Matrix-exponentiation operator: Difference between revisions

Content added Content deleted
m (syntax highlighting fixup automation)
Line 11: Line 11:
{{trans|Python}}
{{trans|Python}}


<lang 11l>F matrix_mul(m1, m2)
<syntaxhighlight lang="11l">F matrix_mul(m1, m2)
assert(m1[0].len == m2.len)
assert(m1[0].len == m2.len)
V r = [[0] * m2[0].len] * m1.len
V r = [[0] * m2[0].len] * m1.len
Line 43: Line 43:


print("\n10:")
print("\n10:")
printtable(matrixExp(m, 10))</lang>
printtable(matrixExp(m, 10))</syntaxhighlight>


{{out}}
{{out}}
Line 75: Line 75:
=={{header|Ada}}==
=={{header|Ada}}==
This is a generic solution for any natural power exponent. It will work with any type that has +,*, additive and multiplicative 0s. The implementation factors out powers A<sup>2<sup>n</sup></sup>:
This is a generic solution for any natural power exponent. It will work with any type that has +,*, additive and multiplicative 0s. The implementation factors out powers A<sup>2<sup>n</sup></sup>:
<lang ada>with Ada.Text_IO; use Ada.Text_IO;
<syntaxhighlight lang="ada">with Ada.Text_IO; use Ada.Text_IO;
procedure Test_Matrix is
procedure Test_Matrix is
Line 164: Line 164:
Put_Line ("M**10 ="); Put (M**10);
Put_Line ("M**10 ="); Put (M**10);
Put_Line ("M*M*M*M*M*M*M*M*M*M ="); Put (M*M*M*M*M*M*M*M*M*M);
Put_Line ("M*M*M*M*M*M*M*M*M*M ="); Put (M*M*M*M*M*M*M*M*M*M);
end Test_Matrix;</lang>
end Test_Matrix;</syntaxhighlight>
Sample output:
Sample output:
<pre>
<pre>
Line 202: Line 202:
</pre>
</pre>
The following program implements exponentiation of a square Hermitian complex matrix by any complex power. The limitation to be Hermitian is not essential and comes for the limitation of the standard Ada linear algebra library.
The following program implements exponentiation of a square Hermitian complex matrix by any complex power. The limitation to be Hermitian is not essential and comes for the limitation of the standard Ada linear algebra library.
<lang ada>with Ada.Text_IO; use Ada.Text_IO;
<syntaxhighlight lang="ada">with Ada.Text_IO; use Ada.Text_IO;
with Ada.Complex_Text_IO; use Ada.Complex_Text_IO;
with Ada.Complex_Text_IO; use Ada.Complex_Text_IO;
with Ada.Numerics.Complex_Types; use Ada.Numerics.Complex_Types;
with Ada.Numerics.Complex_Types; use Ada.Numerics.Complex_Types;
Line 249: Line 249:
Put_Line ("M**1 ="); Put (M**(1.0,0.0));
Put_Line ("M**1 ="); Put (M**(1.0,0.0));
Put_Line ("M**0.5 ="); Put (M**(0.5,0.0));
Put_Line ("M**0.5 ="); Put (M**(0.5,0.0));
end Test_Matrix;</lang>
end Test_Matrix;</syntaxhighlight>
This solution is not tested, because the available version of GNAT GPL Ada compiler (20070405-41) does not provide an implementation of the standard library.
This solution is not tested, because the available version of GNAT GPL Ada compiler (20070405-41) does not provide an implementation of the standard library.


Line 257: Line 257:
{{wont work with|ELLA ALGOL 68|Any (with appropriate job cards) - tested with release [http://sourceforge.net/projects/algol68/files/algol68toc/algol68toc-1.8.8d/algol68toc-1.8-8d.fc9.i386.rpm/download 1.8-8d] - due to extensive use of '''format'''[ted] ''transput''.}}
{{wont work with|ELLA ALGOL 68|Any (with appropriate job cards) - tested with release [http://sourceforge.net/projects/algol68/files/algol68toc/algol68toc-1.8.8d/algol68toc-1.8-8d.fc9.i386.rpm/download 1.8-8d] - due to extensive use of '''format'''[ted] ''transput''.}}
'''File: Matrix_algebra.a68'''
'''File: Matrix_algebra.a68'''
<lang algol68>INT default upb=3;
<syntaxhighlight lang="algol68">INT default upb=3;
MODE VEC = [default upb]COSCAL;
MODE VEC = [default upb]COSCAL;
MODE MAT = [default upb,default upb]COSCAL;
MODE MAT = [default upb,default upb]COSCAL;
Line 287: Line 287:
OD;
OD;
out
out
);</lang>'''File: Matrix-exponentiation_operator.a68'''
);</syntaxhighlight>'''File: Matrix-exponentiation_operator.a68'''
<lang algol68>OP ** = (MAT base, INT exponent)MAT: (
<syntaxhighlight lang="algol68">OP ** = (MAT base, INT exponent)MAT: (
BITS binary exponent:=BIN exponent ;
BITS binary exponent:=BIN exponent ;
MAT out := IF bits width ELEM binary exponent THEN base ELSE IDENTITY UPB base FI;
MAT out := IF bits width ELEM binary exponent THEN base ELSE IDENTITY UPB base FI;
Line 301: Line 301:
OD;
OD;
out
out
);</lang>'''File: test_Matrix-exponentiation_operator.a68'''
);</syntaxhighlight>'''File: test_Matrix-exponentiation_operator.a68'''
<lang algol68>#!/usr/local/bin/a68g --script #
<syntaxhighlight lang="algol68">#!/usr/local/bin/a68g --script #


MODE COSCAL = COMPL;
MODE COSCAL = COMPL;
Line 325: Line 325:
printf(($" mat ** "g(0)":"l$,24));
printf(($" mat ** "g(0)":"l$,24));
compl mat printf(scal fmt, mat**24);
compl mat printf(scal fmt, mat**24);
print(newline)</lang>
print(newline)</syntaxhighlight>
Output:
Output:
<pre>
<pre>
Line 335: Line 335:


=={{header|BBC BASIC}}==
=={{header|BBC BASIC}}==
<lang bbcbasic> DIM matrix(1,1), output(1,1)
<syntaxhighlight lang="bbcbasic"> DIM matrix(1,1), output(1,1)
matrix() = 3, 2, 2, 1
matrix() = 3, 2, 2, 1
Line 359: Line 359:
NEXT
NEXT
ENDIF
ENDIF
ENDPROC</lang>
ENDPROC</syntaxhighlight>
Output:
Output:
<pre>
<pre>
Line 397: Line 397:


Matrix multiplication is a known idiom taken from BQN crate. Matrix exponentiation is simply doing Matrix multiplication n times.
Matrix multiplication is a known idiom taken from BQN crate. Matrix exponentiation is simply doing Matrix multiplication n times.
<lang bqn>MatMul ← +˝∘×⎉1‿∞
<syntaxhighlight lang="bqn">MatMul ← +˝∘×⎉1‿∞


MatEx ← {𝕨 MatMul⍟(𝕩-1) 𝕨}
MatEx ← {𝕨 MatMul⍟(𝕩-1) 𝕨}


(>⟨3‿2
(>⟨3‿2
2‿1⟩) MatEx 1‿2‿3‿4‿10</lang><lang bqn>┌─
2‿1⟩) MatEx 1‿2‿3‿4‿10</syntaxhighlight><syntaxhighlight lang="bqn">┌─
· ┌─ ┌─ ┌─ ┌─ ┌─
· ┌─ ┌─ ┌─ ┌─ ┌─
╵ 3 2 ╵ 13 8 ╵ 55 34 ╵ 233 144 ╵ 1346269 832040
╵ 3 2 ╵ 13 8 ╵ 55 34 ╵ 233 144 ╵ 1346269 832040
2 1 8 5 34 21 144 89 832040 514229
2 1 8 5 34 21 144 89 832040 514229
┘ ┘ ┘ ┘ ┘
┘ ┘ ┘ ┘ ┘
┘</lang>
┘</syntaxhighlight>


For larger exponents it's more efficient to use a fast exponentiation pattern that builds large powers quickly with repeated squaring, then multiplies the appropriate power-of-two exponents together.
For larger exponents it's more efficient to use a fast exponentiation pattern that builds large powers quickly with repeated squaring, then multiplies the appropriate power-of-two exponents together.


<lang bqn>MatEx ← MatMul{𝔽´𝔽˜⍟(/2|⌊∘÷⟜2⍟(↕1+·⌊2⋆⁼⊢)𝕩)𝕨}</lang>
<syntaxhighlight lang="bqn">MatEx ← MatMul{𝔽´𝔽˜⍟(/2|⌊∘÷⟜2⍟(↕1+·⌊2⋆⁼⊢)𝕩)𝕨}</syntaxhighlight>


=={{header|Burlesque}}==
=={{header|Burlesque}}==
<lang burlesque>blsq ) {{1 1} {1 0}} 10 .*{mm}r[
<syntaxhighlight lang="burlesque">blsq ) {{1 1} {1 0}} 10 .*{mm}r[
{{89 55} {55 34}}</lang>
{{89 55} {55 34}}</syntaxhighlight>


=={{header|C}}==
=={{header|C}}==
C doesn't support classes or allow operator overloading. The following is code that defines a function, <tt>SquareMtxPower</tt> that will raise a matrix to a positive integer power.
C doesn't support classes or allow operator overloading. The following is code that defines a function, <tt>SquareMtxPower</tt> that will raise a matrix to a positive integer power.
<lang c>#include <math.h>
<syntaxhighlight lang="c">#include <math.h>
#include <stdio.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdlib.h>
Line 602: Line 602:


return 0;
return 0;
}</lang>
}</syntaxhighlight>
Output:
Output:
<pre>m0 dim:3 =
<pre>m0 dim:3 =
Line 626: Line 626:


=={{header|C sharp}}==
=={{header|C sharp}}==
<lang csharp>using System;
<syntaxhighlight lang="csharp">using System;
using System.Collections;
using System.Collections;
using System.Collections.Generic;
using System.Collections.Generic;
Line 684: Line 684:
}
}


}</lang>
}</syntaxhighlight>
{{out}}
{{out}}
<pre style="height:30ex;overflow:scroll">
<pre style="height:30ex;overflow:scroll">
Line 707: Line 707:
=={{header|C++}}==
=={{header|C++}}==
This is an implementation in C++.
This is an implementation in C++.
<lang cpp>#include <complex>
<syntaxhighlight lang="cpp">#include <complex>
#include <cmath>
#include <cmath>
#include <iostream>
#include <iostream>
Line 755: Line 755:
}
}
return d;
return d;
}</lang>
}</syntaxhighlight>
This is the task part.
This is the task part.
<lang cpp> // C++ does not have a ** operator, instead, ^ (bitwise Xor) is used.
<syntaxhighlight lang="cpp"> // C++ does not have a ** operator, instead, ^ (bitwise Xor) is used.
Mx operator^(int n) {
Mx operator^(int n) {
if (n < 0)
if (n < 0)
Line 784: Line 784:


return 0;
return 0;
}</lang>
}</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 798: Line 798:


This uses the '*' operator for arrays as defined in [[Matrix_multiplication#Chapel]]
This uses the '*' operator for arrays as defined in [[Matrix_multiplication#Chapel]]
<lang chapel>proc **(a, e) {
<syntaxhighlight lang="chapel">proc **(a, e) {
// create result matrix of same dimensions
// create result matrix of same dimensions
var r:[a.domain] a.eltType;
var r:[a.domain] a.eltType;
Line 809: Line 809:


return r;
return r;
}</lang>
}</syntaxhighlight>


Usage example (like Perl):
Usage example (like Perl):
<lang chapel>var m:[1..3, 1..3] int;
<syntaxhighlight lang="chapel">var m:[1..3, 1..3] int;
m(1,1) = 1; m(1,2) = 2; m(1,3) = 0;
m(1,1) = 1; m(1,2) = 2; m(1,3) = 0;
m(2,1) = 0; m(2,2) = 3; m(2,3) = 1;
m(2,1) = 0; m(2,2) = 3; m(2,3) = 1;
Line 822: Line 822:
writeln("Order ", i);
writeln("Order ", i);
writeln(m ** i, "\n");
writeln(m ** i, "\n");
}</lang>
}</syntaxhighlight>


{{out}}
{{out}}
Line 882: Line 882:
=={{header|Common Lisp}}==
=={{header|Common Lisp}}==
This Common Lisp implementation uses 2D Arrays to represent matrices, and checks to make sure that the arrays are the right dimensions for multiplication and square for exponentiation.
This Common Lisp implementation uses 2D Arrays to represent matrices, and checks to make sure that the arrays are the right dimensions for multiplication and square for exponentiation.
<lang lisp>(defun multiply-matrices (matrix-0 matrix-1)
<syntaxhighlight lang="lisp">(defun multiply-matrices (matrix-0 matrix-1)
"Takes two 2D arrays and returns their product, or an error if they cannot be multiplied"
"Takes two 2D arrays and returns their product, or an error if they cannot be multiplied"
(let* ((m0-dims (array-dimensions matrix-0))
(let* ((m0-dims (array-dimensions matrix-0))
Line 940: Line 940:
(multiply-matrices me2 me2)))
(multiply-matrices me2 me2)))
(t (let ((me2 (matrix-expt matrix (/ (1- exp) 2))))
(t (let ((me2 (matrix-expt matrix (/ (1- exp) 2))))
(multiply-matrices matrix (multiply-matrices me2 me2)))))))</lang>
(multiply-matrices matrix (multiply-matrices me2 me2)))))))</syntaxhighlight>
Output (note that this lisp implementation uses single-precision floats for decimals by default). We can also use rationals:
Output (note that this lisp implementation uses single-precision floats for decimals by default). We can also use rationals:
CL-USER> (setf 5x5-matrix
CL-USER> (setf 5x5-matrix
Line 976: Line 976:


=={{header|D}}==
=={{header|D}}==
<lang d>import std.stdio, std.string, std.math, std.array, std.algorithm;
<syntaxhighlight lang="d">import std.stdio, std.string, std.math, std.array, std.algorithm;


struct SquareMat(T = creal) {
struct SquareMat(T = creal) {
Line 1,050: Line 1,050:
foreach (immutable p; [0, 1, 23, 24])
foreach (immutable p; [0, 1, 23, 24])
writefln("m ^^ %d =\n%s", p, m ^^ p);
writefln("m ^^ %d =\n%s", p, m ^^ p);
}</lang>
}</syntaxhighlight>
{{out}}
{{out}}
<pre>m ^^ 0 =
<pre>m ^^ 0 =
Line 1,070: Line 1,070:


=={{header|Delphi}}==
=={{header|Delphi}}==
<syntaxhighlight lang="delphi">
<lang Delphi>
program Matrix_exponentiation_operator;
program Matrix_exponentiation_operator;


Line 1,212: Line 1,212:
Readln;
Readln;
end.
end.
</syntaxhighlight>
</lang>
{{out}}
{{out}}
<pre>
<pre>
Line 1,241: Line 1,241:
| 2 1 |
| 2 1 |
</pre>
</pre>
<lang ERRE>PROGRAM MAT_PROD
<syntaxhighlight lang="erre">PROGRAM MAT_PROD


!$MATRIX
!$MATRIX
Line 1,293: Line 1,293:
END FOR
END FOR


END PROGRAM</lang>
END PROGRAM</syntaxhighlight>
Sample output:
Sample output:
<pre>
<pre>
Line 1,303: Line 1,303:
There is already a built-in word (<code>m^n</code>) that implements exponentiation. Here is a simple and less efficient implementation.
There is already a built-in word (<code>m^n</code>) that implements exponentiation. Here is a simple and less efficient implementation.


<lang factor>USING: kernel math math.matrices sequences ;
<syntaxhighlight lang="factor">USING: kernel math math.matrices sequences ;


: my-m^n ( m n -- m' )
: my-m^n ( m n -- m' )
Line 1,309: Line 1,309:
[ drop length identity-matrix ]
[ drop length identity-matrix ]
[ swap '[ _ m. ] times ] 2bi
[ swap '[ _ m. ] times ] 2bi
] if ;</lang>
] if ;</syntaxhighlight>


( scratchpad ) { { 3 2 } { 2 1 } } 0 my-m^n .
( scratchpad ) { { 3 2 } { 2 1 } } 0 my-m^n .
Line 1,318: Line 1,318:
=={{header|Fermat}}==
=={{header|Fermat}}==
Matrix exponentiation for square matrices and integer powers is built in.
Matrix exponentiation for square matrices and integer powers is built in.
<lang fermat>
<syntaxhighlight lang="fermat">
Array a[2,2]; {illustrate with a 2x2 matrix}
Array a[2,2]; {illustrate with a 2x2 matrix}
[a]:=[(2/3, 1/3, 4/5, 1/5)];
[a]:=[(2/3, 1/3, 4/5, 1/5)];
Line 1,326: Line 1,326:
[a]^3;
[a]^3;
[a]^10;
[a]^10;
</syntaxhighlight>
</lang>
{{out}}
{{out}}
<pre>
<pre>
Line 1,346: Line 1,346:
=={{header|Fortran}}==
=={{header|Fortran}}==
{{works with|Fortran|90 and later}}
{{works with|Fortran|90 and later}}
<lang fortran>module matmod
<syntaxhighlight lang="fortran">module matmod
implicit none
implicit none
Line 1,398: Line 1,398:
end do
end do


end program Matrix_exponentiation</lang>
end program Matrix_exponentiation</syntaxhighlight>
Output
Output
<pre> 1.00000 0.00000 0.00000
<pre> 1.00000 0.00000 0.00000
Line 1,425: Line 1,425:
This operator performs M^n for any square invertible matrix M and integer n, including negative powers.
This operator performs M^n for any square invertible matrix M and integer n, including negative powers.


<lang freebasic>#include once "matmult.bas"
<syntaxhighlight lang="freebasic">#include once "matmult.bas"
#include once "rowech.bas"
#include once "rowech.bas"
#include once "matinv.bas"
#include once "matinv.bas"
Line 1,450: Line 1,450:
next i
next i
print
print
next n</lang>
next n</syntaxhighlight>
{{out}}
{{out}}
<pre> 308.9999999999998 -307.9999999999998
<pre> 308.9999999999998 -307.9999999999998
Line 1,474: Line 1,474:


=={{header|GAP}}==
=={{header|GAP}}==
<lang gap># Matrix exponentiation is built-in
<syntaxhighlight lang="gap"># Matrix exponentiation is built-in
A := [[0 , 1], [1, 1]];
A := [[0 , 1], [1, 1]];
PrintArray(A);
PrintArray(A);
Line 1,481: Line 1,481:
PrintArray(A^10);
PrintArray(A^10);
# [ [ 34, 55 ],
# [ [ 34, 55 ],
# [ 55, 89 ] ]</lang>
# [ 55, 89 ] ]</syntaxhighlight>


=={{header|Go}}==
=={{header|Go}}==
Line 1,487: Line 1,487:
<br>
<br>
Like some other languages here, Go doesn't have a symbolic operator for numeric exponentiation and even if it did doesn't support operator overloading. We therefore write the exponentiation operation for matrices as an equivalent 'pow' function.
Like some other languages here, Go doesn't have a symbolic operator for numeric exponentiation and even if it did doesn't support operator overloading. We therefore write the exponentiation operation for matrices as an equivalent 'pow' function.
<lang go>package main
<syntaxhighlight lang="go">package main


import "fmt"
import "fmt"
Line 1,557: Line 1,557:
fmt.Println()
fmt.Println()
}
}
}</lang>
}</syntaxhighlight>


{{out}}
{{out}}
Line 1,599: Line 1,599:
Instead of writing it directly, we can re-use the built-in [[exponentiation operator]] if we declare matrices as an instance of ''Num'', using [[matrix multiplication]] (and addition). For simplicity, we use the inefficient representation as list of lists. Note that we don't check the dimensions (there are several ways to do that on the type-level, for example with phantom types).
Instead of writing it directly, we can re-use the built-in [[exponentiation operator]] if we declare matrices as an instance of ''Num'', using [[matrix multiplication]] (and addition). For simplicity, we use the inefficient representation as list of lists. Note that we don't check the dimensions (there are several ways to do that on the type-level, for example with phantom types).


<lang haskell>import Data.List (transpose)
<syntaxhighlight lang="haskell">import Data.List (transpose)


(<+>)
(<+>)
Line 1,630: Line 1,630:
-- TEST ----------------------------------------------------------------------
-- TEST ----------------------------------------------------------------------
main :: IO ()
main :: IO ()
main = print $ Mat [[1, 2], [0, 1]] ^ 4</lang>
main = print $ Mat [[1, 2], [0, 1]] ^ 4</syntaxhighlight>
{{Out}}
{{Out}}
<pre>Mat [[1,8],[0,1]]</pre>
<pre>Mat [[1,8],[0,1]]</pre>
Line 1,640: Line 1,640:
===With Numeric.LinearAlgebra===
===With Numeric.LinearAlgebra===


<lang haskell>import Numeric.LinearAlgebra
<syntaxhighlight lang="haskell">import Numeric.LinearAlgebra


a :: Matrix I
a :: Matrix I
Line 1,650: Line 1,650:
print $ a^4
print $ a^4
putStrLn "power of zero: "
putStrLn "power of zero: "
print $ a^0</lang>
print $ a^0</syntaxhighlight>
{{Out}}
{{Out}}
<pre>
<pre>
Line 1,663: Line 1,663:




<lang j>mp=: +/ .* NB. Matrix multiplication
<syntaxhighlight lang="j">mp=: +/ .* NB. Matrix multiplication
pow=: pow0=: 4 : 'mp&x^:y =i.#x'</lang>
pow=: pow0=: 4 : 'mp&x^:y =i.#x'</syntaxhighlight>


or, from [[j:Essays/Linear Recurrences|the J wiki]], and faster for large exponents:
or, from [[j:Essays/Linear Recurrences|the J wiki]], and faster for large exponents:


<lang j>pow=: pow1=: 4 : 'mp/ mp~^:(I.|.#:y) x'</lang>
<syntaxhighlight lang="j">pow=: pow1=: 4 : 'mp/ mp~^:(I.|.#:y) x'</syntaxhighlight>


This implements an optimization where the exponent is represented in base 2, and repeated squaring is used to create a list of relevant powers of the base matrix, which are then combined using matrix multiplication. Note, however, that these two definitions treat a zero exponent differently (m pow0 0 gives an identity matrix whose shape matches m, while m pow1 0 gives a scalar 1).
This implements an optimization where the exponent is represented in base 2, and repeated squaring is used to create a list of relevant powers of the base matrix, which are then combined using matrix multiplication. Note, however, that these two definitions treat a zero exponent differently (m pow0 0 gives an identity matrix whose shape matches m, while m pow1 0 gives a scalar 1).
Line 1,682: Line 1,682:


Extends [[Matrix Transpose#JavaScript]] and [[Matrix multiplication#JavaScript]]
Extends [[Matrix Transpose#JavaScript]] and [[Matrix multiplication#JavaScript]]
<lang javascript>// IdentityMatrix is a "subclass" of Matrix
<syntaxhighlight lang="javascript">// IdentityMatrix is a "subclass" of Matrix
function IdentityMatrix(n) {
function IdentityMatrix(n) {
this.height = n;
this.height = n;
Line 1,707: Line 1,707:


var m = new Matrix([[3, 2], [2, 1]]);
var m = new Matrix([[3, 2], [2, 1]]);
[0,1,2,3,4,10].forEach(function(e){print(m.exp(e)); print()})</lang>
[0,1,2,3,4,10].forEach(function(e){print(m.exp(e)); print()})</syntaxhighlight>
output
output
<pre>1,0
<pre>1,0
Line 1,735: Line 1,735:


matrix_exp(n) adopts a "divide-and-conquer" strategy to avoid unnecessarily many matrix multiplications. The implementation uses direct_matrix_exp(n) for small n; this function could be defined as an inner function, but is defined separately first for clarity, and second to simplify timing comparisons, as shown below.
matrix_exp(n) adopts a "divide-and-conquer" strategy to avoid unnecessarily many matrix multiplications. The implementation uses direct_matrix_exp(n) for small n; this function could be defined as an inner function, but is defined separately first for clarity, and second to simplify timing comparisons, as shown below.
<lang jq># produce an array of length n that is 1 at i and 0 elsewhere
<syntaxhighlight lang="jq"># produce an array of length n that is 1 at i and 0 elsewhere
def indicator(i;n): [range(0;n) | 0] | .[i] = 1;
def indicator(i;n): [range(0;n) | 0] | .[i] = 1;


Line 1,758: Line 1,758:
| multiply($ans; $residue )
| multiply($ans; $residue )
end
end
end;</lang>
end;</syntaxhighlight>
'''Examples'''
'''Examples'''
The execution speeds of matrix_exp and direct_matrix_exp are compared using a one-eighth-rotation matrix, which
The execution speeds of matrix_exp and direct_matrix_exp are compared using a one-eighth-rotation matrix, which
is raised to the 10,000th power. The direct method turns out to be almost as fast.
is raised to the 10,000th power. The direct method turns out to be almost as fast.
<lang jq>def pi: 4 * (1|atan);
<syntaxhighlight lang="jq">def pi: 4 * (1|atan);


def rotation_matrix(theta):
def rotation_matrix(theta):
Line 1,771: Line 1,771:


def demo_direct_matrix_exp(n):
def demo_direct_matrix_exp(n):
rotation_matrix( pi / 4 ) | direct_matrix_exp(n) ;</lang>
rotation_matrix( pi / 4 ) | direct_matrix_exp(n) ;</syntaxhighlight>
'''Results''':
'''Results''':
<lang sh># For demo_matrix_exp(10000)
<syntaxhighlight lang="sh"># For demo_matrix_exp(10000)
$ time jq -n -c -f Matrix-exponentiation_operator.rc
$ time jq -n -c -f Matrix-exponentiation_operator.rc
[[1,-1.1102230246251565e-12],[1.1102230246251565e-12,1]]
[[1,-1.1102230246251565e-12],[1.1102230246251565e-12,1]]
user 0m0.490s
user 0m0.490s
sys 0m0.008s</lang>
sys 0m0.008s</syntaxhighlight>
<lang sh># For demo_direct_matrix_exp(10000)
<syntaxhighlight lang="sh"># For demo_direct_matrix_exp(10000)
$ time jq -n -c -f Matrix-exponentiation_operator.rc
$ time jq -n -c -f Matrix-exponentiation_operator.rc
[[1,-7.849831895612169e-13],[7.849831895612169e-13,1]]
[[1,-7.849831895612169e-13],[7.849831895612169e-13,1]]
user 0m0.625s
user 0m0.625s
sys 0m0.006s</lang>
sys 0m0.006s</syntaxhighlight>


=={{header|Jsish}}==
=={{header|Jsish}}==
Line 1,789: Line 1,789:
Uses module listed in [[Matrix Transpose#Jsish]]. Fails the task spec actually, as Matrix.exp() is implemented as a method, not an operator.
Uses module listed in [[Matrix Transpose#Jsish]]. Fails the task spec actually, as Matrix.exp() is implemented as a method, not an operator.


<lang javascript>/* Matrix exponentiation, in Jsish */
<syntaxhighlight lang="javascript">/* Matrix exponentiation, in Jsish */
require('Matrix');
require('Matrix');


Line 1,811: Line 1,811:
m.exp(10) ==> { height:2, mtx:[ [ 1346269, 832040 ], [ 832040, 514229 ] ], width:2 }
m.exp(10) ==> { height:2, mtx:[ [ 1346269, 832040 ], [ 832040, 514229 ] ], width:2 }
=!EXPECTEND!=
=!EXPECTEND!=
*/</lang>
*/</syntaxhighlight>


{{out}}
{{out}}
Line 1,819: Line 1,819:
=={{header|Julia}}==
=={{header|Julia}}==
Matrix exponentiation is implemented by the built-in <code>^</code> operator.
Matrix exponentiation is implemented by the built-in <code>^</code> operator.
<lang Julia>julia> [1 1 ; 1 0]^10
<syntaxhighlight lang="julia">julia> [1 1 ; 1 0]^10
2x2 Array{Int64,2}:
2x2 Array{Int64,2}:
89 55
89 55
55 34</lang>
55 34</syntaxhighlight>


=={{header|K}}==
=={{header|K}}==
<syntaxhighlight lang="k">
<lang K>
/Matrix Exponentiation
/Matrix Exponentiation
/mpow.k
/mpow.k
pow: {:[0=y; :({a=/:a:!x}(#x))];a: x; do[y-1; a: x _mul a]; :a}
pow: {:[0=y; :({a=/:a:!x}(#x))];a: x; do[y-1; a: x _mul a]; :a}


</syntaxhighlight>
</lang>
The output of a session is given below:
The output of a session is given below:
{{out}}
{{out}}
Line 1,863: Line 1,863:


=={{header|Kotlin}}==
=={{header|Kotlin}}==
<lang scala>// version 1.1.3
<syntaxhighlight lang="scala">// version 1.1.3


typealias Vector = DoubleArray
typealias Vector = DoubleArray
Line 1,919: Line 1,919:
)
)
for (i in 0..10) printMatrix(m pow i, i)
for (i in 0..10) printMatrix(m pow i, i)
}</lang>
}</syntaxhighlight>


{{out}}
{{out}}
Line 1,969: Line 1,969:


=={{header|Lambdatalk}}==
=={{header|Lambdatalk}}==
<lang scheme>
<syntaxhighlight lang="scheme">
{require lib_matrix}
{require lib_matrix}


Line 1,993: Line 1,993:
M^4 = [[233,144],[144,89]]
M^4 = [[233,144],[144,89]]
M^10 = [[1346269,832040],[832040,514229]]
M^10 = [[1346269,832040],[832040,514229]]
</syntaxhighlight>
</lang>


=={{header|Liberty BASIC}}==
=={{header|Liberty BASIC}}==
There is no native matrix capability. A set of functions is available at http://www.diga.me.uk/RCMatrixFuncs.bas implementing matrices of arbitrary dimension in a string format.
There is no native matrix capability. A set of functions is available at http://www.diga.me.uk/RCMatrixFuncs.bas implementing matrices of arbitrary dimension in a string format.
<syntaxhighlight lang="lb">
<lang lb>
MatrixD$ ="3, 3, 0.86603, 0.50000, 0.00000, -0.50000, 0.86603, 0.00000, 0.00000, 0.00000, 1.00000"
MatrixD$ ="3, 3, 0.86603, 0.50000, 0.00000, -0.50000, 0.86603, 0.00000, 0.00000, 0.00000, 1.00000"


Line 2,009: Line 2,009:
MatrixE$ =MatrixToPower$( MatrixD$, 9)
MatrixE$ =MatrixToPower$( MatrixD$, 9)
call DisplayMatrix MatrixE$
call DisplayMatrix MatrixE$
</syntaxhighlight>
</lang>


{{out}}
{{out}}
Line 2,028: Line 2,028:


=={{header|Lua}}==
=={{header|Lua}}==
<lang lua>Matrix = {}
<syntaxhighlight lang="lua">Matrix = {}


function Matrix.new( dim_y, dim_x )
function Matrix.new( dim_y, dim_x )
Line 2,123: Line 2,123:
n = m^4;
n = m^4;


Matrix.Show( n )</lang>
Matrix.Show( n )</syntaxhighlight>


=={{header|M2000 Interpreter}}==
=={{header|M2000 Interpreter}}==
<syntaxhighlight lang="m2000 interpreter">
<lang M2000 Interpreter>
Module CheckIt {
Module CheckIt {
Class cArray {
Class cArray {
Line 2,188: Line 2,188:
}
}
Checkit
Checkit
</syntaxhighlight>
</lang>


{{out}}
{{out}}
Line 2,229: Line 2,229:
=={{header|Maple}}==
=={{header|Maple}}==
Maple handles matrix powers implicitly with the built-in exponentiation operator:
Maple handles matrix powers implicitly with the built-in exponentiation operator:
<lang Maple>> M := <<1,2>|<3,4>>;
<syntaxhighlight lang="maple">> M := <<1,2>|<3,4>>;
> M ^ 2;</lang>
> M ^ 2;</syntaxhighlight>
<math>\left[\begin{array}{cc}
<math>\left[\begin{array}{cc}
7 & 15 \\
7 & 15 \\
Line 2,237: Line 2,237:


If you want elementwise powers, you can use the elementwise <code>^~</code> operator:
If you want elementwise powers, you can use the elementwise <code>^~</code> operator:
<lang Maple>> M := <<1,2>|<3,4>>;
<syntaxhighlight lang="maple">> M := <<1,2>|<3,4>>;
> M ^~ 2;</lang>
> M ^~ 2;</syntaxhighlight>
<math>\left[\begin{array}{cc}
<math>\left[\begin{array}{cc}
1 & 9 \\
1 & 9 \\
Line 2,246: Line 2,246:
=={{header|Mathematica}}/{{header|Wolfram Language}}==
=={{header|Mathematica}}/{{header|Wolfram Language}}==
In Mathematica there is an distinction between powering elements wise and as a matrix. So m^2 will give m with each element squared. To do matrix exponentation we use the function MatrixPower. It can handle all types of numbers for the power (integers, floats, rationals, complex) but also symbols for the power, and all types for the matrix (numbers, symbols et cetera), and will always keep the result exact if the matrix and the exponent is exact.
In Mathematica there is an distinction between powering elements wise and as a matrix. So m^2 will give m with each element squared. To do matrix exponentation we use the function MatrixPower. It can handle all types of numbers for the power (integers, floats, rationals, complex) but also symbols for the power, and all types for the matrix (numbers, symbols et cetera), and will always keep the result exact if the matrix and the exponent is exact.
<lang Mathematica>a = {{3, 2}, {4, 1}};
<syntaxhighlight lang="mathematica">a = {{3, 2}, {4, 1}};
MatrixPower[a, 0]
MatrixPower[a, 0]
MatrixPower[a, 1]
MatrixPower[a, 1]
Line 2,252: Line 2,252:
MatrixPower[a, 4]
MatrixPower[a, 4]
MatrixPower[a, 1/2]
MatrixPower[a, 1/2]
MatrixPower[a, Pi]</lang>
MatrixPower[a, Pi]</syntaxhighlight>
gives back:
gives back:


Line 2,310: Line 2,310:


Symbolic matrices like {{i,j},{k,l}} to the power m give general solutions for all possible i,j,k,l, and m:
Symbolic matrices like {{i,j},{k,l}} to the power m give general solutions for all possible i,j,k,l, and m:
<lang Mathematica>MatrixPower[{{i, j}, {k, l}}, m] // Simplify</lang>
<syntaxhighlight lang="mathematica">MatrixPower[{{i, j}, {k, l}}, m] // Simplify</syntaxhighlight>
gives back (note that the simplification is not necessary for the evaluation, it just gives a shorter output):
gives back (note that the simplification is not necessary for the evaluation, it just gives a shorter output):


Line 2,332: Line 2,332:
=={{header|MATLAB}}==
=={{header|MATLAB}}==
For exponents in the form of A*A*A*A*...*A, A must be a square matrix:
For exponents in the form of A*A*A*A*...*A, A must be a square matrix:
<lang Matlab>function [output] = matrixexponentiation(matrixA, exponent)
<syntaxhighlight lang="matlab">function [output] = matrixexponentiation(matrixA, exponent)
output = matrixA^(exponent);</lang>
output = matrixA^(exponent);</syntaxhighlight>


Otherwise, to take the individual array elements to the power of an exponent (the matrix need not be square):
Otherwise, to take the individual array elements to the power of an exponent (the matrix need not be square):
<lang Matlab>function [output] = matrixexponentiation(matrixA, exponent)
<syntaxhighlight lang="matlab">function [output] = matrixexponentiation(matrixA, exponent)
output = matrixA.^(exponent);</lang>
output = matrixA.^(exponent);</syntaxhighlight>


=={{header|Maxima}}==
=={{header|Maxima}}==
<lang maxima>a: matrix([3, 2],
<syntaxhighlight lang="maxima">a: matrix([3, 2],
[4, 1])$
[4, 1])$


Line 2,349: Line 2,349:
a ^^ -1;
a ^^ -1;
/* matrix([-1/5, 2/5],
/* matrix([-1/5, 2/5],
[4/5, -3/5]) */</lang>
[4/5, -3/5]) */</syntaxhighlight>


=={{header|Nim}}==
=={{header|Nim}}==
<lang Nim>import sequtils, strutils
<syntaxhighlight lang="nim">import sequtils, strutils


type Matrix[N: static int; T] = array[1..N, array[1..N, T]]
type Matrix[N: static int; T] = array[1..N, array[1..N, T]]
Line 2,402: Line 2,402:
S30 = 1 / 2
S30 = 1 / 2
let m2: Matrix[2, float] = [[C30, -S30], [S30, C30]] # 30° rotation matrix.
let m2: Matrix[2, float] = [[C30, -S30], [S30, C30]] # 30° rotation matrix.
echo m2^12 # Nearly the identity matrix.</lang>
echo m2^12 # Nearly the identity matrix.</syntaxhighlight>


{{out}}
{{out}}
Line 2,416: Line 2,416:
We will use some auxiliary functions
We will use some auxiliary functions


<lang ocaml>(* identity matrix *)
<syntaxhighlight lang="ocaml">(* identity matrix *)
let eye n =
let eye n =
let a = Array.make_matrix n n 0.0 in
let a = Array.make_matrix n n 0.0 in
Line 2,473: Line 2,473:
(* example with integers *)
(* example with integers *)
pow 1 ( * ) 2 16;;
pow 1 ( * ) 2 16;;
(* - : int = 65536 *)</lang>
(* - : int = 65536 *)</syntaxhighlight>


Now matrix power is simply a special case of pow :
Now matrix power is simply a special case of pow :


<lang ocaml>let matpow a n =
<syntaxhighlight lang="ocaml">let matpow a n =
let p, q = dim a in
let p, q = dim a in
if p <> q then failwith "bad dimensions" else
if p <> q then failwith "bad dimensions" else
Line 2,489: Line 2,489:


[| [| 1.0; 1.0|]; [| 1.0; 0.0 |] |] ^^ 10;;
[| [| 1.0; 1.0|]; [| 1.0; 0.0 |] |] ^^ 10;;
(* - : float array array = [|[|89.; 55.|]; [|55.; 34.|]|] *)</lang>
(* - : float array array = [|[|89.; 55.|]; [|55.; 34.|]|] *)</syntaxhighlight>


=={{header|Octave}}==
=={{header|Octave}}==
Line 2,495: Line 2,495:
Of course GNU Octave handles matrix and operations on matrix "naturally".
Of course GNU Octave handles matrix and operations on matrix "naturally".


<lang octave>M = [ 3, 2; 2, 1 ];
<syntaxhighlight lang="octave">M = [ 3, 2; 2, 1 ];
M^0
M^0
M^1
M^1
M^2
M^2
M^(-1)
M^(-1)
M^0.5</lang>
M^0.5</syntaxhighlight>


Output:
Output:
Line 2,532: Line 2,532:


=={{header|PARI/GP}}==
=={{header|PARI/GP}}==
<lang parigp>M^n</lang>
<syntaxhighlight lang="parigp">M^n</syntaxhighlight>


=={{header|Perl}}==
=={{header|Perl}}==
<lang perl>use strict;
<syntaxhighlight lang="perl">use strict;
package SquareMatrix;
package SquareMatrix;
use Carp; # standard, "it's not my fault" module
use Carp; # standard, "it's not my fault" module
Line 2,628: Line 2,628:
print "\n### WAY too big:\n", $m ** 1_000_000_000_000;
print "\n### WAY too big:\n", $m ** 1_000_000_000_000;
print "\n### But identity matrix can handle that\n",
print "\n### But identity matrix can handle that\n",
$m->identity ** 1_000_000_000_000;</lang>
$m->identity ** 1_000_000_000_000;</syntaxhighlight>


=={{header|Phix}}==
=={{header|Phix}}==
Phix does not permit operator overloading, however here is a simple function to raise a square matrix to a non-negative integer power.<br>
Phix does not permit operator overloading, however here is a simple function to raise a square matrix to a non-negative integer power.<br>
First two routines copied straight from the [[Identity_matrix#Phix|Identity_matrix]] and [[Matrix_multiplication#Phix|Matrix_multiplication]] tasks.
First two routines copied straight from the [[Identity_matrix#Phix|Identity_matrix]] and [[Matrix_multiplication#Phix|Matrix_multiplication]] tasks.
<!--<lang Phix>(phixonline)-->
<!--<syntaxhighlight lang="phix">(phixonline)-->
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">identity</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">n</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">identity</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">n</span><span style="color: #0000FF;">)</span>
Line 2,687: Line 2,687:
<span style="color: #7060A8;">puts</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"==\n"</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">puts</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"==\n"</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">pp</span><span style="color: #0000FF;">(</span><span style="color: #000000;">matrix_exponent</span><span style="color: #0000FF;">(</span><span style="color: #000000;">identity</span><span style="color: #0000FF;">(</span><span style="color: #000000;">4</span><span style="color: #0000FF;">),</span><span style="color: #000000;">5</span><span style="color: #0000FF;">))</span>
<span style="color: #7060A8;">pp</span><span style="color: #0000FF;">(</span><span style="color: #000000;">matrix_exponent</span><span style="color: #0000FF;">(</span><span style="color: #000000;">identity</span><span style="color: #0000FF;">(</span><span style="color: #000000;">4</span><span style="color: #0000FF;">),</span><span style="color: #000000;">5</span><span style="color: #0000FF;">))</span>
<!--</lang>-->
<!--</syntaxhighlight>-->
{{out}}
{{out}}
<pre>
<pre>
Line 2,715: Line 2,715:
=={{header|PicoLisp}}==
=={{header|PicoLisp}}==
Uses the 'matMul' function from [[Matrix multiplication#PicoLisp]]
Uses the 'matMul' function from [[Matrix multiplication#PicoLisp]]
<lang PicoLisp>(de matIdent (N)
<syntaxhighlight lang="picolisp">(de matIdent (N)
(let L (need N (1) 0)
(let L (need N (1) 0)
(mapcar '(() (copy (rot L))) L) ) )
(mapcar '(() (copy (rot L))) L) ) )
Line 2,725: Line 2,725:
M ) )
M ) )


(matExp '((3 2) (2 1)) 3)</lang>
(matExp '((3 2) (2 1)) 3)</syntaxhighlight>
Output:
Output:
<pre>-> ((55 34) (34 21))</pre>
<pre>-> ((55 34) (34 21))</pre>
Line 2,731: Line 2,731:
=={{header|Python}}==
=={{header|Python}}==
Using matrixMul from [[Matrix multiplication#Python]]
Using matrixMul from [[Matrix multiplication#Python]]
<lang python>>>> from operator import mul
<syntaxhighlight lang="python">>>> from operator import mul
>>> def matrixMul(m1, m2):
>>> def matrixMul(m1, m2):
return map(
return map(
Line 2,786: Line 2,786:
1346269 832040
1346269 832040
832040 514229
832040 514229
>>></lang>
>>></syntaxhighlight>


Alternative Based Upon @ operator of Python 3.5 PEP 465 and using Matrix exponentation for faster computation of powers
Alternative Based Upon @ operator of Python 3.5 PEP 465 and using Matrix exponentation for faster computation of powers
<lang>
<syntaxhighlight lang="text">
class Mat(list) :
class Mat(list) :
def __matmul__(self, B) :
def __matmul__(self, B) :
Line 2,822: Line 2,822:
print('\n%i:' % i)
print('\n%i:' % i)
printtable(power(m, i))
printtable(power(m, i))
</syntaxhighlight>
</lang>
{{Output}}
{{Output}}
<pre>
<pre>
Line 2,844: Line 2,844:
===Library function call===
===Library function call===
{{libheader|Biodem}}
{{libheader|Biodem}}
<lang rsplus>library(Biodem)
<syntaxhighlight lang="rsplus">library(Biodem)
m <- matrix(c(3,2,2,1), nrow=2)
m <- matrix(c(3,2,2,1), nrow=2)
mtx.exp(m, 0)
mtx.exp(m, 0)
Line 2,865: Line 2,865:
# [,1] [,2]
# [,1] [,2]
# [1,] 1346269 832040
# [1,] 1346269 832040
# [2,] 832040 514229</lang>
# [2,] 832040 514229</syntaxhighlight>
Note that non-integer powers are not supported with this function.
Note that non-integer powers are not supported with this function.
===Infix operator===
===Infix operator===
The task wants the implementation to be "as an operator". Given that R lets us define new infix operators, it seems fitting to show how to do this. Ideally, for a matrix a and int n, we'd want to be able to use a^n. R actually has this already, but it's not what the task wants:
The task wants the implementation to be "as an operator". Given that R lets us define new infix operators, it seems fitting to show how to do this. Ideally, for a matrix a and int n, we'd want to be able to use a^n. R actually has this already, but it's not what the task wants:
<lang rsplus>a <- matrix(c(1, 2, 3, 4), 2, 2)
<syntaxhighlight lang="rsplus">a <- matrix(c(1, 2, 3, 4), 2, 2)
a^1
a^1
a^2</lang>
a^2</syntaxhighlight>
{{out}}
{{out}}
<pre>> a^1
<pre>> a^1
Line 2,882: Line 2,882:
[2,] 4 16</pre>
[2,] 4 16</pre>
As we can see, it instead returns the given matrix with its elements raised to the nth power. Overwriting the ^ operator would be dangerous and rude. However, R's base library suggests an alternative. %*% is already defined as matrix multiplication, so why not use %^% for exponentiation?
As we can see, it instead returns the given matrix with its elements raised to the nth power. Overwriting the ^ operator would be dangerous and rude. However, R's base library suggests an alternative. %*% is already defined as matrix multiplication, so why not use %^% for exponentiation?
<lang rsplus>`%^%` <- function(mat, n)
<syntaxhighlight lang="rsplus">`%^%` <- function(mat, n)
{
{
is.wholenumber <- function(x, tol = .Machine$double.eps^0.5) abs(x - round(x)) < tol#See the docs for is.integer
is.wholenumber <- function(x, tol = .Machine$double.eps^0.5) abs(x - round(x)) < tol#See the docs for is.integer
Line 2,902: Line 2,902:
nonSquareMatrix <- matrix(c(1, 2, 3, 4, 5, 6), nrow = 2, ncol = 3)
nonSquareMatrix <- matrix(c(1, 2, 3, 4, 5, 6), nrow = 2, ncol = 3)
nonSquareMatrix %^% 1
nonSquareMatrix %^% 1
nonSquareMatrix %^% 2#R's %*% will throw the error for us</lang>
nonSquareMatrix %^% 2#R's %*% will throw the error for us</syntaxhighlight>
{{out}}
{{out}}
<pre>> a %^% 0
<pre>> a %^% 0
Line 2,939: Line 2,939:
Error in mat %*% (mat %^% (n - 1)) : non-conformable arguments</pre>
Error in mat %*% (mat %^% (n - 1)) : non-conformable arguments</pre>
Our code is far from efficient and could do with more error-checking, but it demonstrates the principle. If we wanted to do this properly, we'd use a library - ideally one that calls C code. Following the previous submission's example, we can just do this:
Our code is far from efficient and could do with more error-checking, but it demonstrates the principle. If we wanted to do this properly, we'd use a library - ideally one that calls C code. Following the previous submission's example, we can just do this:
<lang rsplus>library(Biodem)
<syntaxhighlight lang="rsplus">library(Biodem)
`%^%` <- function(mat, n) Biodem::mtx.exp(mat, n)</lang>
`%^%` <- function(mat, n) Biodem::mtx.exp(mat, n)</syntaxhighlight>
And it will work just the same, except for being much faster and throwing an error on nonSquareMatrix %^% 1.
And it will work just the same, except for being much faster and throwing an error on nonSquareMatrix %^% 1.


=={{header|Racket}}==
=={{header|Racket}}==


<syntaxhighlight lang="racket">
<lang Racket>
#lang racket
#lang racket
(require math)
(require math)
Line 2,975: Line 2,975:
(for ([i (in-range 1 11)])
(for ([i (in-range 1 11)])
(printf "a^~a = ~s\n" i (matrix-expt a i)))
(printf "a^~a = ~s\n" i (matrix-expt a i)))
</syntaxhighlight>
</lang>


=={{header|Raku}}==
=={{header|Raku}}==
(formerly Perl 6)
(formerly Perl 6)
<lang perl6>subset SqMat of Array where { .elems == all(.[]».elems) }
<syntaxhighlight lang="raku" line>subset SqMat of Array where { .elems == all(.[]».elems) }


multi infix:<*>(SqMat $a, SqMat $b) {[
multi infix:<*>(SqMat $a, SqMat $b) {[
Line 3,013: Line 3,013:
say "### Order $order";
say "### Order $order";
show @m ** $order;
show @m ** $order;
}</lang>
}</syntaxhighlight>
{{out}}
{{out}}
<pre>### Order 0
<pre>### Order 0
Line 3,090: Line 3,090:
=={{header|Rust}}==
=={{header|Rust}}==
Rust (1.37.0) does not allow to overload the ** operator, instead ^ (bitwise xor) is used.
Rust (1.37.0) does not allow to overload the ** operator, instead ^ (bitwise xor) is used.
<lang rust>use std::fmt;
<syntaxhighlight lang="rust">use std::fmt;
use std::ops;
use std::ops;
const WIDTH: usize = 6;
const WIDTH: usize = 6;
Line 3,164: Line 3,164:
println!("Power of {}:\n{:?}", i, sm.clone() ^ i);
println!("Power of {}:\n{:?}", i, sm.clone() ^ i);
}
}
}</lang>
}</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 3,224: Line 3,224:


=={{header|Scala}}==
=={{header|Scala}}==
<lang scala>class Matrix[T](matrix:Array[Array[T]])(implicit n: Numeric[T], m: ClassManifest[T])
<syntaxhighlight lang="scala">class Matrix[T](matrix:Array[Array[T]])(implicit n: Numeric[T], m: ClassManifest[T])
{
{
import n._
import n._
Line 3,261: Line 3,261:
}
}
}
}
}</lang>
}</syntaxhighlight>
{{out}}
{{out}}
<pre>-- m --
<pre>-- m --
Line 3,295: Line 3,295:
For simplicity, the matrix is represented as a list of lists, and no dimension checking occurs. This implementation does not work when the exponent is 0.
For simplicity, the matrix is represented as a list of lists, and no dimension checking occurs. This implementation does not work when the exponent is 0.


<lang scheme>
<syntaxhighlight lang="scheme">
(define (dec x)
(define (dec x)
(- x 1))
(- x 1))
Line 3,319: Line 3,319:
(define (square-matrix mat)
(define (square-matrix mat)
(matrix-multiply mat mat))
(matrix-multiply mat mat))
</syntaxhighlight>
</lang>




Line 3,335: Line 3,335:
*A ''for'' loop which loops over values listed in an array literal
*A ''for'' loop which loops over values listed in an array literal


<lang seed7>$ include "seed7_05.s7i";
<syntaxhighlight lang="seed7">$ include "seed7_05.s7i";
include "float.s7i";
include "float.s7i";


Line 3,426: Line 3,426:
writeln(m ** exponent);
writeln(m ** exponent);
end for;
end for;
end func;</lang>
end func;</syntaxhighlight>


Original source of matrix exponentiation: [http://seed7.sourceforge.net/algorith/math.htm#matrix_exponentiation]
Original source of matrix exponentiation: [http://seed7.sourceforge.net/algorith/math.htm#matrix_exponentiation]
Line 3,468: Line 3,468:


=={{header|Sidef}}==
=={{header|Sidef}}==
<lang ruby>class Array {
<syntaxhighlight lang="ruby">class Array {
method ** (Number n { .>= 0 }) {
method ** (Number n { .>= 0 }) {
var tmp = self
var tmp = self
Line 3,489: Line 3,489:
var t = (m ** order)
var t = (m ** order)
say (' ', t.join("\n "))
say (' ', t.join("\n "))
}</lang>
}</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 3,522: Line 3,522:
{{works with|OpenAxiom}}
{{works with|OpenAxiom}}
{{works with|Axiom}}
{{works with|Axiom}}
<lang SPAD>(1) -> A:=matrix [[0,-%i],[%i,0]]
<syntaxhighlight lang="spad">(1) -> A:=matrix [[0,-%i],[%i,0]]


+0 - %i+
+0 - %i+
Line 3,545: Line 3,545:
(4) | |
(4) | |
+%i 0 +
+%i 0 +
Type: Union(Matrix(Fraction(Complex(Integer))),...)</lang>
Type: Union(Matrix(Fraction(Complex(Integer))),...)</syntaxhighlight>


Domain:[http://fricas.github.io/api/Matrix.html?highlight=matrix Matrix(R)]
Domain:[http://fricas.github.io/api/Matrix.html?highlight=matrix Matrix(R)]
Line 3,553: Line 3,553:
This implementation uses [https://en.wikipedia.org/wiki/Exponentiation_by_squaring Exponentiation by squaring] to compute a^n for a matrix a and an integer n (which may be positive, negative or zero).
This implementation uses [https://en.wikipedia.org/wiki/Exponentiation_by_squaring Exponentiation by squaring] to compute a^n for a matrix a and an integer n (which may be positive, negative or zero).


<lang stata>real matrix matpow(real matrix a, real scalar n) {
<syntaxhighlight lang="stata">real matrix matpow(real matrix a, real scalar n) {
real matrix p, x
real matrix p, x
real scalar i, s
real scalar i, s
Line 3,565: Line 3,565:
}
}
return(s?luinv(p):p)
return(s?luinv(p):p)
}</lang>
}</syntaxhighlight>


Here is an example to compute Fibonacci numbers:
Here is an example to compute Fibonacci numbers:


<lang stata>: matpow((0,1\1,1),10)
<syntaxhighlight lang="stata">: matpow((0,1\1,1),10)
[symmetric]
[symmetric]
1 2
1 2
Line 3,575: Line 3,575:
1 | 34 |
1 | 34 |
2 | 55 89 |
2 | 55 89 |
+-----------+</lang>
+-----------+</syntaxhighlight>


=={{header|Tcl}}==
=={{header|Tcl}}==
Using code at [[Matrix multiplication#Tcl]] and [[Matrix Transpose#Tcl]]
Using code at [[Matrix multiplication#Tcl]] and [[Matrix Transpose#Tcl]]
<lang tcl>package require Tcl 8.5
<syntaxhighlight lang="tcl">package require Tcl 8.5
namespace path {::tcl::mathop ::tcl::mathfunc}
namespace path {::tcl::mathop ::tcl::mathfunc}


Line 3,602: Line 3,602:
for {set n 0} {$n < $size} {incr n} {lset i $n $n 1}
for {set n 0} {$n < $size} {incr n} {lset i $n $n 1}
return $i
return $i
}</lang>
}</syntaxhighlight>
<pre>% print_matrix [matrix_exp {{3 2} {2 1}} 1]
<pre>% print_matrix [matrix_exp {{3 2} {2 1}} 1]
3 2
3 2
Line 3,625: Line 3,625:
=={{header|TI-89 BASIC}}==
=={{header|TI-89 BASIC}}==
Built-in exponentiation:
Built-in exponentiation:
<lang ti89b>[3,2;4,1]^4</lang>
<syntaxhighlight lang="ti89b">[3,2;4,1]^4</syntaxhighlight>
Output: <math>\begin{bmatrix}417 & 208 \\ 416 & 209\end{bmatrix}</math>
Output: <math>\begin{bmatrix}417 & 208 \\ 416 & 209\end{bmatrix}</math>


Line 3,631: Line 3,631:
For matrices of floating point numbers, the library function <code>mmult</code> can be used as shown. The user-defined <code>id</code> function takes a square matrix to the identity matrix of the same dimensions. The <code>mex</code> function takes a pair <math>(A,n)</math>
For matrices of floating point numbers, the library function <code>mmult</code> can be used as shown. The user-defined <code>id</code> function takes a square matrix to the identity matrix of the same dimensions. The <code>mex</code> function takes a pair <math>(A,n)</math>
representing a real matrix <math>A</math> and a natural exponent <math>n</math> to the exponentiation <math>A^n</math> using the naive algorithm.
representing a real matrix <math>A</math> and a natural exponent <math>n</math> to the exponentiation <math>A^n</math> using the naive algorithm.
<lang Ursala>#import nat
<syntaxhighlight lang="ursala">#import nat
#import lin
#import lin


id = @h ^|CzyCK33/1.! 0.!*
id = @h ^|CzyCK33/1.! 0.!*
mex = ||id@l mmult:-0^|DlS/~& iota</lang>
mex = ||id@l mmult:-0^|DlS/~& iota</syntaxhighlight>
Alternatively, this version uses the fast binary algorithm.
Alternatively, this version uses the fast binary algorithm.
<lang Ursala>mex = ~&ar^?\id@al (~&lr?/mmult@llPrX ~&r)^/~&alrhPX mmult@falrtPXPRiiX</lang>
<syntaxhighlight lang="ursala">mex = ~&ar^?\id@al (~&lr?/mmult@llPrX ~&r)^/~&alrhPX mmult@falrtPXPRiiX</syntaxhighlight>
This test program raises a 2 by 2 matrix to a selection of powers.
This test program raises a 2 by 2 matrix to a selection of powers.
<lang Ursala>#cast %eLLL
<syntaxhighlight lang="ursala">#cast %eLLL


test = mex/*<<3.,2.>,<2.,1.>> <0,1,2,3,4,10></lang>
test = mex/*<<3.,2.>,<2.,1.>> <0,1,2,3,4,10></syntaxhighlight>
output:
output:
<pre><
<pre><
Line 3,665: Line 3,665:
=={{header|VBA}}==
=={{header|VBA}}==
No operator overloading in VBA. Implemented as a function. Can not handle scalars. Requires matrix size greater than one. Does allow for negative exponents.
No operator overloading in VBA. Implemented as a function. Can not handle scalars. Requires matrix size greater than one. Does allow for negative exponents.
<lang vb>Option Base 1
<syntaxhighlight lang="vb">Option Base 1
Private Function Identity(n As Integer) As Variant
Private Function Identity(n As Integer) As Variant
Dim I() As Variant
Dim I() As Variant
Line 3,720: Line 3,720:
Debug.Print
Debug.Print
pp MatrixExponentiation(M3, 10)
pp MatrixExponentiation(M3, 10)
End Sub</lang>{{out}}
End Sub</syntaxhighlight>{{out}}
<pre>-1 2
<pre>-1 2
2 -3
2 -3
Line 3,740: Line 3,740:


The Matrix class in the above module also has a 'pow' method but, as an alternative, overloads the otherwise unused '^' operator to provide the same functionality.
The Matrix class in the above module also has a 'pow' method but, as an alternative, overloads the otherwise unused '^' operator to provide the same functionality.
<lang ecmascript>import "/matrix" for Matrix
<syntaxhighlight lang="ecmascript">import "/matrix" for Matrix
import "/fmt" for Fmt
import "/fmt" for Fmt


Line 3,747: Line 3,747:
Fmt.mprint(m, 2, 0)
Fmt.mprint(m, 2, 0)
System.print("\nRaised to power of 10:\n")
System.print("\nRaised to power of 10:\n")
Fmt.mprint(m ^ 10, 3, 0)</lang>
Fmt.mprint(m ^ 10, 3, 0)</syntaxhighlight>


{{out}}
{{out}}