Mutual recursion: Difference between revisions

Add ABC
(Logo)
(Add ABC)
(300 intermediate revisions by more than 100 users not shown)
Line 1:
{{task|recursion}}
 
Two functions are said to be mutually recursive if the first calls the second, and in turn the second calls the first.
Two functions are said to be mutually recursive if the first calls the second,
and in turn the second calls the first.
 
Write two mutually recursive functions that compute members of the [[wp:Hofstadter sequence#Hofstadter Female and Male sequences|Hofstadter Female and Male sequences]] defined as:
<big>
:<math>
\begin{align}
Line 10 ⟶ 13:
\end{align}
</math>
</big>
 
<br>(If a language does not allow for a solution using mutually recursive functions then state this rather than give a solution by other means).
then state this rather than give a solution by other means).
<br><br>
 
=={{header|Ada8080 Assembly}}==
<lang Ada>with Ada.Text_Io; use Ada.Text_Io;
 
The 8080 processor has built-in support for recursion, at the instruction level.
The processor keeps a <em>stack pointer</em>, called <code>SP</code>,
which is a 16-bit register that can be set by the program to point anywhere in the address space.
The stack pointer points to the topmost word on the stack. The stack grows downward into memory:
when a word is pushed onto the stack, the SP is decremented by 2, and the word written
at the new location. When a word is popped from the stack, it is read from the location the
SP is pointing to, and afterwards the SP is incremented by 2.
 
The instruction set includes a <code>call</code> instruction, which pushes the location of the
next instruction onto the stack, and then jumps to the given location. Its counterpart is the
<code>ret</code> instruction, which pops a location from the stack and jumps there.
There are also <code>push</code> and <code>pop</code> instructions, to push and
pop the values of register
pairs on and off the stack directly. This can be used, among other things, to save 'local variables'
in a recursive routine, as the code below does.
 
<syntaxhighlight lang="8080asm"> org 100h
jmp test
;;; Implementation of F(A).
F: ana a ; Zero?
jz one ; Then set A=1
mov b,a ; Otherwise, set B=A,
push b ; And put it on the stack
dcr a ; Set A=A-1
call F ; Set A=F(A-1)
call M ; Set A=M(F(A-1))
pop b ; Retrieve input value
cma ; (-A)+B is actually one cycle faster
inr a ; than C=A;A=B;A-=B, and equivalent
add b
ret
one: mvi a,1 ; Set A to 1,
ret ; and return.
;;; Implementation of M(A).
M: ana a ; Zero?
rz ; Then keep it that way and return.
mov b,a
push b ; Otherwise, same deal as in F,
dcr a ; but M and F are called in opposite
call M ; order.
call F
pop b
cma
inr a
add b
ret
;;; Demonstration code.
test: lhld 6 ; Set stack pointer to highest usable
sphl ; memory.
;;; Print F([0..15])
lxi d,fpfx ; Print "F: "
mvi c,9
call 5
xra a ; Start with N=0
floop: push psw ; Keep N
call F ; Get value for F(N)
call pdgt ; Print it
pop psw ; Restore N
inr a ; Next N
cpi 16 ; Done yet?
jnz floop
;;; Print M([0..15])
lxi d,mpfx ; Print "\r\nM: "
mvi c,9
call 5
xra a ; Start with N=0
mloop: push psw ; same deal as above
call M
call pdgt
pop psw ; Restore N
inr a
cpi 16
jnz mloop
rst 0 ; Explicit exit, we got rid of system stack
;;; Print digit and space
pdgt: adi '0' ; ASCII
mov e,a
mvi c,2
call 5
mvi e,' ' ; Space
mvi c,2
jmp 5 ; Tail call optimization
fpfx: db 'F: $'
mpfx: db 13,10,'M: $'</syntaxhighlight>
 
{{out}}
 
<pre>F: 1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9
M: 0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9</pre>
 
=={{header|ABAP}}==
This works for ABAP Version 7.40 and can be implemented in procedural ABAP as well, but with classes it is much more readable. As this allows a method with a returning value to be an input for a subsequent method call.
 
<syntaxhighlight lang="abap">
report z_mutual_recursion.
 
class hoffstadter_sequences definition.
public section.
class-methods:
f
importing
n type int4
returning
value(result) type int4,
 
m
importing
n type int4
returning
value(result) type int4.
endclass.
 
 
class hoffstadter_sequences implementation.
method f.
result = cond int4(
when n eq 0
then 1
else n - m( f( n - 1 ) ) ).
endmethod.
 
 
method m.
result = cond int4(
when n eq 0
then 0
else n - f( m( n - 1 ) ) ).
endmethod.
endclass.
 
 
start-of-selection.
write: |{ reduce string(
init results = |f(0 - 19): { hoffstadter_sequences=>f( 0 ) }|
for i = 1 while i < 20
next results = |{ results }, { hoffstadter_sequences=>f( i ) }| ) }|, /.
 
write: |{ reduce string(
init results = |m(0 - 19): { hoffstadter_sequences=>m( 0 ) }|
for i = 1 while i < 20
next results = |{ results }, { hoffstadter_sequences=>m( i ) }| ) }|, /.
</syntaxhighlight>
 
{{output}}
<pre>
f(0 - 19): 1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12
 
m(0 - 19): 0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12
</pre>
 
=={{header|ABC}}==
<syntaxhighlight lang="ABC">HOW TO RETURN f n:
IF n=0: RETURN 1
RETURN n - m f (n-1)
 
HOW TO RETURN m n:
IF n=0: RETURN 0
RETURN n - f m (n-1)
 
WRITE "F:"
FOR n IN {0..15}: WRITE f n
WRITE /
 
WRITE "M:"
FOR n IN {0..15}: WRITE m n
WRITE /</syntaxhighlight>
{{out}}
<pre>F: 1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9
M: 0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9</pre>
 
=={{header|ACL2}}==
<syntaxhighlight lang="lisp">(mutual-recursion
(defun f (n)
(declare (xargs :mode :program))
(if (zp n)
1
(- n (m (f (1- n))))))
 
(defun m (n)
(declare (xargs :mode :program))
(if (zp n)
0
(- n (f (m (1- n)))))))</syntaxhighlight>
 
=={{header|Ada}}==
<syntaxhighlight lang="ada">with Ada.Text_Io; use Ada.Text_Io;
procedure Mutual_Recursion is
function M(N : Integer) return Integer;
function F(N : Integer) return Integer is
begin
Line 35 ⟶ 225:
end if;
end M;
begin
for I in 0..19 loop
Put_Line(Integer'Image(F(I)));
end loop;
New_Line;
for I in 0..19 loop
Put_Line(Integer'Image(M(I)));
end loop;
end Mutual_recursion;</syntaxhighlight>
 
{{Works with|Ada 2012}}
<syntaxhighlight lang="ada">with Ada.Text_Io; use Ada.Text_Io;
procedure Mutual_Recursion is
function M(N: Natural) return Natural;
function F(N: Natural) return Natural;
function M(N: Natural) return Natural is
(if N = 0 then 0 else N – F(M(N–1)));
function F(N: Natural) return Natural is
(if N =0 then 1 else N – M(F(N–1)));
begin
for I in 0..19 loop
Line 44 ⟶ 255:
end loop;
end Mutual_recursion;</langsyntaxhighlight>
 
=={{header|AWKAime}}==
{{trans|C}}
 
<syntaxhighlight lang="aime">integer F(integer n);
In AWK it is enough that both functions are defined before either is called.
integer M(integer n);
 
integer F(integer n)
<lang awk>function F(n)
{
integer r;
if ( n == 0 ) return 1;
return n -if M(F(n-1)) {
r = n - M(F(n - 1));
} else {
r = 1;
}
return r;
}
 
functioninteger M(integer n)
{
integer r;
if ( n == 0 ) return 0;
return n -if F(M(n-1)) {
r = n - F(M(n - 1));
} else {
r = 0;
}
return r;
}
 
integer main(void)
{
integer i;
i = 0;
while (i < 20) {
o_winteger(3, F(i));
i += 1;
}
o_byte('\n');
i = 0;
while (i < 20) {
o_winteger(3, M(i));
i += 1;
}
o_byte('\n');
return 0;
}</syntaxhighlight>
 
=={{header|ALGOL 68}}==
{{trans|C}}
 
{{works with|ALGOL 68|Standard - no extensions to language used}}
{{works with|ALGOL 68G|Any - tested with release mk15-0.8b.fc9.i386}}
{{works with|ELLA ALGOL 68|Any (with appropriate job cards) - tested with release 1.8.8d.fc9.i386}}
<syntaxhighlight lang="algol68">PROC (INT)INT m; # ONLY required for ELLA ALGOL 68RS - an official subset OF full ALGOL 68 #
 
PROC f = (INT n)INT:
IF n = 0 THEN 1
ELSE n - m(f(n-1)) FI;
m := (INT n)INT:
IF n = 0 THEN 0
ELSE n - f(m(n-1)) FI;
main:
(
FOR i FROM 0 TO 19 DO
print(whole(f(i),-3))
OD;
new line(stand out);
FOR i FROM 0 TO 19 DO
print(whole(m(i),-3))
OD;
new line(stand out)
)</syntaxhighlight>
{{out}}
<pre>
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12
</pre>
 
=={{header|ALGOL W}}==
<syntaxhighlight lang="algolw">begin
% define mutually recursive funtions F and M that compute the elements %
% of the Hofstadter Female and Male sequences %
 
integer procedure F ( integer value n ) ;
if n = 0 then 1 else n - M( F( n - 1 ) );
 
integer procedure M ( integer value n ) ;
if n = 0 then 0 else n - F( M( n - 1 ) );
 
% print the first few elements of the sequences %
i_w := 2; s_w := 1; % set I/O formatting %
write( "F: " );
for i := 0 until 20 do writeon( F( i ) );
write( "M: " );
for i := 0 until 20 do writeon( M( i ) );
 
end.</syntaxhighlight>
 
=={{header|APL}}==
{{works with|Dyalog APL}}
<syntaxhighlight lang="apl">f ← {⍵=0:1 ⋄ ⍵-m∇⍵-1}
m ← {⍵=0:0 ⋄ ⍵-f∇⍵-1}
⍉'nFM'⍪↑(⊢,f,m)¨0,⍳20</syntaxhighlight>
{{out}}
<pre>n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
F 1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13
M 0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12</pre>
 
=={{header|AppleScript}}==
 
<syntaxhighlight lang="applescript">-- f :: Int -> Int
on f(x)
if x = 0 then
1
else
x - m(f(x - 1))
end if
end f
 
-- m :: Int -> Int
on m(x)
if x = 0 then
0
else
x - f(m(x - 1))
end if
end m
 
 
-- TEST
on run
set xs to range(0, 19)
{map(f, xs), map(m, xs)}
end run
 
 
-- GENERIC FUNCTIONS
 
-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to lambda(item i of xs, i, xs)
end repeat
return lst
end tell
end map
 
-- Lift 2nd class handler function into 1st class script wrapper
-- mReturn :: Handler -> Script
on mReturn(f)
if class of f is script then
f
else
script
property lambda : f
end script
end if
end mReturn
 
-- range :: Int -> Int -> [Int]
on range(m, n)
if n < m then
set d to -1
else
set d to 1
end if
set lst to {}
repeat with i from m to n by d
set end of lst to i
end repeat
return lst
end range</syntaxhighlight>
 
{{Out}}
<syntaxhighlight lang="applescript">{{1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12},
{0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12}}</syntaxhighlight>
 
=={{header|ARM Assembly}}==
Unlike on the x86 family of processors, the ARM instruction set does not include specialized
<code>call</code> and <code>ret</code> instructions. However, the program counter is a visible
register (<code>r15</code>, also called <code>pc</code>), so it can be loaded and saved
as any other. Nor is there a specialized stack pointer, though the load and store instructions offer
pre- and postincrement as well as pre- and postdecrement on the register used as a pointer, making
any register usable as a stack pointer.
 
By convention, <code>r13</code> is used as the system stack pointer and is therefore also
called <code>sp</code>, and <code>r14</code> is used to store the return address for
a function, and is therefore also called the *link register* or <code>lr</code>.
The assembler recognizes <code>push {x}</code> and <code>pop {x}</code> instructions, though these
are really pseudoinstructions, that generate the exact same machine code as
<code>ldmia r13!,{x}</code> and <code>stmdb r13!,{x}</code>,
these being, respectively, load with postincrement and store with predecrement on r13.
 
The link register is slightly special in that there is a family of branch-and-link instructions
(<code>bl</code>). These are the same as <code>mov r14,pc ; mov/ldr pc,<destination></code>, but in
one machine instruction instead of two. This is the general way of calling subroutines,
meaning no stack access is necessary unless the subroutine wants to call others in turn, in which case
the link register must be saved by hand (as the code below shows several ways of doing).
 
<syntaxhighlight lang="text">.text
.global _start
@@@ Implementation of F(n), n in R0. n is considered unsigned.
F: tst r0,r0 @ n = 0?
moveq r0,#1 @ In that case, the result is 1
bxeq lr @ And we can return to the caller
push {r0,lr} @ Save link register and argument to stack
sub r0,r0,#1 @ r0 -= 1 = n-1
bl F @ r0 = F(r0) = F(n-1)
bl M @ r0 = M(r0) = M(F(n-1))
pop {r1,lr} @ Restore link register and argument in r1
sub r0,r1,r0 @ Result is n-F(M(n-1))
bx lr @ Return to caller.
 
@@@ Implementation of M(n), n in R0. n is considered unsigned.
M: tst r0,r0 @ n = 0?
bxeq lr @ In that case the result is also 0; return.
push {r0,lr} @ Save link register and argument to stack
sub r0,r0,#1 @ r0 -= 1 = n-1
bl M @ r0 = M(r0) = M(n-1)
bl F @ r0 = M(r0) = F(M(n-1))
pop {r1,lr} @ Restore link register and argument in r1
sub r0,r1,r0 @ Result is n-M(F(n-1))
bx lr @ Return to caller
 
@@@ Print F(0..15) and M(0..15)
_start: ldr r1,=fmsg @ Print values for F
ldr r4,=F
bl prfn
ldr r1,=mmsg @ Print values for M
ldr r4,=M
bl prfn
mov r7,#1 @ Exit process
swi #0
@@@ Helper function for output: print [r1], then [r4](0..15)
@@@ This assumes [r4] preserves r3 and r4; M and F do.
prfn: push {lr} @ Keep link register
bl pstr @ Print the string
mov r3,#0 @ Start at 0
1: mov r0,r3 @ Call the function in r4 with current number
blx r4
add r0,r0,#'0 @ Make ASCII digit
ldr r1,=dgt @ Store in digit string
strb r0,[r1]
ldr r1,=dstr @ Print result
bl pstr
add r3,r3,#1 @ Next number
cmp r3,#15 @ Keep going up to and including 15
bls 1b
ldr r1,=nl @ Print newline afterwards
bl pstr
pop {pc} @ Return to address on stack
@@@ Print length-prefixed string r1 to stdout
pstr: push {lr} @ Keep link register
mov r0,#1 @ stdout = 1
ldrb r2,[r1],#1 @ r2 = length prefix
mov r7,#4 @ 4 = write syscall
swi #0
pop {pc} @ Return to address on stack
.data
fmsg: .ascii "\3F: "
mmsg: .ascii "\3M: "
dstr: .ascii "\2"
dgt: .ascii "* "
nl: .ascii "\1\n"</syntaxhighlight>
 
{{out}}
 
<pre>F: 1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9
M: 0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9</pre>
 
=={{header|Arturo}}==
<syntaxhighlight lang="rebol">f: $[n][ if? n=0 -> 1 else -> n-m f n-1 ]
m: $[n][ if? n=0 -> 0 else -> n-f m n-1 ]
loop 0..20 'i [
print ["f(" i ")=" f i]
print ["m(" i ")=" m i]
print ""
]</syntaxhighlight>
 
{{out}}
 
<pre>f( 0 )= 1
m( 0 )= 0
 
f( 1 )= 1
m( 1 )= 0
 
f( 2 )= 2
m( 2 )= 1
 
f( 3 )= 2
m( 3 )= 2
 
f( 4 )= 3
m( 4 )= 2
 
f( 5 )= 3
m( 5 )= 3
 
f( 6 )= 4
m( 6 )= 4
 
f( 7 )= 5
m( 7 )= 4
 
f( 8 )= 5
m( 8 )= 5
 
f( 9 )= 6
m( 9 )= 6
 
f( 10 )= 6
m( 10 )= 6
 
f( 11 )= 7
m( 11 )= 7
 
f( 12 )= 8
m( 12 )= 7
 
f( 13 )= 8
m( 13 )= 8
 
f( 14 )= 9
m( 14 )= 9
 
f( 15 )= 9
m( 15 )= 9
 
f( 16 )= 10
m( 16 )= 10
 
f( 17 )= 11
m( 17 )= 11
 
f( 18 )= 11
m( 18 )= 11
 
f( 19 )= 12
m( 19 )= 12
 
f( 20 )= 13
m( 20 )= 12</pre>
 
=={{header|AutoHotkey}}==
<syntaxhighlight lang="autohotkey">Loop 20
i := A_Index-1, t .= "`n" i "`t " M(i) "`t " F(i)
MsgBox x`tmale`tfemale`n%t%
 
F(n) {
Return n ? n - M(F(n-1)) : 1
}
 
M(n) {
Return n ? n - F(M(n-1)) : 0
}</syntaxhighlight>
 
{{trans|C}}
 
This one is an alternative to the above.
 
<syntaxhighlight lang="autohotkey">main()
Return
 
F(n)
{
If (n == 0)
Return 1
Else
Return n - M(F(n-1))
}
M(n)
{
If (n == 0)
Return 0
Else
Return n - F(M(n-1)) ;
}
main()
{
i = 0
While, i < 20
{
male .= M(i) . "`n"
female .= F(i) . "`n"
i++
}
MsgBox % "male:`n" . male
MsgBox % "female:`n" . female
}</syntaxhighlight>
 
=={{header|AWK}}==
In AWK it is enough that both functions are defined somewhere. It matters not whether the BEGIN block is before or after the function definitions.
 
<syntaxhighlight lang="awk">cat mutual_recursion.awk:
#!/usr/local/bin/gawk -f
 
# User defined functions
function F(n)
{ return n == 0 ? 1 : n - M(F(n-1)) }
 
function M(n)
{ return n == 0 ? 0 : n - F(M(n-1)) }
 
BEGIN {
for(i=0; i <= 20; i++) {
printf "%3d ", F(i)
}
print ""
for(i=0; i <= 20; i++) {
printf "%3d ", M(i)
}
print ""
}</langsyntaxhighlight>
 
{{out}}
<pre>
$ awk -f mutual_recursion.awk
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12
</pre>
 
=={{header|BaCon}}==
<syntaxhighlight lang="freebasic">' Mutually recursive
FUNCTION F(int n) TYPE int
RETURN IIF(n = 0, 1, n - M(F(n -1)))
END FUNCTION
 
FUNCTION M(int n) TYPE int
RETURN IIF(n = 0, 0, n - F(M(n - 1)))
END FUNCTION
 
' Get iteration limit, default 20
SPLIT ARGUMENT$ BY " " TO arg$ SIZE args
limit = IIF(args > 1, VAL(arg$[1]), 20)
 
FOR i = 0 TO limit
PRINT F(i) FORMAT "%2d "
NEXT
PRINT
FOR i = 0 TO limit
PRINT M(i) FORMAT "%2d "
NEXT
PRINT</syntaxhighlight>
 
{{out}}
<pre>prompt$ ./mutually-recursive
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12</pre>
 
=={{header|BASIC}}==
{{works with|QBasic}}
<syntaxhighlight lang="qbasic">DECLARE FUNCTION f! (n!)
DECLARE FUNCTION m! (n!)
 
FUNCTION f! (n!)
IF n = 0 THEN
f = 1
ELSE
f = m(f(n - 1))
END IF
END FUNCTION
 
FUNCTION m! (n!)
IF n = 0 THEN
m = 0
ELSE
m = f(m(n - 1))
END IF
END FUNCTION</syntaxhighlight>
 
==={{header|BBC BASIC}}===
<syntaxhighlight lang="bbcbasic"> @% = 3 : REM Column width
PRINT "F sequence:"
FOR i% = 0 TO 20
PRINT FNf(i%) ;
NEXT
PRINT
PRINT "M sequence:"
FOR i% = 0 TO 20
PRINT FNm(i%) ;
NEXT
PRINT
END
DEF FNf(n%) IF n% = 0 THEN = 1 ELSE = n% - FNm(FNf(n% - 1))
DEF FNm(n%) IF n% = 0 THEN = 0 ELSE = n% - FNf(FNm(n% - 1))</syntaxhighlight>
{{out}}
<pre>
F sequence:
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13
M sequence:
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12
</pre>
 
==={{header|IS-BASIC}}===
<syntaxhighlight lang="is-basic">100 PROGRAM "Hofstad.bas"
110 PRINT "F sequence:"
120 FOR I=0 TO 20
130 PRINT F(I);
140 NEXT
150 PRINT :PRINT "M sequence:"
160 FOR I=0 TO 20
170 PRINT M(I);
180 NEXT
190 DEF F(N)
200 IF N=0 THEN
210 LET F=1
220 ELSE
230 LET F=N-M(F(N-1))
240 END IF
250 END DEF
260 DEF M(N)
270 IF N=0 THEN
280 LET M=0
290 ELSE
300 LET M=N-F(M(N-1))
310 END IF
320 END DEF</syntaxhighlight>
 
=={{header|BASIC256}}==
<syntaxhighlight lang="basic256"># Rosetta Code problem: http://rosettacode.org/wiki/Mutual_recursion
# by Jjuanhdez, 06/2022
 
n = 24
print "n : ";
for i = 0 to n : print ljust(i, 3); : next i
print chr(10); ("-" * 78)
print "F : ";
for i = 0 to n : print ljust(F(i), 3); : next i
print chr(10); "M : ";
for i = 0 to n : print ljust(M(i), 3); : next i
end
 
function F(n)
if n = 0 then return 0 else return n - M(F(n-1))
end function
 
function M(n)
if n = 0 then return 0 else return n - F(M(n-1))
end function</syntaxhighlight>
 
=={{header|Bc}}==
 
<syntaxhighlight lang="bc">cat mutual_recursion.bc:
<lang bc>define f(n) {
define f(n) {
if ( n == 0 ) return(1);
return(n - m(f(n-1)));
Line 83 ⟶ 820:
if ( n == 0 ) return(0);
return(n - f(m(n-1)));
}</langsyntaxhighlight>
 
{{works with|GNU bc}}
{{works with|OpenBSD bc}}
POSIX bc has no the <tt>print</tt> statement.
POSIX bc doesn't have the <tt>print</tt> statement.
<lang bc>/* GNU bc */
 
<syntaxhighlight lang="bc">/* GNU bc */
for(i=0; i < 19; i++) {
print f(i); print " ";
Line 95 ⟶ 834:
print m(i); print " ";
}
print "\n";</lang>
quit</syntaxhighlight>
 
{{out}}
<pre>
GNU bc mutual_recursion.bc
bc 1.06.95
Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006 Free Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type `warranty'.
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12
</pre>
 
=={{header|BCPL}}==
<syntaxhighlight lang="bcpl">get "libhdr"
 
// Mutually recursive functions
let f(n) = n=0 -> 1, n - m(f(n-1))
and m(n) = n=0 -> 0, n - f(m(n-1))
 
// Print f(0..15) and m(0..15)
let start() be
$( writes("F:")
for i=0 to 15 do
$( writes(" ")
writen(f(i))
$)
writes("*NM:")
for i=0 to 15 do
$( writes(" ")
writen(m(i))
$)
writes("*N")
$)</syntaxhighlight>
{{out}}
<pre>F: 1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9
M: 0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9</pre>
 
=={{header|BQN}}==
<syntaxhighlight lang="bqn">F ← {0:1; 𝕩-M F𝕩-1}
M ← {0:0; 𝕩-F M𝕩-1}
⍉"FM"∾>(F∾M)¨↕15</syntaxhighlight>
{{out}}
<pre>┌─
╵ 'F' 1 1 2 2 3 3 4 5 5 6 6 7 8 8 9
'M' 0 0 1 2 2 3 4 4 5 6 6 7 7 8 9
┘</pre>
 
=={{header|Bracmat}}==
<syntaxhighlight lang="bracmat"> (F=.!arg:0&1|!arg+-1*M$(F$(!arg+-1)));
(M=.!arg:0&0|!arg+-1*F$(M$(!arg+-1)));
 
-1:?n&whl'(!n+1:~>20:?n&put$(F$!n " "))&put$\n
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13
 
-1:?n&whl'(!n+1:~>20:?n&put$(M$!n " "))&put$\n
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12</syntaxhighlight>
 
=={{header|Brat}}==
<syntaxhighlight lang="brat">female = null #yes, this is necessary
 
male = { n |
true? n == 0
{ 0 }
{ n - female male(n - 1) }
}
 
female = { n |
true? n == 0
{ 1 }
{ n - male female(n - 1 ) }
}
 
p 0.to(20).map! { n | female n }
p 0.to(20).map! { n | male n }</syntaxhighlight>
 
=={{header|Bruijn}}==
Normally it's not possible to call functions before they are defined. We can still induce mutual recursion using its [[Variadic_fixed-point_combinator|variadic fixed-point combinator]].
<syntaxhighlight lang="bruijn">
:import std/Combinator .
:import std/Number .
:import std/List .
 
f' [[[=?0 (+1) (0 - (1 (2 --0)))]]]
 
m' [[[=?0 (+0) (0 - (2 (1 --0)))]]]
 
f ^(y* (f' : {}m'))
 
m _(y* (f' : {}m'))
 
:test ((f (+0)) =? (+1)) ([[1]])
:test ((m (+0)) =? (+0)) ([[1]])
:test ((f (+4)) =? (+3)) ([[1]])
:test ((m (+4)) =? (+2)) ([[1]])
:test ((f (+15)) =? (+9)) ([[1]])
:test ((m (+15)) =? (+9)) ([[1]])
</syntaxhighlight>
 
=={{header|C}}==
 
To let C see functions that will be used, it is enough to declare them. Normally this is done in a header file; in this example we do it directly in the code. If we do not declare them explicityexplicitly, they get an implicit declaration (if implicit declaration matches the use, everything's fine; but it is better however to write an explicit declaration)
 
<langsyntaxhighlight lang="c">#include <stdio.h>
#include <stdlib.h>
 
/* let us declare our functions; indeed here we need
really only M declaration, so that F can "see" it
and the compiler won't complain with a warning */
int F(const int n);
int M(const int n);
 
int F(const int n)
{
ifreturn ( n ==0 0) return? 1 : n - M(F(n - 1));
return n - M(F(n-1));
}
 
int M(const int n)
{
ifreturn ( n == 0 ) return? 0 : n - F(M(n - 1));
return n - F(M(n-1));
}
 
int main(void)
{
int i;
for (i = 0; i < 20; i++)
 
for(i=0; i < 20; i++) {
printf("%2d ", F(i));
}
printf("\n");
for (i = 0; i < 20; i++) {
printf("%2d ", M(i));
}
printf("\n");
return 0EXIT_SUCCESS;
}</langsyntaxhighlight>
 
=={{header|C sharp|C#}}==
<syntaxhighlight lang="csharp">namespace RosettaCode {
class Hofstadter {
static public int F(int n) {
int result = 1;
if (n > 0) {
result = n - M(F(n-1));
}
 
return result;
}
 
static public int M(int n) {
int result = 0;
if (n > 0) {
result = n - F(M(n - 1));
}
 
return result;
}
}
}</syntaxhighlight>
 
=={{header|C++}}==
C++ has prior declaration rules similar to those stated above for [[Mutual Recursion#C|C]], if we would use two functions. Instead here we define M and F as static (class) methods of a class, and specify the bodies inline in the declaration of the class. Inlined methods in the class can still call other methods or access fields in the class, no matter what order they are declared in, without any additional pre-declaration. This is possible because all the possible methods and fields are declared somewhere in the class declaration, which is known the first time the class declaration is parsed.
<langsyntaxhighlight lang="cpp">#include <iostream>
#include <vector>
#include <iterator>
Line 145 ⟶ 1,001:
{
public:
static int F(int n) {
if ( n == 0 ) return 1;
{
return n if- M(F( n == 0 -1)) return 1;
}
return n - M(F(n-1));
static int M(int n) {
}
static int Mif (int n == 0 ) return 0;
return n - F(M(n-1));
{
}
if ( n == 0 ) return 0;
return n - F(M(n-1));
}
};
 
Line 175 ⟶ 1,029:
cout << endl;
return 0;
}</langsyntaxhighlight>
 
The following version shows better what's going on and why we ''apparentlyseemingly'' we dondidn't need pre-declaration (like C) when "encapsulating" the functions as static (class) methods.
 
This version is equivalent to the above but does not inline the definition of the methods into the definition of the class. Here the method declarations in the class definition serves as the "pre-declaration" for the methods, as in C.
<lang cpp>class Hofstadter
 
<syntaxhighlight lang="cpp">class Hofstadter
{
public:
Line 196 ⟶ 1,052:
if ( n == 0 ) return 0;
return n - F(M(n-1));
}</langsyntaxhighlight>
 
=={{header|Ceylon}}==
 
<syntaxhighlight lang="ceylon">Integer f(Integer n)
=> if (n > 0)
then n - m(f(n-1))
else 1;
 
Integer m(Integer n)
=> if (n > 0)
then n - f(m(n-1))
else 0;
 
shared void run() {
printAll((0:20).map(f));
printAll((0:20).map(m));
}</syntaxhighlight>
 
{{out}}
<pre>
1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12
0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12
</pre>
 
=={{header|Clojure}}==
 
<syntaxhighlight lang="lisp">(declare F) ; forward reference
 
(defn M [n]
(if (zero? n)
0
(- n (F (M (dec n))))))
 
(defn F [n]
(if (zero? n)
1
(- n (M (F (dec n))))))</syntaxhighlight>
 
=={{header|CLU}}==
<syntaxhighlight lang="clu">
% To declare things you can either write an .spc file or you can use
% the clu file itself as a specfile. For a small program a common
% idiom is to spec and compile the same source file:
%
% pclu -spec mutrec.clu -clu mutrec.clu
%
start_up = proc ()
print_first_16("F", F)
print_first_16("M", M)
end start_up
 
% Print the first few values for F and M
print_first_16 = proc (name: string, fn: proctype (int) returns (int))
po: stream := stream$primary_output()
stream$puts(po, name || ":")
for i: int in int$from_to(0, 15) do
stream$puts(po, " " || int$unparse(fn(i)))
end
stream$putl(po, "")
end print_first_16
 
F = proc (n: int) returns (int)
if n = 0 then
return (1)
else
return (n - M(F(n-1)))
end
end F
 
M = proc (n: int) returns (int)
if n = 0 then
return (0)
else
return (n - F(M(n-1)))
end
end M
</syntaxhighlight>
{{out}}
<pre>F: 1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9
M: 0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9</pre>
 
=={{header|CoffeeScript}}==
<syntaxhighlight lang="coffeescript">
F = (n) ->
if n is 0 then 1 else n - M F n - 1
M = (n) ->
if n is 0 then 0 else n - F M n - 1
console.log [0...20].map F
console.log [0...20].map M
</syntaxhighlight>
 
{{out}}
<syntaxhighlight lang="text">
> coffee mutual_recurse.coffee
[ 1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12 ]
[ 0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12 ]
</syntaxhighlight>
 
=={{header|Common Lisp}}==
 
<syntaxhighlight lang="lisp">(defun m (n)
(if (zerop n)
0
(- n (f (m (- n 1))))))
 
(defun f (n)
(if (zerop n)
1
(- n (m (f (- n 1))))))</syntaxhighlight>
 
=={{header|D}}==
<syntaxhighlight lang="d">import std.stdio, std.algorithm, std.range;
 
int male(in int n) pure nothrow {
return n ? n - male(n - 1).female : 0;
}
 
int female(in int n) pure nothrow {
return n ? n - female(n - 1).male : 1;
}
 
void main() {
20.iota.map!female.writeln;
20.iota.map!male.writeln;
}</syntaxhighlight>
{{out}}
<pre>[1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12]
[0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12]</pre>
 
=={{header|Dart}}==
<syntaxhighlight lang="dart">int M(int n) => n==0?1:n-F(M(n-1));
int F(int n) => n==0?0:n-M(F(n-1));
 
main() {
String f="",m="";
for(int i=0;i<20;i++) {
m+="${M(i)} ";
f+="${F(i)} ";
}
print("M: $m");
print("F: $f");
}</syntaxhighlight>
 
=={{header|Delphi}}==
<syntaxhighlight lang="delphi">
unit Hofstadter;
 
interface
 
type
THofstadterFemaleMaleSequences = class
public
class function F(n: Integer): Integer;
class function M(n: Integer): Integer;
end;
 
implementation
 
class function THofstadterFemaleMaleSequences.F(n: Integer): Integer;
begin
Result:= 1;
if (n > 0) then
Result:= n - M(F(n-1));
end;
 
class function THofstadterFemaleMaleSequences.M(n: Integer): Integer;
begin
Result:= 0;
if (n > 0) then
Result:= n - F(M(n - 1));
end;
 
end.
</syntaxhighlight>
 
=={{header|Déjà Vu}}==
<syntaxhighlight lang="dejavu">F n:
if n:
- n M F -- n
else:
1
 
M n:
if n:
- n F M -- n
else:
0
 
for i range 0 10:
!.( M i F i )</syntaxhighlight>
{{out}}
<pre>0 1
0 1
1 2
2 2
2 3
3 3
4 4
4 5
5 5
6 6
6 6 </pre>
 
=={{header|Draco}}==
<syntaxhighlight lang="draco">/* We need to predeclare M if we want F to be able to see it.
* This is done using 'extern', same as if it had been in a
* different compilation unit. */
extern M(byte n) byte;
 
/* Mutually recursive functions */
proc F(byte n) byte:
if n=0 then 1 else n - M(F(n-1)) fi
corp
 
proc M(byte n) byte:
if n=0 then 0 else n - F(M(n-1)) fi
corp
 
/* Show the first 16 values of each */
proc nonrec main() void:
byte i;
write("F:");
for i from 0 upto 15 do write(F(i):2) od;
writeln();
write("M:");
for i from 0 upto 15 do write(M(i):2) od;
writeln()
corp</syntaxhighlight>
{{out}}
<pre>F: 1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9
M: 0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9</pre>
 
=={{header|Dyalect}}==
 
<syntaxhighlight lang="dyalect">func f(n) {
n == 0 ? 1 : n - m(f(n-1))
}
and m(n) {
n == 0 ? 0 : n - f(m(n-1))
}
print( (0..20).Map(i => f(i)).ToArray() )
print( (0..20).Map(i => m(i)).ToArray() )</syntaxhighlight>
 
=={{header|E}}==
 
In E, nouns (variable names) always refer to preceding definitions, so to have mutual recursion, either one must be forward-declared or we must use a recursive def construct. Either one of these is syntactic sugar for first binding the noun to an E ''promise'' (a reference with an undetermined target), then ''resolving'' the promise to the value.
 
Recursive def:
 
<syntaxhighlight lang="e">def [F, M] := [
fn n { if (n <=> 0) { 1 } else { n - M(F(n - 1)) } },
fn n { if (n <=> 0) { 0 } else { n - F(M(n - 1)) } },
]</syntaxhighlight>
 
Forward declaration:
 
<syntaxhighlight lang="e">def M
def F(n) { return if (n <=> 0) { 1 } else { n - M(F(n - 1)) } }
bind M(n) { return if (n <=> 0) { 0 } else { n - F(M(n - 1)) } }</syntaxhighlight>
 
<code>def M</code> binds <var>M</var> to a promise, and stashes the ''resolver'' for that promise where <code>bind</code> can get to it. When <code>def F...</code> is executed, the function F closes over the promise which is the value of M. <code>bind M...</code> uses the resolver to resolve <var>M</var> to the provided definition. The recursive def operates similarly, except that it constructs promises for every variable on the left side (<code>[F, M]</code>), executes the right side (<code>[fn ..., fn ...]</code>) and collects the values, then resolves each promise to its corresponding value.
 
But you don't have to worry about that to use it.
 
=={{header|EasyLang}}==
<syntaxhighlight>
funcdecl M n .
func F n .
if n = 0
return 1
.
return n - M F (n - 1)
.
func M n .
if n = 0
return 0
.
return n - F M (n - 1)
.
for i = 0 to 15
write F i & " "
.
print ""
for i = 0 to 15
write M i & " "
.
</syntaxhighlight>
 
=={{header|Eiffel}}==
<syntaxhighlight lang="eiffel">
class
APPLICATION
 
create
make
 
feature
 
make
-- Test of the mutually recursive functions Female and Male.
do
across
0 |..| 19 as c
loop
io.put_string (Female (c.item).out + " ")
end
io.new_line
across
0 |..| 19 as c
loop
io.put_string (Male (c.item).out + " ")
end
end
 
Female (n: INTEGER): INTEGER
-- Female sequence of the Hofstadter Female and Male sequences.
require
n_not_negative: n >= 0
do
Result := 1
if n /= 0 then
Result := n - Male (Female (n - 1))
end
end
 
Male (n: INTEGER): INTEGER
-- Male sequence of the Hofstadter Female and Male sequences.
require
n_not_negative: n >= 0
do
Result := 0
if n /= 0 then
Result := n - Female (Male (n - 1))
end
end
 
end
</syntaxhighlight>
{{out}}
<pre>
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12
</pre>
 
=={{header|Elena}}==
{{trans|Smalltalk}}
ELENA 6.x :
<syntaxhighlight lang="elena">import extensions;
import system'collections;
F = (n => (n == 0) ? 1 : (n - M(F(n-1))) );
M = (n => (n == 0) ? 0 : (n - F(M(n-1))) );
public program()
{
var ra := new ArrayList();
var rb := new ArrayList();
for(int i := 0; i <= 19; i += 1)
{
ra.append(F(i));
rb.append(M(i))
};
console.printLine(ra.asEnumerable());
console.printLine(rb.asEnumerable())
}</syntaxhighlight>
{{out}}
<pre>
1,1,2,2,3,3,4,5,5,6,6,7,8,8,9,9,10,11,11,12
0,0,1,2,2,3,4,4,5,6,6,7,7,8,9,9,10,11,11,12
</pre>
 
=={{header|Elixir}}==
<syntaxhighlight lang="elixir">defmodule MutualRecursion do
def f(0), do: 1
def f(n), do: n - m(f(n - 1))
def m(0), do: 0
def m(n), do: n - f(m(n - 1))
end
 
IO.inspect Enum.map(0..19, fn n -> MutualRecursion.f(n) end)
IO.inspect Enum.map(0..19, fn n -> MutualRecursion.m(n) end)</syntaxhighlight>
 
{{out}}
<pre>
[1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12]
[0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12]
</pre>
 
=={{header|Erlang}}==
<langsyntaxhighlight lang="erlang">-module(mutrec).
-export([mutrec/0, f/1, m/1]).
 
Line 211 ⟶ 1,461:
io:format("~n", []),
lists:map(fun(X) -> io:format("~w ", [m(X)]) end, lists:seq(0,19)),
io:format("~n", []).</langsyntaxhighlight>
 
=={{header|Euphoria}}==
<syntaxhighlight lang="euphoria">integer idM, idF
 
function F(integer n)
if n = 0 then
return 1
else
return n - call_func(idM,{F(n-1)})
end if
end function
 
idF = routine_id("F")
 
function M(integer n)
if n = 0 then
return 0
else
return n - call_func(idF,{M(n-1)})
end if
end function
 
idM = routine_id("M")</syntaxhighlight>
 
=={{header|F_Sharp|F#}}==
 
<syntaxhighlight lang="fsharp">let rec f n =
match n with
| 0 -> 1
| _ -> n - (m (f (n-1)))
and m n =
match n with
| 0 -> 0
| _ -> n - (f (m (n-1)))</syntaxhighlight>
 
Like OCaml, the <code>let '''rec''' ''f'' .. '''and''' ''m'' ...</code> construct indicates that the functions call themselves (<code>'''rec'''</code>) and each other (<code>'''and'''</code>).
 
=={{header|Factor}}==
In Factor, if you need a word before it's defined, you have to <code>DEFER:</code> it.
<syntaxhighlight lang="text">DEFER: F
: M ( n -- n' ) dup 0 = [ dup 1 - M F - ] unless ;
: F ( n -- n' ) dup 0 = [ drop 1 ] [ dup 1 - F M - ] if ;</syntaxhighlight>
 
=={{header|FALSE}}==
<syntaxhighlight lang="false">[$[$1-f;!m;!-1-]?1+]f:
[$[$1-m;!f;!- ]? ]m:
[0[$20\>][\$@$@!." "1+]#%%]t:
f; t;!"
"m; t;!</syntaxhighlight>
 
=={{header|Fantom}}==
 
<syntaxhighlight lang="fantom">
class Main
{
static Int f (Int n)
{
if (n <= 0) // ensure n > 0
return 1
else
return n - m(f(n-1))
}
 
static Int m (Int n)
{
if (n <= 0) // ensure n > 0
return 0
else
return n - f(m(n-1))
}
 
public static Void main ()
{
50.times |Int n| { echo (f(n)) }
}
}
</syntaxhighlight>
 
=={{header|FOCAL}}==
<syntaxhighlight lang="focal">01.01 C--PRINT F(0..15) AND M(0..15)
01.10 T "F(0..15)"
01.20 F X=0,15;S N=X;D 4;T %1,N
01.30 T !"M(0..15)"
01.40 F X=0,15;S N=X;D 5;T %1,N
01.50 T !
01.60 Q
 
04.01 C--N = F(N)
04.10 I (N(D)),4.11,4.2
04.11 S N(D)=1;R
04.20 S D=D+1;S N(D)=N(D-1)-1;D 4;D 5
04.30 S D=D-1;S N(D)=N(D)-N(D+1)
 
05.01 C--N = M(N)
05.10 I (N(D)),5.11,5.2
05.11 R
05.20 S D=D+1;S N(D)=N(D-1)-1;D 5;D 4
05.30 S D=D-1;S N(D)=N(D)-N(D+1)</syntaxhighlight>
 
{{out}}
 
<pre>F(0..15)= 1= 1= 2= 2= 3= 3= 4= 5= 5= 6= 6= 7= 8= 8= 9= 9
M(0..15)= 0= 0= 1= 2= 2= 3= 4= 4= 5= 6= 6= 7= 7= 8= 9= 9</pre>
 
 
=={{header|Forth}}==
Forward references required for mutual recursion may be set up using DEFER.
<langsyntaxhighlight lang="forth">defer m
defer m
 
: f ( n -- n )
Line 229 ⟶ 1,582:
: test ( xt n -- ) cr 0 do i over execute . loop drop ;
 
' m defer@ 20 test \ 0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12
' f 20 test \ 1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 </syntaxhighlight>
</lang>
 
=={{header|Fortran}}==
Line 238 ⟶ 1,590:
 
{{works with|Fortran|95 and later}}
<langsyntaxhighlight lang="fortran">module MutualRec
implicit none
contains
Line 261 ⟶ 1,613:
end function f
 
end module</langsyntaxhighlight>
 
I've added the attribute <tt>pure</tt> so that we can use them in a <tt>forall</tt> statement.
 
<langsyntaxhighlight lang="fortran">program testmutrec
use MutualRec
implicit none
Line 281 ⟶ 1,633:
write(*,'(20I3)') ra
end program testmutrec</langsyntaxhighlight>
 
=={{header|HaskellFreeBASIC}}==
<syntaxhighlight lang="freebasic">' FB 1.05.0 Win64
<lang haskell>m n | n == 0 = 0
| n > 0 = n - (f (m (n-1)))
 
' Need forward declaration of M as it's used
f n | n == 0 = 1
' by F before its defined
| n > 0 = n - (m (f (n-1)))
Declare Function M(n As Integer) As Integer
 
Function F(n As Integer) As Integer
If n = 0 Then
Return 1
End If
Return n - M(F(n - 1))
End Function
 
Function M(n As Integer) As Integer
If n = 0 Then
Return 0
End If
Return n - F(M(n - 1))
End Function
 
Dim As Integer n = 24
Print "n :";
For i As Integer = 0 to n : Print Using "###"; i; : Next
Print
Print String(78, "-")
Print "F :";
For i As Integer = 0 To n : Print Using "###"; F(i); : Next
Print
Print "M :";
For i As Integer = 0 To n : Print Using "###"; M(i); : Next
Print
Print "Press any key to quit"
Sleep</syntaxhighlight>
 
{{out}}
<pre>
n : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
------------------------------------------------------------------------------
F : 1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13 13 14 14 15
M : 0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12 13 14 14 15
</pre>
 
=={{header|Fōrmulæ}}==
 
{{FormulaeEntry|page=https://formulae.org/?script=examples/Mutual_recursion}}
 
'''Solution'''
 
[[File:Fōrmulæ - Mutual recursion 01.png]]
 
[[File:Fōrmulæ - Mutual recursion 02.png]]
 
[[File:Fōrmulæ - Mutual recursion 03.png]]
 
=={{header|FutureBasic}}==
<syntaxhighlight lang="futurebasic">
def fn F( n as long ) as long
def fn M( n as long ) as long
 
local fn F( n as long ) as long
long result
if n == 0 then exit fn = 1
result = n - fn M( fn F( n-1 ) )
end fn = result
 
local fn M( n as long ) as long
long result
if n == 0 then exit fn = 0
result = n - fn F( fn M( n-1 ) )
end fn = result
 
long i, counter
 
counter = 0
for i = 0 to 19
printf @"%3ld\b", fn F( i )
counter++
if counter mod 5 == 0 then print : counter = 0
next
 
print : print
 
counter = 0
for i = 0 to 19
printf @"%3ld\b", fn M( i )
counter++
if counter mod 5 == 0 then print : counter = 0
next
 
NSLog( @"%@", fn WindowPrintViewString( 1 ) )
 
HandleEvents
</syntaxhighlight>
{{output}}
<pre>
1 1 2 2 3
3 4 5 5 6
6 7 8 8 9
9 10 11 11 12
 
 
0 0 1 2 2
3 4 4 5 6
6 7 7 8 9
9 10 11 11 12
</pre>
 
=={{header|Go}}==
It just works. No special pre-declaration is necessary.
<syntaxhighlight lang="go">package main
import "fmt"
 
func F(n int) int {
if n == 0 { return 1 }
return n - M(F(n-1))
}
 
func M(n int) int {
if n == 0 { return 0 }
return n - F(M(n-1))
}
 
func main() {
for i := 0; i < 20; i++ {
fmt.Printf("%2d ", F(i))
}
fmt.Println()
for i := 0; i < 20; i++ {
fmt.Printf("%2d ", M(i))
}
fmt.Println()
}</syntaxhighlight>
 
=={{header|Groovy}}==
Solution:
<syntaxhighlight lang="groovy">def f, m // recursive closures must be declared before they are defined
f = { n -> n == 0 ? 1 : n - m(f(n-1)) }
m = { n -> n == 0 ? 0 : n - f(m(n-1)) }</syntaxhighlight>
 
Test program:
<syntaxhighlight lang="groovy">println 'f(0..20): ' + (0..20).collect { f(it) }
println 'm(0..20): ' + (0..20).collect { m(it) }</syntaxhighlight>
 
{{out}}
<pre>f(0..20): [1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12, 13]
m(0..20): [0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12, 12]</pre>
 
=={{header|Haskell}}==
Haskell's definitions constructs (at the top level, or inside a <code>let</code> or <code>where</code> construct) are always mutually-recursive:
<syntaxhighlight lang="haskell">f 0 = 1
f n | n > 0 = n - m (f $ n-1)
 
m 0 = 0
m n | n > 0 = n - f (m $ n-1)
main = do
print [f$ xmap | x <-f [0..19]]
print [m$ xmap | x <-m [0..19]]</langsyntaxhighlight>
 
=={{header|Icon}} and {{header|Unicon}}==
<syntaxhighlight lang="icon">procedure main(arglist)
every write(F(!arglist)) # F of all arguments
end
 
procedure F(n)
if integer(n) >= 0 then
return (n = 0, 1) | n - M(F(n-1))
end
 
procedure M(n)
if integer(n) >= 0 then
return (0 = n) | n - F(M(n-1))
end</syntaxhighlight>
 
=={{header|Idris}}==
<syntaxhighlight lang="idris">mutual {
F : Nat -> Nat
F Z = (S Z)
F (S n) = (S n) `minus` M(F(n))
 
M : Nat -> Nat
M Z = Z
M (S n) = (S n) `minus` F(M(n))
}</syntaxhighlight>
 
=={{header|Io}}==
<syntaxhighlight lang="io">f := method(n, if( n == 0, 1, n - m(f(n-1))))
m := method(n, if( n == 0, 0, n - f(m(n-1))))
 
Range
0 to(19) map(n,f(n)) println
0 to(19) map(n,m(n)) println</syntaxhighlight>
{{out}}
<pre>list(1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12)
list(0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12)</pre>
 
=={{header|J}}==
<syntaxhighlight lang="j">F =: 1:`(- M @ $: @ <:) @.* M."0
M =: 0:`(- F @ $: @ <:) @.* M."0</syntaxhighlight>
 
Example use:
 
<syntaxhighlight lang="j"> F i. 20
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12</syntaxhighlight>
 
That said, note that numbers are defined recursively, so some other approaches using numbers which give equivalent results should be acceptable.
 
=={{header|Java}}==
Replace translation (that doesn't compile) with a Java native implementation.
{{trans|C}}
<syntaxhighlight lang="java">
<lang java5>public static int f(int n)
import java.util.HashMap;
{
import java.util.Map;
if ( n == 0 ) return 1;
 
return n - m(f(n - 1));
public class MutualRecursion {
 
public static void main(final String args[]) {
int max = 20;
System.out.printf("First %d values of the Female sequence: %n", max);
for (int i = 0; i < max; i++) {
System.out.printf(" f(%d) = %d%n", i, f(i));
}
System.out.printf("First %d values of the Male sequence: %n", max);
for (int i = 0; i < 20; i++) {
System.out.printf(" m(%d) = %d%n", i, m(i));
}
}
 
private static Map<Integer,Integer> F_MAP = new HashMap<>();
 
private static int f(final int n) {
if ( F_MAP.containsKey(n) ) {
return F_MAP.get(n);
}
int fn = n == 0 ? 1 : n - m(f(n - 1));
F_MAP.put(n, fn);
return fn;
}
 
private static Map<Integer,Integer> M_MAP = new HashMap<>();
 
private static int m(final int n) {
if ( M_MAP.containsKey(n) ) {
return M_MAP.get(n);
}
int mn = n == 0 ? 0 : n - f(m(n - 1));
M_MAP.put(n, mn);
return mn;
}
 
}
</syntaxhighlight>
{{out}}
First 20 values of the Female sequence:
f(0) = 1
f(1) = 1
f(2) = 2
f(3) = 2
f(4) = 3
f(5) = 3
f(6) = 4
f(7) = 5
f(8) = 5
f(9) = 6
f(10) = 6
f(11) = 7
f(12) = 8
f(13) = 8
f(14) = 9
f(15) = 9
f(16) = 10
f(17) = 11
f(18) = 11
f(19) = 12
First 20 values of the Male sequence:
m(0) = 0
m(1) = 0
m(2) = 1
m(3) = 2
m(4) = 2
m(5) = 3
m(6) = 4
m(7) = 4
m(8) = 5
m(9) = 6
m(10) = 6
m(11) = 7
m(12) = 7
m(13) = 8
m(14) = 9
m(15) = 9
m(16) = 10
m(17) = 11
m(18) = 11
m(19) = 12
 
=={{header|JavaScript}}==
public int m(int n)
<syntaxhighlight lang="javascript">function f(num) {
{
if return ( nnum === 0 ) return? 01 : num - m(f(num - 1));
return n - f(m(n - 1));
}
 
function m(num) {
public static void main(String args[]){
return (num === 0) ? 0 : num - f(m(num - 1));
for(int i=0; i < 20; i++) {
}
System.out.println(f(i));
 
}
function range(m, n) {
System.out.println();
return Array.apply(null, Array(n - m + 1)).map(
for(i=0; i < 20; i++) {
function (x, i) { return m + i; }
System.out.println(m(i));
});
}
}</lang>
 
var a = range(0, 19);
 
//return a new array of the results and join with commas to print
console.log(a.map(function (n) { return f(n); }).join(', '));
console.log(a.map(function (n) { return m(n); }).join(', '));</syntaxhighlight>
{{out}}
<pre>1,1,2,2,3,3,4,5,5,6,6,7,8,8,9,9,10,11,11,12
0,0,1,2,2,3,4,4,5,6,6,7,7,8,9,9,10,11,11,12</pre>
 
ES6 implementation
<syntaxhighlight lang="javascript">var f = num => (num === 0) ? 1 : num - m(f(num - 1));
var m = num => (num === 0) ? 0 : num - f(m(num - 1));
 
function range(m, n) {
return Array.apply(null, Array(n - m + 1)).map(
function (x, i) { return m + i; }
);
}
 
var a = range(0, 19);
 
//return a new array of the results and join with commas to print
console.log(a.map(n => f(n)).join(', '));
console.log(a.map(n => m(n)).join(', '));</syntaxhighlight>
 
More ES6 implementation
 
<syntaxhighlight lang="javascript">var range = (m, n) => Array(... Array(n - m + 1)).map((x, i) => m + i)</syntaxhighlight>
 
=={{header|jq}}==
jq supports mutual recursion but requires functions to be defined before they are used.
In the present case, this can be accomplished by defining an inner function.
 
He we define F and M as arity-0 filters:
<syntaxhighlight lang="jq">
def M:
def F: if . == 0 then 1 else . - ((. - 1) | F | M) end;
if . == 0 then 0 else . - ((. - 1) | M | F) end;
 
def F:
if . == 0 then 1 else . - ((. - 1) | F | M) end;</syntaxhighlight>Example:<syntaxhighlight lang="jq">
[range(0;20) | F],
[range(0;20) | M]</syntaxhighlight><syntaxhighlight lang="sh">$ jq -n -c -f Mutual_recursion.jq
 
[1,1,2,2,3,3,4,5,5,6,6,7,8,8,9,9,10,11,11,12]
[0,0,1,2,2,3,4,4,5,6,6,7,7,8,9,9,10,11,11,12]</syntaxhighlight>
 
=={{header|Jsish}}==
<syntaxhighlight lang="javascript">/* Mutual recursion, is jsish */
function f(num):number { return (num === 0) ? 1 : num - m(f(num - 1)); }
function m(num):number { return (num === 0) ? 0 : num - f(m(num - 1)); }
 
function range(n=10, start=0, step=1):array {
var a = Array(n).fill(0);
for (var i in a) a[i] = start+i*step;
return a;
}
 
var a = range(21);
puts(a.map(function (n) { return f(n); }).join(', '));
puts(a.map(function (n) { return m(n); }).join(', '));
 
/*
=!EXPECTSTART!=
1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12, 13
0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12, 12
=!EXPECTEND!=
*/</syntaxhighlight>
 
{{out}}
<pre>prompt$ jsish -u mutual-recursion.jsi
[PASS] mutual-recursion.jsi
 
prompt$ jsish mutual-recursion.jsi
1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12
0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12</pre>
 
=={{header|Julia}}==
<syntaxhighlight lang="julia">F(n) = n < 1 ? one(n) : n - M(F(n - 1))
M(n) = n < 1 ? zero(n) : n - F(M(n - 1))</syntaxhighlight>
{{out}}
<pre>
julia> [F(i) for i = 0:19], [M(i) for i = 0:19]
([1,1,2,2,3,3,4,5,5,6,6,7,8,8,9,9,10,11,11,12],[0,0,1,2,2,3,4,4,5,6,6,7,7,8,9,9,10,11,11,12])
</pre>
 
=={{header|Kotlin}}==
<syntaxhighlight lang="scala">// version 1.0.6
 
fun f(n: Int): Int =
when {
n == 0 -> 1
else -> n - m(f(n - 1))
}
 
fun m(n: Int): Int =
when {
n == 0 -> 0
else -> n - f(m(n - 1))
}
 
fun main(args: Array<String>) {
val n = 24
print("n :")
for (i in 0..n) print("%3d".format(i))
println()
println("-".repeat((n + 2) * 3))
print("F :")
for (i in 0..n) print("%3d".format(f(i)))
println()
print("M :")
for (i in 0..n) print("%3d".format(m(i)))
println()
}</syntaxhighlight>
 
{{out}}
<pre>
n : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
------------------------------------------------------------------------------
F : 1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13 13 14 14 15
M : 0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12 13 14 14 15
</pre>
 
=={{header|Lambdatalk}}==
 
<syntaxhighlight lang="scheme">
{def F {lambda {:n} {if {= :n 0} then 1 else {- :n {M {F {- :n 1}}}} }}}
{def M {lambda {:n} {if {= :n 0} then 0 else {- :n {F {M {- :n 1}}}} }}}
 
{map F {serie 0 19}}
-> 1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12
{map M {serie 0 19}}
-> 0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12
</syntaxhighlight>
 
The naïve version is very slow, {F 80} requires 3800 ms on a recent laptop, so let's memoize:
 
<syntaxhighlight lang="scheme">
{def cache
{def cache.F {#.new}}
{def cache.M {#.new}}
{lambda {:f :n}
{let { {:f :f} {:n :n}
{:cx {if {equal? :f MF}
then {cache.F}
else {cache.M}}}
} {if {equal? {#.get :cx :n} undefined}
then {#.get {#.set! :cx :n {:f :n}} :n}
else {#.get :cx :n}}}}}
-> cache
 
{def MF
{lambda {:n}
{if {= :n 0}
then 1
else {- :n {MM {cache MF {- :n 1}}}}}}}
-> MF
 
{def MM
{lambda {:n}
{if {= :n 0}
then 0
else {- :n {MF {cache MM {- :n 1}}}}}}}
-> MM
 
{MF 80}
-> 50 (requires 55 ms)
 
{map MF {serie 0 100}} (requires75ms)
-> 1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13 13 14 14 15 16 16 17 17
18 19 19 20 21 21 22 22 23 24 24 25 25 26 27 27 28 29 29 30 30 31 32 32
33 34 34 35 35 36 37 37 38 38 39 40 40 41 42 42 43 43 44 45 45 46 46 47
48 48 49 50 50 51 51 52 53 53 54 55 55 56 56 57 58 58 59 59 60 61 61 62
</syntaxhighlight>
 
=={{header|Liberty BASIC}}==
<syntaxhighlight lang="lb">
print "F sequence."
for i = 0 to 20
print f(i);" ";
next
print
print "M sequence."
for i = 0 to 20
print m(i);" ";
next
 
end
 
function f(n)
if n = 0 then
f = 1
else
f = n - m(f(n - 1))
end if
end function
 
function m(n)
if n = 0 then
m = 0
else
m = n - f(m(n - 1))
end if
end function
</syntaxhighlight>
{{out}}
<pre>F sequence.
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13
M sequence.
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12</pre>
 
=={{header|LibreOffice Basic}}==
<syntaxhighlight lang="libreoffice basic">'// LibreOffice Basic Implementation of Hofstadter Female-Male sequences
 
'// Utility functions
sub setfont(strfont)
ThisComponent.getCurrentController.getViewCursor.charFontName = strfont
end sub
 
sub newline
oVC = thisComponent.getCurrentController.getViewCursor
oText = oVC.text
oText.insertControlCharacter(oVC, com.sun.star.text.ControlCharacter.PARAGRAPH_BREAK, False)
end sub
 
sub out(sString)
oVC = ThisComponent.getCurrentController.getViewCursor
oText = oVC.text
oText.insertString(oVC, sString, false)
end sub
 
sub outln(optional sString)
if not ismissing (sString) then out(sString)
newline
end sub
 
function intformat(n as integer,nlen as integer) as string
dim nstr as string
nstr = CStr(n)
while len(nstr) < nlen
nstr = " " & nstr
wend
intformat = nstr
end function
 
'// Hofstadter Female-Male function definitions
function F(n as long) as long
if n = 0 Then
F = 1
elseif n > 0 Then
F = n - M(F(n - 1))
endif
end function
function M(n)
if n = 0 Then
M = 0
elseif n > 0 Then
M = n - F(M(n - 1))
endif
end function
 
'// Hofstadter Female Male sequence demo routine
sub Hofstadter_Female_Male_Demo
'// Introductory Text
setfont("LM Roman 10")
outln("Rosetta Code Hofstadter Female and Male Sequence Challenge")
outln
out("Two functions are said to be mutually recursive if the first calls the second,")
outln(" and in turn the second calls the first.")
out("Write two mutually recursive functions that compute members of the Hofstadter")
outln(" Female and Male sequences defined as:")
outln
setfont("LM Mono Slanted 10")
outln(chr(9)+"F(0) = 1 ; M(0)=0")
outln(chr(9)+"F(n) = n - M(F(n-1)), n > 0")
outln(chr(9)+"M(n) = n - F(M(n-1)), n > 0")
outln
'// Sequence Generation
const nmax as long = 20
dim n as long
setfont("LM Mono 10")
out("n = "
for n = 0 to nmax
out(" " + intformat(n, 2))
next n
outln
out("F(n) = "
for n = 0 to nmax
out(" " + intformat(F(n),2))
next n
outln
out("M(n) = "
for n = 0 to nmax
out(" " + intformat(M(n), 2))
next n
outln
 
end sub
 
------------------------------
Output
------------------------------
n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
F(n) = 1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13
M(n) = 0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12
</syntaxhighlight>
 
=={{header|Logo}}==
Like Lisp, symbols in Logo are late-bound so no special syntax is required for forward references.
 
<syntaxhighlight lang="logo">to m :n
<lang logo>
to m :n
if 0 = :n [output 0]
output :n - f m :n-1
Line 334 ⟶ 2,272:
[1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12]
show cascade 20 [lput f #-1 ?] []
[0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12]</syntaxhighlight>
 
</lang>
=={{header|LSL}}==
To test it yourself; rez a box on the ground, and add the following as a New Script.
<syntaxhighlight lang="lsl">integer iDEPTH = 100;
integer f(integer n) {
if(n==0) {
return 1;
} else {
return n-m(f(n - 1));
}
}
integer m(integer n) {
if(n==0) {
return 0;
} else {
return n-f(m(n - 1));
}
}
default {
state_entry() {
integer x = 0;
string s = "";
for(x=0 ; x<iDEPTH ; x++) {
s += (string)(f(x))+" ";
}
llOwnerSay(llList2CSV(llParseString2List(s, [" "], [])));
s = "";
for(x=0 ; x<iDEPTH ; x++) {
s += (string)(m(x))+" ";
}
llOwnerSay(llList2CSV(llParseString2List(s, [" "], [])));
}
}</syntaxhighlight>
{{out}}
<pre>1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12, 13, 13, 14, 14, 15, 16, 16, 17, 17, 18, 19, 19, 20, 21, 21, 22, 22, 23, 24, 24, 25, 25, 26, 27, 27, 28, 29, 29, 30, 30, 31, 32, 32, 33, 34, 34, 35, 35, 36, 37, 37, 38, 38, 39, 40, 40, 41, 42, 42, 43, 43, 44, 45, 45, 46, 46, 47, 48, 48, 49, 50, 50, 51, 51, 52, 53, 53, 54, 55, 55, 56, 56, 57, 58, 58, 59, 59, 60, 61, 61
0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17, 17, 18, 19, 19, 20, 20, 21, 22, 22, 23, 24, 24, 25, 25, 26, 27, 27, 28, 29, 29, 30, 30, 31, 32, 32, 33, 33, 34, 35, 35, 36, 37, 37, 38, 38, 39, 40, 40, 41, 42, 42, 43, 43, 44, 45, 45, 46, 46, 47, 48, 48, 49, 50, 50, 51, 51, 52, 53, 53, 54, 54, 55, 56, 56, 57, 58, 58, 59, 59, 60, 61, 61</pre>
 
=={{header|Lua}}==
<syntaxhighlight lang="lua">
function m(n) return n > 0 and n - f(m(n-1)) or 0 end
function f(n) return n > 0 and n - m(f(n-1)) or 1 end</syntaxhighlight>
 
It is important to note, that if m and f are to be locally scoped functions rather than global, that they would need to be forward declared:
 
<syntaxhighlight lang="lua">
local m,n
function m(n) return n > 0 and n - f(m(n-1)) or 0 end
function f(n) return n > 0 and n - m(f(n-1)) or 1 end</syntaxhighlight>
 
=={{header|M2000 Interpreter}}==
A function can call a global function and must be global to call it again by the second function
 
A group's function can call sibling function from same group. We can use This.F() or simply .f() to use group's f() member.
 
We can use subroutines, which can call each other, in a module, and we can use the modules stack of values to get results from subs. Subs running as parts of module, and see same variables and same stack of values. Arguments are local to sub, and we can define local variables too.
 
Last module export to clipboard and that used for output here.
<syntaxhighlight lang="m2000 interpreter">
\\ set console 70 characters by 40 lines
Form 70, 40
Module CheckSubs {
Flush
Document one$, two$
For i =0 to 20
Print format$("{0::-3}",i);
f(i)
\\ number pop then top value of stack
one$=format$("{0::-3}",number)
m(i)
two$=format$("{0::-3}",number)
Next i
Print
Print one$
Print two$
Sub f(x)
if x<=0 then Push 1 : Exit sub
f(x-1) ' leave result to for m(x)
m()
push x-number
End Sub
Sub m(x)
if x<=0 then Push 0 : Exit sub
m(x-1)
f()
push x-number
End Sub
}
CheckSubs
 
Module Checkit {
Function global f(n) {
if n=0 then =1: exit
if n>0 then =n-m(f(n-1))
}
Function global m(n) {
if n=0 then =0
if n>0 then =n-f(m(n-1))
}
Document one$, two$
For i =0 to 20
Print format$("{0::-3}",i);
one$=format$("{0::-3}",f(i))
two$=format$("{0::-3}",m(i))
Next i
Print
Print one$
Print two$
}
Checkit
Module Checkit2 {
Group Alfa {
function f(n) {
if n=0 then =1: exit
if n>0 then =n-.m(.f(n-1))
}
function m(n) {
if n=0 then =0
if n>0 then =n-.f(.m(n-1))
}
}
Document one$, two$
For i =0 to 20
Print format$("{0::-3}",i);
one$=format$("{0::-3}",Alfa.f(i))
two$=format$("{0::-3}",Alfa.m(i))
Next i
Print
Print one$
Print two$
Clipboard one$+{
}+two$
}
Checkit2
 
</syntaxhighlight>
{{out}}
<pre>
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12
</pre>
 
=={{header|M4}}==
 
<syntaxhighlight lang="m4">define(`female',`ifelse(0,$1,1,`eval($1 - male(female(decr($1))))')')dnl
define(`male',`ifelse(0,$1,0,`eval($1 - female(male(decr($1))))')')dnl
define(`loop',`ifelse($1,$2,,`$3($1) loop(incr($1),$2,`$3')')')dnl
loop(0,20,`female')
loop(0,20,`male')</syntaxhighlight>
 
=={{header|MAD}}==
 
By default, functions in MAD are not reentrant. There is also no variable scope,
all variables are always global. Functions can call other functions, but on the
old IBM mainframes this was done by storing the return address in a special
location (one per function); should a function call itself (either directly or
indirectly), the return address would be overwritten.
 
MAD does include a stack mechanism, but it is entirely manual. The programmer
must allocate memory for it himself and activate it by hand, by default there
is no stack. The command for this is <code>SET LIST TO array</code>.
Once this is done, however, variables can be pushed and popped
(using the <code>SAVE</code> and <code>RESTORE</code> commands).
Furthermore, <code>SAVE RETURN</code> and <code>RESTURE RETURN</code> can
be used to push and pop the current return address, enabling proper recursion,
as long as the programmer is careful.
 
The downside to this is that it does not play well with argument passing.
All variables are still global. This means that passing arguments to a recursive function
has to be done either by pushing them on the stack beforehand, or by setting
global variables that the functions will push and pop themselves. (This program does
the latter.)
 
At the same time, the language syntax demands that all functions take at least one
argument, so a dummy argument must be passed. To obtain a recursive function that uses the
argument it is given, it is necessary to write a front-end function that uses its argument
to pass it through the actual function in the manner described above. This is also shown.
In this program, <code>F.</code> and <code>M.</code> are the front ends, taking an
argument and using it to set <code>N</code>, then calling either <code>FREC.</code>
or <code>MREC.</code>, which are the actual recursive functions, with a dummy zero argument.
 
<syntaxhighlight lang="mad"> NORMAL MODE IS INTEGER
R SET UP STACK SPACE
DIMENSION STACK(100)
SET LIST TO STACK
R DEFINE RECURSIVE FUNCTIONS
R INPUT ARGUMENT ASSUMED TO BE IN N
 
INTERNAL FUNCTION(DUMMY)
ENTRY TO FREC.
WHENEVER N.LE.0, FUNCTION RETURN 1
SAVE RETURN
SAVE DATA N
N = N-1
N = FREC.(0)
X = MREC.(0)
RESTORE DATA N
RESTORE RETURN
FUNCTION RETURN N-X
END OF FUNCTION
INTERNAL FUNCTION(DUMMY)
ENTRY TO MREC.
WHENEVER N.LE.0, FUNCTION RETURN 0
SAVE RETURN
SAVE DATA N
N = N-1
N = MREC.(0)
X = FREC.(0)
RESTORE DATA N
RESTORE RETURN
FUNCTION RETURN N-X
END OF FUNCTION
R DEFINE FRONT-END FUNCTIONS THAT CAN BE CALLED WITH ARGMT
INTERNAL FUNCTION(NN)
ENTRY TO F.
N = NN
FUNCTION RETURN FREC.(0)
END OF FUNCTION
INTERNAL FUNCTION(NN)
ENTRY TO M.
N = NN
FUNCTION RETURN MREC.(0)
END OF FUNCTION
R PRINT F(0..19) AND M(0..19)
THROUGH SHOW, FOR I=0, 1, I.GE.20
SHOW PRINT FORMAT FMT,I,F.(I),I,M.(I)
VECTOR VALUES FMT =
0 $2HF(,I2,4H) = ,I2,S8,2HM(,I2,4H) = ,I2*$
END OF PROGRAM</syntaxhighlight>
 
{{out}}
 
<pre>F( 0) = 1 M( 0) = 0
F( 1) = 1 M( 1) = 0
F( 2) = 2 M( 2) = 1
F( 3) = 2 M( 3) = 2
F( 4) = 3 M( 4) = 2
F( 5) = 3 M( 5) = 3
F( 6) = 4 M( 6) = 4
F( 7) = 5 M( 7) = 4
F( 8) = 5 M( 8) = 5
F( 9) = 6 M( 9) = 6
F(10) = 6 M(10) = 6
F(11) = 7 M(11) = 7
F(12) = 8 M(12) = 7
F(13) = 8 M(13) = 8
F(14) = 9 M(14) = 9
F(15) = 9 M(15) = 9
F(16) = 10 M(16) = 10
F(17) = 11 M(17) = 11
F(18) = 11 M(18) = 11
F(19) = 12 M(19) = 12</pre>
 
 
=={{header|Maple}}==
<syntaxhighlight lang="maple">female_seq := proc(n)
if (n = 0) then
return 1;
else
return n - male_seq(female_seq(n-1));
end if;
end proc;
 
male_seq := proc(n)
if (n = 0) then
return 0;
else
return n - female_seq(male_seq(n-1));
end if;
end proc;
seq(female_seq(i), i=0..10);
seq(male_seq(i), i=0..10);</syntaxhighlight>
{{Out|Output}}
<pre>1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6
0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6</pre>
 
=={{header|Mathematica}}/{{header|Wolfram Language}}==
Without caching:
<syntaxhighlight lang="mathematica">f[0]:=1
m[0]:=0
f[n_]:=n-m[f[n-1]]
m[n_]:=n-f[m[n-1]]</syntaxhighlight>
With caching:
<syntaxhighlight lang="mathematica">f[0]:=1
m[0]:=0
f[n_]:=f[n]=n-m[f[n-1]]
m[n_]:=m[n]=n-f[m[n-1]]</syntaxhighlight>
Example finding f(1) to f(30) and m(1) to m(30):
<syntaxhighlight lang="mathematica">m /@ Range[30]
f /@ Range[30]</syntaxhighlight>
gives back:
<syntaxhighlight lang="mathematica">{0,1,2,2,3,4,4,5,6,6,7,7,8,9,9,10,11,11,12,12,13,14,14,15,16,16,17,17,18,19}
{1,2,2,3,3,4,5,5,6,6,7,8,8,9,9,10,11,11,12,13,13,14,14,15,16,16,17,17,18,19}</syntaxhighlight>
 
=={{header|MATLAB}}==
female.m:
<syntaxhighlight lang="matlab">function Fn = female(n)
 
if n == 0
Fn = 1;
return
end
Fn = n - male(female(n-1));
end</syntaxhighlight>
 
male.m:
<syntaxhighlight lang="matlab">function Mn = male(n)
if n == 0
Mn = 0;
return
end
Mn = n - female(male(n-1));
end</syntaxhighlight>
 
{{out}}
<syntaxhighlight lang="matlab">>> n = (0:10);
>> arrayfun(@female,n)
 
ans =
 
1 1 2 2 3 3 4 5 5 6 6
 
>> arrayfun(@male,n)
 
ans =
 
0 0 1 2 2 3 4 4 5 6 6</syntaxhighlight>
 
=={{header|Maxima}}==
 
<syntaxhighlight lang="maxima">f[0]: 1$
m[0]: 0$
f[n] := n - m[f[n - 1]]$
m[n] := n - f[m[n - 1]]$
 
makelist(f[i], i, 0, 10);
[1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6]
 
makelist(m[i], i, 0, 10);
[0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6]
 
remarray(m, f)$
 
f(n) := if n = 0 then 1 else n - m(f(n - 1))$
m(n) := if n = 0 then 0 else n - f(m(n - 1))$
 
makelist(f(i), i, 0, 10);
[1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6]
 
makelist(m(i), i, 0, 10);
[0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6]
 
remfunction(f, m)$</syntaxhighlight>
 
=={{header|Mercury}}==
<syntaxhighlight lang="text">
:- module mutual_recursion.
:- interface.
 
:- import_module io.
:- pred main(io::di, io::uo) is det.
 
:- implementation.
:- import_module int, list.
 
main(!IO) :-
io.write(list.map(f, 0..19), !IO), io.nl(!IO),
io.write(list.map(m, 0..19), !IO), io.nl(!IO).
 
:- func f(int) = int.
 
f(N) = ( if N = 0 then 1 else N - m(f(N - 1)) ).
 
:- func m(int) = int.
 
m(N) = ( if N = 0 then 0 else N - f(m(N - 1)) ).
</syntaxhighlight>
 
=={{header|MiniScript}}==
<syntaxhighlight lang="miniscript">f = function(n)
if n > 0 then return n - m(f(n - 1))
return 1
end function
 
m = function(n)
if n > 0 then return n - f(m(n - 1))
return 0
end function
 
print f(12)
print m(12)</syntaxhighlight>
{{out}}
<pre>8
7</pre>
 
=={{header|MiniZinc}}==
<syntaxhighlight lang="minizinc">
function var int: F(var int:n) =
if n == 0 then
1
else
n - M(F(n - 1))
endif;
function var int: M(var int:n) =
if (n == 0) then
0
else
n - F(M(n - 1))
endif;
</syntaxhighlight>
 
=={{header|MMIX}}==
<syntaxhighlight lang="mmix"> LOC Data_Segment
 
GREG @
NL BYTE #a,0
GREG @
buf OCTA 0,0
 
t IS $128
Ja IS $127
 
LOC #1000
 
GREG @
// print 2 digits integer with trailing space to StdOut
// reg $3 contains int to be printed
bp IS $71
0H GREG #0000000000203020
prtInt STO 0B,buf % initialize buffer
LDA bp,buf+7 % points after LSD
% REPEAT
1H SUB bp,bp,1 % move buffer pointer
DIV $3,$3,10 % divmod (x,10)
GET t,rR % get remainder
INCL t,'0' % make char digit
STB t,bp % store digit
PBNZ $3,1B % UNTIL no more digits
LDA $255,bp
TRAP 0,Fputs,StdOut % print integer
GO Ja,Ja,0 % 'return'
 
// Female function
F GET $1,rJ % save return addr
PBNZ $0,1F % if N != 0 then F N
INCL $0,1 % F 0 = 1
PUT rJ,$1 % restore return addr
POP 1,0 % return 1
1H SUBU $3,$0,1 % N1 = N - 1
PUSHJ $2,F % do F (N - 1)
ADDU $3,$2,0 % place result in arg. reg.
PUSHJ $2,M % do M F ( N - 1)
PUT rJ,$1 % restore ret addr
SUBU $0,$0,$2
POP 1,0 % return N - M F ( N - 1 )
 
// Male function
M GET $1,rJ
PBNZ $0,1F
PUT rJ,$1
POP 1,0 % return M 0 = 0
1H SUBU $3,$0,1
PUSHJ $2,M
ADDU $3,$2,0
PUSHJ $2,F
PUT rJ,$1
SUBU $0,$0,$2
POP 1,0 $ return N - F M ( N - 1 )
 
// do a female run
Main SET $1,0 % for (i=0; i<25; i++){
1H ADDU $4,$1,0 %
PUSHJ $3,F % F (i)
GO Ja,prtInt % print F (i)
INCL $1,1
CMP t,$1,25
PBNZ t,1B % }
LDA $255,NL
TRAP 0,Fputs,StdOut
// do a male run
SET $1,0 % for (i=0; i<25; i++){
1H ADDU $4,$1,0 %
PUSHJ $3,M % M (i)
GO Ja,prtInt % print M (i)
INCL $1,1
CMP t,$1,25
PBNZ t,1B % }
LDA $255,NL
TRAP 0,Fputs,StdOut
TRAP 0,Halt,0</syntaxhighlight>
 
{{out}}
~/MIX/MMIX/Rosetta> mmix mutualrecurs1
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13 13 14 14 15
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12 13 14 14 15
 
=={{header|Modula-2}}==
<syntaxhighlight lang="modula2">MODULE MutualRecursion;
FROM InOut IMPORT WriteCard, WriteString, WriteLn;
 
TYPE Fn = PROCEDURE(CARDINAL): CARDINAL;
 
PROCEDURE F(n: CARDINAL): CARDINAL;
BEGIN
IF n=0 THEN RETURN 1;
ELSE RETURN n-M(F(n-1));
END;
END F;
 
PROCEDURE M(n: CARDINAL): CARDINAL;
BEGIN
IF n=0 THEN RETURN 0;
ELSE RETURN n-F(M(n-1));
END;
END M;
 
(* Print the first few values of one of the functions *)
PROCEDURE Show(name: ARRAY OF CHAR; fn: Fn);
CONST Max = 15;
VAR i: CARDINAL;
BEGIN
WriteString(name);
WriteString(": ");
FOR i := 0 TO Max DO
WriteCard(fn(i), 0);
WriteString(" ");
END;
WriteLn;
END Show;
 
(* Show the first values of both F and M *)
BEGIN
Show("F", F);
Show("M", M);
END MutualRecursion.</syntaxhighlight>
{{out}}
<pre>F: 1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9
M: 0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 </pre>
=={{header|Nemerle}}==
<syntaxhighlight lang="nemerle">using System;
using System.Console;
 
module Hofstadter
{
F(n : int) : int
{
|0 => 1
|_ => n - M(F(n - 1))
}
M(n : int) : int
{
|0 => 0
|_ => n - F(M(n - 1))
}
Main() : void
{
foreach (n in [0 .. 20]) Write("{0} ", F(n));
WriteLine();
foreach (n in [0 .. 20]) Write("{0} ", M(n));
}
}</syntaxhighlight>
 
=={{header|Nim}}==
<syntaxhighlight lang="nim">proc m(n: int): int
 
proc f(n: int): int =
if n == 0: 1
else: n - m(f(n-1))
 
proc m(n: int): int =
if n == 0: 0
else: n - f(m(n-1))
 
for i in 1 .. 10:
echo f(i)
echo m(i)</syntaxhighlight>
 
=={{header|Oberon-2}}==
{{trans|Modula-2}}
<syntaxhighlight lang="oberon2">
MODULE MutualRecursion;
 
IMPORT Out;
 
TYPE
Fn = PROCEDURE(n:INTEGER):INTEGER;
PROCEDURE^ M(n:INTEGER):INTEGER;
PROCEDURE F(n:INTEGER):INTEGER;
BEGIN
IF n=0 THEN RETURN 1
ELSE RETURN n-M(F(n-1))
END;
END F;
 
PROCEDURE M(n:INTEGER):INTEGER;
BEGIN
IF n=0 THEN RETURN 0
ELSE RETURN n-F(M(n-1))
END;
END M;
 
(* Print the first few values of one of the functions *)
PROCEDURE Show(name:ARRAY OF CHAR;fn:Fn);
CONST Max = 15;
VAR i:INTEGER;
BEGIN
Out.String(name);
Out.String(": ");
FOR i := 0 TO Max DO
Out.Int(fn(i),0);
Out.String(" ");
END;
Out.Ln;
END Show;
 
(* Show the first values of both F and M *)
BEGIN
Show("F", F);
Show("M", M);
END MutualRecursion.
</syntaxhighlight>
{{out}}
<pre>F: 1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9
M: 0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 </pre>
 
=={{header|Objeck}}==
{{trans|C}}
 
<syntaxhighlight lang="objeck">
class MutualRecursion {
function : Main(args : String[]) ~ Nil {
for(i := 0; i < 20; i+=1;) {
f(i)->PrintLine();
};
"---"->PrintLine();
for (i := 0; i < 20; i+=1;) {
m(i)->PrintLine();
};
}
function : f(n : Int) ~ Int {
return n = 0 ? 1 : n - m(f(n - 1));
}
function : m(n : Int) ~ Int {
return n = 0 ? 0 : n - f(m(n - 1));
}
}
</syntaxhighlight>
 
=={{header|Objective-C}}==
Line 341 ⟶ 2,944:
Objective-C has prior declaration rules similar to those stated above for [[Mutual Recursion#C|C]], for C-like types. In this example we show the use of a two class method; this works since we need an <tt>interface</tt> block that is like declaration of functions in C code.
 
<syntaxhighlight lang ="objc">#import <objcFoundation/ObjectFoundation.h>
 
@interface Hofstadter : ObjectNSObject
+ (int)M: (int)n;
+ (int)F: (int)n;
Line 374 ⟶ 2,977:
printf("\n");
return 0;
}</langsyntaxhighlight>
 
=={{header|OCaml}}==
<langsyntaxhighlight lang="ocaml">let rec f = function
| 0 -> 1
| n -> n - m(f(n-1))
Line 383 ⟶ 2,986:
| 0 -> 0
| n -> n - f(m(n-1))
;;</langsyntaxhighlight>
 
The <code>let '''rec''' ''f'' ... '''and''' ''m'' ...</code> construct is the way to "say" OCamlindicates that the functions call themselves (<code>'''rec'''</code>) and each othersother (<code>'''and'''</code>).
 
=={{header|Octave}}==
Line 392 ⟶ 2,995:
(The code is written to handle vectors, as the testing part shows)
 
<langsyntaxhighlight lang="octave">function r = F(n)
for i = 1:length(n)
if (n(i) == 0)
Line 410 ⟶ 3,013:
endif
endfor
endfunction</langsyntaxhighlight>
 
<langsyntaxhighlight lang="octave"># testing
ra = F([0:19]);
rb = M([0:19]);
disp(ra);
disp(rb);</langsyntaxhighlight>
 
=={{header|Oforth}}==
 
Oforth can declare methods objects without any implementation. This allows to implement mutual recursion. This does not work with functions (declaration and implementation must be together).
 
<syntaxhighlight lang="oforth">Method new: M
 
Integer method: F
self 0 == ifTrue: [ 1 return ]
self self 1 - F M - ;
 
Integer method: M
self 0 == ifTrue: [ 0 return ]
self self 1 - M F - ;
 
0 20 seqFrom map(#F) println
0 20 seqFrom map(#M) println</syntaxhighlight>
 
{{out}}
<pre>
[1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12, 13]
[0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12, 12]
</pre>
 
=={{header|Ol}}==
The `letrec` indicates that the definitions can be recursive, and fact that we placed these two in the same letrec block makes them mutually recursive.
<syntaxhighlight lang="scheme">
(letrec ((F (lambda (n)
(if (= n 0) 1
(- n (M (F (- n 1)))))))
(M (lambda (n)
(if (= n 0) 0
(- n (F (M (- n 1))))))))
(print (F 19)))
; produces 12
</syntaxhighlight>
 
=={{header|Order}}==
 
Since Order is powered by the C preprocessor, definitions follow the same rule as CPP macros: they can appear in any order relative to each other as long as all are defined before the ORDER_PP block that calls them.
 
<syntaxhighlight lang="c">#include <order/interpreter.h>
 
#define ORDER_PP_DEF_8f \
ORDER_PP_FN(8fn(8N, \
8if(8is_0(8N), \
1, \
8sub(8N, 8m(8f(8dec(8N)))))))
 
#define ORDER_PP_DEF_8m \
ORDER_PP_FN(8fn(8N, \
8if(8is_0(8N), \
0, \
8sub(8N, 8f(8m(8dec(8N)))))))
 
//Test
ORDER_PP(8for_each_in_range(8fn(8N, 8print(8f(8N))), 0, 19))
ORDER_PP(8for_each_in_range(8fn(8N, 8print(8m(8N))), 0, 19))</syntaxhighlight>
 
=={{header|Oz}}==
<syntaxhighlight lang="oz">declare
fun {F N}
if N == 0 then 1
elseif N > 0 then N - {M {F N-1}}
end
end
 
fun {M N}
if N == 0 then 0
elseif N > 0 then N - {F {M N-1}}
end
end
in
{Show {Map {List.number 0 9 1} F}}
{Show {Map {List.number 0 9 1} M}}</syntaxhighlight>
 
=={{header|PARI/GP}}==
<syntaxhighlight lang="parigp">F(n)=if(n,n-M(F(n-1)),1)
M(n)=if(n,n-F(M(n-1)),0)</syntaxhighlight>
 
=={{header|Pascal}}==
Line 422 ⟶ 3,104:
In Pascal we need to pre-declare functions/procedures; to do so, the <tt>forward</tt> statement is used.
 
<langsyntaxhighlight lang="pascal">Program MutualRecursion;
 
{M definition comes after F which uses it}
Line 455 ⟶ 3,137:
end;
writeln;
end.</langsyntaxhighlight>
 
=={{header|Perl}}==
<syntaxhighlight lang="perl">sub F { my $n = shift; $n ? $n - M(F($n-1)) : 1 }
<lang perl>use strict;
sub M { my $n = shift; $n ? $n - F(M($n-1)) : 0 }
 
# Usage:
sub F
foreach my $sequence (\&F, \&M) {
{
print join(' ', map $sequence->($_), 0 .. 19), "\n";
my $n = shift;
}</syntaxhighlight>
return 1 if $n==0;
{{out}}
return $n - M(F($n-1));
<pre>
}
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12
</pre>
 
=={{header|Phix}}==
sub M
You should normally explicitly declare forward routines since it often makes things easier to understand (strictly only necessary when using optional or named parameters). There would be no point pre-declaring F, since it is not called before it is defined anyway.
{
<!--<syntaxhighlight lang="phix">(phixonline)-->
my $n = shift;
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
return 0 if $n==0;
<span style="color: #008080;">forward</span> <span style="color: #008080;">function</span> <span style="color: #000000;">M</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">n</span><span style="color: #0000FF;">)</span>
return $n - F(M($n-1));
}
<span style="color: #008080;">function</span> <span style="color: #000000;">F</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">n</span><span style="color: #0000FF;">)</span>
 
<span style="color: #008080;">return</span> <span style="color: #008080;">iff</span><span style="color: #0000FF;">(</span><span style="color: #000000;">n</span><span style="color: #0000FF;">?</span><span style="color: #000000;">n</span><span style="color: #0000FF;">-</span><span style="color: #000000;">M</span><span style="color: #0000FF;">(</span><span style="color: #000000;">F</span><span style="color: #0000FF;">(</span><span style="color: #000000;">n</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)):</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)</span>
my @ra = ();
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
my @rb = ();
for(my $i=0; $i < 20; $i++) {
<span style="color: #008080;">function</span> <span style="color: #000000;">M</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">n</span><span style="color: #0000FF;">)</span>
push @ra, F($i);
<span style="color: #008080;">return</span> <span style="color: #008080;">iff</span><span style="color: #0000FF;">(</span><span style="color: #000000;">n</span><span style="color: #0000FF;">?</span><span style="color: #000000;">n</span><span style="color: #0000FF;">-</span><span style="color: #000000;">F</span><span style="color: #0000FF;">(</span><span style="color: #000000;">M</span><span style="color: #0000FF;">(</span><span style="color: #000000;">n</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)):</span><span style="color: #000000;">0</span><span style="color: #0000FF;">)</span>
push @rb, M($i);
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
}
print join(" ", @ra) . "\n";
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">0</span> <span style="color: #008080;">to</span> <span style="color: #000000;">20</span> <span style="color: #008080;">do</span>
print join(" ", @rb) . "\n";</lang>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">" %d"</span><span style="color: #0000FF;">,</span><span style="color: #000000;">F</span><span style="color: #0000FF;">(</span><span style="color: #000000;">i</span><span style="color: #0000FF;">))</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"\n"</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">0</span> <span style="color: #008080;">to</span> <span style="color: #000000;">20</span> <span style="color: #008080;">do</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">" %d"</span><span style="color: #0000FF;">,</span><span style="color: #000000;">M</span><span style="color: #0000FF;">(</span><span style="color: #000000;">i</span><span style="color: #0000FF;">))</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<!--</syntaxhighlight>-->
{{out}}
<pre>
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12
</pre>
 
=={{header|PHP}}==
 
<langsyntaxhighlight lang="php"><?php
function F($n)
{
Line 507 ⟶ 3,205:
echo implode(" ", $ra) . "\n";
echo implode(" ", $rb) . "\n";
?></langsyntaxhighlight>
 
=={{header|Picat}}==
Here are two approaches, both using tabling. For small values (say N < 50) tabling is not really needed.
===Tabled functions===
<syntaxhighlight lang="picat">table
f(0) = 1.
f(N) = N - m(f(N-1)), N > 0 => true.
 
table
m(0) = 0.
m(N) = N - f(m(N-1)), N > 0 => true.</syntaxhighlight>
 
===Tabled predicates===
{{trans|Prolog}}
<syntaxhighlight lang="picat">table
female(0,1).
female(N,F) :-
N>0,
N1 = N-1,
female(N1,R),
male(R, R1),
F = N-R1.
table
male(0,0).
male(N,F) :-
N>0,
N1 = N-1,
male(N1,R),
female(R, R1),
F = N-R1.</syntaxhighlight>
 
===Test===
<syntaxhighlight lang="picat">go =>
N = 30,
println(func),
test_func(N),
println(pred),
test_pred(N),
nl.
nl.
 
% Testing the function based approach
test_func(N) =>
println([M : I in 0..N, male(I,M)]),
println([F : I in 0..N, female(I,F)]),
nl.
 
% Testing the predicate approach
test_pred(N) =>
println([M : I in 0..N, male(I,M)]),
println([F : I in 0..N, female(I,F)]),
nl.</syntaxhighlight>
{{out}}
<pre>func
[0,0,1,2,2,3,4,4,5,6,6,7,7,8,9,9,10,11,11,12,12,13,14,14,15,16,16,17,17,18,19]
[1,1,2,2,3,3,4,5,5,6,6,7,8,8,9,9,10,11,11,12,13,13,14,14,15,16,16,17,17,18,19]
 
pred
[0,0,1,2,2,3,4,4,5,6,6,7,7,8,9,9,10,11,11,12,12,13,14,14,15,16,16,17,17,18,19]
[1,1,2,2,3,3,4,5,5,6,6,7,8,8,9,9,10,11,11,12,13,13,14,14,15,16,16,17,17,18,19]</pre>
 
===Larger values===
For larger values, tabling is essential and then one can discern that the predicate based approach is a little faster. Here are the times for testing N=1 000 000:
 
* func: 1.829s
* pred: 1.407s
 
=={{header|PicoLisp}}==
<syntaxhighlight lang="picolisp">(de f (N)
(if (=0 N)
1
(- N (m (f (dec N)))) ) )
 
(de m (N)
(if (=0 N)
0
(- N (f (m (dec N)))) ) )</syntaxhighlight>
 
=={{header|PL/I}}==
<syntaxhighlight lang="pl/i">test: procedure options (main);
 
M: procedure (n) returns (fixed) recursive; /* 8/1/2010 */
declare n fixed;
if n <= 0 then return (0);
else return ( n - F(M(n-1)) );
end M;
 
F: procedure (n) returns (fixed) recursive;
declare n fixed;
if n <= 0 then return (1);
else return ( n - M(F(n-1)) );
end F;
 
declare i fixed;
 
do i = 1 to 15;
put skip list ( F(i), M(i) );
end;
end test;</syntaxhighlight>
 
=={{header|PostScript}}==
<syntaxhighlight lang="text">
/female{
/n exch def
n 0 eq
{1}
{
n n 1 sub female male sub
}ifelse
}def
 
/male{
/n exch def
n 0 eq
{0}
{
n n 1 sub male female sub
}ifelse
}def
</syntaxhighlight>
 
{{libheader|initlib}}
 
<syntaxhighlight lang="postscript">
/F {
{
{0 eq} {pop 1} is?
{0 gt} {dup 1 sub F M sub} is?
} cond
}.
 
/M {
{
{0 eq} {pop 0} is?
{0 gt} {dup 1 sub M F sub} is?
} cond
}.
 
</syntaxhighlight>
 
=={{header|PowerShell}}==
<syntaxhighlight lang="powershell">function F($n) {
if ($n -eq 0) { return 1 }
return $n - (M (F ($n - 1)))
}
 
function M($n) {
if ($n -eq 0) { return 0 }
return $n - (F (M ($n - 1)))
}</syntaxhighlight>
 
=={{header|Prolog}}==
<syntaxhighlight lang="prolog">female(0,1).
female(N,F) :- N>0,
N1 is N-1,
female(N1,R),
male(R, R1),
F is N-R1.
 
male(0,0).
male(N,F) :- N>0,
N1 is N-1,
male(N1,R),
female(R, R1),
F is N-R1.</syntaxhighlight>
 
{{works with|GNU Prolog}}
<syntaxhighlight lang="prolog">flist(S) :- for(X, 0, S), female(X, R), format('~d ', [R]), fail.
mlist(S) :- for(X, 0, S), male(X, R), format('~d ', [R]), fail.</syntaxhighlight>
 
'''Testing'''
 
<pre>| ?- flist(19).
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12
 
no
| ?- mlist(19).
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12</pre>
 
=={{header|Pure}}==
The Pure definitions very closely maps to the mathematical definitions.
 
<syntaxhighlight lang="pure">F 0 = 1;
M 0 = 0;
F n = n - M(F(n-1)) if n>0;
M n = n - F(M(n-1)) if n>0;</syntaxhighlight>
 
<syntaxhighlight lang="pure">> let females = map F (0..10); females;
[1,1,2,2,3,3,4,5,5,6,6]
> let males = map M (0..10); males;
[0,0,1,2,2,3,4,4,5,6,6]</syntaxhighlight>
 
=={{header|PureBasic}}==
<syntaxhighlight lang="purebasic">Declare M(n)
 
Procedure F(n)
If n = 0
ProcedureReturn 1
ElseIf n > 0
ProcedureReturn n - M(F(n - 1))
EndIf
EndProcedure
 
Procedure M(n)
If n = 0
ProcedureReturn 0
ElseIf n > 0
ProcedureReturn n - F(M(n - 1))
EndIf
EndProcedure
 
Define i
If OpenConsole()
For i = 0 To 19
Print(Str(F(i)))
If i = 19
Continue
EndIf
Print(", ")
Next
PrintN("")
For i = 0 To 19
Print(Str(M(i)))
If i = 19
Continue
EndIf
Print(", ")
Next
Print(#CRLF$ + #CRLF$ + "Press ENTER to exit")
Input()
CloseConsole()
EndIf</syntaxhighlight>
{{out}}
<pre>1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12
0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12</pre>
 
=={{header|Python}}==
{{works with|Python|3.0}}.<br>{{works with|Python|2.6}}<br>
<langsyntaxhighlight lang="python">def F(n): return 1 if n == 0 else n - M(F(n-1))
def M(n): return 0 if n == 0 else n - F(M(n-1))
 
print ([ F(n) for n in range(20) ])
print ([ M(n) for n in range(20) ])</langsyntaxhighlight>
 
{{out}}
Output:
<pre>[1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12]
[0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12]</pre>
Line 523 ⟶ 3,461:
In python there is no need to pre-declare ''M'' for it to be used in the definition of ''F''. (However ''M'' must be defined before ''F'' calls it).
 
=={{header|SchemeQuackery}}==
 
Could probably be optimized with tail recursion.
See also [http://rosettacode.org/wiki/Even_or_odd#Quackery:_With_Anonymous_Mutual_Recursion Even or Odd#Quackery: With Anonymous Mutual recursion].
<lang scheme>
 
<syntaxhighlight lang="quackery"> forward is f ( n --> n )
 
[ dup 0 = if done
dup 1 - recurse f - ] is m ( n --> n )
[ dup 0 = iff 1+ done
dup 1 - recurse m - ]
resolves f ( n --> n )
 
say "f = "
20 times [ i^ f echo sp ] cr
say "m = "
20 times [ i^ m echo sp ] cr</syntaxhighlight>
 
{{out}}
 
<pre>f = 1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12
m = 0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 </pre>
 
=={{header|R}}==
<syntaxhighlight lang="r">F <- function(n) ifelse(n == 0, 1, n - M(F(n-1)))
M <- function(n) ifelse(n == 0, 0, n - F(M(n-1)))</syntaxhighlight>
 
<syntaxhighlight lang="r">print.table(lapply(0:19, M))
print.table(lapply(0:19, F))</syntaxhighlight>
 
=={{header|Racket}}==
<syntaxhighlight lang="racket">#lang racket
(define (F n)
(if (>= 0 n)
1
(- n (M (F (sub1 n))))))
 
(define (M n)
(if (>= 0 n)
0
(- n (F (M (sub1 n))))))</syntaxhighlight>
 
=={{header|Raku}}==
(formerly Perl 6)
A direct translation of the definitions of <math>F</math> and <math>M</math>:
<syntaxhighlight lang="raku" line>multi F(0) { 1 }; multi M(0) { 0 }
multi F(\𝑛) { 𝑛 - M(F(𝑛 - 1)) }
multi M(\𝑛) { 𝑛 - F(M(𝑛 - 1)) }
 
say map &F, ^20;
say map &M, ^20;</syntaxhighlight>
{{out}}
<pre>
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12
</pre>
 
=={{header|REBOL}}==
<syntaxhighlight lang="rebol">REBOL [
Title: "Mutual Recursion"
URL: http://rosettacode.org/wiki/Mutual_Recursion
References: [http://en.wikipedia.org/wiki/Hofstadter_sequence#Hofstadter_Female_and_Male_sequences]
]
 
f: func [
"Female."
n [integer!] "Value."
] [either 0 = n [1][n - m f n - 1]]
 
m: func [
"Male."
n [integer!] "Value."
] [either 0 = n [0][n - f m n - 1]]
 
fs: [] ms: [] for i 0 19 1 [append fs f i append ms m i]
print ["F:" mold fs crlf "M:" mold ms]</syntaxhighlight>
 
{{out}}
 
<pre>F: [1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12]
M: [0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12]</pre>
 
=={{header|REFAL}}==
<syntaxhighlight lang="refal">$ENTRY Go {
= <Prout 'F: ' <S F 0 14>>
<Prout 'M: ' <S M 0 14>>;
};
 
 
F { 0 = 1; s.N = <- s.N <M <F <- s.N 1>>>>; };
M { 0 = 0; s.N = <- s.N <F <M <- s.N 1>>>>; };
 
S {
s.F s.N s.M, <Compare s.N s.M>: '+' = ;
s.F s.N s.M = <Mu s.F s.N> <S s.F <+ s.N 1> s.M>;
};</syntaxhighlight>
{{out}}
<pre>F: 1 1 2 2 3 3 4 5 5 6 6 7 8 8 9
M: 0 0 1 2 2 3 4 4 5 6 6 7 7 8 9</pre>
 
=={{header|REXX}}==
===vanilla===
This version uses vertical formatting of the output.
<syntaxhighlight lang="rexx">/*REXX program shows mutual recursion (via the Hofstadter Male and Female sequences). */
parse arg lim .; if lim='' then lim= 40; w= length(lim); pad= left('', 20)
 
do j=0 for lim+1; jj= right(j, w); ff= right(F(j), w); mm= right(M(j), w)
say pad 'F('jj") =" ff pad 'M('jj") =" mm
end /*j*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
F: procedure; parse arg n; if n==0 then return 1; return n - M( F(n-1) )
M: procedure; parse arg n; if n==0 then return 0; return n - F( M(n-1) )</syntaxhighlight>
{{out|output|text=&nbsp; when using the default input of: &nbsp; &nbsp; <tt> 40 </tt>}}
 
Shown at three-quarter size.)
<pre style="font-size:75%">
F( 0) = 1 M( 0) = 0
F( 1) = 1 M( 1) = 0
F( 2) = 2 M( 2) = 1
F( 3) = 2 M( 3) = 2
F( 4) = 3 M( 4) = 2
F( 5) = 3 M( 5) = 3
F( 6) = 4 M( 6) = 4
F( 7) = 5 M( 7) = 4
F( 8) = 5 M( 8) = 5
F( 9) = 6 M( 9) = 6
F(10) = 6 M(10) = 6
F(11) = 7 M(11) = 7
F(12) = 8 M(12) = 7
F(13) = 8 M(13) = 8
F(14) = 9 M(14) = 9
F(15) = 9 M(15) = 9
F(16) = 10 M(16) = 10
F(17) = 11 M(17) = 11
F(18) = 11 M(18) = 11
F(19) = 12 M(19) = 12
F(20) = 13 M(20) = 12
F(21) = 13 M(21) = 13
F(22) = 14 M(22) = 14
F(23) = 14 M(23) = 14
F(24) = 15 M(24) = 15
F(25) = 16 M(25) = 16
F(26) = 16 M(26) = 16
F(27) = 17 M(27) = 17
F(28) = 17 M(28) = 17
F(29) = 18 M(29) = 18
F(30) = 19 M(30) = 19
F(31) = 19 M(31) = 19
F(32) = 20 M(32) = 20
F(33) = 21 M(33) = 20
F(34) = 21 M(34) = 21
F(35) = 22 M(35) = 22
F(36) = 22 M(36) = 22
F(37) = 23 M(37) = 23
F(38) = 24 M(38) = 24
F(39) = 24 M(39) = 24
F(40) = 25 M(40) = 25
</pre>
 
===with memoization===
This version uses memoization as well as a horizontal (aligned) output format.
<br><br>The optimization due to memoization is faster by many orders of magnitude.
<syntaxhighlight lang="rexx">/*REXX program shows mutual recursion (via the Hofstadter Male and Female sequences). */
parse arg lim .; if lim=='' then lim=40 /*assume the default for LIM? */
w= length(lim); $m.=.; $m.0= 0; $f.=.; $f.0= 1; Js=; Fs=; Ms=
 
do j=0 for lim+1
Js= Js right(j, w); Fs= Fs right( F(j), w); Ms= Ms right( M(j), w)
end /*j*/
say 'Js=' Js /*display the list of Js to the term.*/
say 'Fs=' Fs /* " " " " Fs " " " */
say 'Ms=' Ms /* " " " " Ms " " " */
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
F: procedure expose $m. $f.; parse arg n; if $f.n==. then $f.n= n-M(F(n-1)); return $f.n
M: procedure expose $m. $f.; parse arg n; if $m.n==. then $m.n= n-F(M(n-1)); return $m.n</syntaxhighlight>
{{out|output|text=&nbsp; when using the default input of: &nbsp; &nbsp; <tt> 99 </tt>}}
<pre>
Js= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
Fs= 1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13 13 14 14 15 16 16 17 17 18 19 19 20 21 21 22 22 23 24 24 25 25 26 27 27 28 29 29 30 30 31 32 32 33 34 34 35 35 36 37 37 38 38 39 40 40 41 42 42 43 43 44 45 45 46 46 47 48 48 49 50 50 51 51 52 53 53 54 55 55 56 56 57 58 58 59 59 60 61 61
Ms= 0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12 13 14 14 15 16 16 17 17 18 19 19 20 20 21 22 22 23 24 24 25 25 26 27 27 28 29 29 30 30 31 32 32 33 33 34 35 35 36 37 37 38 38 39 40 40 41 42 42 43 43 44 45 45 46 46 47 48 48 49 50 50 51 51 52 53 53 54 54 55 56 56 57 58 58 59 59 60 61 61
</pre>
 
===with memoization, specific entry===
This version is identical in function to the previous example, but it also can compute and
<br>display a specific request (indicated by a negative number for the argument).
<syntaxhighlight lang="rexx">/*REXX program shows mutual recursion (via the Hofstadter Male and Female sequences). */
/*───────────────── If LIM is negative, a single result is shown for the abs(lim) entry.*/
 
parse arg lim .; if lim=='' then lim= 99; aLim= abs(lim)
w= length(aLim); $m.=.; $m.0= 0; $f.=.; $f.0= 1; Js=; Fs=; Ms=
 
do j=0 for aLim+1; call F(J); call M(j)
if lim<0 then iterate
Js= Js right(j, w); Fs= Fs right($f.j, w); Ms= Ms right($m.j, w)
end /*j*/
 
if lim>0 then say 'Js=' Js; else say 'J('aLim")=" right( aLim, w)
if lim>0 then say 'Fs=' Fs; else say 'F('aLim")=" right($f.aLim, w)
if lim>0 then say 'Ms=' Ms; else say 'M('aLim")=" right($m.aLIM, w)
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
F: procedure expose $m. $f.; parse arg n; if $f.n==. then $f.n= n-M(F(n-1)); return $f.n
M: procedure expose $m. $f.; parse arg n; if $m.n==. then $m.n= n-F(M(n-1)); return $m.n</syntaxhighlight>
{{out|output|text=&nbsp; when using the input of: &nbsp; &nbsp; <tt> -70000 </tt>}}
<pre>
J(70000)= 70000
F(70000)= 43262
M(70000)= 43262
</pre>
{{out|output|text=&nbsp; when using the input of a negative &nbsp; <big>¼</big> &nbsp; million: &nbsp; &nbsp; <tt> -250000 </tt>}}
<pre>
J(250000)= 250000
F(250000)= 154509
M(250000)= 154509
</pre>
 
=={{header|Ring}}==
<syntaxhighlight lang="ring">
see "F sequence : "
for i = 0 to 20
see "" + f(i) + " "
next
see nl
see "M sequence : "
for i = 0 to 20
see "" + m(i) + " "
next
func f n
fr = 1
if n != 0 fr = n - m(f(n - 1)) ok
return fr
func m n
mr = 0
if n != 0 mr = n - f(m(n - 1)) ok
return mr
</syntaxhighlight>
 
=={{header|RPL}}==
≪ IF DUP THEN DUP 1 - '''FEML MALE''' - ELSE DROP 1 END
≫ ''''FEML'''' STO ( n -- F(n) )
For M(n), here is a little variant, less readable but saving one word !
≪ IF THEN LAST DUP 1 - '''MALE FEML''' - ELSE 0 END
≫ ''''MALE'''' STO ( n -- M(n) )
{{in}}
<pre>
≪ {} 0 20 FOR n n MALE + NEXT ≫ EVAL
≪ {} 0 20 FOR n n FEML + NEXT ≫ EVAL
</pre>
{{out}}
<pre>
2: { 0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12 }
1: { 1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13 }
</pre>
 
=={{header|Ruby}}==
<syntaxhighlight lang="ruby">def F(n)
n == 0 ? 1 : n - M(F(n-1))
end
def M(n)
n == 0 ? 0 : n - F(M(n-1))
end
 
p (Array.new(20) {|n| F(n) })
p (Array.new(20) {|n| M(n) })</syntaxhighlight>
 
{{out}}
<pre>[1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12]
[0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12]</pre>
 
In ruby there is no need to pre-declare ''M'' for it to be used in the definition of ''F''. (However ''M'' must be defined before ''F'' calls it).
 
=={{header|Run BASIC}}==
<syntaxhighlight lang="runbasic">print "F sequence:";
for i = 0 to 20
print f(i);" ";
next i
print :print "M sequence:";
for i = 0 to 20
print m(i);" ";
next i
end
function f(n)
f = 1
if n <> 0 then f = n - m(f(n - 1))
end function
function m(n)
m = 0
if n <> 0 then m = n - f(m(n - 1))
end function</syntaxhighlight>
{{out}}
<pre>F sequence:1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13
M sequence:0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12</pre>
 
=={{header|Rust}}==
<syntaxhighlight lang="rust">fn f(n: u32) -> u32 {
match n {
0 => 1,
_ => n - m(f(n - 1))
}
}
 
fn m(n: u32) -> u32 {
match n {
0 => 0,
_ => n - f(m(n - 1))
}
}
 
fn main() {
for i in (0..20).map(f) {
print!("{} ", i);
}
println!("");
 
for i in (0..20).map(m) {
print!("{} ", i);
}
println!("")
}</syntaxhighlight>
{{out}}
<pre>1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12</pre>
 
=={{header|S-lang}}==
<syntaxhighlight lang="s-lang">% Forward definitions: [also deletes any existing definition]
define f();
define m();
 
define f(n) {
if (n == 0) return 1;
else if (n < 0) error("oops");
return n - m(f(n - 1));
}
define m(n) {
if (n == 0) return 0;
else if (n < 0) error("oops");
return n - f(m(n - 1));
}
 
foreach $1 ([0:19])
() = printf("%d ", f($1));
() = printf("\n");
foreach $1 ([0:19])
() = printf("%d ", m($1));
() = printf("\n");</syntaxhighlight>
{{out}}
<pre>1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12</pre>
 
=={{header|Sather}}==
<syntaxhighlight lang="sather">class MAIN is
 
f(n:INT):INT
pre n >= 0
is
if n = 0 then return 1; end;
return n - m(f(n-1));
end;
 
m(n:INT):INT
pre n >= 0
is
if n = 0 then return 0; end;
return n - f(m(n-1));
end;
 
main is
loop i ::= 0.upto!(19);
#OUT + #FMT("%2d ", f(i));
end;
#OUT + "\n";
loop i ::= 0.upto!(19);
#OUT + #FMT("%2d ", m(i));
end;
end;
end;</syntaxhighlight>
 
There's no need to pre-declare F or M.
 
=={{header|Scala}}==
<syntaxhighlight lang="scala">def F(n:Int):Int =
if (n == 0) 1 else n - M(F(n-1))
def M(n:Int):Int =
if (n == 0) 0 else n - F(M(n-1))
 
println((0 until 20).map(F).mkString(", "))
println((0 until 20).map(M).mkString(", "))</syntaxhighlight>
 
{{out}}
<pre>1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12
0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12</pre>
 
=={{header|Scheme}}==
<code>define</code> declarations are automatically mutually recursive:
<syntaxhighlight lang="scheme">(define (F n)
(if (= n 0) 1
(- n (M (F (- n 1))))))
Line 532 ⟶ 3,868:
(define (M n)
(if (= n 0) 0
(- n (F (M (- n 1))))))</syntaxhighlight>
 
</lang>
If you wanted to use a <code>let</code>-like construct to create local bindings, you would do the following. The <code>define</code> construct above is just a syntactic sugar for the following where the entire rest of the scope is used as the body.
<syntaxhighlight lang="scheme">(letrec ((F (lambda (n)
(if (= n 0) 1
(- n (M (F (- n 1)))))))
(M (lambda (n)
(if (= n 0) 0
(- n (F (M (- n 1))))))))
(F 19)) # evaluates to 12</syntaxhighlight>
 
The <code>letrec</code> indicates that the definitions can be recursive, and fact that we placed these two in the same <code>letrec</code> block makes them mutually recursive.
 
=={{header|Seed7}}==
<syntaxhighlight lang="seed7">$ include "seed7_05.s7i";
 
const func integer: m (in integer: n) is forward;
const func integer: f (in integer: n) is func
result
var integer: res is 0;
begin
if n = 0 then
res := 1;
else
res := n - m(f(n - 1));
end if;
end func;
 
const func integer: m (in integer: n) is func
result
var integer: res is 0;
begin
if n = 0 then
res := 0;
else
res := n - f(m(n - 1));
end if;
end func;
 
const proc: main is func
local
var integer: i is 0;
begin
for i range 0 to 19 do
write(f(i) lpad 3);
end for;
writeln;
for i range 0 to 19 do
write(m(i) lpad 3);
end for;
writeln;
end func;</syntaxhighlight>
 
{{out}}
<pre>
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12
</pre>
 
=={{header|SETL}}==
<syntaxhighlight lang="setl">program mutual_recursion;
print("F", [f(n) : n in [0..14]]);
print("M", [m(n) : n in [0..14]]);
 
proc f(n);
return {[0,1]}(n) ? n - m(f(n-1));
end proc;
 
proc m(n);
return {[0,0]}(n) ? n - f(m(n-1));
end proc;
end program;</syntaxhighlight>
{{out}}
<pre>F [1 1 2 2 3 3 4 5 5 6 6 7 8 8 9]
M [0 0 1 2 2 3 4 4 5 6 6 7 7 8 9]</pre>
 
=={{header|Sidef}}==
<syntaxhighlight lang="ruby">func F(){}
func M(){}
 
F = func(n) { n > 0 ? (n - M(F(n-1))) : 1 }
M = func(n) { n > 0 ? (n - F(M(n-1))) : 0 }
 
[F, M].each { |seq|
{|i| seq.call(i)}.map(^20).join(' ').say
}</syntaxhighlight>
{{out}}
<pre>1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12</pre>
 
=={{header|Smalltalk}}==
Line 539 ⟶ 3,963:
Using block closure.
 
<langsyntaxhighlight lang="smalltalk">|F M ra rb|
 
F := [ :n |
Line 561 ⟶ 3,985:
 
ra displayNl.
rb displayNl.</langsyntaxhighlight>
 
=={{header|SNOBOL4}}==
 
<syntaxhighlight lang="snobol4"> define('f(n)') :(f_end)
f f = eq(n,0) 1 :s(return)
f = n - m(f(n - 1)) :(return)
f_end
 
define('m(n)') :(m_end)
m m = eq(n,0) 0 :s(return)
m = n - f(m(n - 1)) :(return)
m_end
 
* # Test and display
L1 s1 = s1 m(i) ' ' ; s2 = s2 f(i) ' '
i = le(i,25) i + 1 :s(L1)
output = 'M: ' s1; output = 'F: ' s2
end</syntaxhighlight>
 
{{out}}
<pre>M: 0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12 13 14 14 15 16 16
F: 1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13 13 14 14 15 16 16</pre>
 
=={{header|SNUSP}}==
The program shown calculates F(3) and demonstrates simple and mutual recursion.
<syntaxhighlight lang="snusp"> /======\
F==!/=!\?\+# | />-<-\
| \@\-@/@\===?/<#
| | |
$+++/======|====/
! /=/ /+<<-\
| \!/======?\>>=?/<# dup
| \<<+>+>-/
! !
\======|====\
| | |
| /===|==\ |
M==!\=!\?\#| | |
\@/-@/@/===?\<#
^ \>-<-/
| ^ ^ ^ ^
| | | | subtract from n
| | | mutual recursion
| | recursion
| n-1
check for zero</syntaxhighlight>
 
=={{header|SPL}}==
<syntaxhighlight lang="spl">f(n)=
? n=0, <= 1
<= n-m(f(n-1))
.
m(n)=
? n=0, <= 0
<= n-f(m(n-1))
.
> i, 0..20
fs += " "+f(i)
ms += " "+m(i)
<
#.output("F:",fs)
#.output("M:",ms)</syntaxhighlight>
{{out}}
<pre>
F: 1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13
M: 0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12
</pre>
 
=={{header|Standard ML}}==
<syntaxhighlight lang="sml">fun f 0 = 1
| f n = n - m (f (n-1))
and m 0 = 0
| m n = n - f (m (n-1))
;</syntaxhighlight>
 
The <code>'''fun'''</code> construct creates recursive functions, and the <code>'''and'''</code> allows a group of functions to call each other. The above is just a shortcut for the following:
 
<syntaxhighlight lang="sml">val rec f = fn 0 => 1
| n => n - m (f (n-1))
and m = fn 0 => 0
| n => n - f (m (n-1))
;</syntaxhighlight>
 
which indicates that the functions call themselves (<code>'''rec'''</code>) and each other (<code>'''and'''</code>).
{{out}}
<pre>
> val terms = List.tabulate (10, fn x => x);
val terms = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]: int list
> map f terms;
val it = [1, 1, 2, 2, 3, 3, 4, 5, 5, 6]: int list
> map m terms;
val it = [0, 0, 1, 2, 2, 3, 4, 4, 5, 6]: int list
</pre>
 
=={{header|Swift}}==
It just works. No special pre-declaration is necessary.
<syntaxhighlight lang="swift">func F(n: Int) -> Int {
return n == 0 ? 1 : n - M(F(n-1))
}
 
func M(n: Int) -> Int {
return n == 0 ? 0 : n - F(M(n-1))
}
 
for i in 0..20 {
print("\(F(i)) ")
}
println()
for i in 0..20 {
print("\(M(i)) ")
}
println()</syntaxhighlight>
 
=={{header|Symsyn}}==
<syntaxhighlight lang="symsyn">
F param Fn
if Fn = 0
1 R
else
(Fn-1) nm1
save Fn
call F nm1
result Fr
save Fr
call M Fr
result Mr
restore Fr
restore Fn
(Fn-Mr) R
endif
return R
 
M param Mn
if Mn = 0
0 R
else
(Mn-1) nm1
save Mn
call M nm1
result Mr
save Mr
call F Mr
result Fr
restore Mr
restore Mn
(Mn-Fr) R
endif
return R
 
start
 
i
if i <= 19
call F i
result res
" $s res ' '" $s
+ i
goif
endif
$s []
$s
 
i
if i <= 19
call M i
result res
" $s res ' '" $s
+ i
goif
endif
$s []
</syntaxhighlight>
=={{header|Tailspin}}==
<syntaxhighlight lang="tailspin">
templates male
when <=0> do 0 !
otherwise def n: $;
$n - 1 -> male -> female -> $n - $ !
end male
 
templates female
when <=0> do 1 !
otherwise def n: $;
$n - 1 -> female -> male -> $n - $ !
end female
 
0..10 -> 'M$;: $->male; F$;: $->female;
' -> !OUT::write
</syntaxhighlight>
{{out}}
<pre>
M0: 0 F0: 1
M1: 0 F1: 1
M2: 1 F2: 2
M3: 2 F3: 2
M4: 2 F4: 3
M5: 3 F5: 3
M6: 4 F6: 4
M7: 4 F7: 5
M8: 5 F8: 5
M9: 6 F9: 6
M10: 6 F10: 6
</pre>
 
=={{header|Tcl}}==
<syntaxhighlight lang="tcl">proc m {n} {
if { $n == 0 } { expr 0; } else {
expr {$n - [f [m [expr {$n-1}] ]]};
}
}
proc f {n} {
if { $n == 0 } { expr 1; } else {
expr {$n - [m [f [expr {$n-1}] ]]};
}
}
 
for {set i 0} {$i < 20} {incr i} {
puts -nonewline [f $i];
puts -nonewline " ";
}
puts ""
for {set i 0} {$i < 20} {incr i} {
puts -nonewline [m $i];
puts -nonewline " ";
}
puts ""</syntaxhighlight>
 
=={{header|TI-89 BASIC}}==
 
<syntaxhighlight lang="ti89b">Define F(n) = when(n=0, 1, n - M(F(n - 1)))
Define M(n) = when(n=0, 0, n - F(M(n - 1)))</syntaxhighlight>
 
=={{header|TXR}}==
 
<syntaxhighlight lang="txrlisp">(defun f (n)
(if (>= 0 n)
1
(- n (m (f (- n 1))))))
 
(defun m (n)
(if (>= 0 n)
0
(- n (f (m (- n 1))))))
 
(each ((n (range 0 15)))
(format t "f(~s) = ~s; m(~s) = ~s\n" n (f n) n (m n)))</syntaxhighlight>
 
<pre>$ txr mutual-recursion.txr
f(0) = 1; m(0) = 0
f(1) = 1; m(1) = 0
f(2) = 2; m(2) = 1
f(3) = 2; m(3) = 2
f(4) = 3; m(4) = 2
f(5) = 3; m(5) = 3
f(6) = 4; m(6) = 4
f(7) = 5; m(7) = 4
f(8) = 5; m(8) = 5
f(9) = 6; m(9) = 6
f(10) = 6; m(10) = 6
f(11) = 7; m(11) = 7
f(12) = 8; m(12) = 7
f(13) = 8; m(13) = 8
f(14) = 9; m(14) = 9
f(15) = 9; m(15) = 9</pre>
 
=={{header|uBasic/4tH}}==
{{trans|BBC BASIC}}
uBasic/4tH supports mutual recursion. However, the underlying system can't support the stress this puts on the stack - at least not for the full sequence. This version uses [https://en.wikipedia.org/wiki/Memoization memoization] to alleviate the stress and speed up execution.
<syntaxhighlight lang="text">LOCAL(1) ' main uses locals as well
 
FOR a@ = 0 TO 200 ' set the array
@(a@) = -1
NEXT
 
PRINT "F sequence:" ' print the F-sequence
FOR a@ = 0 TO 20
PRINT FUNC(_f(a@));" ";
NEXT
PRINT
 
PRINT "M sequence:" ' print the M-sequence
FOR a@ = 0 TO 20
PRINT FUNC(_m(a@));" ";
NEXT
PRINT
 
END
 
 
_f PARAM(1) ' F-function
IF a@ = 0 THEN RETURN (1) ' memoize the solution
IF @(a@) < 0 THEN @(a@) = a@ - FUNC(_m(FUNC(_f(a@ - 1))))
RETURN (@(a@)) ' return array element
 
 
_m PARAM(1) ' M-function
IF a@ = 0 THEN RETURN (0) ' memoize the solution
IF @(a@+100) < 0 THEN @(a@+100) = a@ - FUNC(_f(FUNC(_m(a@ - 1))))
RETURN (@(a@+100)) ' return array element</syntaxhighlight>
{{out}}
<pre>F sequence:
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13
M sequence:
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12
 
0 OK, 0:199</pre>
 
=={{header|UNIX Shell}}==
{{works with|Bourne Again SHell}}
<langsyntaxhighlight lang="bash">M()
{
local n
Line 596 ⟶ 4,326:
echo -n " "
done
echo</langsyntaxhighlight>
 
=={{header|x86 assemblyUrsala}}==
 
Forward declarations are not an issue in Ursala, which allows any
definition to depend on any symbol declared within the same
scope. However, cyclic dependences are not accepted unless the
programmer explicitly accounts for their semantics. If the recurrence
can be solved using a fixed point combinator, the compiler can be
directed to use one by the <code>#fix</code> directive as shown, in this case
with one of a family of functional fixed point combinators from
a library. (There are easier ways to define these functions in Ursala
than by mutual recursion, but fixed points are useful for other things as well.)
 
<syntaxhighlight lang="ursala">#import std
#import nat
#import sol
 
#fix general_function_fixer 0
 
F = ~&?\1! difference^/~& M+ F+ predecessor
M = ~&?\0! difference^/~& F+ M+ predecessor</syntaxhighlight>
This test program applies both functions to the first
twenty natural numbers.
<syntaxhighlight lang="ursala">#cast %nLW
 
test = ^(F*,M*) iota 20</syntaxhighlight>
{{out}}
<pre>
(
<1,1,2,2,3,3,4,5,5,6,6,7,8,8,9,9,10,11,11,12>,
<0,0,1,2,2,3,4,4,5,6,6,7,7,8,9,9,10,11,11,12>)</pre>
 
=={{header|Vala}}==
<syntaxhighlight lang="vala">int F(int n) {
if (n == 0) return 1;
return n - M(F(n - 1));
}
 
int M(int n) {
if (n == 0) return 0;
return n - F(M(n - 1));
}
 
void main() {
print("n : ");
for (int s = 0; s < 25; s++){
print("%2d ", s);
}
print("\n------------------------------------------------------------------------------\n");
print("F : ");
for (int s = 0; s < 25; s++){
print("%2d ", F(s));
}
print("\nM : ");
for (int s = 0; s < 25; s++){
print("%2d ", M(s));
}
}</syntaxhighlight>
{{out}}
<pre>
n : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
------------------------------------------------------------------------------
F : 1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13 13 14 14 15
M : 0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12 13 14 14 15
</pre>
 
=={{header|VBA}}==
<syntaxhighlight lang="vb">Private Function F(ByVal n As Integer) As Integer
If n = 0 Then
F = 1
Else
F = n - M(F(n - 1))
End If
End Function
 
Private Function M(ByVal n As Integer) As Integer
If n = 0 Then
M = 0
Else
M = n - F(M(n - 1))
End If
End Function
 
Public Sub MR()
Dim i As Integer
For i = 0 To 20
Debug.Print F(i);
Next i
Debug.Print
For i = 0 To 20
Debug.Print M(i);
Next i
End Sub</syntaxhighlight>{{out}}
<pre> 1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12 </pre>
 
=={{header|Wren}}==
<syntaxhighlight lang="wren">var F = Fn.new { |n|
if (n == 0) return 1
return n - M.call(F.call(n-1))
}
 
var M = Fn.new { |n|
if (n == 0) return 0
return n - F.call(M.call(n-1))
}
 
System.write("F(0..20): ")
(0..20).each { |i| System.write("%(F.call(i)) ") }
System.write("\nM(0..20): ")
(0..20).each { |i| System.write("%(M.call(i)) ") }
System.print()</syntaxhighlight>
 
{{out}}
<pre>
F(0..20): 1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13
M(0..20): 0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 12
</pre>
 
=={{header|x86 Assembly}}==
{{works with|nasm}}
 
Since all "labels" (symbols), if not ''local'', can be seen by the whole code in the same source unit, we don't need special care to let the subroutine <tt>func_f</tt> call <tt>func_m</tt>. If the function would have been in another source unit, we should have declared it <tt>extern</tt> (the linker will resolve the symbol), as done for <tt>printf</tt>.<br>
(It must be linked with the C standard library <tt>libc</tt> or similar and a startup code; lazyly a <tt>gcc mutrec.o</tt> works, being <tt>mutrec.o</tt> produced by e.g. <tt>nasm -f elf mutrec.asm</tt>)
<langsyntaxhighlight x86lang="asm"> global main
extern printf
 
Line 683 ⟶ 4,532:
db 10,0
 
end</langsyntaxhighlight>
 
=={{header|XPL0}}==
<syntaxhighlight lang="xpl0">code ChOut=8, CrLf=9, IntOut=11;
 
ffunc M; \forward-referenced function declaration
 
func F(N);
int N;
return if N=0 then 1 else N - M(F(N-1));
 
func M(N);
int N;
return if N=0 then 0 else N - F(M(N-1));
 
int I;
[for I:= 0 to 19 do [IntOut(0, F(I)); ChOut(0, ^ )];
CrLf(0);
for I:= 0 to 19 do [IntOut(0, M(I)); ChOut(0, ^ )];
CrLf(0);
]</syntaxhighlight>
 
{{out}}
<pre>
1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12
0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12
</pre>
 
=={{header|Yabasic}}==
{{trans|AWK}}
<syntaxhighlight lang="yabasic">// User defined functions
sub F(n)
if n = 0 return 1
return n - M(F(n-1))
end sub
 
sub M(n)
if n = 0 return 0
return n - F(M(n-1))
end sub
 
for i = 0 to 20
print F(i) using "###";
next
print
for i = 0 to 20
print M(i) using "###";
next
print</syntaxhighlight>
 
=={{header|zkl}}==
This works if the functions are in a file or on one line (in the REPL) as
zkl doesn't like referencing undefined objects. You could also pass/close the other function.
<syntaxhighlight lang="zkl">fcn f(n){ if(n==0)return(1); n-m(f(n-1,m),f) }
fcn m(n){ if(n==0)return(0); n-f(m(n-1,f),m) }
[0..19].apply(f).println(); // or foreach n in ([0..19]){ print(f(n)," ") }
[0..19].apply(m).println(); // or foreach n in ([0..19]){ print(m(n)," ") }</syntaxhighlight>
{{out}}
<pre>
L(1,1,2,2,3,3,4,5,5,6,6,7,8,8,9,9,10,11,11,12)
L(0,0,1,2,2,3,4,4,5,6,6,7,7,8,9,9,10,11,11,12)
</pre>
2,114

edits