Meissel–Mertens constant: Difference between revisions

From Rosetta Code
Content added Content deleted
(→‎J: Define verb)
(→‎{{header|Wren}}: A change in the order of operations fixed the apparent bug (thanks to Michel Hermier for spotting this).)
Line 278: Line 278:
{{libheader|Wren-math}}
{{libheader|Wren-math}}
{{libheader|Wren-fmt}}
{{libheader|Wren-fmt}}
It will be seen that this is converging to the correct answer though we'd need to add a lot more primes to obtain a valid 11th digit.
Wren's only native number type is a 64 bit float (15 or 16 digits accuracy) and it appears from the following results that, no matter how many primes we use, we're not going to be able to improve on 8 valid digits for M with this particular number type.

However, it's curious that the other examples, which are using (or appear to be using) a 64 bit float type, are able to get much closer to the correct answer. It's clearly something that needs to be investigated.
<syntaxhighlight lang="ecmascript">import "./math" for Int
<syntaxhighlight lang="ecmascript">import "./math" for Int
import "./fmt" for Fmt
import "./fmt" for Fmt
Line 293: Line 291:
for (p in primes) {
for (p in primes) {
var rp = 1/p
var rp = 1/p
sum = sum + (1-rp).log + rp
sum = (1-rp).log + rp + sum
c = c + 1
c = c + 1
if ((c % 1e7) == 0 || c == pc) Fmt.print("$,11d $0.12f", c, sum + euler)
if ((c % 1e7) == 0 || c == pc) Fmt.print("$,11d $0.12f", c, sum + euler)
Line 302: Line 300:
Primes added M
Primes added M
------------ --------------
------------ --------------
10,000,000 0.261497213008
10,000,000 0.261497212987
20,000,000 0.261497213008
20,000,000 0.261497212912
30,000,000 0.261497213009
30,000,000 0.261497212889
40,000,000 0.261497213008
40,000,000 0.261497212878
50,000,000 0.261497213009
50,000,000 0.261497212871
60,000,000 0.261497213009
60,000,000 0.261497212867
70,000,000 0.261497213009
70,000,000 0.261497212864
80,000,000 0.261497213009
80,000,000 0.261497212862
90,000,000 0.261497213009
90,000,000 0.261497212861
100,000,000 0.261497213009
100,000,000 0.261497212859
105,097,565 0.261497213009
105,097,565 0.261497212858
</pre>
</pre>

Revision as of 00:14, 5 October 2022

Task
Meissel–Mertens constant
You are encouraged to solve this task according to the task description, using any language you may know.


Task

Calculate Meissel–Mertens constant up to a precision your language can handle.


Motivation

Analogous to Euler's constant, which is important in determining the sum of reciprocal natural numbers, Meissel-Mertens' constant is important in calculating the sum of reciprocal primes.


Example

We consider the finite sum of reciprocal natural numbers:

1 + 1/2 + 1/3 + 1/4 + 1/5 ... 1/n

this sum can be well approximated with:

log(n) + E

where E denotes Euler's constant: 0.57721...

log(n) denotes the natural logarithm of n.


Now consider the finite sum of reciprocal primes:

1/2 + 1/3 + 1/5 + 1/7 + 1/11 ... 1/p

this sum can be well approximated with:

log( log(p) ) + M

where M denotes Meissel-Mertens constant: 0.26149...


See



Go

Translation of: Wren
Library: Go-rcu

Unlike the Wren example, slowly converging towards the correct answer.

package main

import (
    "fmt"
    "math"
    "rcu"
)

func contains(a []int, f int) bool {
    for _, e := range a {
        if e == f {
            return true
        }
    }
    return false
}

func main() {
    const euler = 0.57721566490153286
    primes := rcu.Primes(1 << 31)
    pc := len(primes)
    sum := 0.0
    fmt.Println("Primes added         M")
    fmt.Println("------------  --------------")
    for i, p := range primes {
        rp := 1.0 / float64(p)
        sum += math.Log(1.0-rp) + rp
        c := i + 1
        if (c%1e7) == 0 || c == pc {
            fmt.Printf("%11s   %0.12f\n", rcu.Commatize(c), sum+euler)
        }
    }
}
Output:
Primes added         M
------------  --------------
 10,000,000   0.261497212987
 20,000,000   0.261497212912
 30,000,000   0.261497212889
 40,000,000   0.261497212878
 50,000,000   0.261497212871
 60,000,000   0.261497212867
 70,000,000   0.261497212864
 80,000,000   0.261497212862
 90,000,000   0.261497212861
100,000,000   0.261497212859
105,097,565   0.261497212858

J

   Euler=: 0.57721566490153286
   MM=: {{ Euler + +/ (+ ^.@-.)@% p:i. y }}
   0j12 ": MM 1e7
0.261497212987

Julia

Off by one in the 11th digit after 10^8 primes.

using Base.MathConstants  # sets constant γ = 0.5772156649015...
using Primes

""" Approximate the Meissel-Mertons constant. """
function meissel_mertens(iterations = 100_000_000)
    return mapreduce(p ->(d = 1/p; log(1 - d) + d), +, primes(prime(iterations))) + γ
end

@show meissel_mertens(100_000_000) # meissel_mertens(100000000) = 0.2614972128591237

PARI/GP

Summation method

{
MM(t)=
  my(s=0);
  forprime(p = 2, t,
    s += log(1.-1./p)+1./p
  );
  Euler+s
};
Output:

Running 10^9 summations to get 9 valid digits.

? \p10
   realprecision = 19 significant digits (10 digits displayed)
? MM(1e9)
?
%1 = 0.2614972129
?
? ##
  ***   last result: cpu time 1min, 18,085 ms, real time 1min, 18,094 ms.
?

Analytic method

The Analytic method requires high precision calculation of Riemann zeta function.

{
Meissel_Mertens(d)=
  default(realprecision, d);
  my(prec = default(realprecision), z = 0, y = 0, q);
  forprime(p = 2 , 7, 
    z += log(1.-1./p)+1./p
  );
  for(k = 2, prec,
    q = 1;
    forprime(p = 2, 7, 
      q *= 1.-p^-k
    );
    y += moebius(k)*log(zeta(k)*q)/k
  );
  Euler+z+y
};
Output:

1000 valid digits.

? Meissel_Mertens(1001)
%1 = 0.26149721284764278375542683860869585905156664826119920619206421392492451089736820971414263143424665105161772887648602199778339032427004442454348740197238640666194955709392581712774774211985258807266272064144464232590023543105177232173925663229980314763831623758149059290382284758265972363422015971458785446941586825460538918007031787714156680620570605257601785334398970354507934530971953511716888598019955346947142883673537117910619342522616975101911159537244599605203558051780574237201332999961769676911386909654186249097435916294862238555389898241954857937738258646582212506260380084370067541379219020626760709633535981989783010762417792511961619355361391684002933280522289185167238258837930443067100391254985761418536020400457460311825670423438456551983202200477824746954606715454777572171338072595463648319687279859427306787306509669454587505942593547068846408425666008833035029366514525328713339609172639368543886291288200447611698748441593459920236225093315001729474600911978170842383659092665509
? ##
  ***   last result: cpu time 283 ms, real time 284 ms.

Phix

Converges very slowly, I started running out of memory (from generating so many primes) before it showed any signs of getting stuck.

with javascript_semantics -- (but perhaps a bit too slow)
constant mmc = 0.2614972128476427837554268386086958590516,
       smmc = "0.2614972128476427837554268386086958590516"
atom t = 0.57721566490153286, dpa = 1, p10=1
integer pn = 1, adp = 0
string st = "0", fmt = "%.0f"
printf(1,"Primes added         M\n")
printf(1,"------------  --------------\n")
while adp<=10 do
    atom rp = 1/get_prime(pn)
    t += log(1-rp) + rp
    if (t-mmc)<dpa then
        string ft = sprintf(fmt,trunc(t*p10)/p10) -- (as below)
        if ft=st then
            --
            -- We have to artifically calculate a "truncated t", aka tt, 
            -- to prevent say 0.2..299[>5..] being automatically rounded 
            -- by printf() to 0.2..300, otherwise it just "looks wrong".
            --
            atom tt = trunc(t*1e12)/1e12
            printf(1,"%,11d   %0.12f (accurate to %d d.p.)\n", {pn, tt, adp})
            adp += 1
            fmt = sprintf("%%.%df",adp)
            st = smmc[1..2+adp]
            dpa /= 10
            p10 *= 10
        end if
    end if
    pn += 1
end while
printf(1,"(actual value 0.26149721284764278375542683860869)\n")
Output:

(Couldn't be bothered with making it an inner loop to upgrade the "accurate to 4dp" to 5dp)

Primes added         M
------------  --------------
          1   0.384068484341 (accurate to 0 d.p.)
          3   0.288793158252 (accurate to 1 d.p.)
          6   0.269978901636 (accurate to 2 d.p.)
         38   0.261990332075 (accurate to 3 d.p.)
      1,940   0.261499998883 (accurate to 4 d.p.)
      1,941   0.261499997116 (accurate to 5 d.p.)
      5,471   0.261497999951 (accurate to 6 d.p.)
     34,891   0.261497299999 (accurate to 7 d.p.)
    303,447   0.261497219999 (accurate to 8 d.p.)
  9,246,426   0.261497212999 (accurate to 9 d.p.)
 24,304,615   0.261497212899 (accurate to 10 d.p.)
(actual value 0.26149721284764278375542683860869)

analytical/gmp

Translation of: PARI/GP
without js -- no mpfr_zeta[_ui]() in mpfr.js, as yet, or mpfr_log() or mpfr_const_euler(), for that matter
include mpfr.e
function moebius(integer n)
    if n=1 then return 1 end if
    sequence f = prime_factors(n,true)
    for i=2 to length(f) do
        if f[i] = f[i-1] then return 0 end if
    end for
    return iff(odd(length(f))?-1:+1)
end function

function Meissel_Mertens(integer d)
    mpfr_set_default_precision(-d) -- (d decimal places)
    mpfr {res,rp,z,y,q} = mpfr_inits(5)
    for p in {2,3,5,7} do
        -- z += log(1-1/p)+1/p
        mpfr_set_si(rp,1)
        mpfr_div_si(rp,rp,p)
        mpfr_add(z,z,rp)
        mpfr_si_sub(rp,1,rp)
        mpfr_log(rp,rp)
        mpfr_add(z,z,rp)
    end for
    for k=2 to d do -- (see note)
        integer m = moebius(k)
        if m then
            mpfr_set_si(q,1)
            for p in {2,3,5,7} do
                -- q *= 1-power(p,-k)
                mpfr_set_si(rp,p)
                mpfr_pow_si(rp,rp,-k)
                mpfr_si_sub(rp,1,rp)
                mpfr_mul(q,q,rp)
            end for
            -- y += moebius(k)*log(zeta(k)*q)/k
            mpfr_zeta_ui(rp,k)
            mpfr_mul(rp,rp,q)
            mpfr_log(rp,rp)
            mpfr_div_si(rp,rp,k)
            mpfr_mul_si(rp,rp,m)
            mpfr_add(y,y,rp)
        end if
    end for
    -- res := EULER+z+y
    mpfr_const_euler(res)
    mpfr_add(z,z,y)
    mpfr_add(res,res,z)
    return res
end function

mpfr m = Meissel_Mertens(1001)
?shorten(mpfr_get_str(m,10,1001))
Output:

Agrees with PARI/GP except for the very last digit being 8 instead of 9. Note that playing with precision and/or iterations (which seems to differ quite wildly) gave utterly incorrect results... not that I actually comprehend what the algorithm is doing. The 1,003 includes 2 from the "0.", fairly obviously.

"0.261497212847642783...70842383659092665508 (1,003 digits)"

Wren

Library: Wren-math
Library: Wren-fmt

It will be seen that this is converging to the correct answer though we'd need to add a lot more primes to obtain a valid 11th digit.

import "./math" for Int
import "./fmt" for Fmt

var euler = 0.57721566490153286
var primes = Int.primeSieve(2.pow(31))
var pc = primes.count
var sum = 0
var c = 0
System.print("Primes added         M")
System.print("------------  --------------")
for (p in primes) {
    var rp = 1/p
    sum = (1-rp).log + rp + sum
    c = c + 1
    if ((c % 1e7) == 0 || c == pc) Fmt.print("$,11d   $0.12f", c, sum + euler)
}
Output:
Primes added         M
------------  --------------
 10,000,000   0.261497212987
 20,000,000   0.261497212912
 30,000,000   0.261497212889
 40,000,000   0.261497212878
 50,000,000   0.261497212871
 60,000,000   0.261497212867
 70,000,000   0.261497212864
 80,000,000   0.261497212862
 90,000,000   0.261497212861
100,000,000   0.261497212859
105,097,565   0.261497212858