Miller–Rabin primality test: Difference between revisions

add task to aarch64 assembly raspberry pi 3
(add task to arm assembly raspberry pi)
(add task to aarch64 assembly raspberry pi 3)
Line 63:
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
</pre>
=={{header|AArch64 Assembly}}==
{{works with|as|Raspberry Pi 3B version Buster 64 bits <br> or android 64 bits with application Termux }}
<syntaxhighlight lang AArch64 Assembly>
/* ARM assembly AARCH64 Raspberry PI 3B */
/* program testmiller64B.s */
// optimisation : one routine
 
/************************************/
/* Constantes */
/************************************/
/* for this file see task include a file in language AArch64 assembly*/
.include "../includeConstantesARM64.inc"
 
.equ NBLOOP, 5 // loop number change this if necessary
// if modify, thinck to add test to little prime value
// in routine
//.include "../../ficmacros64.inc" // use for developper debugging
/*******************************************/
/* Initialized data */
/*******************************************/
.data
szMessStartPgm: .asciz "Program 64 bits start \n"
szMessEndPgm: .asciz "Program normal end.\n"
szMessPrime: .asciz " is prime !!!.\n"
szMessNotPrime: .asciz " is not prime !!!.\n"
szCarriageReturn: .asciz "\n"
 
/*******************************************/
/* UnInitialized data */
/*******************************************/
.bss
.align 4
sZoneConv: .skip 24
/*******************************************/
/* code section */
/*******************************************/
.text
.global main
main: // program start
ldr x0,qAdrszMessStartPgm // display start message
bl affichageMess
ldr x4,iStart // start number
ldr x5,iLimit // end number
tst x4,#1
cinc x4,x4,eq // start with odd number
1:
mov x0,x4
bl isPrimeMiller // test miller rabin
cmp x0,#0
beq 2f
mov x0,x4
ldr x1,qAdrsZoneConv
bl conversion10 // decimal conversion
ldr x0,qAdrsZoneConv
bl affichageMess
ldr x0,qAdrszMessPrime
bl affichageMess
b 3f
2:
ldr x0,qAdrszMessNotPrime
// bl affichageMess
3:
add x4,x4,#2
cmp x4,x5
blo 1b
 
ldr x0,qAdrszMessEndPgm // display end message
bl affichageMess
 
100: // standard end of the program
mov x0, #0 // return code
mov x8, #EXIT // request to exit program
svc 0 // perform system call
qAdrszMessStartPgm: .quad szMessStartPgm
qAdrszMessEndPgm: .quad szMessEndPgm
qAdrszCarriageReturn: .quad szCarriageReturn
qAdrsZoneConv: .quad sZoneConv
qAdrszMessPrime: .quad szMessPrime
qAdrszMessNotPrime: .quad szMessNotPrime
//iStart: .quad 0x0
//iLimit: .quad 0x100
iStart: .quad 0xFFFFFFFFFFFFFF00
iLimit: .quad 0xFFFFFFFFFFFFFFF0
//iStart: .quad 341550071728360
//iLimit: .quad 341550071728380
//359341550071728361
 
/***************************************************/
/* test miller rabin algorithme wikipedia */
/* unsigned */
/***************************************************/
/* x0 contains number */
/* x1 contains parameter */
/* x0 return 1 if prime 0 if composite */
isPrimeMiller:
stp x1,lr,[sp,-16]! // TODO: save à completer
stp x2,x3,[sp,-16]!
stp x4,x5,[sp,-16]!
stp x6,x7,[sp,-16]!
stp x8,x9,[sp,-16]!
cmp x0,#1 // control 0 or 1
csel x0,xzr,x0,ls
bls 100f
cmp x0,#2 // control = 2
mov x1,1
csel x0,x1,x0,eq
beq 100f
cmp x0,#3 // control = 3
csel x0,x1,x0,eq
beq 100f
cmp x0,#5 // control = 5
csel x0,x1,x0,eq
beq 100f
cmp x0,#7 // control = 7
csel x0,x1,x0,eq
beq 100f
cmp x0,#11 // control = 11
csel x0,x1,x0,eq
beq 100f
tst x0,#1
csel x0,xzr,x0,eq // even
beq 100f
mov x4,x0 // N
sub x3,x0,#1 // D
mov x2,#2
mov x6,#0 // S
1: // compute D * 2 power S
lsr x3,x3,#1 // D= D/2
add x6,x6,#1 // increment S
tst x3,#1 // D even ?
beq 1b
2:
mov x8,#0 // loop counter
sub x5,x0,#3
mov x7,3
3:
mov x0,x7
mov x1,x3 // exposant = D
mov x2,x4 // modulo N
bl moduloPur64
cmp x0,#1
beq 5f
sub x1,x4,#1 // n -1
cmp x0,x1
beq 5f
sub x9,x6,#1 // S - 1
4:
mov x2,x0
mul x0,x2,x2 // compute square lower
umulh x1,x2,x2 // compute square upper
mov x2,x4 // and compute modulo N
bl division64R2023
mov x0,x2
cmp x0,#1
csel x0,xzr,x0,eq // composite
beq 100f
sub x1,x4,#1 // n -1
cmp x0,x1
beq 5f
subs x9,x9,#1
bge 4b
mov x0,#0 // composite
b 100f
5:
add x7,x7,2
add x8,x8,#1
cmp x8,NBLOOP
blt 3b
mov x0,#1 // prime
100:
ldp x8,x9,[sp],16
ldp x6,x7,[sp],16
ldp x4,x5,[sp],16
ldp x2,x3,[sp],16
ldp x1,lr,[sp],16 // TODO: retaur à completer
ret
/********************************************************/
/* Calcul modulo de b puissance e modulo m */
/* Exemple 4 puissance 13 modulo 497 = 445 */
/********************************************************/
/* x0 nombre */
/* x1 exposant */
/* x2 modulo */
moduloPur64:
stp x1,lr,[sp,-16]! // save registres
stp x3,x4,[sp,-16]! // save registres
stp x5,x6,[sp,-16]! // save registres
stp x7,x8,[sp,-16]! // save registres
stp x9,x10,[sp,-16]! // save registres
cbz x0,100f
cbz x1,100f
mov x8,x0
mov x7,x1
mov x10,x2 // modulo
mov x6,1 // resultat
udiv x4,x8,x10
msub x9,x4,x10,x8 // contient le reste
1:
tst x7,1
beq 2f
mul x4,x9,x6
umulh x5,x9,x6
mov x6,x4
mov x0,x6
mov x1,x5
mov x2,x10
bl division64R2023
mov x6,x2
2:
mul x8,x9,x9
umulh x5,x9,x9
mov x0,x8
mov x1,x5
mov x2,x10
bl division64R2023
mov x9,x2
lsr x7,x7,1
cbnz x7,1b
mov x0,x6 // result
cmn x0,0 // clear carry not error
 
100:
ldp x9,x10,[sp],16 // restaur des 2 registres
ldp x7,x8,[sp],16 // restaur des 2 registres
ldp x5,x6,[sp],16 // restaur des 2 registres
ldp x3,x4,[sp],16 // restaur des 2 registres
ldp x1,lr,[sp],16 // restaur des 2 registres
ret // retour adresse lr x30
/***************************************************/
/* division number 128 bits in 2 registers by number 64 bits */
/* unsigned */
/***************************************************/
/* x0 contains lower part dividende */
/* x1 contains upper part dividende */
/* x2 contains divisor */
/* x0 return lower part quotient */
/* x1 return upper part quotient */
/* x2 return remainder */
division64R2023:
stp x3,lr,[sp,-16]!
stp x4,x5,[sp,-16]!
stp x6,x7,[sp,-16]!
mov x4,x2 // save divisor
mov x5,#0 // init upper part divisor
mov x2,x0 // save dividende
mov x3,x1
mov x0,#0 // init result
mov x1,#0
mov x6,#0 // init shift counter
1: // loop shift divisor
cmp x5,#0 // upper divisor <0
blt 2f
cmp x5,x3
bhi 2f
blo 11f
cmp x4,x2
bhi 2f // new divisor > dividende
11:
lsl x5,x5,#1 // shift left one bit upper divisor
tst x4,#0x8000000000000000
lsl x4,x4,#1 // shift left one bit lower divisor
orr x7,x5,#1
csel x5,x7,x5,ne // move bit 63 lower on upper
add x6,x6,#1 // increment shift counter
b 1b
2: // loop 2
lsl x1,x1,#1 // shift left one bit upper quotient
tst x0,#0x8000000000000000
lsl x0,x0,#1 // shift left one bit lower quotient
orr x7,x1,#1
csel x1,x7,x1,ne // move bit 63 lower on upper
cmp x5,x3 // compare divisor and dividende
bhi 3f
blo 21f
cmp x4,x2
bhi 3f
21:
subs x2,x2,x4 // < sub divisor from dividende lower
sbc x3,x3,x5 // and upper
orr x0,x0,#1 // move 1 on quotient
3:
lsr x4,x4,#1 // shift right one bit upper divisor
tst x5,1
lsr x5,x5,#1 // and lower
orr x7,x4,#0x8000000000000000 // move bit 0 upper to 31 bit lower
csel x4,x7,x4,ne // move bit 0 upper to 63 bit lower
subs x6,x6,#1 // decrement shift counter
bge 2b // if > 0 loop 2
100:
ldp x6,x7,[sp],16
ldp x4,x5,[sp],16
ldp x3,lr,[sp],16
ret
 
/***************************************************/
/* ROUTINES INCLUDE */
/***************************************************/
.include "../includeARM64.inc"
 
 
</syntaxhighlight>
{{Out}}
<pre>
Program 64 bits start
18446744073709551427 is prime !!!.
18446744073709551437 is prime !!!.
18446744073709551521 is prime !!!.
18446744073709551533 is prime !!!.
18446744073709551557 is prime !!!.
Program normal end.
</pre>
=={{header|Ada}}==
 
79

edits