Magic squares of doubly even order: Difference between revisions

m
(Added Julia language)
imported>Arakov
 
(65 intermediate revisions by 31 users not shown)
Line 1:
{{task}}
A [[wp:Magic_square|magic square]] is an   '''NxNN×N'''  square matrix whose numbers consist of consecutive numbers arranged so that the sum of each row and column,   ''and''   both diagonals are equal to the same sum   (which is called the ''magic number'' or ''magic constant'').
 
A magic square of doubly even order has a size that is a multiple of four   (e.g.     '''4''', '''8''', '''12'''). This means that the subsquares also have an even size, which plays a role in the construction.
 
This means that the subsquares also have an even size, which plays a role in the construction.
 
<!-- As more computer programming languages will be added, they will "fill up" the space to the left of this light blue grid, and the first language entry will be the (normal) full width, so the big size is essential "free space". Gerard Schildberger. -->
Line 25 ⟶ 27:
<br>
;Task
Create a magic square of &nbsp; '''8 x&times; 8'''.
<br><br>
 
 
; Related tasks
;Related tasks
* [[Magic squares of odd order]]
* [[Magic squares of singly even order]]<br><br>
 
 
; See also:
;See also:
* [http://www.1728.org/magicsq2.htm Doubly Even Magic Squares (1728.org)]
<br><br>
 
=={{header|11l}}==
{{trans|Java}}
 
<syntaxhighlight lang="11l">F magicSquareDoublyEven(n)
V bits = 1001'0110'0110'1001b
V size = n * n
V mult = n I/ 4
 
V result = [[0] * n] * n
V i = 0
L(r) 0 .< n
L(c) 0 .< n
V bitPos = c I/ mult + (r I/ mult) * 4
result[r][c] = I (bits [&] (1 << bitPos)) != 0 {i + 1} E size - i
i++
R result
 
V n = 8
L(row) magicSquareDoublyEven(n)
L(x) row
print(‘#2 ’.format(x), end' ‘’)
print()
print("\nMagic constant: "((n * n + 1) * n I/ 2))</syntaxhighlight>
 
{{out}}
<pre>
1 2 62 61 60 59 7 8
9 10 54 53 52 51 15 16
48 47 19 20 21 22 42 41
40 39 27 28 29 30 34 33
32 31 35 36 37 38 26 25
24 23 43 44 45 46 18 17
49 50 14 13 12 11 55 56
57 58 6 5 4 3 63 64
 
Magic constant: 260
</pre>
 
=={{header|360 Assembly}}==
{{trans|Java}}
<langsyntaxhighlight lang="360asm">* Magic squares of doubly even order 01/03/2017
MAGICSDB CSECT
USING MAGICSDB,R13
Line 100 ⟶ 141:
XDEC DS CL12 temp for xdeco
YREGS
END MAGICSDB</langsyntaxhighlight>
{{out}}
<pre>
Line 112 ⟶ 153:
57 58 6 5 4 3 63 64
magic constant= 260
</pre>
 
=={{header|ALGOL 60}}==
{{works with|A60}}
<syntaxhighlight lang="algol60">begin
comment Magic squares of doubly even order - 10/02/2021;
integer array pattern[1:4,1:4];
integer n, r, c, s, m, i, b, t;
n:=8;
for r:=1 step 1 until 4 do
for c:=1 step 1 until 4 do
pattern[r,c]:=if
((c=1 or c=4) and (r=1 or r=4)) or
((c=2 or c=3) and (r=2 or r=3)) then 1 else 0;
s:=n*n; m:=n div 4;
outstring(1,"magic square -- n ="); outinteger(1,n); outstring(1,"\n");
i:=0;
for r:=1 step 1 until n do begin
for c:=1 step 1 until n do begin
b:=pattern[(r-1) div m+1,(c-1) div m+1];
if b=1 then t:=i+1 else t:=s-i;
if t less 10 then outstring(1," ");
outinteger(1,t);
i:=i+1
end;
outstring(1,"\n")
end;
outstring(1,"magic constant ="); outinteger(1,(s+1)*n div 2)
end </syntaxhighlight>
{{out}}
<pre>
magic square -- n = 8
1 2 62 61 60 59 7 8
9 10 54 53 52 51 15 16
48 47 19 20 21 22 42 41
40 39 27 28 29 30 34 33
32 31 35 36 37 38 26 25
24 23 43 44 45 46 18 17
49 50 14 13 12 11 55 56
57 58 6 5 4 3 63 64
magic constant = 260
</pre>
 
=={{header|ALGOL 68}}==
{{Trans|ALGOL 60}}
Using a procedure to generate the square for easier re-use.
<syntaxhighlight lang="algol68">BEGIN # Magic squares of doubly even order #
PROC doubly even magic square = ( INT n )[,]INT:
IF n MOD 4 /= 0 THEN
# not a doubly even number #
[ 1 : 0, 1 : 0 ]INT empty square;
empty square
ELSE
# ok to create the square #
[ 1 : 4, 1 : 4 ]INT pattern;
FOR r TO 4 DO
FOR c TO 4 DO
pattern[ r, c ] := IF ( ( c = 1 OR c = 4 ) AND ( r = 1 OR r = 4 ) )
OR ( ( c = 2 OR c = 3 ) AND ( r = 2 OR r = 3 ) )
THEN 1
ELSE 0
FI
OD
OD;
[ 1 : n, 1 : n ]INT result;
INT s = n * n, m = n OVER 4;
INT i := 0;
FOR r TO n DO
FOR c TO n DO
result[ r, c ] := IF pattern[ ( r - 1 ) OVER m + 1, ( c - 1 ) OVER m + 1 ] = 1
THEN i + 1
ELSE s - i
FI;
i +:= 1
OD
OD;
result
FI # doubly eben magic square # ;
# test doubly even magic square #
FOR order FROM 8 BY 4 TO 12 DO
# calculate the field width for the elements of the square #
INT w := 1, v := order * order;
WHILE ( v OVERAB 10 ) > 0 DO w +:= 1 OD;
# construct the square #
[,]INT square = doubly even magic square( order );
print( ( "magic square -- n = ", whole( order, 0 ), newline ) );
FOR r FROM 1 LWB square TO 1 UPB square DO
FOR c FROM 2 LWB square TO 2 UPB square DO
print( ( " ", whole( square[ r, c ], - w ) ) )
OD;
print( ( newline ) )
OD;
print( ( "magic constant = ", whole( ( ( ( order * order ) + 1 ) * order ) OVER 2, 0 ), newline ) )
OD
END</syntaxhighlight>
{{out}}
<pre>
magic square -- n = 8
1 2 62 61 60 59 7 8
9 10 54 53 52 51 15 16
48 47 19 20 21 22 42 41
40 39 27 28 29 30 34 33
32 31 35 36 37 38 26 25
24 23 43 44 45 46 18 17
49 50 14 13 12 11 55 56
57 58 6 5 4 3 63 64
magic constant = 260
magic square -- n = 12
1 2 3 141 140 139 138 137 136 10 11 12
13 14 15 129 128 127 126 125 124 22 23 24
25 26 27 117 116 115 114 113 112 34 35 36
108 107 106 40 41 42 43 44 45 99 98 97
96 95 94 52 53 54 55 56 57 87 86 85
84 83 82 64 65 66 67 68 69 75 74 73
72 71 70 76 77 78 79 80 81 63 62 61
60 59 58 88 89 90 91 92 93 51 50 49
48 47 46 100 101 102 103 104 105 39 38 37
109 110 111 33 32 31 30 29 28 118 119 120
121 122 123 21 20 19 18 17 16 130 131 132
133 134 135 9 8 7 6 5 4 142 143 144
magic constant = 870
</pre>
 
=={{header|Amazing Hopper}}==
{{Trans|C++}}
<syntaxhighlight lang="c">
/*
Magic squares of doubly even order. Rosettacode.org
By Mr. Dalien.
*/
 
#include <basico.h>
 
#proto cuadradomágico(_X_)
#synon _cuadradomágico generarcuadradomágico
 
principal {
decimales '0', fijar separador 'NULO'
malla de bits(bits,'1;0;0;1','0;1;1;0','0;1;1;0','1;0;0;1')
borrar pantalla
iterar para( i=1; n=4, #(i<=3), ++i; #(n=4*i) )
dim( #(n*n) ) matriz de ceros 'sqr'
generar cuadrado mágico (n);
ir a sub ( meter en tabla, sqr, #(n+1) ), para 'sqr'
imprimir '"Magic square order ",n,\
"\nMagic constant : ",#((n * n + 1) * n / 2),\
NL,sqr,NL,NL'
luego limpiar 'sqr'
siguiente
terminar
}
 
subrutinas
 
sub( meter en tabla, s, n ) {
i=n,rareti(i, 'i')
retener 'n', insertar columnas en 's'
insertar filas en 's'
#basic{
s[1:2:2*n-1,1:_end_] = "---"
s[1:_end_, 1:2:2*n-1] = "|"
s[1:2:_end_,1:2:_end_] = "+"
}
retornar 's'
}
 
cuadrado mágico ( n )
iterar para ( cr=0;i=0, #(cr<n), ++cr )
iterar para ( cc=0, #(cc<n), ++cc;++i )
#( sqr[ (cc+n*cr)+1 ] = (bits[(cr%4+1),(cc%4+1)]) ? (i+1) : (n^2-i); )
siguiente
siguiente
#( sqr = lpad(" ",3,string(sqr)))
redim ( sqr, n, n )
retornar
</syntaxhighlight>
{{out}}
<pre>
Magic square order 4
Magic constant : 34
+---+---+---+---+
| 1| 15| 14| 4|
+---+---+---+---+
| 12| 6| 7| 9|
+---+---+---+---+
| 8| 10| 11| 5|
+---+---+---+---+
| 13| 3| 2| 16|
+---+---+---+---+
 
 
Magic square order 8
Magic constant : 260
+---+---+---+---+---+---+---+---+
| 1| 63| 62| 4| 5| 59| 58| 8|
+---+---+---+---+---+---+---+---+
| 56| 10| 11| 53| 52| 14| 15| 49|
+---+---+---+---+---+---+---+---+
| 48| 18| 19| 45| 44| 22| 23| 41|
+---+---+---+---+---+---+---+---+
| 25| 39| 38| 28| 29| 35| 34| 32|
+---+---+---+---+---+---+---+---+
| 33| 31| 30| 36| 37| 27| 26| 40|
+---+---+---+---+---+---+---+---+
| 24| 42| 43| 21| 20| 46| 47| 17|
+---+---+---+---+---+---+---+---+
| 16| 50| 51| 13| 12| 54| 55| 9|
+---+---+---+---+---+---+---+---+
| 57| 7| 6| 60| 61| 3| 2| 64|
+---+---+---+---+---+---+---+---+
 
 
Magic square order 12
Magic constant : 870
+---+---+---+---+---+---+---+---+---+---+---+---+
| 1|143|142| 4| 5|139|138| 8| 9|135|134| 12|
+---+---+---+---+---+---+---+---+---+---+---+---+
|132| 14| 15|129|128| 18| 19|125|124| 22| 23|121|
+---+---+---+---+---+---+---+---+---+---+---+---+
|120| 26| 27|117|116| 30| 31|113|112| 34| 35|109|
+---+---+---+---+---+---+---+---+---+---+---+---+
| 37|107|106| 40| 41|103|102| 44| 45| 99| 98| 48|
+---+---+---+---+---+---+---+---+---+---+---+---+
| 49| 95| 94| 52| 53| 91| 90| 56| 57| 87| 86| 60|
+---+---+---+---+---+---+---+---+---+---+---+---+
| 84| 62| 63| 81| 80| 66| 67| 77| 76| 70| 71| 73|
+---+---+---+---+---+---+---+---+---+---+---+---+
| 72| 74| 75| 69| 68| 78| 79| 65| 64| 82| 83| 61|
+---+---+---+---+---+---+---+---+---+---+---+---+
| 85| 59| 58| 88| 89| 55| 54| 92| 93| 51| 50| 96|
+---+---+---+---+---+---+---+---+---+---+---+---+
| 97| 47| 46|100|101| 43| 42|104|105| 39| 38|108|
+---+---+---+---+---+---+---+---+---+---+---+---+
| 36|110|111| 33| 32|114|115| 29| 28|118|119| 25|
+---+---+---+---+---+---+---+---+---+---+---+---+
| 24|122|123| 21| 20|126|127| 17| 16|130|131| 13|
+---+---+---+---+---+---+---+---+---+---+---+---+
|133| 11| 10|136|137| 7| 6|140|141| 3| 2|144|
+---+---+---+---+---+---+---+---+---+---+---+---+
 
</pre>
 
=={{header|AppleScript}}==
{{Trans|JavaScript}}
<syntaxhighlight lang="applescript">-- MAGIC SQUARE OF DOUBLY EVEN ORDER -----------------------------------------
<lang AppleScript>-- magicSquare :: Int -> [[Int]]
 
-- magicSquare :: Int -> [[Int]]
on magicSquare(n)
if n mod 4 > 0 then
Line 134 ⟶ 419:
script scale
on lambda|λ|(x)
replicate(n / 4, x)
end lambda|λ|
end script
set truthSeries to ¬
flatten(scale's lambda|λ|(map(scale, splitEvery(4, magicSeries(4)))))
end if
set limit to sqr + 1
script inOrderOrReversed
on lambda|λ|(x, i)
cond(x, i, limit - i)
end lambda|λ|
end script
Line 155 ⟶ 440:
end if
end magicSquare
 
 
-- magicSeries :: Int -> [Bool]
on magicSeries(n)
script boolToggle
on lambda|λ|(x)
not x
end lambda|λ|
end script
Line 174 ⟶ 458:
 
 
-- TEST ---------------------------------------------------------------------------
on run
Line 193 ⟶ 477:
on wikiTable(lstRows, blnHdr, strStyle)
script fWikiRows
on lambda|λ|(lstRow, iRow)
set strDelim to cond(blnHdr and (iRow = 0), "!", "|")
set strDbl to strDelim & strDelim
linefeed & "|-" & linefeed & strDelim & space & ¬
intercalate(space & strDbl & space, lstRow)
end lambda|λ|
end script
Line 208 ⟶ 492:
 
 
-- GENERIC FUNCTIONS ---------------------------------------------------------------------------
 
-- splitEvery :: Int -> [a] -> [[a]]
on splitEvery(n, xs)
if length of xs ≤ n then
{xs}
else
set {gp, t} to splitAt(n, xs)
{gp} & splitEvery(n, t)
end if
end splitEvery
 
-- isPowerOf :: Int -> Int -> Bool
on isPowerOf(k, n)
set v to k
script remLeft
on lambda(x)
x mod v is not 0
end lambda
end script
script integerDiv
on lambda(x)
x div v
end lambda
end script
|until|(remLeft, integerDiv, n) = 1
end isPowerOf
 
-- asPowerOfTwo :: Int -> maybe Int
Line 248 ⟶ 504:
end asPowerOfTwo
 
-- mapconcatMap :: (a -> [b]) -> [a] -> [b]
on mapconcatMap(f, xs)
tellscript mReturn(f)append
seton lng|λ|(a, to length of xsb)
set lst to {} a & b
repeatend with i from 1 to lng|λ|
end script
set end of lst to lambda(item i of xs, i, xs)
end repeat
foldl(append, {}, map(f, xs))
return lst
end tellconcatMap
end map
 
-- cond :: Bool -> a -> a -> a
Line 277 ⟶ 532:
end if
end flatten
 
-- concatMap :: (a -> [b]) -> [a] -> [b]
on concatMap(f, xs)
script append
on lambda(a, b)
a & b
end lambda
end script
foldl(append, {}, map(f, xs))
end concatMap
 
-- foldl :: (a -> b -> a) -> a -> [b] -> a
Line 295 ⟶ 539:
set lng to length of xs
repeat with i from 1 to lng
set v to lambda|λ|(v, item i of xs, i, xs)
end repeat
return v
Line 301 ⟶ 545:
end foldl
 
-- untilintercalate :: (aText -> Bool)[Text] -> (a -> a) -> a -> aText
on |until|intercalate(pstrText, f, xlstText)
set {dlm, my text item delimiters} to {my text item delimiters, strText}
set mp to mReturn(p)
set vstrJoined to xlstText as text
set my text item delimiters to dlm
return strJoined
end intercalate
 
-- isPowerOf :: Int -> Int -> Bool
on isPowerOf(k, n)
set v to k
script remLeft
on |λ|(x)
x mod v is not 0
end |λ|
end script
script integerDiv
on |λ|(x)
x div v
end |λ|
end script
|until|(remLeft, integerDiv, n) = 1
end isPowerOf
 
-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
tell mReturn(f)
repeatset untillng mp'sto lambda(v)length of xs
set vlst to lambda(v){}
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, i, xs)
end repeat
return lst
end tell
end map
return v
 
end |until|
 
-- Lift 2nd class handler function into 1st class script wrapper
Line 321 ⟶ 591:
else
script
property lambda|λ| : f
end script
end if
Line 361 ⟶ 631:
end splitAt
 
-- intercalatesplitEvery :: TextInt -> [Texta] -> Text[[a]]
on intercalatesplitEvery(strTextn, lstTextxs)
if length of xs ≤ n then
set {dlm, my text item delimiters} to {my text item delimiters, strText}
set strJoined to lstText as text{xs}
else
set my text item delimiters to dlm
set {gp, t} to splitAt(n, xs)
return strJoined
{gp} & splitEvery(n, t)
end intercalate</lang>
end if
end splitEvery
 
-- until :: (a -> Bool) -> (a -> a) -> a -> a
on |until|(p, f, x)
set mp to mReturn(p)
set v to x
tell mReturn(f)
repeat until mp's |λ|(v)
set v to |λ|(v)
end repeat
end tell
return v
end |until|</syntaxhighlight>
{{Out}}
magic(8)
Line 390 ⟶ 674:
| 8 || 58 || 59 || 5 || 61 || 3 || 2 || 64
|}
 
=={{header|AWK}}==
{{trans|C#}}
Since standard awk does not support bitwise operators, we provide the function countup to do the magic.
<syntaxhighlight lang="awk"># Usage: GAWK -f MAGIC_SQUARES_OF_DOUBLY_EVEN_ORDER.AWK
BEGIN {
n = 8
msquare[0, 0] = 0
if (magicsquaredoublyeven(msquare, n)) {
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
printf("%2d ", msquare[i, j])
}
printf("\n")
}
printf("\nMagic constant: %d\n", (n * n + 1) * n / 2)
exit 1
} else {
exit 0
}
}
function magicsquaredoublyeven(msquare, n, size, mult, r, c, i) {
if (n < 4 || n % 4 != 0) {
printf("Base must be a positive multiple of 4.\n")
return 0
}
size = n * n
mult = n / 4 # how many multiples of 4
 
i = 0
for (r = 0; r < n; r++) {
for (c = 0; c < n; c++) {
msquare[r, c] = countup(r, c, mult) ? i + 1 : size - i
i++
}
}
return 1
}
function countup(r, c, mult, pattern, bitpos) {
# Returns 1, if we are in a count-up zone (0 otherwise)
pattern = "1001011001101001"
bitpos = int(c / mult) + int(r / mult) * 4 + 1
return substr(pattern, bitpos, 1) + 0
}</syntaxhighlight>
 
{{out}}
<pre> 1 2 62 61 60 59 7 8
9 10 54 53 52 51 15 16
48 47 19 20 21 22 42 41
40 39 27 28 29 30 34 33
32 31 35 36 37 38 26 25
24 23 43 44 45 46 18 17
49 50 14 13 12 11 55 56
57 58 6 5 4 3 63 64
 
Magic constant: 260</pre>
 
=={{header|Befunge}}==
The size, ''N'', is specified by the first value on the stack. The algorithm is loosely based on the [[Magic_squares_of_doubly_even_order#Java|Java]] implementation.
 
<syntaxhighlight lang="befunge">8>>>v>10p00g:*1-*\110g2*-*+1+.:00g%!9+,:#v_@
p00:<^:!!-!%3//4g00%g00\!!%3/*:g00*4:::-1<*:</syntaxhighlight>
 
{{out}}
<pre>1 2 62 61 60 59 7 8
9 10 54 53 52 51 15 16
48 47 19 20 21 22 42 41
40 39 27 28 29 30 34 33
32 31 35 36 37 38 26 25
24 23 43 44 45 46 18 17
49 50 14 13 12 11 55 56
57 58 6 5 4 3 63 64</pre>
 
=={{header|C}}==
Takes number of rows from command line, prints out usage on incorrect invocation.
<syntaxhighlight lang="c">
#include<stdlib.h>
#include<ctype.h>
#include<stdio.h>
 
int** doublyEvenMagicSquare(int n) {
if (n < 4 || n % 4 != 0)
return NULL;
 
int bits = 38505;
int size = n * n;
int mult = n / 4,i,r,c,bitPos;
 
int** result = (int**)malloc(n*sizeof(int*));
for(i=0;i<n;i++)
result[i] = (int*)malloc(n*sizeof(int));
 
for (r = 0, i = 0; r < n; r++) {
for (c = 0; c < n; c++, i++) {
bitPos = c / mult + (r / mult) * 4;
result[r][c] = (bits & (1 << bitPos)) != 0 ? i + 1 : size - i;
}
}
return result;
}
 
int numDigits(int n){
int count = 1;
while(n>=10){
n /= 10;
count++;
}
return count;
}
 
void printMagicSquare(int** square,int rows){
int i,j,baseWidth = numDigits(rows*rows) + 3;
printf("Doubly Magic Square of Order : %d and Magic Constant : %d\n\n",rows,(rows * rows + 1) * rows / 2);
for(i=0;i<rows;i++){
for(j=0;j<rows;j++){
printf("%*s%d",baseWidth - numDigits(square[i][j]),"",square[i][j]);
}
printf("\n");
}
}
 
int main(int argC,char* argV[])
{
int n;
if(argC!=2||isdigit(argV[1][0])==0)
printf("Usage : %s <integer specifying rows in magic square>",argV[0]);
else{
n = atoi(argV[1]);
printMagicSquare(doublyEvenMagicSquare(n),n);
}
return 0;
}
</syntaxhighlight>
Invocation and Output :
<pre>
C:\rosettaCode>doublyEvenMagicSquare 12
Doubly Magic Square of Order : 12 and Magic Constant : 870
 
1 2 3 141 140 139 138 137 136 10 11 12
13 14 15 129 128 127 126 125 124 22 23 24
25 26 27 117 116 115 114 113 112 34 35 36
108 107 106 40 41 42 43 44 45 99 98 97
96 95 94 52 53 54 55 56 57 87 86 85
84 83 82 64 65 66 67 68 69 75 74 73
72 71 70 76 77 78 79 80 81 63 62 61
60 59 58 88 89 90 91 92 93 51 50 49
48 47 46 100 101 102 103 104 105 39 38 37
109 110 111 33 32 31 30 29 28 118 119 120
121 122 123 21 20 19 18 17 16 130 131 132
133 134 135 9 8 7 6 5 4 142 143 144
</pre>
 
=={{header|C sharp|C#}}==
{{trans|Java}}
<syntaxhighlight lang="csharp">using System;
 
namespace MagicSquareDoublyEven
{
class Program
{
static void Main(string[] args)
{
int n = 8;
var result = MagicSquareDoublyEven(n);
for (int i = 0; i < result.GetLength(0); i++)
{
for (int j = 0; j < result.GetLength(1); j++)
Console.Write("{0,2} ", result[i, j]);
Console.WriteLine();
}
Console.WriteLine("\nMagic constant: {0} ", (n * n + 1) * n / 2);
Console.ReadLine();
}
 
private static int[,] MagicSquareDoublyEven(int n)
{
if (n < 4 || n % 4 != 0)
throw new ArgumentException("base must be a positive "
+ "multiple of 4");
 
// pattern of count-up vs count-down zones
int bits = 0b1001_0110_0110_1001;
int size = n * n;
int mult = n / 4; // how many multiples of 4
 
int[,] result = new int[n, n];
 
for (int r = 0, i = 0; r < n; r++)
{
for (int c = 0; c < n; c++, i++)
{
int bitPos = c / mult + (r / mult) * 4;
result[r, c] = (bits & (1 << bitPos)) != 0 ? i + 1 : size - i;
}
}
return result;
}
}
}</syntaxhighlight>
<pre> 1 2 62 61 60 59 7 8
9 10 54 53 52 51 15 16
48 47 19 20 21 22 42 41
40 39 27 28 29 30 34 33
32 31 35 36 37 38 26 25
24 23 43 44 45 46 18 17
49 50 14 13 12 11 55 56
57 58 6 5 4 3 63 64
 
Magic constant: 260</pre>
 
=={{header|C++}}==
<langsyntaxhighlight lang="cpp">#include <iostream>
#include <sstream>
#include <iomanip>
Line 444 ⟶ 943:
s.display();
return 0;
}</langsyntaxhighlight>
{{out}}
<pre>
Line 458 ⟶ 957:
16 50 51 13 12 54 55 9
57 7 6 60 61 3 2 64
</pre>
 
=={{header|D}}==
{{trans|Java}}
<syntaxhighlight lang="d">import std.stdio;
 
void main() {
int n=8;
foreach(row; magicSquareDoublyEven(n)) {
foreach(col; row) {
writef("%2s ", col);
}
writeln;
}
writeln("\nMagic constant: ", (n*n+1)*n/2);
}
 
int[][] magicSquareDoublyEven(int n) {
import std.exception;
enforce(n>=4 && n%4 == 0, "Base must be a positive multiple of 4");
 
int bits = 0b1001_0110_0110_1001;
int size = n * n;
int mult = n / 4; // how many multiples of 4
 
int[][] result;
result.length = n;
foreach(i; 0..n) {
result[i].length = n;
}
 
for (int r=0, i=0; r<n; r++) {
for (int c=0; c<n; c++, i++) {
int bitPos = c / mult + (r / mult) * 4;
result[r][c] = (bits & (1 << bitPos)) != 0 ? i + 1 : size - i;
}
}
 
return result;
}</syntaxhighlight>
 
{{out}}
<pre> 1 2 62 61 60 59 7 8
9 10 54 53 52 51 15 16
48 47 19 20 21 22 42 41
40 39 27 28 29 30 34 33
32 31 35 36 37 38 26 25
24 23 43 44 45 46 18 17
49 50 14 13 12 11 55 56
57 58 6 5 4 3 63 64
 
Magic constant: 260</pre>
 
=={{header|EDSAC order code}}==
<syntaxhighlight lang="edsac">
[Magic squares of doubly even order, for Rosetta Code.
EDSAC program, Initial Orders 2.]
[====================================================================================
Certain cells in the square are marked, such that if a cell is marked then so is
its reflection in the centre point of the square. Cells are numbered 1, 2, 3 ...
from left to right and top to bottom, but if a cell is marked it is swapped with its
reflection. Two marking methods are used, illustrated below for an 8x8 square.
+ o o + + o o + + + o o o o + +
o + + o o + + o + + o o o o + +
o + + o o + + o o o + + + + o o
+ o o + + o o + o o + + + + o o o = unmarked
+ o o + + o o + o o + + + + o o + = marked
o + + o o + + o o o + + + + o o
o + + o o + + o + + o o o o + +
+ o o + + o o + + + o o o o + +
Diagonal method Rectangle method
====================================================================================]
[Arrange the storage]
T45K P56F [H parameter: subroutine to print string]
T46K P100F [N parameter: subroutine to print number]
T47K P204F [M parameter: main routine]
T54K P200F [C parameter: constants read by subroutine R2]
 
[Library subroutine R2: reads integers from tape and can then be overwritten.]
GK T20F VD L8F A40D UD TF I40F A40F S39F G@ S2F G23F A5@ T5@ E4@ E13Z
T#C [tell R2 where to store values]
13743895347F8589934592#TZ
[C parameter: masks read in by subroutine R2, not by the regular loader]
[0] PF PF [diagonal method, binary 01100110011001100110011001100110011]
[2] PF PF [rectangle method, binary 01000000000000000000000000000000000]
 
[M parameter Main routine + high-level subroutine]
E25K TM GK
[35-bit values, must be at even address]
[0] PF PF [initial value of x mask]
[2] PF [x-mask, low 17 bits]
[3] PF [x-mask, high 17 bits]
[4] PF [y-mask, low 17 bits]
[5] PF [y-mask, high 17 bits]
[17-bit values]
[6] PF [sign bit from y mask]
[7] PF [m, input by user]
[8] PF [n = 4*m = order of magic square]
[9] PF [n^2 + 1]
[10] PF [negative counter for x-values (columns)]
[11] PF [negative counter for y-values (rows)]
[12] PF [current entry 1, 2, 3, ...]
[13] PD [constant 1]
[14] K4096F [null]
[15] !F [space]
[16] @F [carriage return]
[17] &F [line feed]
[18] P10F [to check for user dialling '0']
[Strings to be printed]
[19] K2048FMFAFGFIFCF!FSFQFUFAFRFEF!FOFFF!FOFRFDFEFRF!F#FRF*FMF@F&FK4096F
[49] K2048FDFIFAFLF!FMF!F#FKFPF!F*FTFOF!FCFAFNFCFEFLF#FLF!FK4096F
[75] K2048FDFIFAFGFOFNFAFLF!FMFEFTFHFOFDF#FCF@F&FK4096F
[96] K2048FRFEFCFTFAFNFGFLFEF!FMFEFTFHFOFDF#FCF@F&FK4096F
 
[Enter with acc = 0]
[118] A118@ GH A19@ [print 'MAGIC SQUARE OF ORDER 4M']
[121] A121@ GH A49@ [print 'DIAL M (0 TO CANCEL)']
ZF [halt machine; restarts when user dials a number]
[Here acc holds number of pulses in address field]
S18@ E175@ [exit if dialled '0' (10 pulses)]
A18@ [restore acc after test; m is in address field]
L512F [shift 11 left for printing]
UF [temp to 0F]
OF O16@ O17@ [print m followed by CR, LF]
R1024F [shift 12 right, m is now right-justified]
U7@ [store m]
L1F T8@ [shift 2 left and store n = 4*m]
H8@ V8@ [acc := n^2]
L64F L64F [shift 16 left to adjust scaling after mult]
A13@ T9@ [store n^2 + 1 = sum of a cell and its reflection]
[143] A143@ GH A75@ [print 'DIAGONAL METHOD:']
A#C [acc := diagonal mask]
U#@ [store as x-mask at start of each row]
T4#@ [also as initial value of y-mask]
[149] A149@ G177@ [call subroutine to print magic square]
[151] A151@ GH A96@ [print 'RECTANGLE METHOD:']
A2#C U4D T6D [copy rectangke mask to 4D and 6D]
S7@ [initialize negative counter to -m]
[158] TF [loop: update negative counter in 0F]
A4D RD T4D [shift 4D 1 right]
A6D R2F T6D [shift 6D 3 right]
AF A13@ [inc negative counter]
G158@ [loop back till done m times]
A4D S6D L1F [acc := 4D - 6D, then 2 left]
[Mask in binary is now 0 (m times) 1 (2*m times) 0...0]
U#@ [store as x-mask at start of each row]
T4#@ [also as initial value of y-mask]
[173] A173@ G177@ [call subroutine to print magic square]
[175] O14@ [done; print null to flush teleprinter buffer]
ZF [halt machine]
 
[Subroutine to print magic square after x- and y-mask have been initialized.]
[It's assumed that strings printed by caller leave teleprinter in figures mode.]
[177] A3F T220@ [plant return link as usual]
A15@ T1F [space replaces leading 0 when printing]
T12@ [initialize cell entry to 0]
S8@ [initialize negative counter of rows to -n]
[Start of row]
[183] T11@ [update negative counter of rows]
A#@ T2#@ [reset x-mask for start of row]
H14@ C5@ T6@ [isolate sign bit of y-mask]
S8@ [initialize negative counter of columns to -n]
[Next cell in this row.
Cell is considered marked if sign bits in x- and y-masks are equal.
Or could say marked if sign bits are unequal; would also give a magic square.]
[190] T10@ [update negative counter of columns]
A12@ A13@ T12@ [inc cell entry]
A3@ A6@ [compare signs in x- and y-masks]
E200@ [jump if equal (or could replace E by G)]
TF [clear acc]
A12@ [acc := entry]
E203@ [join common code]
[200] TF [clear acc]
A9@ S12@ [acc := complement of entry]
[203] TF [to 0F for printing]
[204] A204@ GN [print number]
A2#@ LD T2#@ [shift x-mask 1 left]
A10@ A13@ [inc negative counter of cells]
G190@ [loop till row is complete]
[End of row]
O16@ O17@ [print CR, LF]
A4#@ LD T4#@ [shift y-mask 1 left]
A11@ A13@ [inc negative counter of rows]
G183@ [loop till magic square is complete]
[220] ZF [(planted) jump back to caller]
 
[H parameter: Subroutine to print a string.]
E25K TH
[Input: A order for first character must follow subroutine call (G order)
String is terminated with EDSAC null, which is sent to the teleprinter.]
GKA18@U17@S19@T4@AFT6@AFUFOFE12@A20@G16@TFA6@A2FG5@TFZFU3FU1FK2048F
 
[N parameter: Subroutine to print non-negative 17-bit integer.]
E25K TN
[Parameters: 0F = integer to be printed (not preserved)
1F = character for leading zero (preserved)
Workspace: 4F..7F, 38 locations]
GKA3FT34@A1FT7FS35@T6FT4#FAFT4FH36@V4FRDA4#FR1024FH37@E23@O7FA2F
T6FT5FV4#FYFL8FT4#FA5FL1024FUFA6FG16@OFTFT7FA6FG17@ZFP4FZ219DTF
 
[M parameter again]
E25K TM GK
E118Z [define entry point]
PF [acc = 0 on entry]
 
</syntaxhighlight>
{{out}}
<pre>
MAGIC SQUARE OF ORDER 4M
DIAL M (0 TO CANCEL) 2
DIAGONAL METHOD:
64 2 3 61 60 6 7 57
9 55 54 12 13 51 50 16
17 47 46 20 21 43 42 24
40 26 27 37 36 30 31 33
32 34 35 29 28 38 39 25
41 23 22 44 45 19 18 48
49 15 14 52 53 11 10 56
8 58 59 5 4 62 63 1
RECTANGLE METHOD:
64 63 3 4 5 6 58 57
56 55 11 12 13 14 50 49
17 18 46 45 44 43 23 24
25 26 38 37 36 35 31 32
33 34 30 29 28 27 39 40
41 42 22 21 20 19 47 48
16 15 51 52 53 54 10 9
8 7 59 60 61 62 2 1
</pre>
 
=={{header|Elena}}==
{{trans|C#}}
ELENA 6.x :
<syntaxhighlight lang="elena">import system'routines;
import extensions;
import extensions'routines;
MagicSquareDoublyEven(int n)
{
if(n < 4 || n.mod(4) != 0)
{ InvalidArgumentException.new("base must be a positive multiple of 4").raise() };
int bits := 09669h;
int size := n * n;
int mult := n / 4;
var result := IntMatrix.allocate(n,n);
int i := 0;
for (int r := 0; r < n; r += 1)
{
for(int c := 0; c < n; c += 1; i += 1)
{
int bitPos := c / mult + (r / mult) * 4;
result[r][c] := ((bits & (1 $shl bitPos)) != 0).iif(i+1,size - i)
}
};
^ result
}
public program()
{
int n := 8;
console.printLine(MagicSquareDoublyEven(n));
console.printLine().printLine("Magic constant: ",(n * n + 1) * n / 2)
}</syntaxhighlight>
{{out}}
<pre>
1,2,62,61,60,59,7,8
9,10,54,53,52,51,15,16
48,47,19,20,21,22,42,41
40,39,27,28,29,30,34,33
32,31,35,36,37,38,26,25
24,23,43,44,45,46,18,17
49,50,14,13,12,11,55,56
57,58,6,5,4,3,63,64
 
Magic constant: 260
</pre>
 
=={{header|Elixir}}==
<langsyntaxhighlight lang="elixir">defmodule Magic_square do
def doubly_even(n) when rem(n,4)!=0, do: raise ArgumentError, "must be even, but not divisible by 4."
def doubly_even(n) do
Line 487 ⟶ 1,267:
end
 
Magic_square.doubly_even(8)</langsyntaxhighlight>
 
{{out}}
Line 499 ⟶ 1,279:
16 50 51 13 12 54 55 9
57 7 6 60 61 3 2 64
</pre>
 
=={{header|Factor}}==
<syntaxhighlight lang="factor">USING: arrays combinators.short-circuit formatting fry
generalizations kernel math math.matrices prettyprint sequences
;
IN: rosetta-code.doubly-even-magic-squares
 
: top? ( loc n -- ? ) [ second ] dip 1/4 * < ;
: bottom? ( loc n -- ? ) [ second ] dip 3/4 * >= ;
: left? ( loc n -- ? ) [ first ] dip 1/4 * < ;
: right? ( loc n -- ? ) [ first ] dip 3/4 * >= ;
: corner? ( loc n -- ? )
{
[ { [ top? ] [ left? ] } ]
[ { [ top? ] [ right? ] } ]
[ { [ bottom? ] [ left? ] } ]
[ { [ bottom? ] [ right? ] } ]
} [ 2&& ] map-compose 2|| ;
 
: center? ( loc n -- ? )
{ [ top? ] [ bottom? ] [ left? ] [ right? ] } [ not ]
map-compose 2&& ;
 
: backward? ( loc n -- ? ) { [ corner? ] [ center? ] } 2|| ;
: forward ( loc n -- m ) [ first2 ] dip * 1 + + ;
: backward ( loc n -- m ) tuck forward [ sq ] dip - 1 + ;
 
: (doubly-even-magic-square) ( n -- matrix )
[ dup 2array matrix-coordinates flip ] [ 3 dupn ] bi
'[ dup _ backward? [ _ backward ] [ _ forward ] if ]
matrix-map ;
 
ERROR: invalid-order order ;
 
: check-order ( n -- )
dup { [ zero? not ] [ 4 mod zero? ] } 1&& [ drop ]
[ invalid-order ] if ;
 
: doubly-even-magic-square ( n -- matrix )
dup check-order (doubly-even-magic-square) ;
 
: main ( -- )
{ 4 8 12 } [
dup doubly-even-magic-square dup
[ "Order: %d\n" printf ]
[ simple-table. ]
[ first sum "Magic constant: %d\n\n" printf ] tri*
] each ;
 
MAIN: main</syntaxhighlight>
{{out}}
<pre>
Order: 4
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
Magic constant: 34
 
Order: 8
64 63 3 4 5 6 58 57
56 55 11 12 13 14 50 49
17 18 46 45 44 43 23 24
25 26 38 37 36 35 31 32
33 34 30 29 28 27 39 40
41 42 22 21 20 19 47 48
16 15 51 52 53 54 10 9
8 7 59 60 61 62 2 1
Magic constant: 260
 
Order: 12
144 143 142 4 5 6 7 8 9 135 134 133
132 131 130 16 17 18 19 20 21 123 122 121
120 119 118 28 29 30 31 32 33 111 110 109
37 38 39 105 104 103 102 101 100 46 47 48
49 50 51 93 92 91 90 89 88 58 59 60
61 62 63 81 80 79 78 77 76 70 71 72
73 74 75 69 68 67 66 65 64 82 83 84
85 86 87 57 56 55 54 53 52 94 95 96
97 98 99 45 44 43 42 41 40 106 107 108
36 35 34 112 113 114 115 116 117 27 26 25
24 23 22 124 125 126 127 128 129 15 14 13
12 11 10 136 137 138 139 140 141 3 2 1
Magic constant: 870
</pre>
 
=={{header|FreeBASIC}}==
<langsyntaxhighlight lang="freebasic">' version 18-03-2016
' compile with: fbc -s console
' doubly even magic square 4, 8, 12, 16...
Line 621 ⟶ 1,486:
Print : Print "hit any key to end program"
Sleep
End</langsyntaxhighlight>
{{out}}
<pre>Single even magic square size: 8*8
Line 634 ⟶ 1,499:
16 15 51 52 53 54 10 9
8 7 59 60 61 62 2 1</pre>
 
=={{header|Go}}==
<syntaxhighlight lang="go">package main
 
import (
"fmt"
"log"
"strings"
)
 
const dimensions int = 8
 
func setupMagicSquareData(d int) ([][]int, error) {
var output [][]int
if d < 4 || d%4 != 0 {
return [][]int{}, fmt.Errorf("Square dimension must be a positive number which is divisible by 4")
}
var bits uint = 0x9669 // 0b1001011001101001
size := d * d
mult := d / 4
for i, r := 0, 0; r < d; r++ {
output = append(output, []int{})
for c := 0; c < d; i, c = i+1, c+1 {
bitPos := c/mult + (r/mult)*4
if (bits & (1 << uint(bitPos))) != 0 {
output[r] = append(output[r], i+1)
} else {
output[r] = append(output[r], size-i)
}
}
}
return output, nil
}
 
func arrayItoa(input []int) []string {
var output []string
for _, i := range input {
output = append(output, fmt.Sprintf("%4d", i))
}
return output
}
 
func main() {
data, err := setupMagicSquareData(dimensions)
if err != nil {
log.Fatal(err)
}
magicConstant := (dimensions * (dimensions*dimensions + 1)) / 2
for _, row := range data {
fmt.Println(strings.Join(arrayItoa(row), " "))
}
fmt.Printf("\nMagic Constant: %d\n", magicConstant)
}
</syntaxhighlight>
{{Out}}
<pre> 1 2 62 61 60 59 7 8
9 10 54 53 52 51 15 16
48 47 19 20 21 22 42 41
40 39 27 28 29 30 34 33
32 31 35 36 37 38 26 25
24 23 43 44 45 46 18 17
49 50 14 13 12 11 55 56
57 58 6 5 4 3 63 64
 
Magic Constant: 260
</pre>
 
=={{header|Haskell}}==
<langsyntaxhighlight Haskelllang="haskell">import Data.List (transpose, unfoldr, intercalate)
import Data.List.Split (chunksOf)
import Data.Bool (bool)
import Control.Monad (forM_)
 
Line 644 ⟶ 1,576:
| rem n 4 > 0 = []
| otherwise =
chunksOf n $ zipWith (flip (bool =<< (-) limit)) series [1 .. sqr]
zipWith
(\x i ->
if x
then i
else limit - i)
series
[1 .. sqr]
where
sqr = n * n
Line 667 ⟶ 1,592:
isPowerOf :: Int -> Int -> Bool
isPowerOf k n = until ((0 /=) . flip rem k) (`quot` k) n == 1
 
 
-- TEST AND DISPLAY FUNCTIONS --------------------------------------------------
 
checked :: [[Int]] -> (Int, Bool)
checked square =
Line 696 ⟶ 1,619:
putStrLn $ unlines (table " " (fmap show <$> test))
print $ checked test
putStrLn ""[]</langsyntaxhighlight>
{{Out}}
<pre>main 1 15 14 4
1 15 14 4
12 6 7 9
8 10 11 5
Line 735 ⟶ 1,657:
 
(2056,True)</pre>
 
=={{header|J}}==
<syntaxhighlight lang="j">
masksq=: >:@#@, | _1&^ * 1 + i.@$
pat4=: ,:(+.|.)=i.4
mask=: ,/@(,./"3@$&pat4)@] ,~ % 4:
demsq=: masksq@mask
</syntaxhighlight>
{{out}}
<pre>
demsq 8
64 2 3 61 60 6 7 57
9 55 54 12 13 51 50 16
17 47 46 20 21 43 42 24
40 26 27 37 36 30 31 33
32 34 35 29 28 38 39 25
41 23 22 44 45 19 18 48
49 15 14 52 53 11 10 56
8 58 59 5 4 62 63 1
~.(+/,&,+/"1)demsq 128
1048640
</pre>
 
=={{header|Java}}==
<langsyntaxhighlight lang="java">public class MagicSquareDoublyEven {
 
public static void main(String[] args) {
Line 769 ⟶ 1,713:
return result;
}
}</langsyntaxhighlight>
 
<pre> 1 2 62 61 60 59 7 8
Line 781 ⟶ 1,725:
 
Magic constant: 260</pre>
 
 
=={{header|JavaScript}}==
Line 787 ⟶ 1,730:
===ES6===
{{Trans|Haskell}}
<langsyntaxhighlight JavaScriptlang="javascript">(() => {
'use strict';
 
// doubleEvenMagicSquaredoublyEvenMagicSquare :: Int -> [[Int]]
const doubleEvenMagicSquaredoublyEvenMagicSquare = n => {
if0 === (n % 4 >? 0(() return=> undefined;{
const
sqr = n * n,
power = Math.log2(sqr),
scale = replicate(n / 4);
return chunksOf(n)(
map((x, i) => x ? 1 + i : sqr - i)(
isInt(power) ? truthSeries(power) : (
compose(
flatten,
scale,
map(scale),
chunksOf(4)
)(truthSeries(4))
)
)
);
})() : undefined;
 
// truthSeries :: Int -> [IntBool]
const truthSeries = n => {
0 >= n if? (n <= 0) return [true];
[true]
) : (() => {
const xs = truthSeries(n - 1);
return xs.concat(xs.map(x => !x));
})();
 
const sqr = n * n,
scale = curry(replicate)(n / 4),
power = Math.log2(sqr),
sequence = isInt(power) ? truthSeries(power) : (
flatten(
scale(
splitEvery(4, truthSeries(4))
.map(scale)
)
)
);
 
return splitEvery(n, sequence
.map((x, i) => x ? i + 1 : sqr - i));
};
 
// TEST -----------------------------------------------
const main = () =>
// Magic squares of orders 4, 8 and 12, with
// checks of row, column and diagonal sums.
intercalate('\n\n')(
map(n => {
const
lines = doublyEvenMagicSquare(n),
sums = map(sum)(
lines.concat(
transpose(lines)
.concat(diagonals(lines))
)
),
total = sums[0];
return unlines([
"Order: " + str(n),
"Summing to: " + str(total),
"Row, column and diagonal sums checked: " +
str(all(eq(total))(sums)) + '\n',
unlines(map(compose(
intercalate(' '),
map(compose(justifyRight(3)(' '), str))
))(lines))
]);
})([4, 8, 12])
);
 
// GENERIC FUNCTIONS ----------------------------------------------------
 
// GENERIC FUNCTIONS ----------------------------------
// flatten :: Tree a -> [a]
const flatten = t => (t instanceof Array ? concatMap(flatten, t) : [t]);
 
// concatMapall :: (a -> [b]Bool) -> [a] -> [b]Bool
const concatMapall = (f, xs)p => [].concat.apply([], xs.map(f));
// True if p(x) holds for every x in xs.
xs => xs.every(p);
 
// splitEverychunksOf :: Int -> [a] -> [][a]]
const splitEverychunksOf = (n, => xs) => {
if enumFromThenTo(0)(xs.length <= n) return [xs];(
const [h, t] = [xs.slice(0,length n),- xs.slice(n)];1
return [h]).concatreduce(splitEvery(n, t));
(a, i) => a.concat([xs.slice(i, (n + i))]),
}
[]
);
 
// currycompose (<<<) :: ((a, b) -> c) -> (a -> b) -> a -> c
const currycompose = f(...fs) => a => b => f(a, b);
x => fs.reduceRight((a, f) => f(a), x);
 
// replicatediagonals :: Int[[a]] -> [[a ->], [a]]
const replicatediagonals = (n, a)rows => {
let// vTwo =diagonal [a]sequences,
// from top left oand =bottom [];left
if// (nrespectively, <of 1)a returngiven o;matrix.
while map(n > 1flip(zipWith(index) {)(
if enumFromTo(n & 10) o = o.concat(v);pred(
n >>= 1; 0 < rows.length ? (
v = v rows[0].concat(v);length
} ) : 0
return o.concat(v ));
))([rows, reverse(rows)]);
 
// enumFromThenTo :: Int -> Int -> Int -> [Int]
const enumFromThenTo = x1 => x2 => y => {
const d = x2 - x1;
return Array.from({
length: Math.floor(y - x2) / d + 2
}, (_, i) => x1 + (d * i));
};
 
// isIntenumFromTo :: Int -> BoolInt -> [Int]
const isIntenumFromTo = xm => xn === Math.floor(x);>
Array.from({
length: 1 + n - m
}, (_, i) => m + i);
 
// eq (==) :: Eq a => a -> a -> Bool
const eq = a => b => a === b;
 
// flatten :: NestedList a -> [a]
// TEST AND DISPLAY FUNCTIONS -------------------------------------------
const flatten = nest => nest.flat(Infinity);
 
// transposeflip :: [[(a]] -> [[b -> c) -> b -> a]] -> c
const transposeflip = xsf =>
xs[0].map((_, iCol)x => xs.map((row)y => row[iCol]f(y)(x);
 
// diagonalsindex (!!) :: [[a]] -> ([a],Int -> [a])
const diagonalsindex = xs => {i => xs[i];
const nRows = xs.length,
nCols = (nRows > 0 ? xs[0].length : 0);
const cell = (x, y) => xs[y][x];
 
// intercalate :: String if-> (nRows[String] ===-> nCols) {String
const nsintercalate = range(0,s nCols - 1);=>
xs => xs.join(s);
return [zipWith(cell, ns, ns), zipWith(cell, ns, reverse(ns))];
} else return [
[],
[]
];
};
 
// zipWithisInt :: (aInt -> b -> c) -> [a] -> [b] -> [c]Bool
const zipWithisInt = (f,x xs,=> ys)x =>== {Math.floor(x);
const ny = ys.length;
return (xs.length <= ny ? xs : xs.slice(0, ny))
.map((x, i) => f(x, ys[i]));
}
 
// reversejustifyRight :: [a]Int -> [a]Char -> String -> String
const reversejustifyRight = (xs)n => xs.slice(0)cFiller => s =>
n > s.reverselength ? ()
s.padStart(n, cFiller)
) : s;
 
// rangemap :: Int(a -> Intb) -> [Inta] -> [b]
const rangemap = (m,f n)=> xs =>
(Array.isArray(xs) ? (
xs
) : xs.split('')).map(f);
 
// pred :: Enum a => a -> a
const pred = x => x - 1;
 
// replicate :: Int -> a -> [a]
const replicate = n => x =>
Array.from({
length: Math.floor(n - m) + 1
}, (_, i) => m + ix);
 
// allreverse :: ([a -> Bool)] -> [a] -> Bool
const allreverse = (f, xs) => xs.every(f);
'string' !== typeof xs ? (
xs.slice(0).reverse()
) : xs.split('').reverse().join('');
 
// show :: a -> String
const show = x => JSON.stringify(x);
 
// justifyRightstr :: Inta -> Char -> Text -> TextString
const justifyRightstr = (n,x cFiller,=> strTextx.toString() =>;
n > strText.length ? (
(cFiller.repeat(n) + strText)
.slice(-n)
) : strText;
 
// sum :: [Num] -> Num
// TEST -----------------------------------------------------------------
const sum = xs => xs.reduce((a, x) => a + x, 0);
 
// transpose :: [[a]] -> [[a]]
//return doubleEvenMagicSquare(8)
const transpose = xs =>
xs[0].map((_, iCol) => xs.map((row) => row[iCol]));
 
// unlines :: [String] -> String
return [4, 8, 12]
const unlines = .map(nxs => {xs.join('\n');
 
const lines = doubleEvenMagicSquare(n);
// zipWith :: (a -> b -> c) const-> sums[a] =-> lines.concat([b] -> [c]
const zipWith = f => xs => ys transpose(lines)=>
xs.concatslice(diagonals(lines))
0, Math.min(xs.length, ys.length)
).map(xs => xs.reduce((ax, bi) => a + b, 0f(x)(ys[i]));
const sum = sums[0];
return [
"Order: " + n.toString(),
"Summing to: " + sum.toString(),
"Row, column and diagonal sums checked: " +
all(x => x === sum, sums)
.toString() + '\n',
lines.map(
xs => xs.map(
x => justifyRight(3, ' ', x.toString())
)
.join(' '))
.join('\n')
].join('\n')
})
.join('\n\n');
})();</lang>
 
// MAIN ------------------------------------------------
return main();
})();</syntaxhighlight>
{{Out}}
<pre>Order: 4
Line 973 ⟶ 1,952:
24 122 123 21 20 126 127 17 16 130 131 13
133 11 10 136 137 7 6 140 141 3 2 144</pre>
 
=={{header|jq}}==
{{trans|Wren}}
{{works with|jq}}
'''Works with gojq, the Go implementation of jq'''
 
<syntaxhighlight lang="jq">def lpad($len):
def l: tostring | ($len - length) as $l | (" " * $l)[:$l] + .;
if type == "array" then map(l) else l end;
 
def magicSquareDoublyEven:
if . < 4 or .%4 != 0 then "Base must be a positive multiple of 4" | error else . end
| . as $n
# pattern of count-up vs count-down zones
| [1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1] as $bits
| ($n * $n) as $size
| ($n / 4 | floor) as $mult # how many multiples of 4
| { i:0, result: null }
| reduce range(0; $n) as $r (.;
reduce range(0; $n) as $c (.;
( (($c/$mult)|floor) + (($r/$mult)|floor) * 4) as $bitPos
| .result[$r][$c] =
(if ($bits[$bitPos] != 0) then .i + 1 else $size - .i end)
| .i += 1 ) )
| .result ;
 
# Input: the order
def task:
. as $n
| (.*.|tostring|length+1) as $width
| (magicSquareDoublyEven[] | lpad($width) | join(" ")),
"\nMagic constant for order \($n): \(($n*$n + 1) * $n / 2)\n\n" ;
 
8, 12 | task</syntaxhighlight>
{{out}}
<pre>
1 2 62 61 60 59 7 8
9 10 54 53 52 51 15 16
48 47 19 20 21 22 42 41
40 39 27 28 29 30 34 33
32 31 35 36 37 38 26 25
24 23 43 44 45 46 18 17
49 50 14 13 12 11 55 56
57 58 6 5 4 3 63 64
 
Magic constant for order 8: 260
 
 
1 2 3 141 140 139 138 137 136 10 11 12
13 14 15 129 128 127 126 125 124 22 23 24
25 26 27 117 116 115 114 113 112 34 35 36
108 107 106 40 41 42 43 44 45 99 98 97
96 95 94 52 53 54 55 56 57 87 86 85
84 83 82 64 65 66 67 68 69 75 74 73
72 71 70 76 77 78 79 80 81 63 62 61
60 59 58 88 89 90 91 92 93 51 50 49
48 47 46 100 101 102 103 104 105 39 38 37
109 110 111 33 32 31 30 29 28 118 119 120
121 122 123 21 20 19 18 17 16 130 131 132
133 134 135 9 8 7 6 5 4 142 143 144
 
Magic constant for order 12: 870
 
</pre>
 
=={{header|Julia}}==
<langsyntaxhighlight lang="julia">#using v0.6Printf
 
function magicsquaredoubleeven(order::Int)
Line 1,002 ⟶ 2,045:
end
println()
end</langsyntaxhighlight>
 
{{out}}
Line 1,040 ⟶ 2,083:
=={{header|Kotlin}}==
{{trans|Java}}
<langsyntaxhighlight lang="scala">// version 1.1.0
 
fun magicSquareDoublyEven(n: Int): Array<IntArray> {
Line 1,068 ⟶ 2,111:
}
println("\nMagic constant ${(n * n + 1) * n / 2}")
}</langsyntaxhighlight>
 
{{out}}
Line 1,087 ⟶ 2,130:
For all three kinds of Magic Squares(Odd, singly and doubly even)<br />
See [[Magic_squares/Lua]].
 
=={{header|Nim}}==
{{trans|Kotlin}}
<syntaxhighlight lang="nim">import bitops, sequtils, strutils
 
type Square = seq[seq[int]]
 
func magicSquareDoublyEven(n: int): Square =
## Build a magic square of doubly even order.
 
assert n >= 4 and (n and 3) == 0, "base must be a positive multiple of 4."
result = newSeqWith(n, newSeq[int](n))
 
const bits = 0b1001_0110_0110_1001 # Pattern of count-up vs count-down zones.
let size = n * n
let mult = n div 4 # How many multiples of 4.
 
var i = 0
for r in 0..<n:
for c in 0..<n:
let bitPos = c div mult + r div mult * 4
result[r][c] = if bits.testBit(bitPos): i + 1 else: size - i
inc i
 
 
func `$`(square: Square): string =
## Return the string representation of a magic square.
let length = len($(square.len * square.len))
for row in square:
result.add row.mapIt(($it).align(length)).join(" ") & '\n'
 
 
when isMainModule:
let n = 8
echo magicSquareDoublyEven(n)
echo "Magic constant = ", n * (n * n + 1) div 2</syntaxhighlight>
 
{{out}}
<pre> 1 2 62 61 60 59 7 8
9 10 54 53 52 51 15 16
48 47 19 20 21 22 42 41
40 39 27 28 29 30 34 33
32 31 35 36 37 38 26 25
24 23 43 44 45 46 18 17
49 50 14 13 12 11 55 56
57 58 6 5 4 3 63 64
 
Magic constant = 260</pre>
 
=={{header|PARI/GP}}==
 
A magic one-liner:
<langsyntaxhighlight lang="parigp">magicsquare(n)=matrix(n,n,i,j,k=i+j*n-n;if(bitand(38505,2^((j-1)%4*4+(i-1)%4)),k,n*n+1-k))</langsyntaxhighlight>
 
Output:<pre>magicsquare(8)
Line 1,113 ⟶ 2,204:
BTW: The bit field number 38505 = 9669h seems to come from hell to do the magic...
 
=={{header|Perl 6}}==
See [[Magic_squares/Perl_6|Magic squares/Perl 6]] for a general magic square generator.
{{out}}
With a parameter of 8:
<pre> 1 2 62 61 60 59 7 8
9 10 54 53 52 51 15 16
48 47 19 20 21 22 42 41
40 39 27 28 29 30 34 33
32 31 35 36 37 38 26 25
24 23 43 44 45 46 18 17
49 50 14 13 12 11 55 56
57 58 6 5 4 3 63 64
 
See [[Magic_squares/Perl|Magic squares/Perl]] for a general magic square generator.
The magic number is 260</pre>
With a parameter of 12:
<pre> 1 2 3 141 140 139 138 137 136 10 11 12
13 14 15 129 128 127 126 125 124 22 23 24
25 26 27 117 116 115 114 113 112 34 35 36
108 107 106 40 41 42 43 44 45 99 98 97
96 95 94 52 53 54 55 56 57 87 86 85
84 83 82 64 65 66 67 68 69 75 74 73
72 71 70 76 77 78 79 80 81 63 62 61
60 59 58 88 89 90 91 92 93 51 50 49
48 47 46 100 101 102 103 104 105 39 38 37
109 110 111 33 32 31 30 29 28 118 119 120
121 122 123 21 20 19 18 17 16 130 131 132
133 134 135 9 8 7 6 5 4 142 143 144
 
=={{header|Phix}}==
The magic number is 870</pre>
{{trans|C++}}
<!--<syntaxhighlight lang="phix">(phixonline)-->
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #008080;">constant</span> <span style="color: #000000;">t</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{{</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">0</span><span style="color: #0000FF;">,</span><span style="color: #000000;">0</span><span style="color: #0000FF;">},</span>
<span style="color: #0000FF;">{</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">0</span><span style="color: #0000FF;">,</span><span style="color: #000000;">0</span><span style="color: #0000FF;">},</span>
<span style="color: #0000FF;">{</span><span style="color: #000000;">0</span><span style="color: #0000FF;">,</span><span style="color: #000000;">0</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1</span><span style="color: #0000FF;">},</span>
<span style="color: #0000FF;">{</span><span style="color: #000000;">0</span><span style="color: #0000FF;">,</span><span style="color: #000000;">0</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1</span><span style="color: #0000FF;">}}</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">magic_square</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">n</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">n</span><span style="color: #0000FF;"><</span><span style="color: #000000;">4</span> <span style="color: #008080;">or</span> <span style="color: #7060A8;">mod</span><span style="color: #0000FF;">(</span><span style="color: #000000;">n</span><span style="color: #0000FF;">,</span><span style="color: #000000;">4</span><span style="color: #0000FF;">)!=</span><span style="color: #000000;">0</span> <span style="color: #008080;">then</span> <span style="color: #008080;">return</span> <span style="color: #004600;">false</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #004080;">sequence</span> <span style="color: #000000;">square</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">repeat</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">repeat</span><span style="color: #0000FF;">(</span><span style="color: #000000;">0</span><span style="color: #0000FF;">,</span><span style="color: #000000;">n</span><span style="color: #0000FF;">),</span><span style="color: #000000;">n</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">i</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">r</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #000000;">n</span> <span style="color: #008080;">do</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">c</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #000000;">n</span> <span style="color: #008080;">do</span>
<span style="color: #000000;">square</span><span style="color: #0000FF;">[</span><span style="color: #000000;">r</span><span style="color: #0000FF;">,</span><span style="color: #000000;">c</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #008080;">iff</span><span style="color: #0000FF;">(</span><span style="color: #000000;">t</span><span style="color: #0000FF;">[</span><span style="color: #7060A8;">mod</span><span style="color: #0000FF;">(</span><span style="color: #000000;">r</span><span style="color: #0000FF;">,</span><span style="color: #000000;">4</span><span style="color: #0000FF;">)+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">mod</span><span style="color: #0000FF;">(</span><span style="color: #000000;">c</span><span style="color: #0000FF;">,</span><span style="color: #000000;">4</span><span style="color: #0000FF;">)+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">]?</span><span style="color: #000000;">i</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">:</span><span style="color: #000000;">n</span><span style="color: #0000FF;">*</span><span style="color: #000000;">n</span><span style="color: #0000FF;">-</span><span style="color: #000000;">i</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">i</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">1</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #008080;">return</span> <span style="color: #000000;">square</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #008080;">procedure</span> <span style="color: #000000;">check</span><span style="color: #0000FF;">(</span><span style="color: #004080;">sequence</span> <span style="color: #000000;">sq</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">n</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">sq</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">magic</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">n</span><span style="color: #0000FF;">*(</span><span style="color: #000000;">n</span><span style="color: #0000FF;">*</span><span style="color: #000000;">n</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)/</span><span style="color: #000000;">2</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">bd</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">fd</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">sq</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span>
<span style="color: #008080;">if</span> <span style="color: #7060A8;">sum</span><span style="color: #0000FF;">(</span><span style="color: #000000;">sq</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">])!=</span><span style="color: #000000;">magic</span> <span style="color: #008080;">then</span> <span style="color: #0000FF;">?</span><span style="color: #000000;">9</span><span style="color: #0000FF;">/</span><span style="color: #000000;">0</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">if</span> <span style="color: #7060A8;">sum</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">columnize</span><span style="color: #0000FF;">(</span><span style="color: #000000;">sq</span><span style="color: #0000FF;">,</span><span style="color: #000000;">i</span><span style="color: #0000FF;">))!=</span><span style="color: #000000;">magic</span> <span style="color: #008080;">then</span> <span style="color: #0000FF;">?</span><span style="color: #000000;">9</span><span style="color: #0000FF;">/</span><span style="color: #000000;">0</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #000000;">bd</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">sq</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">,</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]</span>
<span style="color: #000000;">fd</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">sq</span><span style="color: #0000FF;">[</span><span style="color: #000000;">n</span><span style="color: #0000FF;">-</span><span style="color: #000000;">i</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">n</span><span style="color: #0000FF;">-</span><span style="color: #000000;">i</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">]</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">bd</span><span style="color: #0000FF;">!=</span><span style="color: #000000;">magic</span> <span style="color: #008080;">or</span> <span style="color: #000000;">fd</span><span style="color: #0000FF;">!=</span><span style="color: #000000;">magic</span> <span style="color: #008080;">then</span> <span style="color: #0000FF;">?</span><span style="color: #000000;">9</span><span style="color: #0000FF;">/</span><span style="color: #000000;">0</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">procedure</span>
<span style="color: #000080;font-style:italic;">--for i=4 to 16 by 4 do</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">8</span> <span style="color: #008080;">to</span> <span style="color: #000000;">8</span> <span style="color: #008080;">by</span> <span style="color: #000000;">4</span> <span style="color: #008080;">do</span>
<span style="color: #004080;">sequence</span> <span style="color: #000000;">square</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">magic_square</span><span style="color: #0000FF;">(</span><span style="color: #000000;">i</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"maqic square of order %d, sum: %d\n"</span><span style="color: #0000FF;">,</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">i</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">sum</span><span style="color: #0000FF;">(</span><span style="color: #000000;">square</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">])})</span>
<span style="color: #004080;">string</span> <span style="color: #000000;">fmt</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">sprintf</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"%%%dd"</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">sprintf</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"%d"</span><span style="color: #0000FF;">,</span><span style="color: #000000;">i</span><span style="color: #0000FF;">*</span><span style="color: #000000;">i</span><span style="color: #0000FF;">)))</span>
<span style="color: #7060A8;">pp</span><span style="color: #0000FF;">(</span><span style="color: #000000;">square</span><span style="color: #0000FF;">,{</span><span style="color: #004600;">pp_Nest</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #004600;">pp_IntFmt</span><span style="color: #0000FF;">,</span><span style="color: #000000;">fmt</span><span style="color: #0000FF;">,</span><span style="color: #004600;">pp_StrFmt</span><span style="color: #0000FF;">,</span><span style="color: #000000;">3</span><span style="color: #0000FF;">,</span><span style="color: #004600;">pp_IntCh</span><span style="color: #0000FF;">,</span><span style="color: #004600;">false</span><span style="color: #0000FF;">,</span><span style="color: #004600;">pp_Pause</span><span style="color: #0000FF;">,</span><span style="color: #000000;">0</span><span style="color: #0000FF;">})</span>
<span style="color: #000000;">check</span><span style="color: #0000FF;">(</span><span style="color: #000000;">square</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<!--</syntaxhighlight>-->
{{out}}
<pre>
maqic square of order 8, sum: 260
{{ 1,63,62, 4, 5,59,58, 8},
{56,10,11,53,52,14,15,49},
{48,18,19,45,44,22,23,41},
{25,39,38,28,29,35,34,32},
{33,31,30,36,37,27,26,40},
{24,42,43,21,20,46,47,17},
{16,50,51,13,12,54,55, 9},
{57, 7, 6,60,61, 3, 2,64}}
</pre>
 
=={{header|PureBasic}}==
{{trans|FreeBasic}}
<langsyntaxhighlight PureBasiclang="purebasic">Procedure.i MagicN(n.i)
ProcedureReturn n*(n*n+1)/2
EndProcedure
Line 1,212 ⟶ 2,334:
DblEvenMagicSquare(n)
n=0
ForEver</langsyntaxhighlight>
{{out}}<pre>Input [4,8,12..n] (0=Exit)
>8
Line 1,228 ⟶ 2,350:
 
=={{header|Python}}==
===Procedural===
<lang python>
<syntaxhighlight lang="python">
def MagicSquareDoublyEven(order):
sq = [range(1+n*order,order + (n*order)+1) for n in range(order) ]
Line 1,256 ⟶ 2,379:
 
printsq(MagicSquareDoublyEven(8))
</syntaxhighlight>
</lang>
{{out}}<pre>
1 2 62 61 60 59 7 8
Line 1,268 ⟶ 2,391:
 
Magic constant = 260
>>> </pre>
 
 
</pre>
===Composition of pure functions===
 
Generating test results and a magic square in the form of a wiki table:
{{Works with|Python|3.7}}
<syntaxhighlight lang="python">'''Magic squares of doubly even order'''
 
from itertools import chain, repeat
from functools import reduce
from math import log
 
 
# doublyEvenMagicSquare :: Int -> [[Int]]
def doublyEvenMagicSquare(n):
'''Magic square of order n'''
 
# magic :: Int -> [Bool]
def magic(n):
'''Truth-table series'''
if 0 < n:
xs = magic(n - 1)
return xs + [not x for x in xs]
else:
return [True]
 
sqr = n * n
power = log(sqr, 2)
scale = replicate(n / 4)
return chunksOf(n)([
succ(i) if bln else sqr - i for i, bln in
enumerate(magic(power) if isInteger(power) else (
flatten(scale(
map(scale, chunksOf(4)(magic(4)))
))
))
])
 
 
# TEST ----------------------------------------------------
# main :: IO()
def main():
'''Tests'''
 
order = 8
magicSquare = doublyEvenMagicSquare(order)
 
print(
'Row sums: ',
[sum(xs) for xs in magicSquare],
'\nCol sums:',
[sum(xs) for xs in transpose(magicSquare)],
'\n1st diagonal sum:',
sum(magicSquare[i][i] for i in range(0, order)),
'\n2nd diagonal sum:',
sum(magicSquare[i][(order - 1) - i] for i in range(0, order)),
'\n'
)
print(wikiTable({
'class': 'wikitable',
'style': cssFromDict({
'text-align': 'center',
'color': '#605B4B',
'border': '2px solid silver'
}),
'colwidth': '3em'
})(magicSquare))
 
 
# GENERIC -------------------------------------------------
 
 
# chunksOf :: Int -> [a] -> [[a]]
def chunksOf(n):
'''A series of lists of length n,
subdividing the contents of xs.
Where the length of xs is not evenly divible
the final list will be shorter than n.'''
return lambda xs: reduce(
lambda a, i: a + [xs[i:n + i]],
range(0, len(xs), n), []
) if 0 < n else []
 
 
# concatMap :: (a -> [b]) -> [a] -> [b]
def concatMap(f):
'''Concatenated list over which a function has been mapped.
The list monad can be derived by using a function f which
wraps its output a in list
(using an empty list to represent computational failure).'''
return lambda xs: list(
chain.from_iterable(
map(f, xs)
)
)
 
 
# cssFromDict :: Dict -> String
def cssFromDict(dct):
'''CSS string serialized from key values in a Dictionary.'''
return reduce(
lambda a, k: a + k + ':' + dct[k] + '; ', dct.keys(), ''
)
 
 
# flatten :: NestedList a -> [a]
def flatten(x):
'''A list of atoms resulting from fully flattening
an arbitrarily nested list.'''
return concatMap(flatten)(x) if isinstance(x, list) else [x]
 
 
# isInteger :: Num -> Bool
def isInteger(n):
'''Divisible by one without remainder ?'''
return 0 == (n - int(n))
 
 
# replicate :: Int -> a -> [a]
def replicate(n):
'''A list of length n in which every element
has the value x.'''
return lambda x: list(repeat(x, n))
 
 
# succ :: Enum a => a -> a
def succ(x):
'''The successor of a value. For numeric types, (1 +).'''
return 1 + x if isinstance(x, int) else (
chr(1 + ord(x))
)
 
 
# transpose :: Matrix a -> Matrix a
def transpose(m):
'''The rows and columns of the argument transposed.
(The matrix containers and rows can be lists or tuples).'''
if m:
inner = type(m[0])
z = zip(*m)
return (type(m))(
map(inner, z) if tuple != inner else z
)
else:
return m
 
 
# wikiTable :: Dict -> [[a]] -> String
def wikiTable(opts):
'''List of lists rendered as a wiki table string.'''
def colWidth():
return 'width:' + opts['colwidth'] + '; ' if (
'colwidth' in opts
) else ''
 
def cellStyle():
return opts['cell'] if 'cell' in opts else ''
 
return lambda rows: '{| ' + reduce(
lambda a, k: (
a + k + '="' + opts[k] + '" ' if k in opts else a
),
['class', 'style'],
''
) + '\n' + '\n|-\n'.join(
'\n'.join(
('|' if (0 != i and ('cell' not in opts)) else (
'|style="' + colWidth() + cellStyle() + '"|'
)) + (
str(x) or ' '
) for x in row
) for i, row in enumerate(rows)
) + '\n|}\n\n'
 
 
if __name__ == '__main__':
main()</syntaxhighlight>
{{Out}}
<pre>Row sums: [260, 260, 260, 260, 260, 260, 260, 260]
Col sums: [260, 260, 260, 260, 260, 260, 260, 260]
1st diagonal sum: 260
2nd diagonal sum: 260 </pre>
{| class="wikitable" style="text-align:center; color:#605B4B; border:2px solid silver; "
|style="width:3em; "|1
|style="width:3em; "|63
|style="width:3em; "|62
|style="width:3em; "|4
|style="width:3em; "|60
|style="width:3em; "|6
|style="width:3em; "|7
|style="width:3em; "|57
|-
|56
|10
|11
|53
|13
|51
|50
|16
|-
|48
|18
|19
|45
|21
|43
|42
|24
|-
|25
|39
|38
|28
|36
|30
|31
|33
|-
|32
|34
|35
|29
|37
|27
|26
|40
|-
|41
|23
|22
|44
|20
|46
|47
|17
|-
|49
|15
|14
|52
|12
|54
|55
|9
|-
|8
|58
|59
|5
|61
|3
|2
|64
|}
 
=={{header|R}}==
 
Translation of the magic square code example from [https://math.nist.gov/javanumerics/jama/ Jama], which is released to the public domain. This includes all three cases.
 
<syntaxhighlight lang="r">magic <- function(n) {
if (n %% 2 == 1) {
p <- (n + 1) %/% 2 - 2
ii <- seq(n)
outer(ii, ii, function(i, j) n * ((i + j + p) %% n) + (i + 2 * (j - 1)) %% n + 1)
} else if (n %% 4 == 0) {
p <- n * (n + 1) + 1
ii <- seq(n)
outer(ii, ii, function(i, j) ifelse((i %/% 2 - j %/% 2) %% 2 == 0, p - n * i - j, n * (i - 1) + j))
} else {
p <- n %/% 2
q <- p * p
k <- (n - 2) %/% 4 + 1
a <- Recall(p)
a <- rbind(cbind(a, a + 2 * q), cbind(a + 3 * q, a + q))
ii <- seq(p)
jj <- c(seq(k - 1), seq(length.out=k - 2, to=n))
m <- a[ii, jj]; a[ii, jj] <- a[ii + p, jj]; a[ii + p, jj] <- m
jj <- c(1, k)
m <- a[k, jj]; a[k, jj] <- a[k + p, jj]; a[k + p, jj] <- m
a
}
}</syntaxhighlight>
 
'''Example'''
 
<pre>> magic(8)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 64 2 3 61 60 6 7 57
[2,] 9 55 54 12 13 51 50 16
[3,] 17 47 46 20 21 43 42 24
[4,] 40 26 27 37 36 30 31 33
[5,] 32 34 35 29 28 38 39 25
[6,] 41 23 22 44 45 19 18 48
[7,] 49 15 14 52 53 11 10 56
[8,] 8 58 59 5 4 62 63 1</pre>
 
=={{header|Raku}}==
(formerly Perl 6)
 
See [[Magic_squares/Raku|Magic squares/Raku]] for a general magic square generator.
{{out}}
With a parameter of 8:
<pre> 1 2 62 61 60 59 7 8
9 10 54 53 52 51 15 16
48 47 19 20 21 22 42 41
40 39 27 28 29 30 34 33
32 31 35 36 37 38 26 25
24 23 43 44 45 46 18 17
49 50 14 13 12 11 55 56
57 58 6 5 4 3 63 64
 
The magic number is 260</pre>
With a parameter of 12:
<pre> 1 2 3 141 140 139 138 137 136 10 11 12
13 14 15 129 128 127 126 125 124 22 23 24
25 26 27 117 116 115 114 113 112 34 35 36
108 107 106 40 41 42 43 44 45 99 98 97
96 95 94 52 53 54 55 56 57 87 86 85
84 83 82 64 65 66 67 68 69 75 74 73
72 71 70 76 77 78 79 80 81 63 62 61
60 59 58 88 89 90 91 92 93 51 50 49
48 47 46 100 101 102 103 104 105 39 38 37
109 110 111 33 32 31 30 29 28 118 119 120
121 122 123 21 20 19 18 17 16 130 131 132
133 134 135 9 8 7 6 5 4 142 143 144
 
The magic number is 870</pre>
 
=={{header|REXX}}==
Line 1,278 ⟶ 2,727:
"Marked" numbers &nbsp; (via the &nbsp; '''diag''' &nbsp; subroutine) &nbsp; indicate that those (sequentially generated) numbers don't get
<br>swapped &nbsp; (and thusly, stay in place in the magic square).
<langsyntaxhighlight lang="rexx">/*REXX program constructs a magic square of doubly even sides (a size divisible by 4).*/
n= 8; s= n%4; L= n%2-s+1; w= length(n**2) /*size; small sq; low middle; # width*/
@.= 0; H= n%2+s /*array default; high middle. */
call gen /*generate a grid in numerical order. */
call diag /*mark numbers on both diagonals. */
Line 1,302 ⟶ 2,751:
do c=1 for n; if @.r.c<0 then iterate; call max# /*find max number.*/
parse value -@.a.b (-@.r.c) with @.r.c @.a.b /*swap two values.*/
end /*c*/
end /*r*/; return
return
/*──────────────────────────────────────────────────────────────────────────────────────*/
corn: do r=1 for n; if r>s & r<=n-s then iterate /*"corner boxen", size≡S*/
do c=1 for n; if c>s & c<=n-s then iterate; @.r.c= -@(r,c); end /*cnegate*/
end /*rc*/
end /*r*/; return</syntaxhighlight>
return</lang>
'''{{out|output''' |text=&nbsp; when using the default input:}}
<pre>
1 2 62 61 60 59 7 8
Line 1,326 ⟶ 2,774:
=={{header|Ruby}}==
 
<langsyntaxhighlight lang="ruby">def double_even_magic_square(n)
raise ArgumentError, "Need multiple of four" if n%4 > 0
block_size, max = n/4, n*n
Line 1,343 ⟶ 2,791:
end
 
puts to_string(double_even_magic_square(8))</langsyntaxhighlight>
{{out}}
<pre>
Line 1,355 ⟶ 2,803:
57 58 6 5 4 3 63 64
</pre>
 
=={{header|Rust}}==
<syntaxhighlight lang="rust">use std::env;
 
fn main() {
let n: usize = match env::args()
.nth(1)
.and_then(|arg| arg.parse().ok())
.ok_or("Please specify the size of the magic square, as a positive multiple of 4.")
{
Ok(arg) if arg >= 4 && arg % 4 == 0 => arg,
Err(e) => panic!(e),
_ => panic!("Argument must be a positive multiple of 4."),
};
 
let mc = (n * n + 1) * n / 2;
println!("Magic constant: {}\n", mc);
let bits = 0b1001_0110_0110_1001u32;
let size = n * n;
let width = size.to_string().len() + 1;
let mult = n / 4;
let mut i = 0;
for r in 0..n {
for c in 0..n {
let bit_pos = c / mult + (r / mult) * 4;
print!(
"{e:>w$}",
e = if bits & (1 << bit_pos) != 0 {
i + 1
} else {
size - i
},
w = width
);
i += 1;
}
println!();
}
}</syntaxhighlight>
{{out}}
<pre>
Magic constant: 260
 
1 2 62 61 60 59 7 8
9 10 54 53 52 51 15 16
48 47 19 20 21 22 42 41
40 39 27 28 29 30 34 33
32 31 35 36 37 38 26 25
24 23 43 44 45 46 18 17
49 50 14 13 12 11 55 56
57 58 6 5 4 3 63 64
</pre>
 
=={{header|Scala}}==
{{Out}}Best seen running in your browser either by [https://scalafiddle.io/sf/bdTcGF3/0 ScalaFiddle (ES aka JavaScript, non JVM)] or [https://scastie.scala-lang.org/gLhkwHHlRO6rPXg9U7MDzg Scastie (remote JVM)].
<syntaxhighlight lang="scala">object MagicSquareDoublyEven extends App {
private val n = 8
 
private def magicSquareDoublyEven(n: Int): Array[Array[Int]] = {
require(n >= 4 || n % 4 == 0, "Base must be a positive multiple of 4.")
 
// pattern of count-up vs count-down zones
val (bits, mult, result, size) = (38505, n / 4, Array.ofDim[Int](n, n), n * n)
var i = 0
 
for (r <- result.indices; c <- result(0).indices) {
def bitPos = c / mult + (r / mult) * 4
 
result(r)(c) = if ((bits & (1 << bitPos)) != 0) i + 1 else size - i
i += 1
}
result
}
 
magicSquareDoublyEven(n).foreach(row => println(row.map(x => f"$x%2s ").mkString))
println(f"---%nMagic constant: ${(n * n + 1) * n / 2}%d")
 
}</syntaxhighlight>
 
=={{header|Sidef}}==
{{trans|Ruby}}
<syntaxhighlight lang="ruby">func double_even_magic_square(n) {
assert(n%4 == 0, "Need multiple of four")
var (bsize, max) = (n/4, n*n)
var pre_pat = [true, false, false, true,
false, true, true, false]
pre_pat += pre_pat.flip
var pattern = (pre_pat.map{|b| bsize.of(b)... } * bsize)
pattern.map_kv{|k,v| v ? k+1 : max-k }.slices(n)
}
 
func format_matrix(a) {
var fmt = "%#{a.len**2 -> len}s"
a.map { .map { fmt % _ }.join(' ') }.join("\n")
}
 
say format_matrix(double_even_magic_square(8))</syntaxhighlight>
{{out}}
<pre>
1 2 62 61 60 59 7 8
56 55 11 12 13 14 50 49
48 47 19 20 21 22 42 41
25 26 38 37 36 35 31 32
33 34 30 29 28 27 39 40
24 23 43 44 45 46 18 17
16 15 51 52 53 54 10 9
57 58 6 5 4 3 63 64
</pre>
 
=={{header|Stata}}==
 
{{trans|R}}
 
<syntaxhighlight lang="stata">mata
function magic(n) {
if (mod(n,2)==1) {
p = (n+1)/2-2
a = J(n,n,.)
for (i=1; i<=n; i++) {
for (j=1; j<=n; j++) {
a[i,j] = n*mod(i+j+p,n)+mod(i+2*j-2,n)+1
}
}
} else if (mod(n,4)==0) {
p = n^2+n+1
a = J(n,n,.)
for (i=1; i<=n; i++) {
for (j=1; j<=n; j++) {
a[i,j] = mod(floor(i/2)-floor(j/2),2)==0 ? p-n*i-j : n*(i-1)+j
}
}
} else {
p = n/2
q = p*p
k = (n-2)/4+1
a = magic(p)
a = a,a:+2*q\a:+3*q,a:+q
i = 1..p
j = 1..k-1
if (k>2) j = j,n-k+3..n
m = a[i,j]; a[i,j] = a[i:+p,j]; a[i:+p,j] = m
j = 1,k
m = a[k,j]; a[k,j] = a[k:+p,j]; a[k:+p,j] = m
}
return(a)
}
end</syntaxhighlight>
 
<pre>. mata magic(8)
1 2 3 4 5 6 7 8
+-----------------------------------------+
1 | 64 2 3 61 60 6 7 57 |
2 | 9 55 54 12 13 51 50 16 |
3 | 17 47 46 20 21 43 42 24 |
4 | 40 26 27 37 36 30 31 33 |
5 | 32 34 35 29 28 38 39 25 |
6 | 41 23 22 44 45 19 18 48 |
7 | 49 15 14 52 53 11 10 56 |
8 | 8 58 59 5 4 62 63 1 |
+-----------------------------------------+</pre>
 
=={{header|VBScript}}==
{{trans|Java}}
<langsyntaxhighlight lang="vb">' Magic squares of doubly even order
n=8 'multiple of 4
pattern="1001011001101001"
Line 1,375 ⟶ 2,983:
wscript.echo l
Next 'r
wscript.echo "Magic constant=" & (n*n+1)*n/2</langsyntaxhighlight>
{{out}}
<pre>Magic square : 8 x 8
<pre>
Magic square : 8 x 8
1 2 62 61 60 59 7 8
9 10 54 53 52 51 15 16
Line 1,387 ⟶ 2,994:
49 50 14 13 12 11 55 56
57 58 6 5 4 3 63 64
Magic constant=260</pre>
 
=={{header|Visual Basic .NET}}==
{{trans|C#}}
<syntaxhighlight lang="vbnet">Module MagicSquares
 
Function MagicSquareDoublyEven(n As Integer) As Integer(,)
If n < 4 OrElse n Mod 4 <> 0 Then
Throw New ArgumentException("base must be a positive multiple of 4")
End If
 
'pattern of count-up vs count-down zones
Dim bits = Convert.ToInt32("1001011001101001", 2)
Dim size = n * n
Dim mult As Integer = n / 4 ' how many multiples of 4
 
Dim result(n - 1, n - 1) As Integer
 
Dim i = 0
For r = 0 To n - 1
For c = 0 To n - 1
Dim bitPos As Integer = Math.Floor(c / mult) + Math.Floor(r / mult) * 4
Dim test = (bits And (1 << bitPos)) <> 0
If test Then
result(r, c) = i + 1
Else
result(r, c) = size - i
End If
 
i = i + 1
Next
Console.WriteLine()
Next
 
Return result
End Function
 
Sub Main()
Dim n = 8
Dim result = MagicSquareDoublyEven(n)
For i = 0 To result.GetLength(0) - 1
For j = 0 To result.GetLength(1) - 1
Console.Write("{0,2} ", result(i, j))
Next
Console.WriteLine()
Next
Console.WriteLine()
Console.WriteLine("Magic constant: {0} ", (n * n + 1) * n / 2)
 
Console.ReadLine()
End Sub
 
End Module</syntaxhighlight>
{{out}}
<pre> 1 2 62 61 60 59 7 8
9 10 54 53 52 51 15 16
48 47 19 20 21 22 42 41
40 39 27 28 29 30 34 33
32 31 35 36 37 38 26 25
24 23 43 44 45 46 18 17
49 50 14 13 12 11 55 56
57 58 6 5 4 3 63 64
 
Magic constant: 260</pre>
 
=={{header|Wren}}==
{{trans|Kotlin}}
{{libheader|Wren-fmt}}
<syntaxhighlight lang="wren">import "./fmt" for Conv, Fmt
 
var magicSquareDoublyEven = Fn.new { |n|
if (n < 4 || n%4 != 0) Fiber.abort("Base must be a positive multiple of 4")
 
// pattern of count-up vs count-down zones
var bits = Conv.atoi("1001011001101001", 2)
var size = n * n
var mult = (n/4).floor // how many multiples of 4
var result = List.filled(n, null)
for (i in 0...n) result[i] = List.filled(n, 0)
var i = 0
for (r in 0...n) {
for (c in 0...n) {
var bitPos = (c/mult).floor + (r/mult).floor * 4
result[r][c] = ((bits & (1<<bitPos)) != 0) ? i + 1 : size - i
i = i + 1
}
}
return result
}
 
var n = 8
for (ia in magicSquareDoublyEven.call(n)) {
for (i in ia) Fmt.write("$2d ", i)
System.print()
}
System.print("\nMagic constant %((n * n + 1) * n / 2)")</syntaxhighlight>
 
{{out}}
<pre>
1 2 62 61 60 59 7 8
9 10 54 53 52 51 15 16
48 47 19 20 21 22 42 41
40 39 27 28 29 30 34 33
32 31 35 36 37 38 26 25
24 23 43 44 45 46 18 17
49 50 14 13 12 11 55 56
57 58 6 5 4 3 63 64
 
Magic constant 260
</pre>
 
=={{header|zkl}}==
{{trans|Java}}
<langsyntaxhighlight lang="zkl">class MagicSquareDoublyEven{
fcn init(n){ var result=magicSquareDoublyEven(n) }
fcn toString{
Line 1,416 ⟶ 3,131:
}
}
MagicSquareDoublyEven(8).println();</langsyntaxhighlight>
{{out}}
<pre>
Anonymous user