Multiplicative order: Difference between revisions

(46 intermediate revisions by 23 users not shown)
Line 1:
{{task|Discrete math}}
 
The '''multiplicative order''' of ''a'' relative to ''m'' is the least positive integer ''n'' such that ''a^n'' is 1 (modulo ''m'').
 
For example, the multiplicative order of 37 relative to 1000 is 100 because 37^100 is 1 (modulo 1000), and no number smaller than 100 would do.
 
;Example:
The multiplicative order of 37 relative to 1000 is 100 because 37^100 is 1 (modulo 1000), and no number smaller than 100 would do.
 
 
One possible algorithm that is efficient also for large numbers is the following: By the [[wp:Chinese_Remainder_Theorem|Chinese Remainder Theorem]], it's enough to calculate the multiplicative order for each prime exponent ''p^k'' of ''m'', and
combine the results with the ''[[least common multiple]]'' operation.
Now the order of ''a'' wrt. to ''p^k'' must divide ''Φ(p^k)''. Call this number ''t'', and determine it's factors ''q^e''. Since each multiple of the order will also yield 1 when used as exponent for ''a'', it's enough to find the least d such that ''(q^d)*(t/(q^e))'' yields 1 when used as exponent.
 
Now the order of ''a'' with regard to ''p^k'' must divide ''Φ(p^k)''. Call this number ''t'', and determine it's factors ''q^e''. Since each multiple of the order will also yield 1 when used as exponent for ''a'', it's enough to find the least d such that ''(q^d)*(t/(q^e))'' yields 1 when used as exponent.
 
 
;Task:
Implement a routine to calculate the multiplicative order along these lines. You may assume that routines to determine the factorization into prime powers are available in some library.
 
Line 16 ⟶ 24:
 
<p>Suppose you are given a prime<tt> p </tt>and a complete factorization
of<tt> p-1</tt> .<tt> </tt>&nbsp; Show how to compute the order of an
element<tt> a </tt>in<tt> (Z/(p))<sup>*</sup> </tt>using<tt> O((lg p)<sup>4</sup>/(lg lg p)) </tt>bit
operations.</p>
Line 24 ⟶ 32:
<p>Let the prime factorization of<tt> p-1 </tt> be<tt> q1<sup>e1</sup>q2<sup>e2</sup>...qk<sup>ek</sup></tt> .<tt> </tt>We use the following observation:
if<tt> x^((p-1)/qi<sup>fi</sup>) = 1 (mod p)</tt> ,<tt> </tt>
and<tt> fi=ei </tt>or<tt> x^((p-1)/qi<sup>fi+1</sup>) != 1 (mod p)</tt> ,<tt> </tt>then<tt> qi<sup>ei-fi</sup>||ord<sub>p</sub> x</tt>. &nbsp; (This follows by combining Exercises 5.1 and 2.10.<tt>) </tt>
(This follows by combining Exercises 5.1 and 2.10.)
 
Hence it suffices to find, for each<tt> i</tt> ,<tt> </tt>the exponent<tt> fi </tt> such that the condition above holds.</p>
Line 36 ⟶ 43:
Finally, for each<tt> i</tt> ,<tt> </tt>repeatedly raise<tt> xi </tt>to the<tt> qi</tt>-th power<tt> (mod p) </tt>(as many as<tt> ei-1 </tt> times), checking to see when 1 is obtained.
This can be done using<tt> O((lg p)<sup>3</sup>) </tt>steps.
The total cost is dominated by<tt> O(k(lg p)<sup>3</sup>)</tt> ,<tt> </tt>which is<tt> O((lg p)<sup>4</sup>/(lg lg p))</tt> .
<br><br>
 
=={{header|11l}}==
{{trans|D}}
 
<syntaxhighlight lang="11l">T PExp
BigInt prime
Int exp
F (prime, exp)
.prime = prime
.exp = exp
 
F isqrt(self)
V b = self
L
V a = b
b = (self I/ a + a) I/ 2
I b >= a
R a
 
F factor(BigInt n)
[PExp] pf
V nn = n
V b = 0
L ((nn % 2) == 0)
nn I/= 2
b++
 
I b > 0
pf [+]= PExp(BigInt(2), b)
 
V s = isqrt(nn)
V d = BigInt(3)
L nn > 1
I d > s
d = nn
V e = 0
L
V (div, rem) = divmod(nn, d)
I bits:length(rem) > 0
L.break
nn = div
e++
 
I e > 0
pf [+]= PExp(d, e)
s = isqrt(nn)
 
d += 2
 
R pf
 
F moBachShallit58(BigInt a, BigInt n; pf)
V n1 = n - 1
V mo = BigInt(1)
L(pe) pf
V y = n1 I/ pow(pe.prime, BigInt(pe.exp))
V o = 0
V x = pow(a, y, n)
L x > 1
x = pow(x, pe.prime, n)
o++
V o1 = pow(pe.prime, BigInt(o))
o1 I/= gcd(mo, o1)
mo *= o1
R mo
 
F moTest(a, n)
I bits:length(a) < 100
print(‘ord(’a‘)’, end' ‘’)
E
print(‘ord([big])’, end' ‘’)
print(‘ mod ’n‘ = ’moBachShallit58(a, n, factor(n - 1)))
 
moTest(37, 3343)
 
moTest(pow(BigInt(10), 100) + 1, 7919)
moTest(pow(BigInt(10), 1000) + 1, 15485863)
moTest(pow(BigInt(10), 10000) - 1, BigInt(22801763489))
 
moTest(1511678068, 7379191741)
moTest(BigInt(‘3047753288’), BigInt(‘2257683301’))</syntaxhighlight>
 
{{out}}
<pre>
ord(37) mod 3343 = 1114
ord([big]) mod 7919 = 3959
ord([big]) mod 15485863 = 15485862
ord([big]) mod 22801763489 = 22801763488
ord(1511678068) mod 7379191741 = 614932645
ord(3047753288) mod 2257683301 = 62713425
</pre>
 
=={{header|Ada}}==
Instead of assuming a library call to factorize the modulus, we assume the caller of our Find_Order function has already factorized it. The Multiplicative_Order package is specified as follows ("multiplicative_order.ads").
<langsyntaxhighlight Adalang="ada">package Multiplicative_Order is
 
type Positive_Array is array (Positive range <>) of Positive;
Line 60 ⟶ 159:
-- (2) 1 < Coprime_Factors(I) for all I
 
end Multiplicative_Order;</langsyntaxhighlight>
 
Here is the implementation ("multiplicative_order.adb"):
 
<langsyntaxhighlight Adalang="ada">package body Multiplicative_Order is
 
function Find_Order(Element, Modulus: Positive) return Positive is
Line 129 ⟶ 228:
end Find_Order;
 
end Multiplicative_Order;</langsyntaxhighlight>
 
This is a sample program using the Multiplicative_Order package:
<langsyntaxhighlight Adalang="ada">with Ada.Text_IO, Multiplicative_Order;
 
procedure Main is
Line 155 ⟶ 254:
-- it gives an incorrect result
IIO.Put(Find_Order(37, (11, 19, 8, 2)));
end Main;</langsyntaxhighlight>
 
The output from the sample program:
Line 170 ⟶ 269:
{{works with|ALGOL 68G|Any - tested with release mk15-0.8b.fc9.i386}}
<!-- {{does not work with|ELLA ALGOL 68|Any (with appropriate job cards AND formatted transput statements removed) - tested with release 1.8.8d.fc9.i386 - ELLA has no FORMATted transput, also it generates a call to undefined C LONG externals }} -->
<langsyntaxhighlight lang="algol68">MODE LOOPINT = INT;
 
MODE POWMODSTRUCT = LONG INT;
Line 289 ⟶ 388:
printf(($g$, "Everything checks.", $l$))
FI
)</langsyntaxhighlight>
Output:
<pre>
Line 302 ⟶ 401:
=={{header|C}}==
Uses prime/factor functions from [[Factors of an integer#Prime factoring]]. This implementation is not robust because of integer overflows. To properly deal with even moderately large numbers, an arbitrary precision integer package is a must.
<langsyntaxhighlight lang="c">ulong mpow(ulong a, ulong p, ulong m)
{
ulong r = 1;
Line 361 ⟶ 460:
{
sieve();
printf("The multiplicative order of %d related to %d is %lu \n", 37, 1000, multi_order(37, 1000));
printf("The multiplicative order of %d related to %d is %lu \n", 54, 100001, multi_order(54, 100001));
return 0;
}</langsyntaxhighlight>
 
=={{header|C sharp|C#}}==
{{trans|Java}}
<syntaxhighlight lang="csharp">using System;
using System.Collections.Generic;
using System.Numerics;
using System.Threading;
 
namespace MultiplicativeOrder {
// Taken from https://stackoverflow.com/a/33918233
public static class PrimeExtensions {
// Random generator (thread safe)
private static ThreadLocal<Random> s_Gen = new ThreadLocal<Random>(
() => {
return new Random();
}
);
 
// Random generator (thread safe)
private static Random Gen {
get {
return s_Gen.Value;
}
}
 
public static bool IsProbablyPrime(this BigInteger value, int witnesses = 10) {
if (value <= 1)
return false;
 
if (witnesses <= 0)
witnesses = 10;
 
BigInteger d = value - 1;
int s = 0;
 
while (d % 2 == 0) {
d /= 2;
s += 1;
}
 
byte[] bytes = new byte[value.ToByteArray().LongLength];
BigInteger a;
 
for (int i = 0; i < witnesses; i++) {
do {
Gen.NextBytes(bytes);
 
a = new BigInteger(bytes);
}
while (a < 2 || a >= value - 2);
 
BigInteger x = BigInteger.ModPow(a, d, value);
if (x == 1 || x == value - 1)
continue;
 
for (int r = 1; r < s; r++) {
x = BigInteger.ModPow(x, 2, value);
 
if (x == 1)
return false;
if (x == value - 1)
break;
}
 
if (x != value - 1)
return false;
}
 
return true;
}
}
 
static class Helper {
public static BigInteger Sqrt(this BigInteger self) {
BigInteger b = self;
while (true) {
BigInteger a = b;
b = self / a + a >> 1;
if (b >= a) return a;
}
}
 
public static long BitLength(this BigInteger self) {
BigInteger bi = self;
long bitlength = 0;
while (bi != 0) {
bitlength++;
bi >>= 1;
}
return bitlength;
}
 
public static bool BitTest(this BigInteger self, int pos) {
byte[] arr = self.ToByteArray();
int idx = pos / 8;
int mod = pos % 8;
if (idx >= arr.Length) {
return false;
}
return (arr[idx] & (1 << mod)) > 0;
}
}
 
class PExp {
public PExp(BigInteger prime, int exp) {
Prime = prime;
Exp = exp;
}
 
public BigInteger Prime { get; }
 
public int Exp { get; }
}
 
class Program {
static void MoTest(BigInteger a, BigInteger n) {
if (!n.IsProbablyPrime(20)) {
Console.WriteLine("Not computed. Modulus must be prime for this algorithm.");
return;
}
if (a.BitLength() < 100) {
Console.Write("ord({0})", a);
} else {
Console.Write("ord([big])");
}
if (n.BitLength() < 100) {
Console.Write(" mod {0} ", n);
} else {
Console.Write(" mod [big] ");
}
BigInteger mob = MoBachShallit58(a, n, Factor(n - 1));
Console.WriteLine("= {0}", mob);
}
 
static BigInteger MoBachShallit58(BigInteger a, BigInteger n, List<PExp> pf) {
BigInteger n1 = n - 1;
BigInteger mo = 1;
foreach (PExp pe in pf) {
BigInteger y = n1 / BigInteger.Pow(pe.Prime, pe.Exp);
int o = 0;
BigInteger x = BigInteger.ModPow(a, y, BigInteger.Abs(n));
while (x > 1) {
x = BigInteger.ModPow(x, pe.Prime, BigInteger.Abs(n));
o++;
}
BigInteger o1 = BigInteger.Pow(pe.Prime, o);
o1 = o1 / BigInteger.GreatestCommonDivisor(mo, o1);
mo = mo * o1;
}
return mo;
}
 
static List<PExp> Factor(BigInteger n) {
List<PExp> pf = new List<PExp>();
BigInteger nn = n;
int e = 0;
while (!nn.BitTest(e)) e++;
if (e > 0) {
nn = nn >> e;
pf.Add(new PExp(2, e));
}
BigInteger s = nn.Sqrt();
BigInteger d = 3;
while (nn > 1) {
if (d > s) d = nn;
e = 0;
while (true) {
BigInteger div = BigInteger.DivRem(nn, d, out BigInteger rem);
if (rem.BitLength() > 0) break;
nn = div;
e++;
}
if (e > 0) {
pf.Add(new PExp(d, e));
s = nn.Sqrt();
}
d = d + 2;
}
 
return pf;
}
 
static void Main(string[] args) {
MoTest(37, 3343);
MoTest(BigInteger.Pow(10, 100) + 1, 7919);
MoTest(BigInteger.Pow(10, 1000) + 1, 15485863);
MoTest(BigInteger.Pow(10, 10000) - 1, 22801763489);
MoTest(1511678068, 7379191741);
MoTest(3047753288, 2257683301);
}
}
}</syntaxhighlight>
{{out}}
<pre>ord(37) mod 3343 = 1114
ord([big]) mod 7919 = 3959
ord([big]) mod 15485863 = 15485862
ord([big]) mod 22801763489 = 22801763488
ord(1511678068) mod 7379191741 = 614932645
ord(3047753288) mod 2257683301 = 62713425</pre>
 
=={{header|C++}}==
{{trans|C}}
<syntaxhighlight lang="cpp">#include <algorithm>
#include <bitset>
#include <iostream>
#include <vector>
 
typedef unsigned long ulong;
std::vector<ulong> primes;
 
typedef struct {
ulong p, e;
} prime_factor; /* prime, exponent */
 
void sieve() {
/* 65536 = 2^16, so we can factor all 32 bit ints */
constexpr int SIZE = 1 << 16;
 
std::bitset<SIZE> bits;
bits.flip(); // set all bits
bits.reset(0);
bits.reset(1);
for (int i = 0; i < 256; i++) {
if (bits.test(i)) {
for (int j = i * i; j < SIZE; j += i) {
bits.reset(j);
}
}
}
 
/* collect primes into a list. slightly faster this way if dealing with large numbers */
for (int i = 0; i < SIZE; i++) {
if (bits.test(i)) {
primes.push_back(i);
}
}
}
 
auto get_prime_factors(ulong n) {
std::vector<prime_factor> lst;
ulong e, p;
 
for (ulong i = 0; i < primes.size(); i++) {
p = primes[i];
if (p * p > n) break;
for (e = 0; !(n % p); n /= p, e++);
if (e) {
lst.push_back({ p, e });
}
}
 
if (n != 1) {
lst.push_back({ n, 1 });
}
return lst;
}
 
auto get_factors(ulong n) {
auto f = get_prime_factors(n);
std::vector<ulong> lst{ 1 };
 
size_t len2 = 1;
/* L = (1); L = (L, L * p**(1 .. e)) forall((p, e)) */
for (size_t i = 0; i < f.size(); i++, len2 = lst.size()) {
for (ulong j = 0, p = f[i].p; j < f[i].e; j++, p *= f[i].p) {
for (size_t k = 0; k < len2; k++) {
lst.push_back(lst[k] * p);
}
}
}
 
std::sort(lst.begin(), lst.end());
return lst;
}
 
ulong mpow(ulong a, ulong p, ulong m) {
ulong r = 1;
while (p) {
if (p & 1) {
r = r * a % m;
}
a = a * a % m;
p >>= 1;
}
return r;
}
 
ulong ipow(ulong a, ulong p) {
ulong r = 1;
while (p) {
if (p & 1) r *= a;
a *= a;
p >>= 1;
}
return r;
}
 
ulong gcd(ulong m, ulong n) {
ulong t;
while (m) {
t = m;
m = n % m;
n = t;
}
return n;
}
 
ulong lcm(ulong m, ulong n) {
ulong g = gcd(m, n);
return m / g * n;
}
 
ulong multi_order_p(ulong a, ulong p, ulong e) {
ulong m = ipow(p, e);
ulong t = m / p * (p - 1);
auto fac = get_factors(t);
for (size_t i = 0; i < fac.size(); i++) {
if (mpow(a, fac[i], m) == 1) {
return fac[i];
}
}
return 0;
}
 
ulong multi_order(ulong a, ulong m) {
auto pf = get_prime_factors(m);
ulong res = 1;
for (size_t i = 0; i < pf.size(); i++) {
res = lcm(res, multi_order_p(a, pf[i].p, pf[i].e));
}
return res;
}
 
int main() {
sieve();
 
printf("%lu\n", multi_order(37, 1000)); // expect 100
printf("%lu\n", multi_order(54, 100001)); // expect 9090
 
return 0;
}</syntaxhighlight>
{{out}}
<pre>100
9090</pre>
 
=={{header|Clojure}}==
Translation of Julie, then revised to be more clojure idiomatic. It references some external modules for factoring and integer exponentiation.
<syntaxhighlight lang="clojure">(defn gcd [a b]
(if (zero? b)
a
(recur b (mod a b))))
 
(defn lcm [a b]
(/ (* a b) (gcd a b)))
 
(def NaN (Math/log -1))
 
(defn ord' [a [p e]]
(let [m (imath/expt p e)
t (* (quot m p) (dec p))]
(loop [dv (factor/divisors t)]
(let [d (first dv)]
(if (= (mmath/expm a d m) 1)
d
(recur (next dv)))))))
 
(defn ord [a n]
(if (not= (gcd a n) 1)
NaN
(->>
(factor/factorize n)
(map (partial ord' a))
(reduce lcm))))
</syntaxhighlight>
{{out}}
<pre>
user=> (ord 37 1000)
100
</pre>
 
=={{header|D}}==
{{trans|Java}}
<syntaxhighlight lang="d">import std.bigint;
import std.random;
import std.stdio;
 
struct PExp {
BigInt prime;
int exp;
}
 
BigInt gcd(BigInt x, BigInt y) {
if (y == 0) {
return x;
}
return gcd(y, x % y);
}
 
/// https://en.wikipedia.org/wiki/Modular_exponentiation#Right-to-left_binary_method
BigInt modPow(BigInt b, BigInt e, BigInt n) {
if (n == 1) return BigInt(0);
BigInt result = 1;
b = b % n;
while (e > 0) {
if (e % 2 == 1) {
result = (result * b) % n;
}
e >>= 1;
b = (b*b) % n;
}
return result;
}
 
BigInt pow(long b, long e) {
return pow(BigInt(b), BigInt(e));
}
BigInt pow(BigInt b, BigInt e) {
if (e == 0) {
return BigInt(1);
}
 
BigInt result = 1;
while (e > 1) {
if (e % 2 == 0) {
b *= b;
e /= 2;
} else {
result *= b;
b *= b;
e = (e - 1) / 2;
}
}
 
return b * result;
}
 
BigInt sqrt(BigInt self) {
BigInt b = self;
while (true) {
BigInt a = b;
b = self / a + a >> 1;
if (b >= a) return a;
}
}
 
long bitLength(BigInt self) {
BigInt bi = self;
long length;
while (bi != 0) {
length++;
bi >>= 1;
}
return length;
}
 
PExp[] factor(BigInt n) {
PExp[] pf;
BigInt nn = n;
int b = 0;
int e = 1;
while ((nn & e) == 0) {
e <<= 1;
b++;
}
if (b > 0) {
nn = nn >> b;
pf ~= PExp(BigInt(2), b);
}
BigInt s = nn.sqrt();
BigInt d = 3;
while (nn > 1) {
if (d > s) d = nn;
e = 0;
while (true) {
BigInt div, rem;
nn.divMod(d, div, rem);
if (rem.bitLength > 0) break;
nn = div;
e++;
}
if (e > 0) {
pf ~= PExp(d, e);
s = nn.sqrt();
}
d += 2;
}
 
return pf;
}
 
BigInt moBachShallit58(BigInt a, BigInt n, PExp[] pf) {
BigInt n1 = n - 1;
BigInt mo = 1;
foreach(pe; pf) {
BigInt y = n1 / pe.prime.pow(BigInt(pe.exp));
int o = 0;
BigInt x = a.modPow(y, n);
while (x > 1) {
x = x.modPow(pe.prime, n);
o++;
}
BigInt o1 = pe.prime.pow(BigInt(o));
o1 = o1 / gcd(mo, o1);
mo = mo * o1;
}
return mo;
}
 
void moTest(ulong a, ulong n) {
moTest(BigInt(a), n);
}
void moTest(BigInt a, ulong n) {
// Commented out because the implementations tried all failed for the -2 and -3 tests.
// if (!n.isProbablePrime()) {
// writeln("Not computed. Modulus must be prime for this algorithm.");
// return;
// }
if (a.bitLength < 100) {
write("ord(", a, ")");
} else {
write("ord([big])");
}
write(" mod ", n, " ");
BigInt nn = n;
BigInt mob = moBachShallit58(a, nn, factor(nn - 1));
writeln("= ", mob);
}
 
void main() {
moTest(37, 3343);
 
moTest(pow(10, 100) + 1, 7919);
moTest(pow(10, 1000) + 1, 15485863);
moTest(pow(10, 10000) - 1, 22801763489);
 
moTest(1511678068, 7379191741);
moTest(3047753288, 2257683301);
}</syntaxhighlight>
{{out}}
<pre>ord(37) mod 3343 = 1114
ord([big]) mod 7919 = 3959
ord([big]) mod 15485863 = 15485862
ord([big]) mod 22801763489 = 22801763488
ord(1511678068) mod 7379191741 = 614932645
ord(3047753288) mod 2257683301 = 62713425</pre>
 
=={{header|EchoLisp}}==
<syntaxhighlight lang="scheme">
(require 'bigint)
 
;; factor-exp returns a list ((p k) ..) : a = p1^k1 * p2^k2 ..
(define (factor-exp a)
(map (lambda (g) (list (first g) (length g)))
(group* (prime-factors a))))
 
;; copied from Ruby
(define (_mult_order a p k (x))
(define pk (expt p k))
(define t (* (1- p) (expt p (1- k))))
(define r 1)
(for [((q e) (factor-exp t))]
(set! x (powmod a (/ t (expt q e)) pk))
(while (!= x 1)
(*= r q)
(set! x (powmod x q pk))))
r)
(define (order a m)
"multiplicative order : (order a m) → n : a^n = 1 (mod m)"
(assert (= 1 (gcd a m)) "a and m must be coprimes")
(define mopks (for/list [((p k) (factor-exp m))] (_mult_order a p k)))
(for/fold (n 1) ((mopk mopks)) (lcm n mopk)))
 
;; results
order 37 1000)
→ 100
(order (+ (expt 10 100) 1) 7919)
→ 3959
(order (+ (expt 10 1000) 1) 15485863)
→ 15485862
</syntaxhighlight>
 
=={{header|Factor}}==
{{works with|Factor|0.99 2020-01-23}}
<syntaxhighlight lang="factor">USING: kernel math math.functions math.primes.factors sequences ;
 
: (ord) ( a pair -- n )
first2 dupd ^ swap dupd [ /i ] keep 1 - * divisors
[ swap ^mod 1 = ] 2with find nip ;
 
: ord ( a n -- m )
2dup gcd nip 1 =
[ group-factors [ (ord) ] with [ lcm ] map-reduce ]
[ 2drop 0/0. ] if ;</syntaxhighlight>
{{out}}
<pre>
IN: scratchpad 37 1000 ord .
100
IN: scratchpad 10 100 ^ 1 + 7919 ord .
3959
</pre>
 
=={{header|Go}}==
<langsyntaxhighlight lang="go">package main
 
import (
Line 467 ⟶ 1,169:
}
return a.SetInt64(0)
}</langsyntaxhighlight>
{{out}}
<pre>
Line 482 ⟶ 1,184:
Assuming a function
 
<syntaxhighlight lang="haskell">powerMod
<lang haskell>primeFacsExp :: Integer -> [(Integer, Int)]</lang>
:: (Integral a, Integral b)
=> a -> a -> b -> a
powerMod m _ 0 = 1
powerMod m x n
| n > 0 = f x_ (n - 1) x_
where
x_ = x `rem` m
f _ 0 y = y
f a d y = g a d
where
g b i
| even i = g (b * b `rem` m) (i `quot` 2)
| otherwise = f b (i - 1) (b * y `rem` m)
powerMod m _ _ = error "powerMod: negative exponent"</syntaxhighlight>
 
to efficiently calculate primepowers powermodulo factors,some and another<code>Integral</code>, functionwe get
 
<syntaxhighlight lang ="haskell">powerModimport ::Data.List (Integral a, Integral bfoldl1') => a -> a -> b -> a'
powerMod m _ 0 = 1
powerMod m x n | n > 0 = f x' (n-1) x' where
x' = x `rem` m
f _ 0 y = y
f a d y = g a d where
g b i | even i = g (b*b `rem` m) (i `quot` 2)
| otherwise = f b (i-1) (b*y `rem` m)
powerMod m _ _ = error "powerMod: negative exponent"</lang>
 
foldl1_ = foldl1' --'
to efficiently calculate powers modulo some <code>Integral</code>, we get
 
<lang haskell>multOrder a m
| gcd a m /= 1 = error "Arguments not coprime"
| otherwise = foldl1'foldl1_ lcm $ map (multOrder'multOrder_ a) $ primeFacsExp m
 
multOrder'multOrder_ a (p, k) = r where
where
pk = p^k
t pk = (p-1)*p ^(k-1) -- totient \Phi(p^k)
t = (p - 1) * p ^ (k - 1) -- totient \Phi(p^k)
r = product $ map find_qd $ primeFacsExp $ t
r = product $ map find_qd $ primeFacsExp t
find_qd (q,e) = q^d where
xfind_qd =(q, powerMode) pk= aq (t^ `div` (q^e))d
where
d = length $ takeWhile (/= 1) $ iterate (\y -> powerMod pk y q) x</lang>
x = powerMod pk a (t `div` (q ^ e))
d = length $ takeWhile (/= 1) $ iterate (\y -> powerMod pk y q) x</syntaxhighlight>
 
=={{header|J}}==
Line 514 ⟶ 1,224:
The dyadic verb ''mo'' converts its arguments to exact numbers ''a'' and ''m'', executes ''mopk'' on the factorization of ''m'', and combines the result with the ''least common multiple'' operation.
 
<langsyntaxhighlight lang="j">mo=: 4 : 0
a=. x: x
m=. x: y
assert. 1=a+.m
*./ a mopk"1 |: __ q: m
)</langsyntaxhighlight>
 
The dyadic verb ''mopk'' expects a pair of prime and exponent
Line 528 ⟶ 1,238:
exponents ''q^d'' into a product.
 
<langsyntaxhighlight lang="j">mopk=: 4 : 0
a=. x: x
'p k'=. x: y
Line 537 ⟶ 1,247:
d=. (1<x)+x (pm i. 1:)&> (e-1) */\@$&.> q
*/q^d
)</langsyntaxhighlight>
 
For example:
 
<langsyntaxhighlight lang="j"> 37 mo 1000
100
2 mo _1+10^80x
190174169488577769580266953193403101748804183400400</langsyntaxhighlight>
 
=={{header|Java}}==
{{trans|Kotlin}}
<syntaxhighlight lang="java">import java.math.BigInteger;
import java.util.ArrayList;
import java.util.List;
 
public class MultiplicativeOrder {
private static final BigInteger ONE = BigInteger.ONE;
private static final BigInteger TWO = BigInteger.valueOf(2);
private static final BigInteger THREE = BigInteger.valueOf(3);
private static final BigInteger TEN = BigInteger.TEN;
 
private static class PExp {
BigInteger prime;
long exp;
 
PExp(BigInteger prime, long exp) {
this.prime = prime;
this.exp = exp;
}
}
 
private static void moTest(BigInteger a, BigInteger n) {
if (!n.isProbablePrime(20)) {
System.out.println("Not computed. Modulus must be prime for this algorithm.");
return;
}
if (a.bitLength() < 100) System.out.printf("ord(%s)", a);
else System.out.print("ord([big])");
if (n.bitLength() < 100) System.out.printf(" mod %s ", n);
else System.out.print(" mod [big] ");
BigInteger mob = moBachShallit58(a, n, factor(n.subtract(ONE)));
System.out.println("= " + mob);
}
 
private static BigInteger moBachShallit58(BigInteger a, BigInteger n, List<PExp> pf) {
BigInteger n1 = n.subtract(ONE);
BigInteger mo = ONE;
for (PExp pe : pf) {
BigInteger y = n1.divide(pe.prime.pow((int) pe.exp));
long o = 0;
BigInteger x = a.modPow(y, n.abs());
while (x.compareTo(ONE) > 0) {
x = x.modPow(pe.prime, n.abs());
o++;
}
BigInteger o1 = BigInteger.valueOf(o);
o1 = pe.prime.pow(o1.intValue());
o1 = o1.divide(mo.gcd(o1));
mo = mo.multiply(o1);
}
return mo;
}
 
private static List<PExp> factor(BigInteger n) {
List<PExp> pf = new ArrayList<>();
BigInteger nn = n;
Long e = 0L;
while (!nn.testBit(e.intValue())) e++;
if (e > 0L) {
nn = nn.shiftRight(e.intValue());
pf.add(new PExp(TWO, e));
}
BigInteger s = sqrt(nn);
BigInteger d = THREE;
while (nn.compareTo(ONE) > 0) {
if (d.compareTo(s) > 0) d = nn;
e = 0L;
while (true) {
BigInteger[] qr = nn.divideAndRemainder(d);
if (qr[1].bitLength() > 0) break;
nn = qr[0];
e++;
}
if (e > 0L) {
pf.add(new PExp(d, e));
s = sqrt(nn);
}
d = d.add(TWO);
}
return pf;
}
 
private static BigInteger sqrt(BigInteger n) {
BigInteger b = n;
while (true) {
BigInteger a = b;
b = n.divide(a).add(a).shiftRight(1);
if (b.compareTo(a) >= 0) return a;
}
}
 
public static void main(String[] args) {
moTest(BigInteger.valueOf(37), BigInteger.valueOf(3343));
 
BigInteger b = TEN.pow(100).add(ONE);
moTest(b, BigInteger.valueOf(7919));
 
b = TEN.pow(1000).add(ONE);
moTest(b, BigInteger.valueOf(15485863));
 
b = TEN.pow(10000).subtract(ONE);
moTest(b, BigInteger.valueOf(22801763489L));
 
moTest(BigInteger.valueOf(1511678068), BigInteger.valueOf(7379191741L));
moTest(BigInteger.valueOf(3047753288L), BigInteger.valueOf(2257683301L));
}
}</syntaxhighlight>
{{out}}
<pre>ord(37) mod 3343 = 1114
ord([big]) mod 7919 = 3959
ord([big]) mod 15485863 = 15485862
ord([big]) mod 22801763489 = 22801763488
ord(1511678068) mod 7379191741 = 614932645
ord(3047753288) mod 2257683301 = 62713425</pre>
 
=={{header|jq}}==
'''Adapted from [[#Wren|Wren]]'''
 
'''Works with gojq, the Go implementation of jq'''
 
The Go implementation of jq supports unbounded-precision integer
arithmetic and so is suitable for the specified tasks. The program
given here also runs using the C implementation of jq but falters for
large integers.
 
<syntaxhighlight lang="jq">
# Part 1: Library functions
 
### Counting and integer arithmetic
 
def count(s): reduce s as $x (0; .+1);
 
# If $j is 0, then an error condition is raised;
# otherwise, assuming infinite-precision integer arithmetic,
# if the input and $j are integers, then the result will be an integer.
def idivide($j):
(. - (. % $j)) / $j ;
 
def idivide($i; $j):
$i | idivide($j);
# Emit [dividend, mod]
def divmod($j):
(. % $j) as $mod
| [(. - $mod) / $j, $mod] ;
 
# input should be a non-negative integer for accuracy
# but may be any non-negative finite number
def isqrt:
def irt:
. as $x
| 1 | until(. > $x; . * 4) as $q
| {$q, $x, r: 0}
| until( .q <= 1;
.q |= idivide(4)
| .t = .x - .r - .q
| .r |= idivide(2)
| if .t >= 0
then .x = .t
| .r += .q
else .
end)
| .r ;
if type == "number" and (isinfinite|not) and (isnan|not) and . >= 0
then irt
else "isqrt requires a non-negative integer for accuracy" | error
end ;
 
# It is assumed that $n >= 0
def power($n):
. as $in
| reduce range(0;$n) as $i (1; .* $in);
 
# For syntactic convenience
def power($in; $n): $in | power($n);
 
def gcd(a; b):
# subfunction expects [a,b] as input
# i.e. a ~ .[0] and b ~ .[1]
def rgcd: if .[1] == 0 then .[0]
else [.[1], .[0] % .[1]] | rgcd
end;
[a,b] | rgcd;
 
 
### Bit arrays and streams
 
def rightshift($n):
reduce range(0;$n) as $i (.; idivide(2));
 
# Convert the input integer to a stream of 0s and 1s, least significant bit first
def bitwise:
recurse( if . >= 2 then idivide(2) else empty end) | . % 2;
 
def bitLength: count(bitwise);
 
def firstBit:
if . == 0 then empty
else first( foreach bitwise as $b (-1; .+1; if $b == 1 then . else empty end))
end;
 
# Return true if the $i-th least-significant bit is 1, and false otherwise
def testBit($i):
(nth($i; bitwise) // 0) == 1;
 
# Part 2: "modulo" functions
 
# The multiplicative inverse of . modulo $n
def modInv($n):
. as $in
| { r: $n,
newR: length, # abs
t: 0,
newT: 1 }
| until (.newR != 0.;
idivide(.r; .newR) as $q
| .lastT = .t
| .lastR = .r
| .t = .newT
| .r = .newR
| .newT = .lastT - $q*.newT
| .newR = .lastR - $q*.newR )
| if .r != 1
then "\($in) and \($n) are not co-prime." | error
else if (.t < 0) then .t += $n end
| if ($in < 0) then - .t else .t end
end;
 
# Return . to the power $exp modulo $mod
def modPow($exp; $mod):
def isOdd: . % 2 == 1;
if $mod == 0 then "Cannot take modPow with modulus 0." | error
else {r: 1, base: (. % $mod), $exp}
| if .exp < 0
then .exp *= -1
| .base |= modInv($mod)
end
| until ((.exp == 0) or .emit;
if .base == 0 then .emit = 0
else if (.exp | isOdd) then .r = (.r * .base) % $mod end
| .exp |= idivide(2)
| .base |= (.*.) % $mod
end )
| (.emit // .r)
end ;
 
# Part 3: Multiplicative order
 
def moBachShallit58($a; $n; $pf):
{n1: ($n - 1),
mo: 1 }
| reduce $pf[] as $pe (.;
(.n1 | idivide($pe.prime | power($pe.exp))) as $y
| .o = 0
| .x = ($a | modPow($y; ($n|length)))
| until (.x <= 1;
.x |= modPow($pe.prime; ($n|length) )
| .o += 1 )
| .o1 = .o
| .o1 = power($pe.prime;.o1)
| .o1 = idivide(.o1; gcd(.mo; .o1) )
| .mo = .mo * .o1 )
| .mo ;
 
def factor($n):
{ pf: [],
nn: $n,
e: ($n | firstBit)}
| if .e > 0
then .e as $e
| .nn |= rightshift($e)
| .pf = [{prime: 2, exp: .e}]
end
| (.nn | isqrt) as $s
| .d = 3
| until (.nn <= 1;
if .d > $s then .d = .nn end
| .e = 0
| .done = null
| until( .done;
.d as $d
| (.nn | divmod($d)) as $dm
| if $dm[1] > 0
then .done = true
else .nn = $dm[0]
| .e += 1
end )
| if .e > 0
then .pf += [{prime: .d, exp: .e}]
|.s = (.nn|isqrt)
end
| .d += 2
)
| .pf ;
 
# $n should be prime
def moTest($a; $n):
if ($a|bitLength) < 100 then "ord(\($a)) " else "ord([big]) " end +
if ($n|bitLength) < 100 then "mod \($n) " else "mod [big] " end +
"= \(moBachShallit58($a; $n; factor($n - 1)))" ;
 
moTest(37; 3343),
moTest(1 + power(10;100); 7919),
moTest(1 + power(10;100); 15485863),
moTest(power(10;10000) - 1; 22801763489),
moTest(1511678068; 7379191741),
moTest(3047753288; 2257683301)
</syntaxhighlight>
{{output}}
<pre>
ord(37) mod 3343 = 1114
ord([big]) mod 7919 = 3959
ord([big]) mod 15485863 = 15485862
ord([big]) mod 22801763489 = 22801763488
ord(1511678068) mod 7379191741 = 614932645
ord(3047753288) mod 2257683301 = 62713425
</pre>
 
=={{header|Julia}}==
(Uses the <code>factors</code> function from [[Factors of an integer#Julia]].)
<syntaxhighlight lang="julia">using Primes
<lang julia>function factors(p)
 
f = Array(typeof(p), 0)
function factors(n)
n = one(p)
whilef = [one(n*n < p)]
for if (p,e) %in factor(n == 0)
f = push!reduce(vcat, [f*p^j for j in 1:e], ninit=f)
push!(f, div(p, n))
end
n += one(p)
end
n*nreturn length(f) == p1 &&? push![one(fn), n] : sort!(f)
return sort!(f)
end
 
Line 576 ⟶ 1,601:
end
res
end</langsyntaxhighlight>
 
Example output (using <code>big</code> to employ arbitrary-precision arithmetic where needed):
Line 593 ⟶ 1,618:
</pre>
 
=={{header|MathematicaKotlin}}==
{{trans|Go}}
<syntaxhighlight lang="scala">// version 1.2.10
 
import java.math.BigInteger
 
val bigOne = BigInteger.ONE
val bigTwo = 2.toBigInteger()
val bigThree = 3.toBigInteger()
val bigTen = BigInteger.TEN
 
class PExp(val prime: BigInteger, val exp: Long)
 
fun moTest(a: BigInteger, n: BigInteger) {
if (!n.isProbablePrime(20)) {
println("Not computed. Modulus must be prime for this algorithm.")
return
}
if (a.bitLength() < 100) print("ord($a)") else print("ord([big])")
if (n.bitLength() < 100) print(" mod $n ") else print(" mod [big] ")
val mob = moBachShallit58(a, n, factor(n - bigOne))
println("= $mob")
}
 
fun moBachShallit58(a: BigInteger, n: BigInteger, pf: List<PExp>): BigInteger {
val n1 = n - bigOne
var mo = bigOne
for (pe in pf) {
val y = n1 / pe.prime.pow(pe.exp.toInt())
var o = 0L
var x = a.modPow(y, n.abs())
while (x > bigOne) {
x = x.modPow(pe.prime, n.abs())
o++
}
var o1 = o.toBigInteger()
o1 = pe.prime.pow(o1.toInt())
o1 /= mo.gcd(o1)
mo *= o1
}
return mo
}
 
fun factor(n: BigInteger): List<PExp> {
val pf = mutableListOf<PExp>()
var nn = n
var e = 0L
while (!nn.testBit(e.toInt())) e++
if (e > 0L) {
nn = nn shr e.toInt()
pf.add(PExp(bigTwo, e))
}
var s = bigSqrt(nn)
var d = bigThree
while (nn > bigOne) {
if (d > s) d = nn
e = 0L
while (true) {
val (q, r) = nn.divideAndRemainder(d)
if (r.bitLength() > 0) break
nn = q
e++
}
if (e > 0L) {
pf.add(PExp(d, e))
s = bigSqrt(nn)
}
d += bigTwo
}
return pf
}
 
fun bigSqrt(n: BigInteger): BigInteger {
var b = n
while (true) {
val a = b
b = (n / a + a) shr 1
if (b >= a) return a
}
}
 
fun main(args: Array<String>) {
moTest(37.toBigInteger(), 3343.toBigInteger())
 
var b = bigTen.pow(100) + bigOne
moTest(b, 7919.toBigInteger())
 
b = bigTen.pow(1000) + bigOne
moTest(b, BigInteger("15485863"))
 
b = bigTen.pow(10000) - bigOne
moTest(b, BigInteger("22801763489"))
 
moTest(BigInteger("1511678068"), BigInteger("7379191741"))
moTest(BigInteger("3047753288"), BigInteger("2257683301"))
}</syntaxhighlight>
 
{{out}}
<pre>
ord(37) mod 3343 = 1114
ord([big]) mod 7919 = 3959
ord([big]) mod 15485863 = 15485862
ord([big]) mod 22801763489 = 22801763488
ord(1511678068) mod 7379191741 = 614932645
ord(3047753288) mod 2257683301 = 62713425
</pre>
 
=={{header|Maple}}==
<syntaxhighlight lang="maple">numtheory:-order( a, n )</syntaxhighlight>
For example,
<syntaxhighlight lang="maple">> numtheory:-order( 37, 1000 );
100</syntaxhighlight>
 
=={{header|Mathematica}}/{{header|Wolfram Language}}==
In Mathematica this is really easy, as this function is built-in:
MultiplicativeOrder[k,n] gives the multiplicative order of k modulo n, defined as the smallest integer m such that k^m == 1 mod n.<br>
MultiplicativeOrder[k,n,{r1,r2,...}] gives the generalized multiplicative order of k modulo n, defined as the smallest integer m such that k^m==ri mod n for some i.<BR>
Examples:
<langsyntaxhighlight Mathematicalang="mathematica">MultiplicativeOrder[37, 1000]
MultiplicativeOrder[10^100 + 1, 7919] (*10^3th prime number Prime[1000]*)
MultiplicativeOrder[10^1000 + 1, 15485863] (*10^6th prime number*)
MultiplicativeOrder[10^10000 - 1, 22801763489] (*10^9th prime number*)
MultiplicativeOrder[13, 1 + 10^80]
MultiplicativeOrder[11, 1 + 10^100]</langsyntaxhighlight>
gives back:
<pre>100
Line 613 ⟶ 1,751:
 
=={{header|Maxima}}==
<langsyntaxhighlight lang="maxima">zn_order(37, 1000);
/* 100 */
 
Line 629 ⟶ 1,767:
 
zn_order(11, 1 + 10^100);
/* 2583496112724752500580158969425549088007844580826869433740066152289289764829816356800 */</langsyntaxhighlight>
 
=={{header|Nim}}==
{{trans|Kotlin}}
{{libheader|bignum}}
<syntaxhighlight lang="nim">import strformat
import bignum
 
type PExp = tuple[prime: Int; exp: uint]
 
let
one = newInt(1)
two = newInt(2)
ten = newInt(10)
 
 
func sqrt(n: Int): Int =
var s = n
while true:
result = s
s = (n div result + result) shr 1
if s >= result: break
 
 
proc factor(n: Int): seq[PExp] =
var n = n
var e = 0u
while n.bit(e) == 0: inc e
if e != 0:
n = n shr e
result.add (two, e)
var s = sqrt(n)
var d = newInt(3)
while n > one:
if d > s: d = n
e = 0u
while true:
let (q, r) = divMod(n, d)
if not r.isZero: break
n = q
inc e
if e != 0:
result.add (d.clone, e)
s = sqrt(n)
inc d, two
 
 
proc moBachShallit58(a, n: Int; pf: seq[PExp]): Int =
let n = abs(n)
let n1 = n - one
result = newInt(1)
for pe in pf:
let y = n1 div pe.prime.pow(pe.exp)
var o = 0u
var x = a.exp(y.toInt.uint, n)
while x > one:
x = x.exp(pe.prime.toInt.uint, n)
inc o
var o1 = pe.prime.pow(o)
o1 = o1 div gcd(result, o1)
result *= o1
 
 
proc moTest(a, n: Int) =
if n.probablyPrime(25) == 0:
echo "Not computed. Modulus must be prime for this algorithm."
return
 
stdout.write if a.bitLen < 100: &"ord({a})" else: "ord([big])"
stdout.write if n.bitlen < 100: &" mod {n}" else: " mod [big]"
let mob = moBachShallit58(a, n, factor(n - one))
echo &" = {mob}"
 
 
when isMainModule:
moTest(newInt(37), newInt(3343))
 
var b = ten.pow(100) + one
motest(b, newInt(7919))
 
b = ten.pow(1000) + one
moTest(b, newInt("15485863"))
 
b = ten.pow(10000) - one
moTest(b, newInt("22801763489"))
 
moTest(newInt("1511678068"), newInt("7379191741"))
 
moTest(newInt("3047753288"), newInt("2257683301"))</syntaxhighlight>
 
{{out}}
<pre>ord(37) mod 3343 = 1114
ord([big]) mod 7919 = 3959
ord([big]) mod 15485863 = 15485862
ord([big]) mod 22801763489 = 22801763488
ord(1511678068) mod 7379191741 = 614932645
ord(3047753288) mod 2257683301 = 62713425</pre>
 
=={{header|PARI/GP}}==
<syntaxhighlight lang ="parigp">znorder(Mod(a,n))</langsyntaxhighlight>
=={{header|Perl 6}}==
<lang perl6>my @primes := 2, grep *.is-prime, (3,5,7...*);
 
=={{header|Perl}}==
sub factor($a is copy) {
Using modules:
gather {
{{libheader|ntheory}}
for @primes -> $p {
<syntaxhighlight lang="perl">use ntheory qw/znorder/;
my $j = 0;
say znorder(54, 100001);
while $a %% $p {
use bigint; say znorder(11, 1 + 10**100);</syntaxhighlight>
$a div= $p;
or
$j++;
<syntaxhighlight lang="perl">use Math::Pari qw/znorder Mod/;
}
say znorder(Mod(54, 100001));
take $p => $j if $j > 0;
say znorder(Mod(11, 1 + Math::Pari::PARI(10)**100));</syntaxhighlight>
last if $a < $p * $p;
 
}
=={{header|Phix}}==
{{trans|Ruby}}
take $a => 1 if $a > 1;
{{libheader|Phix/mpfr}}
}
<!--<syntaxhighlight lang="phix">(phixonline)-->
}
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #008080;">include</span> <span style="color: #004080;">mpfr</span><span style="color: #0000FF;">.</span><span style="color: #000000;">e</span>
sub mo-prime($a, $p, $e) {
my $m = $p ** $e;
<span style="color: #008080;">procedure</span> <span style="color: #000000;">multi_order</span><span style="color: #0000FF;">(</span><span style="color: #004080;">mpz</span> <span style="color: #000000;">res</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">a</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">sequence</span> <span style="color: #000000;">p_and_k</span><span style="color: #0000FF;">)</span>
my $t = ($p - 1) * ($p ** ($e - 1)); # = Phi($p**$e) where $p prime
<span style="color: #004080;">mpz</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">pk</span><span style="color: #0000FF;">,</span><span style="color: #000000;">t</span><span style="color: #0000FF;">,</span><span style="color: #000000;">x</span><span style="color: #0000FF;">,</span><span style="color: #000000;">q</span><span style="color: #0000FF;">,</span><span style="color: #000000;">pz</span><span style="color: #0000FF;">}</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">mpz_inits</span><span style="color: #0000FF;">(</span><span style="color: #000000;">5</span><span style="color: #0000FF;">)</span>
my @qs = 1;
<span style="color: #7060A8;">mpz_set_si</span><span style="color: #0000FF;">(</span><span style="color: #000000;">res</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)</span>
for factor($t) -> $f {
<span style="color: #008080;">if</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">p_and_k</span><span style="color: #0000FF;">)=</span><span style="color: #000000;">1</span> <span style="color: #008080;">then</span>
@qs = @qs.map(-> $q { (0..$f.value).map(-> $j { $q * $f.key ** $j }) });
<span style="color: #004080;">string</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">ps</span><span style="color: #0000FF;">}</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">p_and_k</span>
}
<span style="color: #7060A8;">mpz_set_str</span><span style="color: #0000FF;">(</span><span style="color: #000000;">pk</span><span style="color: #0000FF;">,</span><span style="color: #000000;">ps</span><span style="color: #0000FF;">)</span>
@qs.sort();
<span style="color: #7060A8;">mpz_sub_ui</span><span style="color: #0000FF;">(</span><span style="color: #000000;">t</span><span style="color: #0000FF;">,</span><span style="color: #000000;">pk</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">else</span>
@qs.first(-> $q { expmod( $a, $q, $m ) == 1});
<span style="color: #004080;">atom</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">p</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">k</span><span style="color: #0000FF;">}</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">p_and_k</span>
}
<span style="color: #7060A8;">mpz_set_d</span><span style="color: #0000FF;">(</span><span style="color: #000000;">pz</span><span style="color: #0000FF;">,</span><span style="color: #000000;">p</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">mpz_pow_ui</span><span style="color: #0000FF;">(</span><span style="color: #000000;">pk</span><span style="color: #0000FF;">,</span><span style="color: #000000;">pz</span><span style="color: #0000FF;">,</span><span style="color: #000000;">k</span><span style="color: #0000FF;">)</span>
sub mo($a, $m) {
<span style="color: #7060A8;">mpz_pow_ui</span><span style="color: #0000FF;">(</span><span style="color: #000000;">t</span><span style="color: #0000FF;">,</span><span style="color: #000000;">pz</span><span style="color: #0000FF;">,</span><span style="color: #000000;">k</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)</span>
$a gcd $m == 1 || die "$a and $m are not relatively prime";
<span style="color: #7060A8;">mpz_sub_ui</span><span style="color: #0000FF;">(</span><span style="color: #000000;">pz</span><span style="color: #0000FF;">,</span><span style="color: #000000;">pz</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)</span>
[lcm] 1, factor($m).map(-> $r { mo-prime($a, $r.key, $r.value) });
<span style="color: #7060A8;">mpz_mul</span><span style="color: #0000FF;">(</span><span style="color: #000000;">t</span><span style="color: #0000FF;">,</span><span style="color: #000000;">t</span><span style="color: #0000FF;">,</span><span style="color: #000000;">pz</span><span style="color: #0000FF;">)</span>
}
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #004080;">sequence</span> <span style="color: #000000;">pf</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">mpz_prime_factors</span><span style="color: #0000FF;">(</span><span style="color: #000000;">t</span><span style="color: #0000FF;">)</span>
sub MAIN("test") {
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">pf</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span>
use Test;
<span style="color: #008080;">if</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">pf</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">])=</span><span style="color: #000000;">1</span> <span style="color: #008080;">then</span>
<span style="color: #004080;">string</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">fs</span><span style="color: #0000FF;">}</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">pf</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]</span>
for (10, 21, 25, 150, 1231, 123141, 34131) -> $n {
<span style="color: #7060A8;">mpz_set_str</span><span style="color: #0000FF;">(</span><span style="color: #000000;">q</span><span style="color: #0000FF;">,</span><span style="color: #000000;">fs</span><span style="color: #0000FF;">)</span>
# say factor($n).perl;
<span style="color: #7060A8;">mpz_set</span><span style="color: #0000FF;">(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">,</span><span style="color: #000000;">q</span><span style="color: #0000FF;">)</span>
# say factor($n).map(-> $pair { $pair.key ** $pair.value }).perl;
<span style="color: #008080;">else</span>
is ([*] factor($n).map(-> $pair { $pair.key ** $pair.value })), $n, "$n factors correctly";
<span style="color: #0000FF;">{</span><span style="color: #004080;">integer</span> <span style="color: #000000;">qi</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">integer</span> <span style="color: #000000;">ei</span><span style="color: #0000FF;">}</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">pf</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]</span>
}
<span style="color: #7060A8;">mpz_set_si</span><span style="color: #0000FF;">(</span><span style="color: #000000;">q</span><span style="color: #0000FF;">,</span><span style="color: #000000;">qi</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">mpz_pow_ui</span><span style="color: #0000FF;">(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">,</span><span style="color: #000000;">q</span><span style="color: #0000FF;">,</span><span style="color: #000000;">ei</span><span style="color: #0000FF;">)</span>
is mo(37, 1000), 100, 'mo(37,1000) == 100';
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
my $b = 10**20-1;
<span style="color: #7060A8;">mpz_fdiv_q</span><span style="color: #0000FF;">(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">t</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">x</span><span style="color: #0000FF;">)</span>
is mo(2, $b), 3748806900, 'mo(2,10**20-1) == 3748806900';
<span style="color: #7060A8;">mpz_powm</span><span style="color: #0000FF;">(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">,</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #000000;">x</span><span style="color: #0000FF;">,</span><span style="color: #000000;">pk</span><span style="color: #0000FF;">)</span>
is mo(17, $b), 1499522760, 'mo(17,10**20-1) == 1499522760';
<span style="color: #004080;">integer</span> <span style="color: #000000;">guard</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span>
$b = 100001;
<span style="color: #008080;">while</span> <span style="color: #7060A8;">mpz_cmp_si</span><span style="color: #0000FF;">(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)!=</span><span style="color: #000000;">0</span> <span style="color: #008080;">do</span>
is mo(54, $b), 9090, 'mo(54,100001) == 9090';
<span style="color: #7060A8;">mpz_mul</span><span style="color: #0000FF;">(</span><span style="color: #000000;">res</span><span style="color: #0000FF;">,</span><span style="color: #000000;">res</span><span style="color: #0000FF;">,</span><span style="color: #000000;">q</span><span style="color: #0000FF;">)</span>
}</lang>
<span style="color: #7060A8;">mpz_powm</span><span style="color: #0000FF;">(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">,</span><span style="color: #000000;">x</span><span style="color: #0000FF;">,</span><span style="color: #000000;">q</span><span style="color: #0000FF;">,</span><span style="color: #000000;">pk</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">guard</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">1</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">guard</span><span style="color: #0000FF;">></span><span style="color: #000000;">100</span> <span style="color: #008080;">then</span> <span style="color: #0000FF;">?</span><span style="color: #000000;">9</span><span style="color: #0000FF;">/</span><span style="color: #000000;">0</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span> <span style="color: #000080;font-style:italic;">-- (increase if rqd)</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">while</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #000000;">x</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">mpz_free</span><span style="color: #0000FF;">(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">procedure</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">multiplicative_order</span><span style="color: #0000FF;">(</span><span style="color: #004080;">mpz</span> <span style="color: #000000;">a</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">m</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">mpz</span> <span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">mpz_init</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">),</span>
<span style="color: #000000;">ri</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">mpz_init</span><span style="color: #0000FF;">()</span>
<span style="color: #7060A8;">mpz_gcd</span><span style="color: #0000FF;">(</span><span style="color: #000000;">ri</span><span style="color: #0000FF;">,</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #000000;">m</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">if</span> <span style="color: #7060A8;">mpz_cmp_si</span><span style="color: #0000FF;">(</span><span style="color: #000000;">ri</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)!=</span><span style="color: #000000;">0</span> <span style="color: #008080;">then</span> <span style="color: #008080;">return</span> <span style="color: #008000;">"(a,m) not coprime"</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #004080;">sequence</span> <span style="color: #000000;">pf</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">mpz_prime_factors</span><span style="color: #0000FF;">(</span><span style="color: #000000;">m</span><span style="color: #0000FF;">,</span><span style="color: #000000;">10000</span><span style="color: #0000FF;">)</span> <span style="color: #000080;font-style:italic;">-- (increase if rqd)</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">pf</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span>
<span style="color: #000000;">multi_order</span><span style="color: #0000FF;">(</span><span style="color: #000000;">ri</span><span style="color: #0000FF;">,</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span><span style="color: #000000;">pf</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">])</span>
<span style="color: #7060A8;">mpz_lcm</span><span style="color: #0000FF;">(</span><span style="color: #000000;">res</span><span style="color: #0000FF;">,</span><span style="color: #000000;">res</span><span style="color: #0000FF;">,</span><span style="color: #000000;">ri</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #008080;">return</span> <span style="color: #7060A8;">mpz_get_str</span><span style="color: #0000FF;">(</span><span style="color: #000000;">res</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">shorta</span><span style="color: #0000FF;">(</span><span style="color: #004080;">mpz</span> <span style="color: #000000;">n</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">string</span> <span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">mpz_get_str</span><span style="color: #0000FF;">(</span><span style="color: #000000;">n</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">lr</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">res</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">lr</span><span style="color: #0000FF;">></span><span style="color: #000000;">80</span> <span style="color: #008080;">then</span>
<span style="color: #000000;">res</span><span style="color: #0000FF;">[</span><span style="color: #000000;">6</span><span style="color: #0000FF;">..-</span><span style="color: #000000;">6</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #008000;">"..."</span>
<span style="color: #000000;">res</span> <span style="color: #0000FF;">&=</span> <span style="color: #7060A8;">sprintf</span><span style="color: #0000FF;">(</span><span style="color: #008000;">" (%d digits)"</span><span style="color: #0000FF;">,</span><span style="color: #000000;">lr</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">return</span> <span style="color: #000000;">res</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #008080;">procedure</span> <span style="color: #000000;">mo_test</span><span style="color: #0000FF;">(</span><span style="color: #004080;">mpz</span> <span style="color: #000000;">a</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">n</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">string</span> <span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">multiplicative_order</span><span style="color: #0000FF;">(</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">n</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"ord(%s) mod %s = %s\n"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">shorta</span><span style="color: #0000FF;">(</span><span style="color: #000000;">a</span><span style="color: #0000FF;">),</span><span style="color: #000000;">shorta</span><span style="color: #0000FF;">(</span><span style="color: #000000;">n</span><span style="color: #0000FF;">),</span><span style="color: #000000;">res</span><span style="color: #0000FF;">})</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">procedure</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">(</span><span style="color: #004080;">atom</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">return</span> <span style="color: #7060A8;">mpz_init</span><span style="color: #0000FF;">(</span><span style="color: #000000;">i</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">end</span> <span style="color: #008080;">function</span> <span style="color: #000080;font-style:italic;">-- (ugh)</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">p10</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">e</span><span style="color: #0000FF;">,</span><span style="color: #000000;">i</span><span style="color: #0000FF;">)</span> <span style="color: #000080;font-style:italic;">-- init to 10^e+i</span>
<span style="color: #004080;">mpz</span> <span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">mpz_init</span><span style="color: #0000FF;">()</span>
<span style="color: #7060A8;">mpz_ui_pow_ui</span><span style="color: #0000FF;">(</span><span style="color: #000000;">res</span><span style="color: #0000FF;">,</span><span style="color: #000000;">10</span><span style="color: #0000FF;">,</span><span style="color: #000000;">e</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">mpz_add_si</span><span style="color: #0000FF;">(</span><span style="color: #000000;">res</span><span style="color: #0000FF;">,</span><span style="color: #000000;">res</span><span style="color: #0000FF;">,</span><span style="color: #000000;">i</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">return</span> <span style="color: #000000;">res</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #004080;">atom</span> <span style="color: #000000;">t</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">time</span><span style="color: #0000FF;">()</span>
<span style="color: #000000;">mo_test</span><span style="color: #0000FF;">(</span><span style="color: #000000;">i</span><span style="color: #0000FF;">(</span><span style="color: #000000;">3</span><span style="color: #0000FF;">),</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">(</span><span style="color: #000000;">10</span><span style="color: #0000FF;">))</span>
<span style="color: #000000;">mo_test</span><span style="color: #0000FF;">(</span><span style="color: #000000;">i</span><span style="color: #0000FF;">(</span><span style="color: #000000;">37</span><span style="color: #0000FF;">),</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1000</span><span style="color: #0000FF;">))</span>
<span style="color: #000000;">mo_test</span><span style="color: #0000FF;">(</span><span style="color: #000000;">i</span><span style="color: #0000FF;">(</span><span style="color: #000000;">37</span><span style="color: #0000FF;">),</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">(</span><span style="color: #000000;">10000</span><span style="color: #0000FF;">))</span>
<span style="color: #000000;">mo_test</span><span style="color: #0000FF;">(</span><span style="color: #000000;">i</span><span style="color: #0000FF;">(</span><span style="color: #000000;">37</span><span style="color: #0000FF;">),</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">(</span><span style="color: #000000;">3343</span><span style="color: #0000FF;">))</span>
<span style="color: #000000;">mo_test</span><span style="color: #0000FF;">(</span><span style="color: #000000;">i</span><span style="color: #0000FF;">(</span><span style="color: #000000;">37</span><span style="color: #0000FF;">),</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">(</span><span style="color: #000000;">3344</span><span style="color: #0000FF;">))</span>
<span style="color: #000000;">mo_test</span><span style="color: #0000FF;">(</span><span style="color: #000000;">i</span><span style="color: #0000FF;">(</span><span style="color: #000000;">2</span><span style="color: #0000FF;">),</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1000</span><span style="color: #0000FF;">))</span>
<span style="color: #000000;">mo_test</span><span style="color: #0000FF;">(</span><span style="color: #000000;">p10</span><span style="color: #0000FF;">(</span><span style="color: #000000;">100</span><span style="color: #0000FF;">,+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">),</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">(</span><span style="color: #000000;">7919</span><span style="color: #0000FF;">))</span>
<span style="color: #000000;">mo_test</span><span style="color: #0000FF;">(</span><span style="color: #000000;">p10</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1000</span><span style="color: #0000FF;">,+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">),</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">(</span><span style="color: #000000;">15485863</span><span style="color: #0000FF;">))</span>
<span style="color: #000000;">mo_test</span><span style="color: #0000FF;">(</span><span style="color: #000000;">p10</span><span style="color: #0000FF;">(</span><span style="color: #000000;">10000</span><span style="color: #0000FF;">,-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">),</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">(</span><span style="color: #000000;">22801763489</span><span style="color: #0000FF;">))</span>
<span style="color: #000000;">mo_test</span><span style="color: #0000FF;">(</span><span style="color: #000000;">i</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1511678068</span><span style="color: #0000FF;">),</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">(</span><span style="color: #000000;">7379191741</span><span style="color: #0000FF;">))</span>
<span style="color: #000000;">mo_test</span><span style="color: #0000FF;">(</span><span style="color: #000000;">i</span><span style="color: #0000FF;">(</span><span style="color: #000000;">3047753288</span><span style="color: #0000FF;">),</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">(</span><span style="color: #000000;">2257683301</span><span style="color: #0000FF;">))</span>
<span style="color: #0000FF;">?</span><span style="color: #008000;">"==="</span>
<span style="color: #004080;">mpz</span> <span style="color: #000000;">b</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">p10</span><span style="color: #0000FF;">(</span><span style="color: #000000;">20</span><span style="color: #0000FF;">,-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">mo_test</span><span style="color: #0000FF;">(</span><span style="color: #000000;">i</span><span style="color: #0000FF;">(</span><span style="color: #000000;">2</span><span style="color: #0000FF;">),</span> <span style="color: #000000;">b</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">mo_test</span><span style="color: #0000FF;">(</span><span style="color: #000000;">i</span><span style="color: #0000FF;">(</span><span style="color: #000000;">17</span><span style="color: #0000FF;">),</span><span style="color: #000000;">b</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">mo_test</span><span style="color: #0000FF;">(</span><span style="color: #000000;">i</span><span style="color: #0000FF;">(</span><span style="color: #000000;">54</span><span style="color: #0000FF;">),</span><span style="color: #000000;">i</span><span style="color: #0000FF;">(</span><span style="color: #000000;">100001</span><span style="color: #0000FF;">))</span>
<span style="color: #004080;">string</span> <span style="color: #000000;">s9090</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">multiplicative_order</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">mpz_init</span><span style="color: #0000FF;">(</span><span style="color: #000000;">54</span><span style="color: #0000FF;">),</span><span style="color: #7060A8;">mpz_init</span><span style="color: #0000FF;">(</span><span style="color: #000000;">100001</span><span style="color: #0000FF;">))</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">s9090</span><span style="color: #0000FF;">!=</span><span style="color: #008000;">"9090"</span> <span style="color: #008080;">then</span> <span style="color: #0000FF;">?</span><span style="color: #000000;">9</span><span style="color: #0000FF;">/</span><span style="color: #000000;">0</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #004080;">mpz</span> <span style="color: #000000;">m54</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">mpz_init</span><span style="color: #0000FF;">(</span><span style="color: #000000;">54</span><span style="color: #0000FF;">),</span>
<span style="color: #000000;">m100001</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">mpz_init</span><span style="color: #0000FF;">(</span><span style="color: #000000;">100001</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">mpz_powm_ui</span><span style="color: #0000FF;">(</span><span style="color: #000000;">b</span><span style="color: #0000FF;">,</span><span style="color: #000000;">m54</span><span style="color: #0000FF;">,</span><span style="color: #000000;">9090</span><span style="color: #0000FF;">,</span><span style="color: #000000;">m100001</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"%s\n"</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">mpz_get_str</span><span style="color: #0000FF;">(</span><span style="color: #000000;">b</span><span style="color: #0000FF;">))</span>
<span style="color: #004080;">bool</span> <span style="color: #000000;">error</span> <span style="color: #0000FF;">=</span> <span style="color: #004600;">false</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">r</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #000000;">9090</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span> <span style="color: #008080;">do</span>
<span style="color: #7060A8;">mpz_powm_ui</span><span style="color: #0000FF;">(</span><span style="color: #000000;">b</span><span style="color: #0000FF;">,</span><span style="color: #000000;">m54</span><span style="color: #0000FF;">,</span><span style="color: #000000;">r</span><span style="color: #0000FF;">,</span><span style="color: #000000;">m100001</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">if</span> <span style="color: #7060A8;">mpz_cmp_si</span><span style="color: #0000FF;">(</span><span style="color: #000000;">b</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)=</span><span style="color: #000000;">0</span> <span style="color: #008080;">then</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"mpz_powm_ui(54,%d,100001) gives 1!\n"</span><span style="color: #0000FF;">,</span><span style="color: #000000;">r</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">error</span> <span style="color: #0000FF;">=</span> <span style="color: #004600;">true</span>
<span style="color: #008080;">exit</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #008080;">if</span> <span style="color: #008080;">not</span> <span style="color: #000000;">error</span> <span style="color: #008080;">then</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"Everything checks. (%s)\n"</span><span style="color: #0000FF;">,{</span><span style="color: #7060A8;">elapsed</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">time</span><span style="color: #0000FF;">()-</span><span style="color: #000000;">t</span><span style="color: #0000FF;">)})</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<!--</syntaxhighlight>-->
{{out}}
<pre>
<pre>ok 1 - 10 factors correctly
ord(3) mod 10 = 4
ok 2 - 21 factors correctly
ord(37) mod 1000 = 100
ok 3 - 25 factors correctly
ord(37) mod 10000 = 500
ok 4 - 150 factors correctly
ord(37) mod 3343 = 1114
ok 5 - 1231 factors correctly
ord(37) mod 3344 = 20
ok 6 - 123141 factors correctly
ord(2) mod 1000 = (a,m) not coprime
ok 7 - 34131 factors correctly
ord(10000...00001 (101 digits)) mod 7919 = 3959
ok 8 - mo(37,1000) == 100
ord(10000...00001 (1001 digits)) mod 15485863 = 15485862
ok 9 - mo(2,10**20-1) == 3748806900
ord(99999...99999 (10000 digits)) mod 22801763489 = 22801763488
ok 10 - mo(17,10**20-1) == 1499522760
ord(1511678068) mod 7379191741 = 614932645
ok 11 - mo(54,100001) == 9090</pre>
ord(3047753288) mod 2257683301 = 62713425
"==="
ord(2) mod 99999999999999999999 = 3748806900
ord(17) mod 99999999999999999999 = 1499522760
ord(54) mod 100001 = 9090
1
Everything checks. (0.2s)
</pre>
 
=={{header|Python}}==
 
<langsyntaxhighlight lang="python">def gcd(a, b):
while b != 0:
a, b = b, a % b
Line 765 ⟶ 2,085:
print 'Exists a power r < 9090 where pow(54,r,b)==1'
else:
print 'Everything checks.'</langsyntaxhighlight>
 
=={{header|Racket}}==
Line 772 ⟶ 2,092:
shown below.
 
<langsyntaxhighlight lang="racket">
#lang racket
(require math)
Line 798 ⟶ 2,118:
(order (- (expt 10 10000) 1) 22801763489)
(order 13 (+ 1 (expt 10 80)))
</syntaxhighlight>
</lang>
Output:
<langsyntaxhighlight lang="racket">
100
3959
Line 806 ⟶ 2,126:
22801763488
109609547199756140150989321269669269476675495992554276140800
</syntaxhighlight>
</lang>
 
=={{header|Raku}}==
(formerly Perl 6)
<syntaxhighlight lang="raku" line>use Prime::Factor;
 
sub mo-prime($a, $p, $e) {
my $m = $p ** $e;
my $t = ($p - 1) * ($p ** ($e - 1)); # = Phi($p**$e) where $p prime
my @qs = 1;
for prime-factors($t).Bag -> $f {
@qs = flat @qs.map(-> $q { (0..$f.value).map(-> $j { $q * $f.key ** $j }) });
}
 
@qs.sort.first: -> $q { expmod( $a, $q, $m ) == 1 };
}
 
sub mo($a, $m) {
$a gcd $m == 1 or die "$a and $m are not relatively prime";
[lcm] flat 1, prime-factors($m).Bag.map: { mo-prime($a, .key, .value) };
}
 
multi MAIN('test') {
use Test;
 
for (10, 21, 25, 150, 1231, 123141, 34131) -> $n {
is ([*] prime-factors($n).Bag.map( { .key ** .value } )), $n, "$n factors correctly";
}
 
is mo(37, 1000), 100, 'mo(37,1000) == 100';
my $b = 10**20-1;
is mo(2, $b), 3748806900, 'mo(2,10**20-1) == 3748806900';
is mo(17, $b), 1499522760, 'mo(17,10**20-1) == 1499522760';
$b = 100001;
is mo(54, $b), 9090, 'mo(54,100001) == 9090';
}</syntaxhighlight>
{{out}}
<pre>ok 1 - 10 factors correctly
ok 2 - 21 factors correctly
ok 3 - 25 factors correctly
ok 4 - 150 factors correctly
ok 5 - 1231 factors correctly
ok 6 - 123141 factors correctly
ok 7 - 34131 factors correctly
ok 8 - mo(37,1000) == 100
ok 9 - mo(2,10**20-1) == 3748806900
ok 10 - mo(17,10**20-1) == 1499522760
ok 11 - mo(54,100001) == 9090</pre>
 
=={{header|REXX}}==
<syntaxhighlight lang="rexx">/*REXX pgm computes multiplicative order of a minimum integer N such that a^n mod m≡1*/
wa= 0; wm= 0 /* ═a═ ══m══ */ /*maximum widths of the A and M values.*/
@.=.; @.1= 3 10
@.2= 37 1000
@.3= 37 10000
@.4= 37 3343
@.5= 37 3344
@.6= 2 1000
pad= left('', 9)
d= 500 /*use 500 decimal digits for a starter.*/
do w=1 for 2 /*when W≡1, find max widths of A and M.*/
do j=1 while @.j\==.; parse var @.j a . 1 r m , n
if w==1 then do; wa= max(wa, length(a) ); wm= max(wm, length(m) ); iterate
end
if m//a==0 then n= ' [solution not possible]' /*test co─prime for A and B. */
numeric digits d /*start with 100 decimal digits. */
if n=='' then do n= 2; p= r * a /*compute product──may have an exponent*/
parse var p 'E' _ /*try to extract the exponent from P. */
if _\=='' then do; numeric digits _+d /*bump the decimal digs.*/
p=r*a /*recalculate integer P.*/
end
if p//m==1 then leave /*now, perform the nitty─gritty modulo.*/
r= p /*assign product to R for next multiply*/
end /*n*/ /* [↑] // is really ÷ remainder.*/
say pad 'a=' right(a,wa) pad "m=" right(m,wm) pad 'multiplicative order:' n
end /*j*/
end /*w*/ /*stick a fork in it, we're all done. */</syntaxhighlight>
{{out|output|.}}
<pre>
a= 3 m= 10 multiplicative order: 4
a= 37 m= 1000 multiplicative order: 100
a= 37 m= 10000 multiplicative order: 500
a= 37 m= 3343 multiplicative order: 1114
a= 37 m= 3344 multiplicative order: 20
a= 2 m= 1000 multiplicative order: [solution not possible]
</pre>
 
=={{header|Ruby}}==
 
<syntaxhighlight lang ="ruby">require 'rationalprime' # for lcm
require 'mathn' # for prime_division
 
def powerMod(b, p, m)
p.to_s(2).each_char.inject(1) do |result, bit|
result = 1
bits = p.to_s(2)
for bit in bits.split('')
result = (result * result) % m
if bit == '1' ? (result * b) % m : result
result = (result * b) % m
end
end
result
end
 
Line 830 ⟶ 2,229:
r = 1
for q, e in t.prime_division
x = powerMod(a, t / q ** e, pk)
while x != 1
r *= q
Line 840 ⟶ 2,239:
 
def multOrder(a, m)
m.prime_division.inject(1) {do |result, f|
result.lcm(multOrder_(a, *f))
}end
end
 
puts multOrder(37, 1000) # 100
b = 10**20-1
puts multOrder(2, b) # 3748806900
puts multOrder(17,b) # 1499522760
b = 100001
puts multOrder(54,b)
Line 856 ⟶ 2,255:
else
puts 'Everything checks.'
end</langsyntaxhighlight>
 
{{out}}
<pre>
100
3748806900
1499522760
9090
1
Everything checks.
</pre>
 
=={{header|Seed7}}==
<syntaxhighlight lang="seed7">$ include "seed7_05.s7i";
include "bigint.s7i";
 
const type: oneFactor is new struct
var bigInteger: prime is 0_;
var integer: exp is 0;
end struct;
 
const func oneFactor: oneFactor (in bigInteger: prime, in integer: exp) is func
result
var oneFactor: aFactor is oneFactor.value;
begin
aFactor.prime := prime;
aFactor.exp := exp;
end func;
 
const func array oneFactor: factor (in var bigInteger: n) is func
result
var array oneFactor: pf is 0 times oneFactor.value;
local
var integer: e is 0;
var bigInteger: d is 0_;
var bigInteger: s is 0_;
begin
e := lowestSetBit(n);
if e > 0 then
n >>:= e;
pf := [] (oneFactor(2_, e));
end if;
s := sqrt(n);
d := 3_;
while n > 1_ do
if d > s then
d := n;
end if;
e := 0;
while n rem d = 0_ do
n := n div d;
incr(e);
end while;
if e > 0 then
pf &:= oneFactor(d, e);
s := sqrt(n);
end if;
d +:= 2_;
end while;
end func;
 
const func bigInteger: moBachShallit58(in bigInteger: a, in bigInteger: n, in array oneFactor: pf) is func
result
var bigInteger: mo is 0_;
local
var bigInteger: n1 is 0_;
var oneFactor: pe is oneFactor.value;
var bigInteger: x is 0_;
var bigInteger: y is 0_;
var integer: o is 0;
var bigInteger: o1 is 0_;
begin
n1 := n - 1_;
mo := 1_;
for pe range pf do
y := n1 div pe.prime ** pe.exp;
x := modPow(a, y, n);
o := 0;
while x > 1_ do
x := modPow(x, pe.prime, n);
incr(o);
end while;
o1 := pe.prime ** o;
mo *:= o1 div gcd(mo, o1);
end for;
end func;
 
const func boolean: isProbablyPrime (in bigInteger: primeCandidate, in var integer: count) is func
result
var boolean: isProbablyPrime is TRUE;
local
var bigInteger: aRandomNumber is 0_;
begin
while isProbablyPrime and count > 0 do
aRandomNumber := rand(1_, pred(primeCandidate));
isProbablyPrime := modPow(aRandomNumber, pred(primeCandidate), primeCandidate) = 1_;
decr(count);
end while;
# writeln(count);
end func;
 
const proc: moTest (in bigInteger: a, in bigInteger: n) is func
begin
if bitLength(a) < 100 then
write("ord(" <& a <& ")");
else
write("ord([big])");
end if;
if bitLength(n) < 100 then
write(" mod " <& n <& " ");
else
write(" mod [big] ");
end if;
if not isProbablyPrime(n, 20) then
writeln("not computed. modulus must be prime for this algorithm.")
else
writeln("= " <& moBachShallit58(a, n, factor(n - 1_)));
end if;
end func;
 
const proc: main is func
local
var bigInteger: b is 100_;
begin
moTest(37_, 3343_);
moTest(10_ ** 100 + 1_, 7919_);
moTest(10_ ** 1000 + 1_, 15485863_);
moTest(10_ ** 10000 - 1_, 22801763489_);
moTest(1511678068_, 7379191741_);
moTest(3047753288_, 2257683301_);
end func;</syntaxhighlight>
 
{{out}}
<pre>
ord(37) mod 3343 = 1114
ord([big]) mod 7919 = 3959
ord([big]) mod 15485863 = 15485862
ord([big]) mod 22801763489 = 22801763488
ord(1511678068) mod 7379191741 = 614932645
ord(3047753288) mod 2257683301 = 62713425
</pre>
 
=={{header|Sidef}}==
 
Built-in:
<syntaxhighlight lang="ruby">say 37.znorder(1000) #=> 100
say 54.znorder(100001) #=> 9090</syntaxhighlight>
 
{{trans|Raku}}
<syntaxhighlight lang="ruby">func mo_prime(a, p, e) {
var m = p**e
var t = (p-1)*(p**(e-1))
var qs = [1]
 
for f in (t.factor_exp) {
qs.map! {|q|
0..f[1] -> map {|j| q * f[0]**j }...
}
}
 
qs.sort.first_by {|q| powmod(a, q, m) == 1 }
}
 
func mo(a, m) {
gcd(a, m) == 1 || die "#{a} and #{m} are not relatively prime"
Math.lcm(1, m.factor_exp.map {|r| mo_prime(a, r...) }...)
}
 
say mo(37, 1000)
say mo(54, 100001)
 
with (10**20 - 1) {|b|
say mo(2, b)
say mo(17, b)
}</syntaxhighlight>
{{out}}
<pre>
100
9090
3748806900
1499522760
</pre>
 
=={{header|Tcl}}==
{{trans|Python}}
{{tcllib|struct::list}}
<langsyntaxhighlight lang="tcl">package require Tcl 8.5
package require struct::list
 
Line 1,038 ⟶ 2,618:
if {$r % 1000 == 0} {puts "$r ..."}
}
puts "OK, $n is the smallest n such that {$a $n $m} satisfies $lambda"</langsyntaxhighlight>
 
=={{header|Visual Basic .NET}}==
{{trans|C#}}
<syntaxhighlight lang="vbnet">Imports System.Numerics
Imports System.Runtime.CompilerServices
Imports System.Threading
 
Module Module1
Private s_gen As New ThreadLocal(Of Random)(Function() New Random())
 
Private Function Gen()
Return s_gen.Value
End Function
 
<Extension()>
Public Function IsProbablyPrime(value As BigInteger, Optional witnesses As Integer = 10) As Boolean
If value <= 1 Then
Return False
End If
 
If witnesses <= 0 Then
witnesses = 10
End If
 
Dim d = value - 1
Dim s = 0
 
While d Mod 2 = 0
d /= 2
s += 1
End While
 
Dim bytes(value.ToByteArray.LongLength - 1) As Byte
Dim a As BigInteger
 
For i = 1 To witnesses
Do
Gen.NextBytes(bytes)
 
a = New BigInteger(bytes)
Loop While a < 2 OrElse a >= value - 2
 
Dim x = BigInteger.ModPow(a, d, value)
If x = 1 OrElse x = value - 1 Then
Continue For
End If
 
For r = 1 To s - 1
x = BigInteger.ModPow(x, 2, value)
 
If x = 1 Then
Return False
End If
If x = value - 1 Then
Exit For
End If
Next
 
If x <> value - 1 Then
Return False
End If
Next
 
Return True
End Function
 
<Extension()>
Function Sqrt(self As BigInteger) As BigInteger
Dim b = self
While True
Dim a = b
b = self / a + a >> 1
If b >= a Then
Return a
End If
End While
Throw New Exception("Should not have happened")
End Function
 
<Extension()>
Function BitLength(self As BigInteger) As Long
Dim bi = self
Dim len = 0L
While bi <> 0
len += 1
bi >>= 1
End While
Return len
End Function
 
<Extension()>
Function BitTest(self As BigInteger, pos As Integer) As Boolean
Dim arr = self.ToByteArray
Dim i = pos \ 8
Dim m = pos Mod 8
If i >= arr.Length Then
Return False
End If
Return (arr(i) And (1 << m)) > 0
End Function
 
Class PExp
Sub New(p As BigInteger, e As Integer)
Prime = p
Exp = e
End Sub
 
Public ReadOnly Property Prime As BigInteger
Public ReadOnly Property Exp As Integer
End Class
 
Function MoBachShallit58(a As BigInteger, n As BigInteger, pf As List(Of PExp)) As BigInteger
Dim n1 = n - 1
Dim mo As BigInteger = 1
For Each pe In pf
Dim y = n1 / BigInteger.Pow(pe.Prime, pe.Exp)
Dim o = 0
Dim x = BigInteger.ModPow(a, y, BigInteger.Abs(n))
While x > 1
x = BigInteger.ModPow(x, pe.Prime, BigInteger.Abs(n))
o += 1
End While
Dim o1 = BigInteger.Pow(pe.Prime, o)
o1 /= BigInteger.GreatestCommonDivisor(mo, o1)
mo *= o1
Next
Return mo
End Function
 
Function Factor(n As BigInteger) As List(Of PExp)
Dim pf As New List(Of PExp)
Dim nn = n
Dim e = 0
While Not nn.BitTest(e)
e += 1
End While
If e > 0 Then
nn >>= e
pf.Add(New PExp(2, e))
End If
Dim s = nn.Sqrt
Dim d As BigInteger = 3
While nn > 1
If d > s Then
d = nn
End If
e = 0
While True
Dim remainder As New BigInteger
Dim div = BigInteger.DivRem(nn, d, remainder)
If remainder.BitLength > 0 Then
Exit While
End If
nn = div
e += 1
End While
If e > 0 Then
pf.Add(New PExp(d, e))
s = nn.Sqrt
End If
d += 2
End While
Return pf
End Function
 
Sub MoTest(a As BigInteger, n As BigInteger)
If Not n.IsProbablyPrime(20) Then
Console.WriteLine("Not computed. Modulus must be prime for this algorithm.")
Return
End If
If a.BitLength < 100 Then
Console.Write("ord({0})", a)
Else
Console.Write("ord([big])")
End If
If n.BitLength < 100 Then
Console.Write(" mod {0}", n)
Else
Console.Write(" mod [big]")
End If
Dim mob = MoBachShallit58(a, n, Factor(n - 1))
Console.WriteLine(" = {0}", mob)
End Sub
 
Sub Main()
MoTest(37, 3343)
MoTest(BigInteger.Pow(10, 100) + 1, 7919)
MoTest(BigInteger.Pow(10, 1000) + 1, 15485863)
MoTest(BigInteger.Pow(10, 10000) - 1, 22801763489)
MoTest(1511678068, 7379191741)
MoTest(3047753288, 2257683301)
End Sub
 
End Module</syntaxhighlight>
{{out}}
<pre>ord(37) mod 3343 = 1114
ord([big]) mod 7919 = 3959
ord([big]) mod 15485863 = 15485862
ord([big]) mod 22801763489 = 22801763488
ord(1511678068) mod 7379191741 = 614932645
ord(3047753288) mod 2257683301 = 62713425</pre>
 
=={{header|Wren}}==
{{trans|Kotlin}}
{{libheader|Wren-big}}
<syntaxhighlight lang="wren">import "./big" for BigInt
 
class PExp {
construct new(prime, exp) {
_prime = prime
_exp = exp
}
prime { _prime }
exp { _exp }
}
 
var moBachShallit58 = Fn.new { |a, n, pf|
var n1 = n - BigInt.one
var mo = BigInt.one
for (pe in pf) {
var y = n1 / pe.prime.pow(pe.exp)
var o = 0
var x = a.modPow(y, n.abs)
while (x > BigInt.one) {
x = x.modPow(pe.prime, n.abs)
o = o + 1
}
var o1 = BigInt.new(o)
o1 = pe.prime.pow(o1)
o1 = o1 / BigInt.gcd(mo, o1)
mo = mo * o1
}
return mo
}
 
var factor = Fn.new { |n|
var pf = []
var nn = n.copy()
var e = 0
while (!nn.testBit(e)) e = e + 1
if (e > 0) {
nn = nn >> e
pf.add(PExp.new(BigInt.two, e))
}
var s = nn.isqrt
var d = BigInt.three
while (nn > BigInt.one) {
if (d > s) d = nn
e = 0
while (true) {
var dm = nn.divMod(d)
if (dm[1].bitLength > 0) break
nn = dm[0]
e = e + 1
}
if (e > 0) {
pf.add(PExp.new(d, e))
s = nn.isqrt
}
d = d + BigInt.two
}
return pf
}
 
var moTest = Fn.new { |a, n|
if (!n.isProbablePrime(10)) {
System.print("Not computed. Modulus must be prime for this algorithm.")
return
}
System.write((a.bitLength < 100) ? "ord(%(a))" : "ord([big])")
System.write((n.bitLength < 100) ? " mod %(n) " : "mod([big])")
var mob = moBachShallit58.call(a, n, factor.call(n - BigInt.one))
System.print("= %(mob)")
}
 
moTest.call(BigInt.new(37), BigInt.new(3343))
 
var b = BigInt.ten.pow(100) + BigInt.one
moTest.call(b, BigInt.new(7919))
 
b = BigInt.ten.pow(1000) + BigInt.one
moTest.call(b, BigInt.new(15485863))
 
b = BigInt.ten.pow(10000) - BigInt.one
moTest.call(b, BigInt.new(22801763489))
 
moTest.call(BigInt.new(1511678068), BigInt.new(7379191741))
moTest.call(BigInt.new(3047753288), BigInt.new(2257683301))</syntaxhighlight>
 
{{out}}
<pre>
ord(37) mod 3343 = 1114
ord([big]) mod 7919 = 3959
ord([big]) mod 15485863 = 15485862
ord([big]) mod 22801763489 = 22801763488
ord(1511678068) mod 7379191741 = 614932645
ord(3047753288) mod 2257683301 = 62713425
</pre>
 
=={{header|zkl}}==
{{trans|Python}}
Using [[Extensible prime generator#zkl]] and the GMP library for lcm (least common multiple), pow and powm ((n^e)%m)
 
It would probably be nice to memoize the prime numbers but that isn't necessary for this task.
<syntaxhighlight lang="zkl">var BN =Import("zklBigNum");
var Sieve=Import("sieve");
 
// factor n into powers of primes
// eg 9090 == 2^1 * 3^2 * 5^1 * 101^1
fcn factor2PP(n){ // lazy factors using lazy primes --> (prime,power) ...
Utils.Generator(fcn(a){
primes:=Utils.Generator(Sieve.postponed_sieve);
foreach p in (primes){
e:=0; while(a%p == 0){ a /= p; e+=1; }
if (e) vm.yield(p,e);
if (a<p*p) break;
}
if (a>1) vm.yield(a,1);
},n)
}
 
fcn _multOrdr1(a,p,e){
m:=p.pow(e);
t:=m/p*(p - 1);
qs:=L(BN(1));
foreach p2,e2 in (factor2PP(t)){
qs=[[(e,q); [0..e2]; qs; '{ q*BN(p2).pow(e) }]];
}
qs.filter1('wrap(q){ a.powm(q,m)==1 });
}
 
fcn multiOrder(a,m){
if (m.gcd(a)!=1) throw(Exception.ValueError("Not co-prime"));
res:=BN(1);
foreach p,e in (factor2PP(m)){
res = res.lcm(_multOrdr1(BN(a),BN(p),e));
}
return(res);
}</syntaxhighlight>
<syntaxhighlight lang="zkl">multiOrder(37,1000).println();
b:=BN(10).pow(20)-1;
multiOrder(2,b).println();
multiOrder(17,b).println();
 
b=0d10_0001;
[BN(1)..multiOrder(54,b)-1].filter1('wrap(r,b54){b54.powm(r,b)==1},BN(54)) :
if (_) println("Exists a power r < 9090 where (54^r)%b)==1");
else println("Everything checks.");</syntaxhighlight>
{{out}}
<pre>
100
3748806900
1499522760
Everything checks.
</pre>
2,455

edits