R 0)) )
 
(dm print> ()
(prinl "Circle " (: x) "," (: y) "," (: r)) )
 
(setq
P (new '(+Point) 3 4)
C (new '(+Circle) 10 10 5) )
 
(print> P)
(print> C)
 
(out "objects.dat"
(pr (val P) (getl P))
(pr (val C) (getl C)) )</syntaxhighlight>
<syntaxhighlight lang="picolisp">(in "objects.dat"
(putl (setq A (box (rd))) (rd))
(putl (setq B (box (rd))) (rd)) )
 
(print> A)
(print> B)</syntaxhighlight>
Output:
<pre>Point 3,4
Circle 10,10,5
Point 3,4
Circle 10,10,5</pre>
 
=={{header|Python}}==
<langsyntaxhighlight lang="python"># Object Serialization in Python
# serialization in python is accomplished via the Pickle module.
# Alternatively, one can use the cPickle module if speed is the key,
Line 607 ⟶ 2,067:
 
i1.printName()
i2.printName()</langsyntaxhighlight>
 
=={{header|Racket}}==
 
Serialization is described in the Racket documentation in: [http://docs.racket-lang.org/reference/serialization.html?q=serialize Serialization], and more specifically with respect to object oriented programming classes: [http://docs.racket-lang.org/reference/objectserialize.html?q=serializable-class#%28form._%28%28lib._racket%2Fprivate%2Fclass-internal..rkt%29._define-serializable-class%29%29 Object Serialization].
 
The serialization needs to be included with
<syntaxhighlight lang="racket">(require racket/serialize)</syntaxhighlight>
The rest is covered by the Racket language.
 
(I have elided the paths in objects.dat -- you wouldn't be able to use them anyway)
 
<syntaxhighlight lang="racket">#lang racket
;; Object Serialization: Tim Brown, Oct. 2014
(require racket/serialize)
 
(define (join-person-name-list persons)
(string-join (map (λ (c) (send c ->string)) persons) ", "))
 
(define-serializable-class person% object%
(init-field name [siblings null])
(define/public (->string #:show (show null))
(cond
[(and (member 'siblings show) (not (null? siblings)))
(format "~a (~a)" name (join-person-name-list siblings))]
[else name]))
(super-new))
 
(define-serializable-class parent% person%
(init-field [children null])
(define/override (->string #:show (show null))
(cond
[(and (member 'children show) (not (null? children)))
(format "~a [~a]" (super ->string #:show show) (join-person-name-list children))]
[else (super ->string #:show show)]))
(super-new))
 
;; horribly out of fashion and probaly no longer PC
(define-serializable-class nuclear-family% object%
(init-field father mother children)
(define/public (->string)
(string-append
(format "~a + ~a -> " (send father ->string) (send mother ->string))
(format "~a" (join-person-name-list children))))
(super-new))
 
;; =| TESTS |=========================================================================================
(define jack (new person% [name "Jack"]))
(define joan (new person% [name "Joan"]))
(set-field! siblings jack (list joan))
(set-field! siblings joan (list jack))
(define the-kids (list jack joan))
(define john (new parent% [name "John"] [children the-kids]))
(define jane (new parent% [name "Jane"] [children the-kids]))
 
(define the-family
(new nuclear-family% [father john] [mother jane] [children the-kids]))
 
(define (duplicate-object-through-file o f-name)
(with-output-to-file f-name #:exists 'replace (λ () (write (serialize o))))
(with-input-from-file f-name (λ () (deserialize (read)))))
 
(define cloned-family (duplicate-object-through-file the-family "objects.dat"))
 
(printf "The original family:\t~a~%" (send the-family ->string))
(printf "The cloned family:\t~a~%~%" (send cloned-family ->string))
(printf "objects.dat contains ----~%~a~%-------------------~%~%" (file->string "objects.dat"))
(printf "Clones are different?~%")
(define cloned-jack (first (get-field children cloned-family)))
(set-field! name cloned-jack "JACK")
(printf "Jack's name is:\t~s~%" (get-field name jack))
(printf "Clone's name is:\t~s~%~%" (get-field name cloned-jack))
(printf "Relationships are maintained?~%")
(define cloned-joan (second (get-field children cloned-family)))
(printf "Joan's description with siblings:\t~s~%" (send joan ->string #:show '(siblings)))
(printf "Clone's description with siblings:\t~s~%~%"
(send cloned-joan ->string #:show '(siblings)))
(printf "After Jack's renaming the cloned family is: ~a~%~%" (send cloned-family ->string))
(printf "Various descriptions of cloned John:~%")
(define cloned-john (get-field father cloned-family))
(printf "Just the name:\t~s~%" (send cloned-john ->string))
(printf "With siblings:\t~s (he hasn't any)~%" (send cloned-john ->string #:show '(siblings)))
(printf "With children:\t~s~%" (send cloned-john ->string #:show '(children)))
(printf "With both:\t~s~%" (send cloned-john ->string #:show '(siblings children)))</syntaxhighlight>
 
{{out}}
<pre>The original family: John + Jane -> Jack, Joan
The cloned family: John + Jane -> Jack, Joan
 
objects.dat contains ----
((3) 3 ((#"C:\\[...]\\Serializable-Objects.rkt" . deserialize-info:person%) (#"C:\\[...]\\Serializable-Objects.rkt" . deserialize-info:nuclear-family%) (#"C:\\[...]\\Serializable-Objects.rkt" . deserialize-info:parent%)) 4 ((q . #(())) #&0 (0 (c (? . 0) c "Joan" c (c (? . 1)))) (c (? . 1) c (? . 2))) ((1 0 (c (? . 0) c "Jack" c (c (? . 2))))) (1 (c (? . 0) c (2 (c (v! (c (? . 0) q "John" ())) c (? . 3))) c (2 (c (v! (c (? . 0) q "Jane" ())) c (? . 3))) c (? . 3))))
-------------------
 
Clones are different?
Jack's name is: "Jack"
Clone's name is: "JACK"
 
Relationships are maintained?
Joan's description with siblings: "Joan (Jack)"
Clone's description with siblings: "Joan (JACK)"
 
After Jack's renaming the cloned family is: John + Jane -> JACK, Joan
 
Various descriptions of cloned John:
Just the name: "John"
With siblings: "John" (he hasn't any)
With children: "John [JACK, Joan]"
With both: "John [JACK, Joan]"</pre>
 
=={{header|Raku}}==
(formerly Perl 6)
<syntaxhighlight lang="raku" line># Reference:
# https://docs.raku.org/language/classtut
# https://github.com/teodozjan/perl-store
 
use v6;
use PerlStore::FileStore;
 
class Point {
has Int $.x;
has Int $.y;
}
 
class Rectangle does FileStore {
has Point $.lower;
has Point $.upper;
 
method area() returns Int {
($!upper.x - $!lower.x) * ( $!upper.y - $!lower.y);
}
}
 
my $r1 = Rectangle.new(lower => Point.new(x => 0, y => 0),
upper => Point.new(x => 10, y => 10));
say "Create Rectangle1 with area ",$r1.area();
say "Serialize Rectangle1 to object.dat";
$r1.to_file('./objects.dat');
say "";
say "take a peek on object.dat ..";
say slurp "./objects.dat";
say "";
say "Deserialize to Rectangle2";
my $r2 = from_file('objects.dat');
say "Rectangle2 is of type ", $r2.WHAT;
say "Rectangle2 area is ", $r2.area();</syntaxhighlight>
{{out}}
<pre>Create Rectangle1 with area 100
Serialize Rectangle1 to object.dat
 
take a peek on object.dat ..
Rectangle.new(lower => Point.new(x => 0, y => 0), upper => Point.new(x => 10, y => 10))
 
 
Deserialize to Rectangle2
Rectangle2 is of type (Rectangle)
Rectangle2 area is 100</pre>
 
=={{header|Ruby}}==
The core class <code>[http://www.ruby-doc.org/core/classes/Marshal.html Marshal]</code> handles object serialization. The <code>dump</code> method serializes an object, and the <code>load</code> method reconstitutes it.
<lang ruby>class Being
<syntaxhighlight lang="ruby">class Being
def initialize(specialty=nil)
@specialty=specialty
Line 679 ⟶ 2,295:
end.join("\n\n")
)
puts "END LOADED DIVERSE COLLECTION"</langsyntaxhighlight>
 
=={{header|Rust}}==
Rust does not have inheritance, but this can be done with either enums or traits.
=== Enum ===
Dependencies:
<syntaxhighlight lang="toml">serde = { version = "1.0.89", features = ["derive"] }
bincode = "1.1.2"</syntaxhighlight>
 
<syntaxhighlight lang="rust">use std::fmt;
 
use bincode::{deserialize, serialize};
use serde::{Deserialize, Serialize};
 
#[derive(Debug, Serialize, Deserialize)]
enum Animal {
Dog { name: String, color: String },
Bird { name: String, wingspan: u8 },
}
 
impl fmt::Display for Animal {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Animal::Dog { name, color } => write!(f, "{} is a dog with {} fur", name, color),
Animal::Bird { name, wingspan } => {
write!(f, "{} is a bird with a wingspan of {}", name, wingspan)
}
}
}
}
 
fn main() -> bincode::Result<()> {
let animals = vec![
Animal::Dog {
name: "Rover".into(),
color: "brown".into(),
},
Animal::Bird {
name: "Tweety".into(),
wingspan: 3,
},
];
 
for animal in &animals {
println!("{}", animal);
}
 
let serialized = serialize(&animals)?;
 
println!("Serialized into {} bytes", serialized.len());
 
let deserialized: Vec<Animal> = deserialize(&serialized)?;
 
println!("{:#?}", deserialized);
 
Ok(())
}</syntaxhighlight>
{{out}}
<pre>Rover is a dog with brown fur
Tweety is a bird with a wingspan of 3
Serialized into 57 bytes
[
Dog {
name: "Rover",
color: "brown"
},
Bird {
name: "Tweety",
wingspan: 3
}
]</pre>
=== Trait ===
Dependencies:
<syntaxhighlight lang="toml">serde = { version = "1.0.89", features = ["derive"] }
bincode = "1.1.2"
typetag = "0.1.1"</syntaxhighlight>
 
<syntaxhighlight lang="rust">use std::fmt::{self, Debug, Display};
 
use bincode::{deserialize, serialize};
use serde::{Deserialize, Serialize};
 
#[typetag::serde(tag = "animal")]
trait Animal: Display + Debug {
fn name(&self) -> Option<&str>;
fn feet(&self) -> u32;
}
 
#[derive(Debug, Deserialize, Serialize)]
struct Dog {
name: String,
color: String,
}
 
impl Display for Dog {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{} is a dog with {} fur", self.name, self.color)
}
}
 
#[typetag::serde]
impl Animal for Dog {
fn name(&self) -> Option<&str> {
Some(&self.name)
}
 
fn feet(&self) -> u32 {
4
}
}
 
#[derive(Debug, Deserialize, Serialize)]
struct Bird {
name: String,
wingspan: u32,
}
 
impl Display for Bird {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"{} is a bird with a wingspan of {}",
self.name, self.wingspan
)
}
}
 
#[typetag::serde]
impl Animal for Bird {
fn name(&self) -> Option<&str> {
Some(&self.name)
}
 
fn feet(&self) -> u32 {
2
}
}
 
fn main() -> bincode::Result<()> {
let animals: Vec<Box<dyn Animal>> = vec![
Box::new(Dog {
name: "Rover".into(),
color: "brown".into(),
}),
Box::new(Bird {
name: "Tweety".into(),
wingspan: 3,
}),
];
 
for animal in &animals {
println!("{}", animal);
}
 
let serialized = serialize(&animals)?;
println!("Serialized into {} bytes", serialized.len());
 
let deserialized: Vec<Box<dyn Animal>> = deserialize(&serialized)?;
 
println!("{:#?}", deserialized);
 
Ok(())
}</syntaxhighlight>
{{out}}
<pre>Rover is a dog with brown fur
Tweety is a bird with a wingspan of 3
Serialized into 172 bytes
[
Dog {
name: "Rover",
color: "brown"
},
Bird {
name: "Tweety",
wingspan: 3
}
]</pre>
 
=={{header|Tcl}}==
{{works with|Tcl|8.6}}
''This example uses an experimental package, available from [http://wiki.tcl.tk/23444 The Tcler's Wiki].
<langsyntaxhighlight lang="tcl">package require Tcl 8.6
package require TclOO::serializer 0.1
 
Line 734 ⟶ 2,527:
set obj [oo::deserialize [read $f]]
close $f
$obj printGreetings</langsyntaxhighlight>
 
=={{header|TXR}}==
 
TXR Lisp has good support for object serialization. The object file format for compiled files (<code>.tlo</code> files) depends on it.
 
<syntaxhighlight lang="txrlisp">(defstruct shape ()
(pos-x 0.0) (pos-y 0.0))
 
(defstruct circle (shape)
radius)
 
(defstruct ellipse (shape)
min-radius maj-radius)
 
(defvarl shapes (list (new circle radius 3.0)
(new ellipse min-radius 4.0 maj-radius 5.0)))
 
(put-line "original shapes:")
(prinl shapes)
 
(file-put "shapes.tl" shapes)
 
(put-line "dump of shapes.tl file:")
(put-line (file-get-string "shapes.tl"))
 
(put-line "object list read from file:")
(prinl (file-get "shapes.tl"))</syntaxhighlight>
 
{{out}}
 
<pre>original shapes:
(#S(circle pos-x 0.0 pos-y 0.0 radius 3.0) #S(ellipse pos-x 0.0 pos-y 0.0 min-radius 4.0 maj-radius 5.0))
dump of shapes.tl file:
(#S(circle pos-x 0.0 pos-y 0.0 radius 3.0) #S(ellipse pos-x 0.0 pos-y 0.0 min-radius 4.0 maj-radius 5.0))
 
object list read from file:
(#S(circle pos-x 0.0 pos-y 0.0 radius 3.0) #S(ellipse pos-x 0.0 pos-y 0.0 min-radius 4.0 maj-radius 5.0))</pre>
 
An object can be given a <code>print</code> method which has a Boolean argument whether to print "pretty" (meaning in some nicely formatted form for humans, not necessarily a serial notation readable by machine). A print method can return the <code>:</code> (colon) symbol to indicate that it declines to print; the default implementation should be used. With that it it possible to do
 
<syntaxhighlight lang="txrlisp">(defstruct shape ()
(pos-x 0.0) (pos-y 0.0))
 
(defstruct circle (shape)
radius
(:method print (me stream pretty-p)
(if pretty-p
(put-string `#<circle of radius @{me.radius} at coordinates (@{me.pos-x}, @{me.pos-y})>`)
:)))
 
(let ((circ (new circle radius 5.3)))
(prinl circ) ;; print machine readably
(pprinl circ)) ;; print pretty</syntaxhighlight>
 
{{out}}
 
<pre>#S(circle pos-x 0.0 pos-y 0.0 radius 5.3)
#<circle of radius 5.3 at coordinates (0, 0)></pre>
 
=={{header|Wren}}==
{{libheader|Wren-json}}
Currently, Wren's only facility for serializing objects is to use the above JSON module. Also this module can only 'stringify' objects of built-in types so we need to provide a suitable string representation for each user-defined class.
<syntaxhighlight lang="wren">import "./json" for JSON
import "io" for File, FileFlags
 
class Entity {
construct new(name) {
_name = name
}
 
name { _name }
 
// JSON representation
toString { "{\"name\": \"%(_name)\"}" }
 
// mimics the JSON output
print() { System.print(this.toString.replace("\"", "")) }
 
serialize(fileName) {
var o = JSON.parse(this.toString)
File.openWithFlags(fileName, FileFlags.writeOnly) { |file|
file.writeBytes("%(o)\n")
}
}
}
 
class Person is Entity {
construct new(name, age) {
super(name)
_age = age
}
 
// JSON representation
toString { "{\"name\": \"%(name)\", \"age\": \"%(_age)\"}" }
 
// mimics the JSON output
print() { System.print(this.toString.replace("\"", "")) }
 
serialize(fileName) {
var o = JSON.parse(this.toString)
File.openWithFlags(fileName, FileFlags.writeOnly) { |file|
file.writeBytes("%(o)\n")
}
}
}
 
// create file for serialization
var fileName = "objects.dat"
var file = File.create(fileName)
file.close()
 
System.print("Calling print methods gives:")
 
var e = Entity.new("John")
e.print()
e.serialize(fileName)
 
var p = Person.new("Fred", 35)
p.print()
p.serialize(fileName)
 
System.print("\nContents of objects.dat are:")
System.print(File.read(fileName))</syntaxhighlight>
 
{{out}}
<pre>
Calling print methods gives:
{name: John}
{name: Fred, age: 35}
 
Contents of objects.dat are:
{name: John}
{name: Fred, age: 35}
</pre>
 
=={{header|zkl}}==
zkl can serialize a "root class" (usually a file but any static (ie parentless) class) to bit bucket (such as File). This is done via reflection. The state of the class(es) are not stored so no image write/read. In the "normal" course of events, this isn't used, programs are compiled on the fly and run. However, there is extensive support to pre-compile and package files into applications or just pre-compile for faster load times (or to create an image that can be compiled into C code (which is done to package the compiler with the VM). When the compiler writes a class or app to a file, the preferred extension is ".zsc", which is what the Import method looks for. But no matter, we have ways ...
 
<syntaxhighlight lang="zkl">class [static] ARootClass{ // A top level class, no instances
class A{ self.println(" constructor"); } // a regular class
class B(A){ // ditto
var x;
fcn init(x=123){ self.x=x }
fcn toString{ "x is "+x }
}
}
 
ARootClass.B(456).println(); // create an instance
// prints:
Class(A) constructor
x is 456
 
f:=File("object.dat","wb");
Compiler.Asm.writeRootClass(ARootClass,f); // serialize to file
f.close();
 
f:=File("object.dat","rb");
rc:=Compiler.Asm.readRootClass(f); // read and re-create
// prints (readRootClass calls all constructors by default):
Class(A) constructor
f.close();
rc.B().println(); // create a new instance of B
// prints:
x is 123</syntaxhighlight>
 
 
{{omit from|AWK}}
{{omit from|C}}
{{omit from|Fortran}}
{{omit from|M4}}
{{omit from|Mathematica}}
{{omit from|Maxima}}
{{omit from|Metafont}}
{{omit from|Octave}}
{{omit from|PARI/GP}}
{{omit from|PureBasic|PureBasic does not allow serialization without extra add-ons.}}
{{omit from|Retro}}
{{omit from|REXX}}
{{omit from|TI-83 BASIC}}
{{omit from|TI-89 BASIC|Does not have user-defined data structures or objects.}}
{{omit from|ZX Spectrum Basic|Does not have user-defined data structures or objects.}}
2,169

edits