Munching squares: Difference between revisions

m
→‎{{header|Wren}}: Changed to Wren S/H
(Added python example.)
m (→‎{{header|Wren}}: Changed to Wren S/H)
 
(116 intermediate revisions by 57 users not shown)
Line 1:
{{draft task|Raster graphics operations}}[[Category:Graphics algorithms]]
[[Category:Graphics algorithms]]
Render a graphical pattern where each pixel is colored by the value of 'x xor y' from a color table.
{{omit from|GUISS}}
{{omit from|Lilypond}}
Render a graphical pattern where each pixel is colored by the value of 'x xor y' from an arbitrary [[wp:color table|color table]].
 
=={{header|Action!}}==
<syntaxhighlight lang="action!">PROC PutBigPixel(BYTE x,y,c)
BYTE i
 
Color=c
x=x*3+16
y=y*12
FOR i=0 TO 11
DO
Plot(x,y+i)
DrawTo(x+2,y+i)
OD
RETURN
 
PROC Main()
BYTE
CH=$02FC, ;Internal hardware value for last key pressed
x,y
 
Graphics(9)
 
FOR y=0 TO 15
DO
FOR x=0 TO 15
DO
PutBigPixel(x,y,x!y)
OD
OD
 
DO UNTIL CH#$FF OD
CH=$FF
RETURN</syntaxhighlight>
{{out}}
[https://gitlab.com/amarok8bit/action-rosetta-code/-/raw/master/images/Munching_squares.png Screenshot from Atari 8-bit computer]
 
=={{header|Ada}}==
{{libheader|GtkAda}}
Uses the Cairo component of GtkAda to create and save as png
<langsyntaxhighlight Adalang="ada">with Cairo; use Cairo;
with Cairo.Png; use Cairo.Png;
with Cairo.Image_Surface; use Cairo.Image_Surface;
Line 25 ⟶ 63:
Status := Write_To_Png (Surface, "AdaXorPattern.png");
pragma Assert (Status = Cairo_Status_Success);
end XorPattern;</langsyntaxhighlight>
{{out}} [[Image:AdaXorPattern.png|Ada Output|200px]]
 
=={{header|ATS}}==
 
<syntaxhighlight lang="ats">
#include "share/atspre_staload.hats"
 
(* uint2uchar0 seems to have a definition in the prelude, but no
implementation. Such incompletenesses are common, but usually
easily overcome. Here I simply redefine uint2uchar0 locally,
letting C do the casting. *)
extern castfn uint2uchar0 : uint -<> uchar
 
(* write_pam writes a Portable Arbitrary Map to standard output. It
XORs the positions of colors in a palette of size equal to a power
of two, containing RGB colors in the usual hex format. The palette
is otherwise arbitrary. *)
fn
write_pam {expnt : nat}
{numcolors : nat}
(* The palette size must be proven to be a power of two. *)
(pf : EXP2 (expnt, numcolors) |
palette : &array (uint, numcolors),
numcolors : uint numcolors) : void =
let
fun
loop {x, y : nat | x <= numcolors; y <= numcolors}
.<numcolors - y, numcolors - x>.
(palette : &array (uint, numcolors),
x : uint x,
y : uint y) : void =
if y = numcolors then
()
else if x = numcolors then
loop (palette, 0u, succ y)
else
let
val i = g1ofg0 (x lxor y)
 
(* Prove that the index is non-negative. *)
prval () = lemma_g1uint_param i
 
(* Test that the index is not out of bounds high. This could
be proven without a runtime check, but doing that is left
as an exercise for an advanced reader. For one thing, you
will need a more complicated version of lxor. Then you
will need to prove, or provide as an axiom, that the XOR
of two numbers of the same number of significant bits is
itself restricted to that number of bits. *)
val () = assertloc (i < numcolors)
 
val color = palette[i]
val r = uint2uchar0 (color >> 16)
and g = uint2uchar0 ((color >> 8) land 0xFFu)
and b = uint2uchar0 (color land 0xFFu)
in
print! (r, g, b);
loop (palette, succ x, y)
end
in
println! ("P7");
println! ("WIDTH ", numcolors);
println! ("HEIGHT ", numcolors);
println! ("DEPTH 3");
println! ("MAXVAL 255");
println! ("TUPLTYPE RGB");
println! ("ENDHDR");
loop (palette, 0u, 0u)
end
 
prfn (* Produces a proof that 2**7 = 128. *)
exp2_of_7_is_128 () :<prf> EXP2 (7, 128) =
EXP2ind (EXP2ind (EXP2ind (EXP2ind
(EXP2ind (EXP2ind (EXP2ind (EXP2bas ())))))))
 
implement
main0 () =
let
(* 128 RGB colors borrowed from
https://github.com/yeun/open-color *)
var palette : array (uint, 128) =
@[uint][128]
(0xe9ecefu, 0xdee2e6u, 0xced4dau, 0xadb5bdu, 0x868e96u, 0x495057u,
0x343a40u, 0x212529u, 0xfff5f5u, 0xffe3e3u, 0xffc9c9u, 0xffa8a8u,
0xff8787u, 0xff6b6bu, 0xfa5252u, 0xf03e3eu, 0xe03131u, 0xc92a2au,
0xfff0f6u, 0xffdeebu, 0xfcc2d7u, 0xfaa2c1u, 0xf783acu, 0xf06595u,
0xe64980u, 0xd6336cu, 0xc2255cu, 0xa61e4du, 0xf8f0fcu, 0xf3d9fau,
0xeebefau, 0xe599f7u, 0xda77f2u, 0xcc5de8u, 0xbe4bdbu, 0xae3ec9u,
0x9c36b5u, 0x862e9cu, 0xf3f0ffu, 0xe5dbffu, 0xd0bfffu, 0xb197fcu,
0x9775fau, 0x845ef7u, 0x7950f2u, 0x7048e8u, 0x6741d9u, 0x5f3dc4u,
0xedf2ffu, 0xdbe4ffu, 0xbac8ffu, 0x91a7ffu, 0x748ffcu, 0x5c7cfau,
0x4c6ef5u, 0x4263ebu, 0x3b5bdbu, 0x364fc7u, 0xe7f5ffu, 0xd0ebffu,
0xa5d8ffu, 0x74c0fcu, 0x4dabf7u, 0x339af0u, 0x228be6u, 0x1c7ed6u,
0x1971c2u, 0x1864abu, 0xe3fafcu, 0xc5f6fau, 0x99e9f2u, 0x66d9e8u,
0x3bc9dbu, 0x22b8cfu, 0x15aabfu, 0x1098adu, 0x0c8599u, 0x0b7285u,
0xe6fcf5u, 0xc3fae8u, 0x96f2d7u, 0x63e6beu, 0x38d9a9u, 0x20c997u,
0x12b886u, 0x0ca678u, 0x099268u, 0x087f5bu, 0xebfbeeu, 0xd3f9d8u,
0xb2f2bbu, 0x8ce99au, 0x69db7cu, 0x51cf66u, 0x40c057u, 0x37b24du,
0x2f9e44u, 0x2b8a3eu, 0xf4fce3u, 0xe9fac8u, 0xd8f5a2u, 0xc0eb75u,
0xa9e34bu, 0x94d82du, 0x82c91eu, 0x74b816u, 0x66a80fu, 0x5c940du,
0xfff9dbu, 0xfff3bfu, 0xffec99u, 0xffe066u, 0xffd43bu, 0xfcc419u,
0xfab005u, 0xf59f00u, 0xf08c00u, 0xe67700u, 0xfff4e6u, 0xffe8ccu,
0xffd8a8u, 0xffc078u, 0xffa94du, 0xff922bu, 0xfd7e14u, 0xf76707u,
0xe8590cu, 0xd9480fu)
in
write_pam (exp2_of_7_is_128 () | palette, 128u)
end
</syntaxhighlight>
 
Here I use Netpbm to make a PNG, but you could use, for instance, ImageMagick instead. (Then I generally run my PNGs through optipng before posting them.)
<pre>patscc -std=gnu2x -g -O2 munching_squares.dats && ./a.out | pamtopng > image.png</pre>
{{out}}
[[File:Munching squares ATS.png|alt=A geometric mosaic in 128 arbitrarily chosen colors.]]
 
=={{header|AWK}}==
{{works with|gawk}}
This program generates a PPM image, that you can view/convert using The GIMP or ImageMagick
<syntaxhighlight lang="awk">
BEGIN {
# square size
s = 256
# the PPM image header needs 3 lines:
# P3
# width height
# max colors number (per channel)
print("P3\n", s, s, "\n", s - 1)
# and now we generate pixels as a RGB pair in a relaxed
# form "R G B\n"
for (x = 0; x < s; x++) {
for (y = 0; y < s; y++) {
p = xor(x, y)
print(0, p, p)
}
}
}
</syntaxhighlight>
 
=={{header|BASIC}}==
==={{header|Applesoft BASIC}}===
<syntaxhighlight lang="gwbasic"> 100 DATA 0,2, 6,10,5, 6, 7,15
110 DATA 0,1, 3,10,5, 3,11,15
120 DATA 0,8, 9,10,5, 9,13,15
130 DATA 0,4,12,10,5,12,14,15
140 LET C = 7
150 POKE 768,169: REM LDA #
160 POKE 770,073: REM EOR #
170 POKE 772,133: REM STA
180 POKE 773,235: REM $EB
190 POKE 774,096: REM RTS
200 GR
210 FOR H = 0 TO 1
220 FOR W = 0 TO 1
230 FOR S = 0 TO C
240 READ C(S)
250 NEXT S
260 FOR Y = 0 TO C
270 POKE 769,Y
280 LET Y1 = H * S * 2 + Y * 2
290 FOR X = 0 TO C
300 POKE 771,X
310 CALL 768
320 COLOR= C( PEEK (235))
330 VLIN Y1,Y1 + 1 AT W * S + X
340 NEXT X,Y,W,H</syntaxhighlight>
 
 
==={{header|BBC BASIC}}===
{{works with|BBC BASIC for Windows}}
<syntaxhighlight lang="bbcbasic"> size% = 256
 
VDU 23,22,size%;size%;8,8,16,0
OFF
 
DIM coltab%(size%-1)
FOR I% = 0 TO size%-1
coltab%(I%) = ((I% AND &FF) * &010101) EOR &FF0000
NEXT
 
GCOL 1
FOR I% = 0 TO size%-1
FOR J% = 0 TO size%-1
C% = coltab%(I% EOR J%)
COLOUR 1, C%, C%>>8, C%>>16
PLOT I%*2, J%*2
NEXT
NEXT I%
 
REPEAT WAIT 1 : UNTIL FALSE
</syntaxhighlight>
 
==={{header|Commodore BASIC}}===
{{works with|Commodore BASIC|4.0}}
The TED machines (C-16, Plus/4) are the only Commodore 8-bits with a large- or structured- enough color palette to make this interesting. Here's an extremely low-res version (40x25 character-sized "pixels"):
 
<syntaxhighlight lang="basic">100 FOR I=0 TO 24
110 : Y=INT(I*127/24)
120 : FOR J=0 TO 39
130 : X=INT(J*127/39)
140 : HL = (X OR Y) AND NOT (X AND Y)
150 : H = INT(HL / 8)
160 : L = HL - 8 * H
170 : POKE 2048+I*40+J,L*16+H
180 : POKE 3072+I*40+J,160
190 : NEXT J
210 NEXT I
220 GETKEY K$</syntaxhighlight>
{{Out}}
[https://imgur.com/a/pjl2Pd4 Screenshot.]
 
==={{header|Craft Basic}}===
<syntaxhighlight lang="basic">let s = 255
 
for y = 0 to s
 
for x = 0 to s
 
let r = x ~ y
fgcolor r, r * 2, r * 3
dot x, y
 
wait
 
next x
 
next y</syntaxhighlight>
 
==={{header|FreeBASIC}}===
<syntaxhighlight lang="freebasic">' version 03-11-2016
' compile with: fbc -s gui
 
Dim As ULong x, y, r, w = 256
 
ScreenRes w, w, 32
 
For x = 0 To w -1
For y = 0 To w -1
r =(x Xor y) And 255
PSet(x, y), RGB(r, r , r) ' gray scale
' PSet(x, y), RGB(r, 255 - r, 0) ' red + green
' PSet(x, y), RGB(r, 0, 0) ' red
Next
Next
 
' empty keyboard buffer
While Inkey <> "" : Wend
WindowTitle "Close window or hit any key to end program"
Sleep
End</syntaxhighlight>
 
==={{header|Liberty BASIC}}===
<syntaxhighlight lang="lb">
nomainwin
 
w =512
' allow for title bar and window border
WindowWidth =w +2
WindowHeight =w +34
 
open "XOR Pattern" for graphics_nsb_nf as #w
 
#w "trapclose quit"
 
#w "down"
 
for x =0 to w -1
for y =0 to w -1
b =( x xor y) and 255
print b
#w "color "; 255 -b; " "; b /2; " "; b
#w "set "; x; " "; w -y -1
scan
next y
next x
 
#w "flush"
 
wait
 
sub quit j$
close #w
end
end sub
</syntaxhighlight>
Image available at [[http://www.diga.me.uk/xorRC.gif]]
 
==={{header|Microsoft Small Basic}}===
<syntaxhighlight lang="smallbasic">' Munching squares - smallbasic - 27/07/2018
size=256
GraphicsWindow.Width=size
GraphicsWindow.Height=size
For i=0 To size-1
For j=0 To size-1
BitXor() 'color=i Xor j
GraphicsWindow.SetPixel(i,j,GraphicsWindow.GetColorFromRGB(0,color,color))
EndFor
EndFor
 
Sub BitXor '(i,j)->color
n=i
Int2Bit()
ib=ret
n=j
Int2Bit()
jb=ret
color=0
For k=1 to 8
ki=Text.GetSubText(ib,k,1)
kj=Text.GetSubText(jb,k,1)
If ki="1" Or kj="1" Then
kk="1"
Else
kk="0"
EndIf
If ki="1" And kj="1" Then
kk="0"
EndIf
color=2*color+kk
EndFor
EndSub
 
Sub Int2Bit 'n->ret
x=n
ret=""
For k=1 to 8
t=Math.Floor(x/2)
r=Math.Remainder(x,2)
ret=Text.Append(r,ret)
x=t
EndFor
EndSub </syntaxhighlight>
{{out}}
[https://github.com/Pat-Garrett/RC/blob/master/Munching%20squares%20-%20vbnet.jpg Munching squares - SmallBasic]
 
==={{header|PureBasic}}===
<syntaxhighlight lang="purebasic">#palletteSize = 128
Procedure.f XorPattern(x, y) ;compute the gradient value from the pixel values
Protected result = x ! y
ProcedureReturn Mod(result, #palletteSize) / #palletteSize
EndProcedure
 
Procedure drawPattern()
StartDrawing(ImageOutput(0))
DrawingMode(#PB_2DDrawing_Gradient)
CustomGradient(@XorPattern())
;specify a gradient pallette from which only specific indexes will be used
For i = 1 To #palletteSize
GradientColor(1 / i, i * $BACE9B) ; or alternatively use $BEEFDEAD
Next
Box(0, 0, ImageWidth(0), ImageHeight(0))
StopDrawing()
EndProcedure
 
If OpenWindow(0, 0, 0, 128, 128, "XOR Pattern", #PB_Window_SystemMenu)
CreateImage(0, WindowWidth(0), WindowHeight(0))
drawPattern()
ImageGadget(0, 0, 0, ImageWidth(0), ImageHeight(0), ImageID(0))
Repeat
event = WaitWindowEvent(20)
Until event = #PB_Event_CloseWindow
EndIf</syntaxhighlight>
[[File:PureBasic_XOR_Pattern.png|Sample display of PureBasic solution|200px]]
 
==={{header|QBasic}}===
<syntaxhighlight lang="qbasic">w = 254
 
SCREEN 13
VIEW (0, 0)-(w / 2, w / 2), , 0
 
FOR x = 0 TO w
FOR y = 0 TO w
COLOR ((x XOR y) AND 255)
PSET (x, y)
NEXT y
NEXT x</syntaxhighlight>
 
==={{header|RapidQ}}===
{{trans|FreeBASIC}}
<syntaxhighlight lang="rapidq">
'Munching squares
DECLARE SUB PaintCanvas
 
CREATE Form AS QForm
ClientWidth = 256
ClientHeight = 256
CREATE Canvas AS QCanvas
Height = Form.ClientHeight
Width = Form.ClientWidth
OnPaint = PaintCanvas
END CREATE
END CREATE
 
SUB PaintCanvas
FOR X = 0 TO Canvas.Width - 1
FOR Y = 0 TO Canvas.Width - 1
R = (X XOR Y) AND 255
Canvas.Pset(X, Y, RGB(R, R, R)) ' gray scale
'Canvas.Pset(X, Y, RGB(R, 255 - R, 0)) ' red + green
'Canvas.Pset(X, Y, RGB(R, 0, 0)) ' red
NEXT Y
NEXT X
END SUB
 
Form.ShowModal
</syntaxhighlight>
 
==={{header|Run BASIC}}===
<syntaxhighlight lang="runbasic">w = 100
graphic #g, w,w
for x = 0 to w
for y = 0 to w
b = (x xor y) and 255
#g color(255 -b,b /2,b)
#g "set "; x; " "; w -y -1
next y
next x
render #g
#g "flush"</syntaxhighlight>
 
==={{header|TI-83 BASIC}}===
Due to the TI-83's 1 bit black and white display, this program uses the home screen and a gradient of characters. Since the TI-83 does not use a standard encoding, the first Sto→ to Str1 may be subjectively interpreted.
<syntaxhighlight lang="ti-83b">PROGRAM:XORPATT
" •.-,+-°-1+o*:πOX"→Str1
 
ClrHome
 
{0,0,0,0}→L1
{0,0,0,0)→L2
 
For(I,1,8,1)
For(J,1,16,1)
J→A
I→B
 
If A>8
Then
A-8→A
1→L1(1)
Else
0→L1(1)
End
 
If A>4
Then
A-4→A
1→L1(2)
Else
0→L1(2)
End
 
If A>2
Then
A-2→A
1→L1(3)
Else
0→L1(3)
End
 
If A>1
Then
1→L1(4)
Else
0→L1(4)
End
 
0→L2(1)
 
If B>4
Then
B-4→B
1→L2(2)
Else
0→L2(2)
End
 
If B>2
Then
B-2→B
1→L2(3)
Else
0→L2(3)
End
 
If B>1
Then
1→L2(4)
Else
0→L2(4)
End
 
L1≠L2→L3
8L3(1)+4L3(2)+2L3(3)+L3(4)→C
Output(I,J,sub(Str1,C+1,1))
 
End
End
Pause
</syntaxhighlight>
 
==={{header|Visual Basic .NET}}===
{{works with|Visual Basic .NET|2011}}
<syntaxhighlight lang="vbnet">' Munching squares - 27/07/2018
Public Class MunchingSquares
Const xsize = 256
Dim BMP As New Drawing.Bitmap(xsize, xsize)
Dim GFX As Graphics = Graphics.FromImage(BMP)
 
Private Sub MunchingSquares_Paint(sender As Object, e As PaintEventArgs) Handles Me.Paint
'draw
Dim MyGraph As Graphics = Me.CreateGraphics
Dim nColor As Color
Dim i, j, cp As Integer
xPictureBox.Image = BMP
For i = 0 To xsize - 1
For j = 0 To xsize - 1
cp = i Xor j
nColor = Color.FromArgb(cp, 0, cp)
BMP.SetPixel(i, j, nColor)
Next j
Next i
End Sub 'Paint
 
End Class </syntaxhighlight>
{{out}}
[https://github.com/Pat-Garrett/RC/blob/7e9842513d361a5b4241bc6bb28f9985c2bfe161/Munching%20squares%20-%20vbnet.jpg Munching squares - vbnet]
 
==={{header|Yabasic}}===
{{trans|FreeBASIC}}
<syntaxhighlight lang="yabasic">w = 256
open window w, w
For x = 0 To w-1
For y = 0 To w-1
r =and(xor(x, y), 255)
color r, and(r*2, 255), and(r*3, 255)
dot x, y
Next
Next</syntaxhighlight>
 
=={{header|Befunge}}==
Writes the image to stdout using the PPM format.
<syntaxhighlight lang="befunge">55+::"3P",,,28*:*::..\,:.\,:v
>2%*28*:**-2/\1-:v<:8:-1<_@ v
^\-1*2%2/*:*82::\_$0.0..:^:*<</syntaxhighlight>
 
=={{header|BQN}}==
Outputs a string that represents a PPM image.
 
BQN uses the <code>•bit</code> namespace for native bitwise operations, including casting. An input bit width and output bit width have to be given.
<syntaxhighlight lang="bqn">nl←@+10
XORppm ← {
g←⥊(0∾∾˜)¨((↕𝕩)16‿16•bit._xor⊢)˘↕𝕩
s←•Repr 𝕩
h←"P3"∾nl∾s∾" "∾s∾nl∾(•Repr 𝕩-1)∾nl
h∾∾∾⟜nl¨{¯1↓∾∾⟜' '¨•Repr¨𝕩}¨g
}</syntaxhighlight>
Example usage:
<syntaxhighlight lang="bqn">"xor.ppm" •FChars XORppm 256</syntaxhighlight>
 
=={{header|Burlesque}}==
 
<syntaxhighlight lang="burlesque">
blsq ) 0 25r@{0 25r@\/{$$Sh2' P[}\/+]m[}m[sp
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14 17 16 19 18 21 20 23 22 25 24
2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13 18 19 16 17 22 23 20 21 26 27
3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12 19 18 17 16 23 22 21 20 27 26
4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11 20 21 22 23 16 17 18 19 28 29
5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10 21 20 23 22 17 16 19 18 29 28
6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9 22 23 20 21 18 19 16 17 30 31
7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 23 22 21 20 19 18 17 16 31 30
8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 24 25 26 27 28 29 30 31 16 17
9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6 25 24 27 26 29 28 31 30 17 16
10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5 26 27 24 25 30 31 28 29 18 19
11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4 27 26 25 24 31 30 29 28 19 18
12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3 28 29 30 31 24 25 26 27 20 21
13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2 29 28 31 30 25 24 27 26 21 20
14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1 30 31 28 29 26 27 24 25 22 23
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 23 22
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3 4 5 6 7 8 9
17 16 19 18 21 20 23 22 25 24 27 26 29 28 31 30 1 0 3 2 5 4 7 6 9 8
18 19 16 17 22 23 20 21 26 27 24 25 30 31 28 29 2 3 0 1 6 7 4 5 10 11
19 18 17 16 23 22 21 20 27 26 25 24 31 30 29 28 3 2 1 0 7 6 5 4 11 10
20 21 22 23 16 17 18 19 28 29 30 31 24 25 26 27 4 5 6 7 0 1 2 3 12 13
21 20 23 22 17 16 19 18 29 28 31 30 25 24 27 26 5 4 7 6 1 0 3 2 13 12
22 23 20 21 18 19 16 17 30 31 28 29 26 27 24 25 6 7 4 5 2 3 0 1 14 15
23 22 21 20 19 18 17 16 31 30 29 28 27 26 25 24 7 6 5 4 3 2 1 0 15 14
24 25 26 27 28 29 30 31 16 17 18 19 20 21 22 23 8 9 10 11 12 13 14 15 0 1
25 24 27 26 29 28 31 30 17 16 19 18 21 20 23 22 9 8 11 10 13 12 15 14 1 0
</syntaxhighlight>
 
Must be converted to an image with a seperate program.
 
=={{header|C}}==
<langsyntaxhighlight lang="c">#include <stdlib.h>
#include <stdio.h>
#include <math.h>
Line 72 ⟶ 701:
 
return 0;
}</langsyntaxhighlight>
{{out}} [[Image:Xor_pattern_c.png|C output|200px]]
 
=={{header|C sharp}}==
<langsyntaxhighlight lang="csharp">using System.Drawing;
using System.Drawing.Imaging;
using System.Linq;
Line 99 ⟶ 728:
}
}
}</langsyntaxhighlight>
{{out}}
Output:
 
[[File:XORPatternCSharp.png|XORPatternCSharp.png]]
 
=={{header|C++}}==
[[File:msquares_cpp2.png|300px]]
<syntaxhighlight lang="cpp">
#include <windows.h>
#include <string>
 
//--------------------------------------------------------------------------------------------------
using namespace std;
 
//--------------------------------------------------------------------------------------------------
const int BMP_SIZE = 512;
 
//--------------------------------------------------------------------------------------------------
class myBitmap
{
public:
myBitmap() : pen( NULL ), brush( NULL ), clr( 0 ), wid( 1 ) {}
~myBitmap()
{
DeleteObject( pen );
DeleteObject( brush );
DeleteDC( hdc );
DeleteObject( bmp );
}
bool create( int w, int h )
{
BITMAPINFO bi;
ZeroMemory( &bi, sizeof( bi ) );
bi.bmiHeader.biSize = sizeof( bi.bmiHeader );
bi.bmiHeader.biBitCount = sizeof( DWORD ) * 8;
bi.bmiHeader.biCompression = BI_RGB;
bi.bmiHeader.biPlanes = 1;
bi.bmiHeader.biWidth = w;
bi.bmiHeader.biHeight = -h;
HDC dc = GetDC( GetConsoleWindow() );
bmp = CreateDIBSection( dc, &bi, DIB_RGB_COLORS, &pBits, NULL, 0 );
if( !bmp ) return false;
hdc = CreateCompatibleDC( dc );
SelectObject( hdc, bmp );
ReleaseDC( GetConsoleWindow(), dc );
width = w; height = h;
return true;
}
void clear( BYTE clr = 0 )
{
memset( pBits, clr, width * height * sizeof( DWORD ) );
}
void setBrushColor( DWORD bClr )
{
if( brush ) DeleteObject( brush );
brush = CreateSolidBrush( bClr );
SelectObject( hdc, brush );
}
void setPenColor( DWORD c ) { clr = c; createPen(); }
void setPenWidth( int w ) { wid = w; createPen(); }
void saveBitmap( string path )
{
BITMAPFILEHEADER fileheader;
BITMAPINFO infoheader;
BITMAP bitmap;
DWORD wb;
GetObject( bmp, sizeof( bitmap ), &bitmap );
DWORD* dwpBits = new DWORD[bitmap.bmWidth * bitmap.bmHeight];
ZeroMemory( dwpBits, bitmap.bmWidth * bitmap.bmHeight * sizeof( DWORD ) );
ZeroMemory( &infoheader, sizeof( BITMAPINFO ) );
ZeroMemory( &fileheader, sizeof( BITMAPFILEHEADER ) );
infoheader.bmiHeader.biBitCount = sizeof( DWORD ) * 8;
infoheader.bmiHeader.biCompression = BI_RGB;
infoheader.bmiHeader.biPlanes = 1;
infoheader.bmiHeader.biSize = sizeof( infoheader.bmiHeader );
infoheader.bmiHeader.biHeight = bitmap.bmHeight;
infoheader.bmiHeader.biWidth = bitmap.bmWidth;
infoheader.bmiHeader.biSizeImage = bitmap.bmWidth * bitmap.bmHeight * sizeof( DWORD );
fileheader.bfType = 0x4D42;
fileheader.bfOffBits = sizeof( infoheader.bmiHeader ) + sizeof( BITMAPFILEHEADER );
fileheader.bfSize = fileheader.bfOffBits + infoheader.bmiHeader.biSizeImage;
GetDIBits( hdc, bmp, 0, height, ( LPVOID )dwpBits, &infoheader, DIB_RGB_COLORS );
HANDLE file = CreateFile( path.c_str(), GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL );
WriteFile( file, &fileheader, sizeof( BITMAPFILEHEADER ), &wb, NULL );
WriteFile( file, &infoheader.bmiHeader, sizeof( infoheader.bmiHeader ), &wb, NULL );
WriteFile( file, dwpBits, bitmap.bmWidth * bitmap.bmHeight * 4, &wb, NULL );
CloseHandle( file );
delete [] dwpBits;
}
HDC getDC() const { return hdc; }
int getWidth() const { return width; }
int getHeight() const { return height; }
private:
void createPen()
{
if( pen ) DeleteObject( pen );
pen = CreatePen( PS_SOLID, wid, clr );
SelectObject( hdc, pen );
}
HBITMAP bmp;
HDC hdc;
HPEN pen;
HBRUSH brush;
void *pBits;
int width, height, wid;
DWORD clr;
};
//--------------------------------------------------------------------------------------------------
class mSquares
{
public:
mSquares()
{
bmp.create( BMP_SIZE, BMP_SIZE );
createPallete();
}
 
void draw()
{
HDC dc = bmp.getDC();
for( int y = 0; y < BMP_SIZE; y++ )
for( int x = 0; x < BMP_SIZE; x++ )
{
int c = ( x ^ y ) % 256;
SetPixel( dc, x, y, clrs[c] );
}
 
BitBlt( GetDC( GetConsoleWindow() ), 30, 30, BMP_SIZE, BMP_SIZE, dc, 0, 0, SRCCOPY );
//bmp.saveBitmap( "f:\\rc\\msquares_cpp.bmp" );
}
 
private:
void createPallete()
{
for( int x = 0; x < 256; x++ )
clrs[x] = RGB( x<<1, x, x<<2 );//rand() % 180 + 50, rand() % 200 + 50, rand() % 180 + 50 );
}
 
unsigned int clrs[256];
myBitmap bmp;
};
//--------------------------------------------------------------------------------------------------
int main( int argc, char* argv[] )
{
ShowWindow( GetConsoleWindow(), SW_MAXIMIZE );
srand( GetTickCount() );
mSquares s; s.draw();
return system( "pause" );
}
//--------------------------------------------------------------------------------------------------
</syntaxhighlight>
 
=={{header|Clojure}}==
The fun part of munching squares isn't color tables, it's watching them munch:
 
<syntaxhighlight lang="clojure">(let [n 16]
(loop [i 0]
(print "\033[0;0f\033[2J")
(doseq [y (range n)]
(doseq [x (range n)]
(print (if (< (bit-xor x y) i) "█" " ")))
(print "\n"))
(flush)
(Thread/sleep 150)
(recur (mod (inc i) (inc n)))))
</syntaxhighlight>
 
=={{header|Evaldraw}}==
 
Since all variables in Evaldraw are doubles, convert to binary and do a custom per bit xor operation.
 
[[File:Evaldraw xor squares.gif|thumb|alt=xor pattern where color is the result of xor(x,y) over values x from 0 to 128 and y to 128|Coloring the xor munching squares pattern over time]]
 
<syntaxhighlight lang="c">enum{NUMBITS=7, MAXNUMS=3}
static binary[MAXNUMS][NUMBITS];
() {
cls(0);
t = 100*klock();
for(y = 0; y < 128; y++) {
decToBin(y,1);
for(x = 0; x < 128; x++) {
decToBin(x,0);
xor(0,1,2);
c = binToDec(2);
setcol(hsv_to_rgb( (t+c*1)%360,.8,1) );
setpix(x,y);
}
}
}
 
binToDec(id) {
num = 0;
for(i=0; i<NUMBITS; i++) {
if( binary[id][i] == 1) {
num += 2^(NUMBITS-i-1);
}
}
return num;
}
 
decToBin(num,id) {
for(i=0; i<NUMBITS; i++) binary[id][i] = 0;
bitpos = NUMBITS-1;
while( num > 0 && bitpos >= 0) {
binary[id][bitpos] = num % 2 == 1;
bitpos--; // ready for next bit
num = int(num/2);
}
}
 
xor(num1,num2,store) {
for(i=0; i<NUMBITS; i++)
if(binary[num1][i] == binary[num2][i]) binary[store][i] = 0; else binary[store][i] = 1;
}</syntaxhighlight>
 
=={{header|D}}==
<syntaxhighlight lang="d">void main() {
<lang d>import std.stdio;
import std.stdio;
 
void main() {
enum width = 512, height = 512;
 
auto f = File("xor_pattern.ppm", "wb");
f.writefln("P6\n%d %d\n255", width, height);
foreach (immutable y; 0 .. height)
foreach (immutable x; 0 .. width) {
ubyteimmutable c = (x ^ y) & ubyte.max;
f.rawWrite(cast(immutable ubyte[3]) u3 = [255 - c, c / 2, c]);
f.rawWrite(u3);
}
}</langsyntaxhighlight>
 
=={{header|GnuplotDelphi}}==
{{works with|Delphi|6.0}}
{{libheader|Windows,Types,ExtCtrls,Graphics}}
 
<lang gnuplot>set pm3d map
set size square
set isosamples 255,255
splot [0:255][0:255]-(floor(x)^floor(y))</lang>
 
<syntaxhighlight lang="Delphi">
[[Image:gnuplot_xor.png|D output|200px]]
procedure MunchingSquares(Image: TImage);
{XOR's X and Y to select an RGB level}
var W,H,X,Y: integer;
begin
W:=Image.Width;
H:=Image.Height;
for Y:=0 to Image.Height-1 do
for X:=0 to Image.Width-1 do
begin
Image.Canvas.Pixels[X,Y]:=RGB(0,X xor Y,0);
end;
end;
 
</syntaxhighlight>
=={{header|Haskell}}==
{{out}}
<lang haskell>import Data.ByteString
[[File:DelphiMunchingSquares.png|thumb|none]]
import Data.Bits
<pre>
 
</pre>
main = Data.ByteString.writeFile "out.pgm" (pack (fmap (fromIntegral . fromEnum) "P5\n256 256\n256\n" ++ [x `xor` y | x <- [0..255], y <- [0..255]]))
 
</lang>
=={{header|EasyLang}}==
 
[https://easylang.dev/show/#cod=VYxLCoAwDET3PcWsFWqL4s7DaK0f0BZSEb29iRTBZDHJG2aSQwdrDCq0jZoi4QL1YfZGfgCC7j/iWTg1rEcfRpHrjd1o62xL6SKVH4hbpJo5b0Z7PD2nCiTHUZFskHeHwBJG2+8QUyutHg== Run it]
 
<syntaxhighlight lang="easylang">
sc = 100 / 64
for x range0 64
for y range0 64
h = bitand bitxor x y 63
c = h / 63
color3 c c c
move x * sc y * sc
rect sc + 0.1 sc + 0.1
.
.
</syntaxhighlight>
 
=={{header|EchoLisp}}==
Use the '''plot''' library, hsv->rgb ((x xor y) modulo m) as color table, and see the nice results here : http://www.echolalie.org/echolisp/help.html#bit-map .
<syntaxhighlight lang="scheme">
(lib 'types)
(lib 'plot)
(plot-size 512 512) ;; for example
 
;; use m = 16, 32, 44, .. to change the definition (number of losanges)
(define (plot-munch (m 256))
(define PIX (pixels->int32-vector)) ;; get canvas image
(define (pcolor x y) ;; color at (x,y)
(hsv->rgb
(// (bitwise-xor (modulo x m) (modulo y m)) m)
0.9
0.9))
(pixels-map pcolor PIX)
(vector->pixels PIX)) ;; draw canvas image
 
(plot-much) ;; ESC to see tge drawing
</syntaxhighlight>
 
=={{header|Factor}}==
<syntaxhighlight lang="factor">USING: accessors images images.loader kernel math sequences ;
IN: rosetta-code.munching-squares
 
: img-data ( -- seq ) 256 sq [ B{ 0 0 0 255 } ] replicate ;
 
: (munching) ( elt index -- elt' )
256 /mod bitxor [ rest ] dip prefix ;
 
: munching ( -- seq )
img-data [ (munching) ] map-index B{ } concat-as ;
: <munching-img> ( -- img )
<image>
{ 256 256 } >>dim
BGRA >>component-order
ubyte-components >>component-type
munching >>bitmap ;
: main ( -- ) <munching-img> "munching.png" save-graphic-image ;
 
MAIN: main</syntaxhighlight>
Output image is identical to the Racket version.
{{out}}
[[File:munching-racket.png]]
 
=={{header|Fōrmulæ}}==
 
{{FormulaeEntry|page=https://formulae.org/?script=examples/Munching_squares}}
 
'''Solution'''
 
[[File:Fōrmulæ - Munching squares 01.png]]
 
'''Test case'''
 
[[File:Fōrmulæ - Munching squares 02.png]]
 
[[File:Fōrmulæ - Munching squares 03.png]]
 
=={{header|GLSL}}==
This is an example that will work directly on shadertoy.com, Example [https://www.shadertoy.com/view/Mss3Rs]
<syntaxhighlight lang="glsl">vec3 color;
float c,p;
vec2 b;
 
void main(void)
{
vec2 uv = gl_FragCoord.xy / iResolution.xy;
float scale = iResolution.x / iResolution.y;
uv = uv-0.5;
uv.y/=scale;
b = uv*256.0+256.0;
c = 0.0;
for(float i=16.0;i>=1.0;i-=1.0)
{
p = pow(2.0,i);
 
if((p < b.x) ^^
(p < b.y))
{
c += p;
}
if(p < b.x)
{
b.x -= p;
}
if(p < b.y)
{
b.y -= p;
}
}
c=mod(c/128.0,1.0);
color = vec3(sin(c+uv.x*cos(uv.y*1.2)), tan(c+uv.y-0.3)*1.1, cos(c-uv.y+0.9));
gl_FragColor = vec4(color,1.0);
}</syntaxhighlight>
 
=={{header|Gnuplot}}==
 
<syntaxhighlight lang="gnuplot">set pm3d map
set size square
set isosamples 255,255
splot [0:255][0:255]-(floor(x)^floor(y))</syntaxhighlight>
{{out}} [[Image:gnuplot_xor.png|Gnuplot output|200px]]
 
=={{header|Go}}==
<langsyntaxhighlight lang="go">package main
 
import (
Line 152 ⟶ 1,152:
png.Encode(f, g)
f.Close()
}</langsyntaxhighlight>
 
=={{header|Haskell}}==
<syntaxhighlight lang="haskell">import qualified Data.ByteString as BY (writeFile, pack)
 
import Data.Bits (xor)
 
main :: IO ()
main =
BY.writeFile
"out.pgm"
(BY.pack
(fmap (fromIntegral . fromEnum) "P5\n256 256\n256\n" ++
[ x `xor` y
| x <- [0 .. 255]
, y <- [0 .. 255] ]))</syntaxhighlight>
 
=={{header|Icon}} and {{header|Unicon}}==
[[File:XORimage-unicon-GR512.png|thumb|right|512x512 bit green and red]]
<langsyntaxhighlight Iconlang="icon">link printf
 
procedure main(A) #: XOR graphic
Line 173 ⟶ 1,188:
until Event() == &lpress # wait for left button to quit
close(&window)
end</langsyntaxhighlight>
 
{{libheader|Icon Programming Library}}
Line 179 ⟶ 1,194:
 
=={{header|J}}==
<langsyntaxhighlight Jlang="j"> require 'viewmat'
viewmat ~:"1/&.#: ~ i.256</syntaxhighlight>
 
viewmat ~:"1/&.#: ~ i.256</lang>
 
=={{header|Java}}==
{{libheader|Swing}}
 
This example will repeat the pattern if you expand the window.
<langsyntaxhighlight lang="java">import java.awt.Color;
import java.awt.Graphics;
 
Line 216 ⟶ 1,230:
new XorPattern();
}
}</langsyntaxhighlight>
[[Image:Xor pattern Java.png|200px]]
 
=={{header|Liberty BASICjq}}==
{{works with|jq|1.4}}
<lang lb>
The following is an adaptation of the Ruby entry, but generates an SVG image file:
nomainwin
<syntaxhighlight lang="sh">jq -n -r -f Munching_squares.jq > Munching_squares.svg</syntaxhighlight>
'''Part 1: Infrastructure'''
<syntaxhighlight lang="jq"># Convert the input integer to an array of bits with lsb first
def integer_to_lsb:
[recurse(if . > 0 then ./2|floor else empty end) | . % 2] ;
 
# input array of bits (with lsb first) is converted to an integer
w =512
def lsb_to_integer:
' allow for title bar and window border
reduce .[] as $bit
WindowWidth =w +2
# state: [power, ans]
WindowHeight =w +34
([1,0]; (.[0] * 2) as $b | [$b, .[1] + (.[0] * $bit)])
| .[1];
 
def xor(x;y):
open "XOR Pattern" for graphics_nsb_nf as #w
def lxor(a;b): # a and/or b may be null
if a == 1 then if b==1 then 0 else 1 end
elif b==1 then if a==1 then 0 else 1 end
else 0
end;
(x|integer_to_lsb) as $s
| (y|integer_to_lsb) as $t
| ([$s|length, $t|length] | max) as $length
| reduce range(0;$length) as $i
([]; . + [ lxor($s[$i]; $t[$i]) ] )
| lsb_to_integer;</syntaxhighlight>
'''Part 2: SVG'''
<syntaxhighlight lang="jq">def rgb2rgb:
def p: (. + 0.5) | floor; # to nearest integer
"rgb(\(.red|p),\(.green|p),\(.blue|p))";
 
def svg(width; height):
#w "trapclose quit"
"<svg width='\(width // "100%")' height='\(height // "100%")'
xmlns='http://www.w3.org/2000/svg'>";
 
def pixel(x; y; color):
#w "down"
(color | if type == "string" then . else rgb2rgb end) as $c
| "<circle r='1' cx='\(x)' cy='\(y)' fill='\($c)' />";</syntaxhighlight>
'''Part 3: xor pattern'''
<syntaxhighlight lang="jq"># rgb is a JSON object: { "red": _, "green": _, "blue": _}
 
def xor_pattern(width; height; rgb1; rgb2):
for x =0 to w -1
# create colour table
for y =0 to w -1
256 as $size
b =( x xor y) and 255
| (reduce range(0;$size) as $i
print b
#w "color "([]; 255. -b;+ " "; b /2; " ";[ b
{"red": (rgb1.red #w+ "set(rgb2.red ";- x;rgb1.red) "* ";$i w/ -y$size), -1
"green": (rgb1.green + (rgb2.green - rgb1.green) * $i / $size),
scan
"blue": (rgb1.blue + (rgb2.blue - rgb1.blue) * $i / $size) }])
next y
next x ) as $colours
# create the image
| svg(width; height),
( (range(0;width) as $x
| range(0;height) as $y
| pixel($x; $y; $colours[ xor($x; $y) % $size] ) ) ),
"</svg>" ;</syntaxhighlight>
'''Part 4: Example'''
<syntaxhighlight lang="jq">def black: { "red": 0, "green": 0, "blue": 0};
def red: black + { "red": 255 };
def yellow: red + { "green": 255 };
 
xor_pattern(384; 384; red; yellow)</syntaxhighlight>
#w "flush"
 
=={{header|Julia}}==
wait
<syntaxhighlight lang="julia">using Gtk, Cairo
 
const can = @GtkCanvas()
sub quit j$
const win = GtkWindow(can, "Munching Squares", 512, 512)
close #w
 
@guarded draw(can) do widget
ctx = getgc(can)
for x in 0:255, y in 0:255
set_source_rgb(ctx, abs(255 - x - y) / 255, ((255 - x) ⊻ y) / 255, (x ⊻ (255 - y)) / 255)
circle(ctx, 2x, 2y, 2)
fill(ctx)
end
end sub
</lang>
Image available at [[http://www.diga.me.uk/xorRC.gif]]
 
show(can)
=={{header|Mathematica}}==
const cond = Condition()
<lang Mathematica>ListDensityPlot[
endit(w) = notify(cond)
signal_connect(endit, win, :destroy)
wait(cond)
</syntaxhighlight>
 
=={{header|Kotlin}}==
<syntaxhighlight lang="scala">// version 1.1.4-3
 
import javax.swing.JFrame
import javax.swing.JPanel
import java.awt.Graphics
import java.awt.Graphics2D
import java.awt.Color
import java.awt.Dimension
import java.awt.BorderLayout
import java.awt.RenderingHints
import javax.swing.SwingUtilities
 
class XorPattern : JPanel() {
 
init {
preferredSize = Dimension(256, 256)
background = Color.white
}
 
override fun paint(gg: Graphics) {
super.paintComponent(gg)
val g = gg as Graphics2D
g.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON)
for (y in 0 until width) {
for (x in 0 until height) {
g.color = Color(0, (x xor y) % 256, 255)
g.drawLine(x, y, x, y)
}
}
}
}
 
fun main(args: Array<String>) {
SwingUtilities.invokeLater {
val f = JFrame()
with (f) {
defaultCloseOperation = JFrame.EXIT_ON_CLOSE
title = "Munching squares"
isResizable = false
add(XorPattern(), BorderLayout.CENTER)
pack()
setLocationRelativeTo(null)
isVisible = true
}
}
}</syntaxhighlight>
 
=={{header|Lua}}==
{{works with|LÖVE|11.0 or higher}}
<syntaxhighlight lang="lua">local clr = {}
function drawMSquares()
local points = {}
for y = 0, hei-1 do
for x = 0, wid-1 do
local idx = bit.bxor(x, y)%256
local r, g, b = clr[idx][1], clr[idx][2], clr[idx][3]
local point = {x+1, y+1, r/255, g/255, b/255, 1}
table.insert (points, point)
end
end
love.graphics.points(points)
end
 
function createPalette()
for i = 0, 255 do
clr[i] = {i*2.8%256, i*3.2%256, i*1.5%256}
end
end
 
function love.load()
wid, hei = 256, 256
love.window.setMode(wid, hei)
canvas = love.graphics.newCanvas()
love.graphics.setCanvas(canvas)
createPalette()
drawMSquares()
love.graphics.setCanvas()
end
 
function love.draw()
love.graphics.setColor(1,1,1)
love.graphics.draw(canvas)
end</syntaxhighlight>
 
=={{header|Mathematica}}/{{header|Wolfram Language}}==
<syntaxhighlight lang="mathematica">ListDensityPlot[
Table[Table[
FromDigits[BitXor[IntegerDigits[x, 2, 8], IntegerDigits[y, 2, 8]],
2], {x, 0, 255}], {y, 0, 255}]]</langsyntaxhighlight>
{{out|Output #1:}}
 
[[File:xorpattern3.png|Mathematica output #1|200px]]
 
<langsyntaxhighlight Mathematicalang="mathematica">ArrayPlot[Array[BitXor, {511, 511}]]</langsyntaxhighlight>
{{out|Output #2:}}
 
[[File:xorpattern4.png|Mathematica output #2|200px]]
 
=={{header|MATLAB}}==
<langsyntaxhighlight lang="matlab">size = 256;
[x,y] = meshgrid([0:size-1]);
 
Line 277 ⟶ 1,426:
colormap bone(size);
image(c);
axis equal;</langsyntaxhighlight>
{{out}} [[File:matlab_xor.png|MATLAB output|200px]]
 
=={{header|MiniScript}}==
This version runs in Mini Micro (for the graphics, and the bitXor intrinsic).
 
<syntaxhighlight lang="miniscript">for x in range(0,255)
for y in range(0,255)
gfx.setPixel x, y, color.rgb(0, bitXor(x,y), 0)
end for
end for</syntaxhighlight>
 
{{out}}
[[File:xor_pattern_miniscript.png|MiniScript output|254px]]
 
=={{header|Nim}}==
{{libheader|imageman}}
<syntaxhighlight lang="nim">import random
import imageman
 
randomize()
 
# Build a color table.
var colors: array[256, ColorRGBU]
for color in colors.mitems:
color = ColorRGBU [byte rand(255), byte rand(255), byte rand(255)]
 
 
var image = initImage[ColorRGBU](256, 256)
 
for i in 0..255:
for j in 0..255:
image[i, j] = colors[i xor j]
 
image.savePNG("munching_squares.png")</syntaxhighlight>
 
=={{header|OCaml}}==
 
<langsyntaxhighlight lang="ocaml">open Graphics
 
let () =
Line 294 ⟶ 1,476:
done;
done;
ignore(read_key())</langsyntaxhighlight>
 
Run with:
$ ocaml graphics.cma xor_pattern.ml
 
{{out}}
Output:
 
[[File:xor_pattern_ocaml.png|OCaml output|200px]]
 
=={{header|Octave}}==
<langsyntaxhighlight Octavelang="octave">size = 256;
[x,y] = meshgrid([0:size-1]);
 
Line 311 ⟶ 1,492:
colormap(jet(size));
image(c);
axis equal;</langsyntaxhighlight>
{{out}} [[File:Xor_pattern_octave.png|Octave output|320px]]
 
=={{header|Perl}}==
<langsyntaxhighlight lang="perl">use GD;
 
my $img = new GD::Image->new(256, 256, 1);
 
for my $y (0..255) {
for my $x (0..255) {
my $color = $img->colorAllocate( abs(255 - $x - $y), (255-$x) ^ $y , $x ^ (255-$y));
$img->setPixel($x, $y, $color);
Line 326 ⟶ 1,507:
}
 
print $img->png</langsyntaxhighlight>
{{out}} [[File:perl_xor_pattern.png|Perl output|200px]]
 
=={{header|Phix}}==
{{libheader|Phix/pGUI}}
{{libheader|Phix/online}}
You can run this online [http://phix.x10.mx/p2js/Munching_squares.htm here].
<!--<syntaxhighlight lang="phix">(phixonline)-->
<span style="color: #000080;font-style:italic;">--
-- demo\rosetta\Munching_squares.exw
-- =================================
--</span>
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #008080;">include</span> <span style="color: #000000;">pGUI</span><span style="color: #0000FF;">.</span><span style="color: #000000;">e</span>
<span style="color: #004080;">Ihandle</span> <span style="color: #000000;">dlg</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">canvas</span>
<span style="color: #004080;">cdCanvas</span> <span style="color: #000000;">cddbuffer</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">cdcanvas</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">redraw_cb</span><span style="color: #0000FF;">(</span><span style="color: #004080;">Ihandle</span> <span style="color: #000080;font-style:italic;">/*ih*/</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">integer</span> <span style="color: #000080;font-style:italic;">/*posx*/</span><span style="color: #0000FF;">,</span> <span style="color: #000080;font-style:italic;">/*posy*/</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">integer</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">width</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">height</span><span style="color: #0000FF;">}</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">IupGetIntInt</span><span style="color: #0000FF;">(</span><span style="color: #000000;">canvas</span><span style="color: #0000FF;">,</span> <span style="color: #008000;">"DRAWSIZE"</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">cdCanvasActivate</span><span style="color: #0000FF;">(</span><span style="color: #000000;">cddbuffer</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">y</span><span style="color: #0000FF;">=</span><span style="color: #000000;">0</span> <span style="color: #008080;">to</span> <span style="color: #000000;">height</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span> <span style="color: #008080;">do</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">x</span><span style="color: #0000FF;">=</span><span style="color: #000000;">0</span> <span style="color: #008080;">to</span> <span style="color: #000000;">width</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span> <span style="color: #008080;">do</span>
<span style="color: #7060A8;">cdCanvasPixel</span><span style="color: #0000FF;">(</span><span style="color: #000000;">cddbuffer</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">x</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">y</span><span style="color: #0000FF;">,</span> <span style="color: #7060A8;">xor_bits</span><span style="color: #0000FF;">(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">,</span><span style="color: #000000;">y</span><span style="color: #0000FF;">))</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #7060A8;">cdCanvasFlush</span><span style="color: #0000FF;">(</span><span style="color: #000000;">cddbuffer</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">return</span> <span style="color: #004600;">IUP_DEFAULT</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">map_cb</span><span style="color: #0000FF;">(</span><span style="color: #004080;">Ihandle</span> <span style="color: #000000;">ih</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">cdcanvas</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">cdCreateCanvas</span><span style="color: #0000FF;">(</span><span style="color: #004600;">CD_IUP</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">ih</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">cddbuffer</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">cdCreateCanvas</span><span style="color: #0000FF;">(</span><span style="color: #004600;">CD_DBUFFER</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">cdcanvas</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">cdCanvasSetBackground</span><span style="color: #0000FF;">(</span><span style="color: #000000;">cddbuffer</span><span style="color: #0000FF;">,</span> <span style="color: #004600;">CD_WHITE</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">cdCanvasSetForeground</span><span style="color: #0000FF;">(</span><span style="color: #000000;">cddbuffer</span><span style="color: #0000FF;">,</span> <span style="color: #004600;">CD_RED</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">return</span> <span style="color: #004600;">IUP_DEFAULT</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #008080;">procedure</span> <span style="color: #000000;">main</span><span style="color: #0000FF;">()</span>
<span style="color: #7060A8;">IupOpen</span><span style="color: #0000FF;">()</span>
<span style="color: #000000;">canvas</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">IupCanvas</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"RASTERSIZE=250x250"</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">IupSetCallbacks</span><span style="color: #0000FF;">(</span><span style="color: #000000;">canvas</span><span style="color: #0000FF;">,</span> <span style="color: #0000FF;">{</span><span style="color: #008000;">"MAP_CB"</span><span style="color: #0000FF;">,</span> <span style="color: #7060A8;">Icallback</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"map_cb"</span><span style="color: #0000FF;">),</span>
<span style="color: #008000;">"ACTION"</span><span style="color: #0000FF;">,</span> <span style="color: #7060A8;">Icallback</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"redraw_cb"</span><span style="color: #0000FF;">)})</span>
<span style="color: #000000;">dlg</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">IupDialog</span><span style="color: #0000FF;">(</span><span style="color: #000000;">canvas</span><span style="color: #0000FF;">,</span> <span style="color: #008000;">`TITLE="Munching squares",RESIZE=NO`</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">IupShow</span><span style="color: #0000FF;">(</span><span style="color: #000000;">dlg</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">if</span> <span style="color: #7060A8;">platform</span><span style="color: #0000FF;">()!=</span><span style="color: #004600;">JS</span> <span style="color: #008080;">then</span>
<span style="color: #7060A8;">IupMainLoop</span><span style="color: #0000FF;">()</span>
<span style="color: #7060A8;">IupClose</span><span style="color: #0000FF;">()</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">procedure</span>
<span style="color: #000000;">main</span><span style="color: #0000FF;">()</span>
<!--</syntaxhighlight>-->
 
=={{header|PHP}}==
<langsyntaxhighlight lang="php">header("Content-Type: image/png");
 
$w = 256;
Line 353 ⟶ 1,585:
 
imagepng($im);
imagedestroy($im);</langsyntaxhighlight>
{{out}}
 
[[File:xor_pattern_php.png|PHP output|200px]]
 
=={{header|PL/I}}==
<syntaxhighlight lang="pl/i">munch: procedure options (main); /* 21 May 2014 */
 
declare screen (0:255, 0:255) bit(24) aligned;
declare b bit(8) aligned;
declare (x, y) unsigned fixed binary (8);
 
do x = 0 upthru hbound(screen,2);
do y = 0 upthru hbound(screen,1);
b = unspec(x) ^ unspec(y);
screen(x,y) = b;
end;
end;
call writeppm(screen);
end munch;</syntaxhighlight>
 
=={{header|Processing}}==
Renders grayscale image, the larger the window the more the squares will repeat along the main diagonal from top left to bottom right.
 
<syntaxhighlight lang="java">
//Aamrun, 26th June 2022
 
size(1200,720);
 
loadPixels();
 
for(int i=0;i<height;i++){
for(int j=0;j<width;j++){
pixels[j + i*width] = color(i^j);
}
}
 
updatePixels();
</syntaxhighlight>
 
=={{header|Prolog}}==
Works with SWI-Prolog and his GUI XPCE.
<langsyntaxhighlight Prologlang="prolog">xor_pattern :-
new(D, window('XOR Pattern')),
send(D, size, size(512,512)),
Line 376 ⟶ 1,644:
send(D, display, Bmp, point(0,0)),
send(D, open).
</syntaxhighlight>
</lang>
[[File:Prolog_xor_pattern.png|200px]]
 
=={{header|PureBasic}}==
<lang purebasic>#palletteSize = 128
Procedure.f XorPattern(x, y) ;compute the gradient value from the pixel values
Protected result = x ! y
ProcedureReturn Mod(result, #palletteSize) / #palletteSize
EndProcedure
 
Procedure drawPattern()
StartDrawing(ImageOutput(0))
DrawingMode(#PB_2DDrawing_Gradient)
CustomGradient(@XorPattern())
;specify a gradient pallette from which only specific indexes will be used
For i = 1 To #palletteSize
GradientColor(1 / i, i * $BACE9B) ; or alternatively use $BEEFDEAD
Next
Box(0, 0, ImageWidth(0), ImageHeight(0))
StopDrawing()
EndProcedure
 
If OpenWindow(0, 0, 0, 128, 128, "XOR Pattern", #PB_Window_SystemMenu)
CreateImage(0, WindowWidth(0), WindowHeight(0))
drawPattern()
ImageGadget(0, 0, 0, ImageWidth(0), ImageHeight(0), ImageID(0))
Repeat
event = WaitWindowEvent(20)
Until event = #PB_Event_CloseWindow
EndIf</lang>
[[File:PureBasic_XOR_Pattern.png|Sample display of PureBasic solution|200px]]
 
=={{header|Python}}==
{{libheader|PIL}}
<langsyntaxhighlight Pythonlang="python">import Image, ImageDraw
 
image = Image.new("RGB", (256, 256))
Line 420 ⟶ 1,659:
 
del drawingTool
image.save("xorpic.png", "PNG")</langsyntaxhighlight>
[[File:PythonXORPic.png|Sample produced by the above code|200px]]
 
=={{header|Racket}}==
[[File:munching-racket.png|thumb|right]]
<syntaxhighlight lang="racket">
#lang racket
(require racket/draw)
(define palette (for/vector ([x 256]) (make-object color% 0 0 x)))
(define bm (make-object bitmap% 256 256))
(define dc (new bitmap-dc% [bitmap bm]))
(for* ([x 256] [y 256])
(define c (vector-ref palette (bitwise-xor x y)))
(send dc set-pixel x y c))
bm
</syntaxhighlight>
 
=={{header|Raku}}==
(formerly Perl 6)
 
Here's one simple way:
 
<syntaxhighlight lang="raku" line>my $ppm = open("munching0.ppm", :w) orelse .die;
 
$ppm.print(q :to 'EOT');
P3
256 256
255
EOT
 
for 0 .. 255 -> $row {
for 0 .. 255 -> $col {
my $color = $row +^ $col;
$ppm.print("0 $color 0 ");
}
$ppm.say();
}
 
$ppm.close();
</syntaxhighlight>
 
Another way:
 
<syntaxhighlight lang="raku" line>my @colors = map -> $r, $g, $b { Buf.new: $r, $g, $b },
map -> $x { floor ($x/256) ** 3 * 256 },
(flat (0...255) Z
(255...0) Z
flat (0,2...254),(254,252...0));
 
 
my $PPM = open "munching1.ppm", :w orelse .die;
 
$PPM.print: qq:to/EOH/;
P6
# munching.pgm
256 256
255
EOH
 
$PPM.write: @colors[$_] for ^256 X+^ ^256;
 
$PPM.close;</syntaxhighlight>
[[File:perl_6_xor_pattern.png|Raku output|200px]]
 
=={{header|REXX}}==
{{trans|Burlesque}}
<syntaxhighlight lang="rexx">/*REXX program renders a graphical pattern by coloring each pixel with x XOR y */
/*───────────────────────────────────────── from an arbitrary constructed color table. */
rows= 2 /*the number of rows in the color table*/
cols= 5 /* " " " cols " " " " */
do row =0 for rows*3 /*construct a color table, size 25x50.*/
do col=0 for cols*3
$= (row+col) // 255
@.row.col= x2b( d2x($+0, 2) ) ||, /*ensure $ is converted──►2 hex nibbles*/
x2b( d2x($+1, 2) ) ||,
x2b( d2x($+2, 2) )
end /*col*/ /* [↑] construct a three-byte pixel. */
end /*row*/
 
do x=0 for cols /*create a graphical pattern with XORs.*/
do y=0 for rows
@.x.y= bitxor(@.x, @.y) /*renders 3 bytes (a pixel) at a time. */
end /*y*/
end /*x*/ /*stick a fork in it, we're all done. */</syntaxhighlight>
Must be converted to an image with a separate program. <br><br>
 
=={{header|Ring}}==
<syntaxhighlight lang="ring">
# Project : Munching squares
 
load "guilib.ring"
 
paint = null
 
new qapp
{
win1 = new qwidget() {
setwindowtitle("Archimedean spiral")
setgeometry(100,100,500,600)
label1 = new qlabel(win1) {
setgeometry(10,10,400,400)
settext("")
}
new qpushbutton(win1) {
setgeometry(150,500,100,30)
settext("draw")
setclickevent("draw()")
}
show()
}
exec()
}
 
func draw
p1 = new qpicture()
color = new qcolor() {
setrgb(0,0,255,255)
}
pen = new qpen() {
setcolor(color)
setwidth(1)
}
paint = new qpainter() {
begin(p1)
setpen(pen)
 
w = 100
for x = 0 to w
for y = 0 to w
b = (x ^ y)
color = new qcolor()
color.setrgb(255 -b,b /2,b,255)
pen.setcolor(color)
setpen(pen)
drawpoint(x,w -y -1)
next
next
 
endpaint()
}
label1 { setpicture(p1) show() }
return
</syntaxhighlight>
Output:
 
https://www.dropbox.com/s/wvdqyihtxralviz/Squares.jpg?dl=0
 
=={{header|Ruby}}==
Uses [[Raster graphics operations/Ruby]]
[[File:xorpattern_rb.png|thumb|right|Sample output from Ruby program]]
<langsyntaxhighlight lang="ruby">load 'raster_graphics.rb'
 
class Pixmap
Line 450 ⟶ 1,833:
 
img = Pixmap.xor_pattern(384, 384, RGBColour::RED, RGBColour::YELLOW)
img.save_as_png('xorpattern.png')</langsyntaxhighlight>
 
=={{header|Rust}}==
<syntaxhighlight lang="rust">extern crate image;
 
use image::{ImageBuffer, Pixel, Rgb};
 
fn main() {
let mut img = ImageBuffer::new(256, 256);
 
for x in 0..256 {
for y in 0..256 {
let pixel = Rgb::from_channels(0, x as u8 ^ y as u8, 0, 0);
img.put_pixel(x, y, pixel);
}
}
 
let _ = img.save("output.png");
}</syntaxhighlight>
 
=={{header|Scala}}==
===Scala Swing===
{{libheader|org.scala-lang.modules scala-swing}}
<syntaxhighlight lang="scala">import scala.swing.Swing.pair2Dimension
import scala.swing.{Color, Graphics2D, MainFrame, Panel, SimpleSwingApplication}
 
object XorPattern extends SimpleSwingApplication {
 
def top = new MainFrame {
preferredSize = (300, 300)
title = "Rosetta Code >>> Task: Munching squares | Language: Scala"
contents = new Panel {
 
protected override def paintComponent(g: Graphics2D) = {
super.paintComponent(g)
for {
y <- 0 until size.getHeight.toInt
x <- 0 until size.getWidth.toInt
} {
g.setColor(new Color(0, (x ^ y) % 256, 0))
g.drawLine(x, y, x, y)
}
}
}
 
centerOnScreen()
}
}</syntaxhighlight>
 
=={{header|Sidef}}==
{{trans|Perl}}
<syntaxhighlight lang="ruby">require('Imager')
 
var img = %O<Imager>.new(xsize => 256, ysize => 256)
 
for y=(^256), x=(^256) {
var rgb = [(255 - x - y).abs, (255-x)^y, x^(255-y)]
img.setpixel(x => x, y => y, color => rgb)
}
 
img.write(file => 'xor.png')</syntaxhighlight>
Output image: [https://github.com/trizen/rc/blob/master/img/munching-squares-sidef.png Munching squares]
 
=={{header|Tcl}}==
{{libheader|Tk}}<syntaxhighlight lang="tcl">package require Tk
<lang tcl>package require Tk
 
proc xorImage {img table} {
Line 480 ⟶ 1,923:
set img [image create photo -width 512 -height 512]
xorImage $img [mkTable 0 255 64 192 255 0]
pack [label .l -image $img]</langsyntaxhighlight>
 
=={{header|Wren}}==
{{trans|D}}
{{libheader|DOME}}
<syntaxhighlight lang="wren">import "graphics" for Canvas, Color
import "dome" for Window
 
class Game {
static init() {
Window.title = "Munching squares"
var w = 512
var h = 512
Window.resize(w, h)
Canvas.resize(w, h)
for (x in 0...w) {
for (y in 0...h) {
var c = (x ^ y) & 255
Canvas.pset(x, y, Color.rgb(255-c, (c/2).floor, c))
}
}
}
 
static update() {}
 
static draw(alpha) {}
}</syntaxhighlight>
 
=={{header|XPL0}}==
<syntaxhighlight lang="xpl0">include c:\cxpl\codes; \intrinsic 'code' declarations
int X, Y;
[SetVid($101); \set 640x480 graphics with 8-bit color
port($3C8):= 0; \set color registers with beautiful shades
for X:= 0 to 256-1 do
[port($3C9):= X>>1; \red
port($3C9):= X>>3; \green
port($3C9):= X; \blue
];
for Y:= 0 to 256-1 do \"color table" is array of 256 registers
for X:= 0 to 256-1 do
Point(X, Y, X|Y); \"|" = XOR, not OR which is "!"
X:= ChIn(1); \wait for keystroke
SetVid(3); \restore normal text mode
]</syntaxhighlight>
{{out}} [[File:MunchXPL0.png]]
 
=={{header|zkl}}==
Uses the PPM class from http://rosettacode.org/wiki/Bitmap/Bresenham%27s_line_algorithm#zkl
{{trans|XPL0}}
For a kaleidoscopic image, play with coolness.
<syntaxhighlight lang="zkl">fcn muncher{
bitmap:=PPM(256,256);
coolness:=(1).random(0x10000); // 55379, 18180, 40, 51950, 57619, 43514, 65465
foreach y,x in ([0 .. 255],[0 .. 255]){
b:=x.bitXor(y); // shades of blue
// rgb:=b*coolness; // kaleidoscopic image
// rgb:=(b*coolness + b)*coolness + b; // more coolness
rgb:=(b*0x10000 + b)*0x10000 + b; // copy ADA image
bitmap[x,y]=rgb;
}
bitmap.write(File("foo.ppm","wb"));
}();</syntaxhighlight>
For a cheap slide show (on Linux):
<syntaxhighlight lang="zkl">while(1){ muncher(); Atomic.sleep(3); }</syntaxhighlight>
run ImageViewer on foo.ppm and watch it [auto] update as the image changes.
{{out}}
Same as the ADA image:
[[Image:AdaXorPattern.png|Ada Output|200px]]
9,482

edits