Literals/Integer: Difference between revisions

m
→‎{{header|Wren}}: Changed to Wren S/H
m (→‎{{header|Wren}}: Changed to Wren S/H)
(260 intermediate revisions by more than 100 users not shown)
Line 1:
{{task|Basic language learning}}Some programming languages have ways of expressing integer literals in bases other than the normal base ten.
[[Category:Simple]]
 
Some programming languages have ways of expressing integer literals in bases other than the normal base ten.
 
 
;Task:
Show how integer literals can be expressed in as many bases as your language allows.
 
 
Note: this should '''not''' involve the calling of any functions/methods but should be interpreted by the compiler or interpreter as an integer written to a given base.
Note:   this should '''not''' involve the calling of any functions/methods, but should be interpreted by the compiler or interpreter as an integer written to a given base.
 
Also show any other ways of expressing literals, e.g. for different types of integers.
 
 
;Related task:
*   [[Literals/Floating point]]
<br><br>
 
=={{header|11l}}==
<syntaxhighlight lang="11l">print(255) // decimal literal
print(0000'00FF) // hexadecimal literal
print(00'FF) // short hexadecimal literal
print(F'F) // ultrashort (single-byte) hexadecimal literal
print(377o) // octal literal
print(1111'1111b) // binary literal
print(255'000) // decimal literal</syntaxhighlight>
 
{{out}}
<pre>
255
255
255
255
255
255
255000
</pre>
=={{header|6502 Assembly}}==
Conventions vary between assemblers, but typically a $ represents hexadecimal and a % represents binary. The absence of either of those symbols means decimal. Single or double quotes represent an ASCII value. Keep in mind that without a # in front, any quantity is interpreted as a dereference operation at the memory location equal to the supplied number, rather than a constant value.
<syntaxhighlight lang="6502asm">;These are all equivalent, and each load the constant value 65 into the accumulator.
LDA #$41
LDA #65
LDA #%01000001
LDA #'A'</syntaxhighlight>
 
Since all are equivalent, which one you use is entirely up to your preference. It's a good practice to use the representation that conveys the intent and meaning of your data the best.
 
Negative numbers can be represented by a minus sign. Minus signs only work for decimal numbers, not hexadecimal or binary. The assembler will interpret the negative number using the two's complement method, sign-extending it as necessary to fit the context it was provided in. This typically means that -1 maps to 0xFF, -2 to 0xFE, -3 to 0xFD, and so on. For absolute addresses, -1 gets converted to 0xFFFF, -2 to 0xFFFE, etc.
 
=={{header|68000 Assembly}}==
Conventions vary between assemblers, but typically a $ represents hexadecimal and a % represents binary. The absence of either of those symbols means decimal. Single or double quotes represent an ASCII value. Keep in mind that without a # in front, any quantity is interpreted as a dereference operation at the memory location equal to the supplied number, rather than a constant value.
<syntaxhighlight lang="68000devpac">;These are all equivalent:
MOVE.B #$41,D0
MOVE.B #65,D0
MOVE.B #%01000001,D0
MOVE.B #'A',D0</syntaxhighlight>
 
=={{header|8086 Assembly}}==
Supported integer literals may differ across assemblers.
The following work with UASM which is MASM-compatible:
* A "0x" prefix or "h" suffix for hexadecimal.
* A % prefix for binary
* No prefix for base 10
 
<syntaxhighlight lang="asm">MOV AX,4C00h
MOV BX,%1111000011110000
MOV CX,0xBEEF
MOV DL,35</syntaxhighlight>
 
=={{header|AArch64 Assembly}}==
Supported integer literals may differ across assemblers.
 
GNU assembler supports decimal, binary (prefix 0b), octal (prefix 0), hexadecimal (prefix 0x), and ASCII value of a given character (a single quote followed by an ASCII character, no closing quote).
 
{{works with|aarch64-linux-gnu-as/qemu-aarch64}}
<syntaxhighlight lang="arm_assembly">.equ STDOUT, 1
.equ SVC_WRITE, 64
.equ SVC_EXIT, 93
 
.text
.global _start
 
_start:
stp x29, x30, [sp, -16]!
mov x29, sp
mov x0, #123 // decimal
bl print_uint64
mov x0, #0b01111011 // binary
bl print_uint64
mov x0, #0173 // octal
bl print_uint64
mov x0, #0x7b // hexadecimal
bl print_uint64
mov x0, #'{ // ascii value
bl print_uint64
mov x0, #'\{ // ascii value in another way
bl print_uint64
ldp x29, x30, [sp], 16
mov x0, #0
b _exit // exit(0);
 
// void print_uint64(uint64_t x) - print an unsigned integer in base 10.
print_uint64:
// x0 = remaining number to convert
// x1 = pointer to most significant digit
// x2 = 10
// x3 = x0 / 10
// x4 = x0 % 10
// compute x0 divmod 10, store a digit, repeat if x0 > 0
ldr x1, =strbuf_end
mov x2, #10
1: udiv x3, x0, x2
msub x4, x3, x2, x0
add x4, x4, #48
mov x0, x3
strb w4, [x1, #-1]!
cbnz x0, 1b
// compute the number of digits to print, then call write()
ldr x3, =strbuf_end_newline
sub x2, x3, x1
mov x0, #STDOUT
b _write
 
.data
strbuf:
.space 31
strbuf_end:
.ascii "\n"
strbuf_end_newline:
.align 4
 
.text
//////////////// system call wrappers
// ssize_t _write(int fd, void *buf, size_t count)
_write:
stp x29, x30, [sp, -16]!
mov x8, #SVC_WRITE
mov x29, sp
svc #0
ldp x29, x30, [sp], 16
ret
 
// void _exit(int retval)
_exit:
mov x8, #SVC_EXIT
svc #0</syntaxhighlight>
 
=={{header|Ada}}==
In [[Ada]] integer literals may have the form <base>#<numeral>#. Here <base> can be from the range 2..16. For example:
Here <base> can be from the range 2..16.
<lang ada>
For example:
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;
<syntaxhighlight lang="ada">with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;
 
procedure Test_Literals is
Line 18 ⟶ 159:
Put (8#1_327#);
Put (2#10_1101_0111#);
end Test_Literals;</syntaxhighlight>
{{out}}
</lang>
Sample output:
<pre>
727 727 727 727
</pre>
 
=={{header|Aime}}==
<syntaxhighlight lang="aime">if ((727 == 0x2d7) && (727 == 01327)) {
o_text("true\n");
} else {
o_text("false\n");
}</syntaxhighlight>
 
=={{header|ALGOL 68}}==
{{trans|Fortran}}
 
{{works with|ALGOL 68|StandardRevision 1 - no extensions to language used}}
 
{{works with|ALGOL 68G|Any - tested with release mk15-0.8b.fc9.i386}}
{{works with|ELLA ALGOL 6868G|Any (with appropriate job cards) - tested with release [http://sourceforge.net/projects/algol68/files/algol68g/algol68g-1.818.8d0/algol68g-1.fc918.0-9h.tiny.el5.centos.fc11.i386.rpm/download 1.18.0-9h.tiny]}}
 
Binary constants are of type BITS, and need to be converted
{{works with|ELLA ALGOL 68|Any (with appropriate job cards) - tested with release [http://sourceforge.net/projects/algol68/files/algol68toc/algol68toc-1.8.8d/algol68toc-1.8-8d.fc9.i386.rpm/download 1.8-8d]}}
 
Binary literals are of type BITS, and need to be converted
to INT using the operator ABS.
<syntaxhighlight lang="algol68">main:(
<pre>
main:(
SHORT SHORT INT decssdec = SHORT SHORT 727;,
INT hex sshex = ABS SHORT SHORT 16r2d7;,
INT oct ssoct = ABS SHORT SHORT 8r1327;,
INT bin ssbin = ABS SHORT SHORT 2r1011010111;
 
SHORT INT sdec = SHORT 727,
shex = ABS SHORT 16r2d7,
soct = ABS SHORT 8r1327,
sbin = ABS SHORT 2r1011010111;
 
INT dec = 727,
hex = ABS 16r2d7,
oct = ABS 8r1327,
bin = ABS 2r1011010111;
LONG INT ldec = LONG 727,
print((dec, hex, oct, bin, new line))
lhex = ABS LONG 16r2d7,
loct = ABS LONG 8r1327,
)
lbin = ABS LONG 2r1011010111;
 
CO
LONG LONG INT lldec = LONG LONG 727,
llhex = ABS LONG LONG 16r2d7,
lloct = ABS LONG LONG 8r1327,
llbin = ABS LONG LONG 2r1011010111
# etc ... #
END CO
 
print(("SHORT SHORT INT:", ssdec, sshex, ssoct, ssbin, new line));
print((" SHORT INT:", sdec, shex, soct, sbin, new line));
print((" INT:", dec, hex, oct, bin, new line));
print((" LONG INT:", ldec, lhex, loct, lbin, new line))
CO LONG LONG INT not supported by ELLA ALGOL 68RS
print(("LONG LONG INT:", new line, lldec, new line, llhex, new line, lloct, new line, llbin, new line))
# etc ... #
END CO
 
)</syntaxhighlight>
[http://sourceforge.net/projects/algol68/files/algol68g/algol68g-1.18.0/algol68g-1.18.0-9h.tiny.el5.centos.fc11.i386.rpm/download algol68g] output:
<pre>
SHORT SHORT INT: +727 +727 +727 +727
SHORT INT: +727 +727 +727 +727
INT: +727 +727 +727 +727
LONG INT: +727 +727 +727 +727
</pre>
[http://sourceforge.net/projects/algol68/files/algol68toc/algol68toc-1.8.8d/algol68toc-1.8-8d.fc9.i386.rpm/download algol68toc] output:
Output:
<pre>
SHORT SHORT INT: -41 -41 -41 -41
+727 +727 +727 +727
SHORT INT: +727 +727 +727 +727
INT: +727 +727 +727 +727
LONG INT: +727 +727 +727 +727
</pre>
 
=={{header|ALGOL W}}==
Algol W has only decimal integer literals. Hexadecimal values can be written (prefixed with #) but these are of type "bits" and the
standard number function must be used to "convert" them to an integer.
<syntaxhighlight lang="algolw">begin
write( 16, number( #10 ) )
end.</syntaxhighlight>
{{out}}
<pre>
16 16
</pre>
 
=={{header|AmigaE}}==
<syntaxhighlight lang="amigae">PROC main()
IF ($2d7 = 727) AND (%001011010111 = 727) THEN WriteF('true\n')
ENDPROC</syntaxhighlight>
 
=={{header|ARM Assembly}}==
{{works with|as|Raspberry Pi}}
<syntaxhighlight lang="arm assembly">
/* ARM assembly Raspberry PI */
/* program integer.s */
 
/* Constantes */
.equ STDOUT, 1 @ Linux output console
.equ EXIT, 1 @ Linux syscall
.equ WRITE, 4 @ Linux syscall
 
/*********************************/
/* Initialized data */
/*********************************/
.data
iNumberBinaire: .int 0b1100100
iNumberOctal: .int 0144
iNumberDecimal: .int 100
iNumberHexa: .int 0x64
 
 
szMessResult: .ascii "Resultat = " @ message result
sMessValeur: .fill 12, 1, ' '
.asciz "\n"
/*********************************/
/* UnInitialized data */
/*********************************/
.bss
/*********************************/
/* code section */
/*********************************/
.text
.global main
main: @ entry of program
push {fp,lr} @ saves 2 registers
ldr r0,iAdriNumberBinaire @ number address
ldr r0,[r0] @ load number
ldr r1,iAdrsMessValeur
bl conversion10 @ call function with 2 parameter (r0,r1)
ldr r0,iAdrszMessResult
bl affichageMess @ display message
ldr r0,iAdriNumberOctal
ldr r0,[r0]
ldr r1,iAdrsMessValeur
bl conversion10 @ call function with 2 parameter (r0,r1)
ldr r0,iAdrszMessResult
bl affichageMess @ display message
ldr r0,iAdriNumberDecimal
ldr r0,[r0]
ldr r1,iAdrsMessValeur
bl conversion10 @ call function with 2 parameter (r0,r1)
ldr r0,iAdrszMessResult
bl affichageMess @ display message
ldr r0,iAdriNumberHexa
ldr r0,[r0]
ldr r1,iAdrsMessValeur
bl conversion10 @ call function with 2 parameter (r0,r1)
ldr r0,iAdrszMessResult
bl affichageMess @ display message
 
100: @ standard end of the program
mov r0, #0 @ return code
pop {fp,lr} @restaur 2 registers
mov r7, #EXIT @ request to exit program
svc #0 @ perform the system call
iAdriNumberBinaire: .int iNumberBinaire
iAdriNumberOctal: .int iNumberOctal
iAdriNumberDecimal: .int iNumberDecimal
iAdriNumberHexa: .int iNumberHexa
iAdrsMessValeur: .int sMessValeur
iAdrszMessResult: .int szMessResult
 
/******************************************************************/
/* display text with size calculation */
/******************************************************************/
/* r0 contains the address of the message */
affichageMess:
push {r0,r1,r2,r7,lr} /* save registres */
mov r2,#0 /* counter length */
1: /* loop length calculation */
ldrb r1,[r0,r2] /* read octet start position + index */
cmp r1,#0 /* if 0 its over */
addne r2,r2,#1 /* else add 1 in the length */
bne 1b /* and loop */
/* so here r2 contains the length of the message */
mov r1,r0 /* address message in r1 */
mov r0,#STDOUT /* code to write to the standard output Linux */
mov r7, #WRITE /* code call system "write" */
svc #0 /* call systeme */
pop {r0,r1,r2,r7,lr} /* restaur des 2 registres */
bx lr /* return */
/******************************************************************/
/* Converting a register to a decimal */
/******************************************************************/
/* r0 contains value and r1 address area */
conversion10:
push {r1-r4,lr} /* save registers */
mov r3,r1
mov r2,#10
 
1: @ start loop
bl divisionpar10 @ r0 <- dividende. quotient ->r0 reste -> r1
add r1,#48 @ digit
strb r1,[r3,r2] @ store digit on area
sub r2,#1 @ previous position
cmp r0,#0 @ stop if quotient = 0 */
bne 1b @ else loop
@ and move spaves in first on area
mov r1,#' ' @ space
2:
strb r1,[r3,r2] @ store space in area
subs r2,#1 @ @ previous position
bge 2b @ loop if r2 >= zéro
 
100:
pop {r1-r4,lr} @ restaur registres
bx lr @return
/***************************************************/
/* division par 10 signé */
/* Thanks to http://thinkingeek.com/arm-assembler-raspberry-pi/*
/* and http://www.hackersdelight.org/ */
/***************************************************/
/* r0 dividende */
/* r0 quotient */
/* r1 remainder */
divisionpar10:
/* r0 contains the argument to be divided by 10 */
push {r2-r4} /* save registers */
mov r4,r0
ldr r3, .Ls_magic_number_10 /* r1 <- magic_number */
smull r1, r2, r3, r0 /* r1 <- Lower32Bits(r1*r0). r2 <- Upper32Bits(r1*r0) */
mov r2, r2, ASR #2 /* r2 <- r2 >> 2 */
mov r1, r0, LSR #31 /* r1 <- r0 >> 31 */
add r0, r2, r1 /* r0 <- r2 + r1 */
add r2,r0,r0, lsl #2 /* r2 <- r0 * 5 */
sub r1,r4,r2, lsl #1 /* r1 <- r4 - (r2 * 2) = r4 - (r0 * 10) */
pop {r2-r4}
bx lr /* leave function */
.align 4
.Ls_magic_number_10: .word 0x66666667
 
 
</syntaxhighlight>
 
=={{header|Arturo}}==
<syntaxhighlight lang="rebol">num: 18966
 
print [num "->" type num]</syntaxhighlight>
 
{{out}}
 
<pre>18966 -> :integer</pre>
 
=={{header|AutoHotkey}}==
<syntaxhighlight lang="autohotkey">If (727 == 0x2d7)
MsgBox true</syntaxhighlight>
 
=={{header|Avail}}==
Avail's built-in lexers recognize "traditional" binary, octal, and hexadecimal prefixes <code>0b</code>, <code>0o</code>, and <code>0x</code> respectively:
<syntaxhighlight lang="avail">Print: "0b11001101 = " ++ “0b11001101”;
Print: "0o755 = " ++ “0o755”;
Print: "0xDEADBEEF = " ++ “0xDEADBEEF”;</syntaxhighlight>
Arbitrary integer bases from 2 to 36 are supported with the format ''digits r base''. As additional digit characters are needed, they are taken from the latin alphabet in order.
<syntaxhighlight lang="avail">Print: "ZZr36 = " ++ “ZZr36”;</syntaxhighlight>
While the task limits examples to those understood by the compiler and "not involve the calling of any functions/methods", the line is not so clear cut in Avail. For example, one could define new lexers to understand new integer formats which are then accepted by the compiler, allowing for an unlimited array of integer literal kinds.
 
=={{header|AWK}}==
Awk has decimal literals, using the digits from <tt>0</tt> to <tt>9</tt>. [[Literals/Floating point#AWK]] describes the format of these literals.
 
As an extension to the language, some Awk implementations also have octal or hexadecimal literals. GNU awk ([[gawk]]) has both octal and hexadecimal literals, like C. The One True Awk ([[nawk]]) only has decimal literals.
 
{{works with|gawk|3.1.7}}
<lang>BEGIN {
<syntaxhighlight lang="awk">BEGIN {
if ( (0x2d7 == 727) &&
(01327 == 727) ) {
print "true with GNU awk"
}
}</langsyntaxhighlight>
 
nawk parses <tt>01327</tt> as <tt>1327</tt>, and parses <tt>0x2d7</tt> as <tt>0 x2d7</tt> (which is the string concatentation of <tt>"0"</tt> and variable <tt>x2d7</tt>).
 
<syntaxhighlight lang="awk">BEGIN {
x2d7 = "Goodbye, world!"
print 0x2d7 # gawk prints "727", nawk prints "0Goodbye, world!"
print 01327 # gawk prints "727", nawk prints "1327"
}</syntaxhighlight>
 
=={{header|Axe}}==
In addition to decimal integer literals, Axe supports hexadecimal and binary integers using a leading exponent operator or pi, respectively. Note that the leading E below is the small-caps E.
<syntaxhighlight lang="axe">123
ᴇFACE
π101010</syntaxhighlight>
 
=={{header|BASIC}}==
&O = octal; &H = hexadecimal. Some flavors of BASIC also support &B = binary, but they're somewhat rare.
 
<syntaxhighlight lang="qbasic">PRINT 17
PRINT &O21
PRINT &H11</syntaxhighlight>
Output:
<pre>17
17
17</pre>
 
==={{header|BaCon}}===
BaCon allows (as it converts to C) C style integer literals. zero prefix Octal, 0x prefix Hexadecimal, no prefix Decimal, and if supported by the underlying compiler, 0b prefix for Binary. 0x and 0b can be upper case 0X and 0B.
<syntaxhighlight lang="freebasic">' literal integers
PRINT 10
PRINT 010
PRINT 0x10
' C compiler dependent, GCC extension
PRINT 0b10</syntaxhighlight>
 
{{out}}
<pre>prompt$ bacon literal-integer.bac
Converting 'literal-integer.bac'... done, 6 lines were processed in 0.002 seconds.
Compiling 'literal-integer.bac'... cc -c literal-integer.bac.c
cc -o literal-integer literal-integer.bac.o -lbacon -lm
Done, program 'literal-integer' ready.
prompt$ ./literal-integer
10
8
16
2</pre>
 
==={{header|BASIC256}}===
<syntaxhighlight lang="freebasic">print 17
print 0o21 #octal
print 0x11 #hexadecimal
print 0b10001 #binary
 
print FromRadix(17,10) #FromRadix(string, base)
print FromOctal(21)
print FromHex(11)
print FromBinary(10001)</syntaxhighlight>
 
==={{header|BBC BASIC}}===
<syntaxhighlight lang="bbcbasic"> PRINT 1234 : REM Decimal
PRINT &4D2 : REM Hexadecimal
PRINT %10011010010 : REM Binary</syntaxhighlight>
'''Output:'''
<pre>
1234
1234
1234
</pre>
 
==={{header|IS-BASIC}}===
<syntaxhighlight lang="is-basic">PRINT 17
PRINT BIN(10001)
PRINT ORD(HEX$("11"))</syntaxhighlight>
 
==={{header|Yabasic}}===
<syntaxhighlight lang="freebasic">print 17
print 0x11 //hexadecimal
print 0b10001 //binary
 
print dec("11",16)
print dec("10001",2)</syntaxhighlight>
 
=={{header|bc}}==
Numeric literals use the digits 0-9 and A-F (only the uppercase letters). The minus sign '-' and radix point '.' are optional. When the program encounters a numeric literal, it uses the current value of <tt>ibase</tt>.
 
This example shows the literal -727 in all bases from 2 to 16. (It never prints "Impossible!")
 
<syntaxhighlight lang="bc">ibase = 2
b[10] = -1011010111
ibase = 11 /* 3 */
b[10] = -222221
ibase = 11 /* 4 */
b[10] = -23113
ibase = 11 /* 5 */
b[10] = -10402
ibase = 11 /* 6 */
b[10] = -3211
ibase = 11 /* 7 */
b[10] = -2056
ibase = 11 /* 8 */
b[10] = -1327
ibase = 11 /* 9 */
b[10] = -887
ibase = 11 /* 10 */
b[10] = -727
ibase = 11 /* 11 */
b[10] = -601
ibase = 11 /* 12 */
b[10] = -507
ibase = 11 /* 13 */
b[10] = -43C
ibase = 11 /* 14 */
b[10] = -39D
ibase = 11 /* 15 */
b[10] = -337
ibase = 11 /* 16 */
b[10] = -2D7
 
ibase = A
for (i = 2; i <= 16; i++) if (b[i] != -727) "Impossible!
"
quit</syntaxhighlight>
 
The digits 0-9 and A-F are valid with all input bases. For example, FF from base 2 is 45 (because 15 * 2 + 15 is 45), and FF from base 10 is 165 (because 15 * 10 + 15 is 45). Most importantly, <tt>ibase = A</tt> always switches to base ten.
 
=={{header|Befunge}}==
 
While Befunge doesn't directly support numbers aside from 0-9 (base 10), characters in strings are essentially treated as base-256 numbers.
 
<syntaxhighlight lang="befunge">" ~"..@</syntaxhighlight>
 
Output:
126 32
 
=={{header|BQN}}==
BQN only supports base ten integer literals. There are some things to note, however:
 
A high minus must be used instead of a plain minus for negative numbers (also a feature of APL):
<syntaxhighlight lang="bqn">¯5
¯3000</syntaxhighlight>
 
Underscores are ignored in numeric literals in general.
<syntaxhighlight lang="bqn">1_000_000</syntaxhighlight>
 
=={{header|Bracmat}}==
Bracmat only supports specification of numbers in base ten.
 
=={{header|C}}==
Line 62 ⟶ 582:
Leading 0 means octal, 0x or 0X means hexadecimal. Otherwise, it is just decimal.
 
<langsyntaxhighlight lang="c">#include <stdio.h>
 
int main(void)
Line 71 ⟶ 591:
 
return 0;
}</langsyntaxhighlight>
 
GCC supports specifying integers in binary using the [http://gcc.gnu.org/onlinedocs/gcc/Binary-constants.html 0b prefix] syntax, but it's not standard. Standard C has no way of specifying integers in binary.
C has no way of specifying integers in binary (if there's something like <tt>0b...</tt>, it is not
 
standard)
To specify a literal of an unsigned integer, you add the suffix "u" or "U". To specify a literal of a "long" integer, you add the suffix "l" or "L". In C99, to specify a literal of a "long long" integer, you add the suffix "ll" or "LL". (The "l" and "ll" forms are discouraged as "l" looks like the digit "1"). The "u" suffixes can be combined with "l" or "ll" suffixes for unsigned long or unsigned long long integers.
 
=={{header|C sharp|C#}}==
C# has decimal and hexadecimal integer literals, the latter of which are prefixed with <code>0x</code>:
<syntaxhighlight lang="csharp">int a = 42;
int b = 0x2a;</syntaxhighlight>
Literals of either form can be suffixed with <code>U</code> and/or <code>L</code>. <code>U</code> will cause the literal to be interpreted as an unsigned type (necessary for numbers exceeding 2<sup>31</sup> or hex literals that have a first digit larger than <code>7</code>) and <code>L</code> signifies the use of a <code>long</code> type – using <code>UL</code> or <code>LU</code> as suffix will then use <code>ulong</code>. C# has no syntactic notion of expressing integer literals of smaller types than <code>Int32</code>; it is a compile-time error to have an assignment such as
<syntaxhighlight lang="csharp">byte x = 500;</syntaxhighlight>
'''Update'''<br/>
As of C#7, integer literals can be written in binary with the prefix <code>0b</code>. Furthermore, underscores can be used as separators:
<syntaxhighlight lang="csharp">
int x = 0b1100_1001_1111_0000;
</syntaxhighlight>
 
=={{header|C++}}==
Line 80 ⟶ 613:
The same comments apply as to the [[#C|C example]].
 
<langsyntaxhighlight clang="cpp">#include <iostream>
 
int main()
Line 89 ⟶ 622:
return 0;
}</langsyntaxhighlight>
 
=={{header|Cherrycake}}==
 
<syntaxhighlight lang="cherrycake">
515142 # Interpretted as an integer, 515142
0b10111011 # Interpretted as a binary integer, 10111011 (187)
0x0AB3 # Interpretted as a binary integer, 0AB3 (2739)
</syntaxhighlight>
 
=={{header|Clojure}}==
 
Clojure uses the Java octal (0...) and hexadecimal (0x...) notation; for any other base, nR... is used, 2 <= n <= 36.
 
<syntaxhighlight lang="lisp">user=> 2r1001
9
user=> 8r64
52
user=> 064
52
user=> 16r4b
75
user=> 0x4b
75
user=></syntaxhighlight>
 
=={{header|COBOL}}==
Standard COBOL accepts signed base 10 integer literals, but does allow for <tt>BOOLEAN</tt> and <tt>Hexadecimal</tt> alphanumeric literals, that can be treated as numeric values in code.
 
ACUCOBOL added extensions that allow base-2 (B#), base-8 (O#), base-16 (with both H# and X# prefix) integer literals.
 
With GnuCOBOL these extensions are allowed by configuration
<pre>
prompt$ cobc -x -cb_conf=acucobol-literals:ok
</pre>
 
<syntaxhighlight lang="cobol">
display B#10 ", " O#01234567 ", " -0123456789 ", "
H#0123456789ABCDEF ", " X#0123456789ABCDEF ", " 1;2;3;4
</syntaxhighlight>
 
{{out}}
<pre>
2, 342391, 0123456789, 81985529216486895, 81985529216486895, 1234
</pre>
 
Some characters are removed by the COBOL text manipulation facility, and are allowed in numeric literals. These symbols are stripped out, along with comment lines, before seen by the compiler proper.
 
<syntaxhighlight lang="cobol">
if 1234 = 1,2,3,4 then display "Decimal point is not comma" end-if
if 1234 = 1;2;3;4 then display "literals are equal, semi-colons ignored" end-if
</syntaxhighlight>
 
Comma is a special case, as COBOL can be compiled with <code>DECIMAL POINT IS COMMA</code> in the <code>CONFIGURATION SECTION</code>. The <tt>1,2,3,4</tt> comparison test above would cause a compile time syntax error when <code>DECIMAL POINT IS COMMA</code> is in effect.
 
=={{header|Comal}}==
<syntaxhighlight lang="comal">IF 37=$25 THEN PRINT "True"
IF 37=%00100101 THEN PRINT "True"
</syntaxhighlight>
 
=={{header|Common Lisp}}==
Line 96 ⟶ 687:
 
binary: #b, octal: #o, hexadecimal: #x, any base from 2 to 36: #Nr
<syntaxhighlight lang="lisp">>(= 727 #b1011010111)
<pre>
>(= 727 #b1011010111)
T
>(= 727 #o1327)
Line 104 ⟶ 694:
T
>(= 727 #20r1g7)
T</syntaxhighlight>
T
</pre>
 
=={{header|D}}==
 
D besides hexadecimal, has also binary base. Additionally you can use '''_''' to separate digits in integer (and FP) literals. Octal number literals are library-based to avoid bugs caused by the leading zero.
D besides hexadecimal, and octal bases has also binary base.
<syntaxhighlight lang="d">import std.stdio, std.conv;
Additionaly you can use '''_''' to separate digits in
integer literals.
 
void main() {
<lang D>
writeln("oct: ", octal!777);
import tango.io.Stdout;
writeln("bin: ", 0b01011010);
writeln("hex: ", 0xBADF00D);
writeln("dec: ", 1000000000);
writeln("dec: ", 1_000_000_000);
writeln();
 
writeln(typeid(typeof(0)));
int main(char[][] args)
writeln(typeid(typeof(0u)));
{
// writeln(typeid(typeof(0l))); // 'l' suffix is deprecated
Stdout ("oct: ") (0777).newline;
writeln(typeid(typeof(0L)));
Stdout ("bin: ") (0b01011010).newline;
writeln(typeid(typeof(0uL)));
Stdout ("hex: ") (0xBADF00D).newline;
writeln(typeid(typeof(0LU)));
Stdout ("dec: ") (1000000000).newline;
writeln();
Stdout ("dec: ") (1_000_000_000).newline;
Stdout.newline;
Stdout (typeid(typeof(0))).newline;
Stdout (typeid(typeof(0u))).newline;
Stdout (typeid(typeof(0L))).newline;
Stdout (typeid(typeof(0uL))).newline;
Stdout (typeid(typeof(0LU))).newline;
Stdout.newline;
Stdout.formatln ("{:x}", 0xFEE1_BAD_CAFE_BABEuL);
return 0;
}</lang>
 
writefln("%x", 0xFEE1_BAD_CAFE_BABEuL);
Output:
}</syntaxhighlight>
<pre>
{{out}}
oct: 511
<pre>oct: 511
bin: 90
hex: 195948557
Line 148 ⟶ 732:
ulong
 
fee1badcafebabe</pre>
 
</pre>
=={{header|DCL}}==
<syntaxhighlight lang="dcl">$ decimal1 = 123490
$ decimal2 = %D123490
$ octal = %O12370
$ hex = %X1234AF0</syntaxhighlight>
 
=={{header|Delphi}}==
<syntaxhighlight lang="delphi">const
DEC_VALUE = 256; // decimal notation
HEX_VALUE = $100; // hexadecimal notation
BIN_VALUE = %100000000; // binary notation (since Delphi 10.4 version)
</syntaxhighlight>
 
=={{header|DWScript}}==
 
DWScript has decimal and hexadecimal integer literals, the latter of which are prefixed with <code>$</code>:
<syntaxhighlight lang="delphi">var a : Integer := 42;
var b : Integer := $2a;</syntaxhighlight>
Both notations can also be used for character codes (when prefixed by <code>#</code>).
 
=={{header|Dyalect}}==
 
Dyalect has decimal and hexadecimal integer literals, the latter of which are prefixed with 0x:
 
<syntaxhighlight lang="dyalect">var a = 42
var b = 0x2a</syntaxhighlight>
 
=={{header|Dylan}}==
<syntaxhighlight lang="dylan">42 // a decimal integer
#x2A // a hexadecimal integer
#o52 // an octal integer
#b101010 // a binary integer</syntaxhighlight>
 
=={{header|E}}==
 
<syntaxhighlight lang="e">? 256
<lang e>
? 256
# value: 256
 
Line 161 ⟶ 776:
 
? 0123
# syntax error: Octal is no longer supported: 0123</syntaxhighlight>
 
</lang>
=={{header|EasyLang}}==
EasyLang's ability to use hexadecimal literals is undocumented.
<syntaxhighlight lang="easylang">
decimal = 57
hexadecimal = 0x39
print decimal
print hexadecimal
</syntaxhighlight>
{{out}}
<pre>
57
57
</pre>
 
=={{header|Efene}}==
 
<syntaxhighlight lang="efene">@public
run = fn () {
io.format("0xff : ~B~n", [0xff])
io.format("0xFF : ~B~n", [0xFF])
io.format("0o777 : ~B~n", [0o777])
io.format("0b1011: ~B~n", [0b1011])
}
</syntaxhighlight>
 
=={{header|Eiffel}}==
Integer literals can be specified in decimal, hexadecimal, octal and binary. Only decimal literals can have an optional sign. Underscores may also be used as separators, but cannot begin or end the literal. Literals are case insensitive.<syntaxhighlight lang="eiffel">
123 -- decimal
-1_2_3 -- decimal
0x7b -- hexadecimal
0c173 -- octal
0b111_1011 -- binary
</syntaxhighlight>
 
Literals are by default interpreted as type INTEGER, where INTEGER is a synonym for either INTEGER_32 or INTEGER_64 (depending on the compiler option) but can be explicitly converted to another type.<syntaxhighlight lang="eiffel">
{NATURAL_8} 255
{INTEGER_64} 2_147_483_648
</syntaxhighlight>
 
=={{header|Elena}}==
<syntaxhighlight lang="elena">
var n := 1234; // decimal number
var x := 1234h; // hexadecimal number
</syntaxhighlight>
 
=={{header|Elixir}}==
<syntaxhighlight lang="elixir">1234 #=> 1234
1_000_000 #=> 1000000
0010 #=> 10
0b111 #=> 7
0o10 #=> 8
0x1f #=> 31
 
0B10 #=> syntax error before: B10
0X10 #=> syntax error before: X10
0xFF #=> 255</syntaxhighlight>
 
=={{header|Emacs Lisp}}==
<syntaxhighlight lang="lisp">123 ;; decimal all Emacs
#b101 ;; binary Emacs 21 up, XEmacs 21
#o77 ;; octal Emacs 21 up, XEmacs 21
#xFF ;; hex Emacs 21 up, XEmacs 21
#3r210 ;; any radix 2-36 Emacs 21 up (but not XEmacs 21.4)</syntaxhighlight>
 
The digits and the radix character can both be any mixture of upper and lower case. See [http://www.gnu.org/software/emacs/manual/html_node/elisp/Integer-Basics.html GNU Elisp reference manual "Integer Basics"].
 
=={{header|EMal}}==
<syntaxhighlight lang="emal">
^|
| EMal internally uses 64 bit signed integers.
|^
int hex = 0xff # base16
int oct = 0o377 # base8
int bin = 0b11111111 # base2
int dec = 255 # base10
writeLine(hex)
writeLine(oct)
writeLine(bin)
writeLine(dec)
# here we check that they give the same value
writeLine(0b1011010111 == 0o1327 and
0o1327 == 0x2d7 and
0x2d7 == 727 and
727 == 0b1011010111)
</syntaxhighlight>
{{out}}
<pre>
255
255
255
255
</pre>
 
=={{header|Erlang}}==
Erlang allows integer literals in bases 2 through 36. The format is Base#Number. For bases greater than 10, the values 10-35 are represented by A-Z or a-z.
<syntaxhighlight lang="erlang">
> 2#101.
5
> 101.
101
> 16#F.
15
> 36#3z.
143
</syntaxhighlight>
 
=={{header|ERRE}}==
% = binary, & = octal; $ = hexadecimal.
<syntaxhighlight lang="erre">
PRINT(17)
PRINT(&21)
PRINT($11)
PRINT(%1001)
</syntaxhighlight>
Output:
<pre>
17
17
17
17</pre>
 
=={{header|Euphoria}}==
<syntaxhighlight lang="euphoria">
printf(1,"Decimal:\t%d, %d, %d, %d\n",{-10,10,16,64})
printf(1,"Hex:\t%x, %x, %x, %x\n",{-10,10,16,64})
printf(1,"Octal:\t%o, %o, %o, %o\n",{-10,10,16,64})
printf(1,"Exponential:\t%e, %e, %e, %e\n",{-10,10,16,64.12})
printf(1,"Floating Point\t%3.3f, %3.3f, %+3.3f\n",{-10,10.2,16.25,64.12625})
printf(1,"Floating Point or Exponential: %g, %g, %g, %g\n",{10,16,64,123456789.123})
</syntaxhighlight>
{{out}}
<pre>
Decimal: -10, 10, 16, 64
Hex: FFFFFFFFFFFFFFF6, A, 10, 40
Octal: 1777777777777777777766, 12, 20, 100
Exponential: -1.000000e+001, 1.000000e+001, 1.600000e+001, 6.412000e+001
Floating Point -10.000, 10.000, +16.250, 64.126
Floating Point or Exponential: 10, 16, 64, 1.23457e+008
</pre>
 
=={{header|F Sharp|F#}}==
===Base prefixes===
Binary numbers begin with 0b, octal numbers with 0o, and hexadecimal numbers with 0x. The hexadecimal digits A-F may be in any case.
<syntaxhighlight lang="fsharp">0b101 // = 5
0o12 // = 10
0xF // = 16</syntaxhighlight>
 
===Type suffixes===
Most type suffixes can be preceded with a 'u', which indicates the type is unisgned.
<syntaxhighlight lang="fsharp">10y // 8-bit
'g'B // Character literals can be turned into unsigned 8-bit literals
10s // 16-bit
10l // 32-bit (suffix is optional)
10L // 64-bit
10I // Bigint (cannot be preceded by a 'u')
 
10un // Unsigned native int (used to represent pointers)</syntaxhighlight>
 
=={{header|Factor}}==
<syntaxhighlight lang="factor">10 . ! decimal
0b10 . ! binary
-0o10 . ! octal
0x10 . ! hexadecimal</syntaxhighlight>
{{out}}
<pre>
10
2
-8
16
</pre>
Factor also supports the arbitrary use of commas in integer literals:
<syntaxhighlight lang="factor">1,234,567 .
1,23,4,567 .</syntaxhighlight>
{{out}}
<pre>
1234567
1234567
</pre>
 
=={{header|Fennel}}==
<syntaxhighlight lang="fennel">;; Fennel, like Lua, supports base 10 and hex literals (with a leading 0x).
1234 ;1234
0x1234 ;4660
 
;; Optionally, underscores can be used to split numbers into readable chunks.
123_456_789 ;123456789
0x1234_5678 ;305419896</syntaxhighlight>
 
=={{header|Forth}}==
The standard method for entering numbers of a particular base is to set the user variable BASE to the desired radix from 2 to 36. There are also convenience words for setting the base to DECIMAL and HEX.
<langsyntaxhighlight lang="forth">HEX
FEEDFACE
HEX
2 BASE !
FEEDFACE
1011001
2 BASE !
DECIMAL
1011001
1234
DECIMAL
: mask var @ [ base @ hex ] 3fff and [ base ! ] var ! ;</syntaxhighlight>
1234
: mask var @ [ base @ hex ] 3fff and [ base ! ] var ! ;
</lang>
The Forth numeric parser will look for symbols embedded within the stream of digits to determine whether to interpret it as a single cell, double cell, or floating point literal ('e').
<syntaxhighlight lang="forth">1234 ( n )
<lang forth>
1234 123.4 ( nl h )
123.4123e4 ( lF: hn )</syntaxhighlight>
123e4 ( F: n )
</lang>
 
===Base prefixes===
{{works with|GNU Forth}}
In addition, many Forths have extensions for using a prefix to temporarily override BASE when entering an integer literal. These are the prefixes supported by GNU Forth.
<syntaxhighlight lang="forth">$feedface \ hexadecimal
<lang forth>
&1234 \ decimal
$feedface \ hexadecimal
&1234 %1001101 \ decimalbinary
'a \ base 256 (ASCII literal)</syntaxhighlight>
%1001101 \ binary
'a \ base 256 (ASCII literal)
</lang>
Some Forths also support "0xABCD" hex literals for compatibility with C-like languages.
 
=={{header|Fortran}}==
 
<langsyntaxhighlight lang="fortran">program IntegerLiteral
 
implicit none
Line 205 ⟶ 1,002:
print *, dec, hex, oct, bin
 
end program IntegerLiteral</langsyntaxhighlight>
 
Outputs:
Line 213 ⟶ 1,010:
</pre>
 
=={{header|Modula-3FreeBASIC}}==
<syntaxhighlight lang="freebasic">' FB 1.05.0 Win64
All numbers 2 to 16 are allowed to be bases.
<lang modula3>MODULE Literals EXPORTS Main;
 
' The following all print 64 to the console
IMPORT IO;
 
' integer literals of unspecified type - actual type is inferred from size or context (8, 16, 32 or 64 bit signed/unsigned)
BEGIN
Print 64 '' Decimal literal
IO.PutInt(16_2D7);
Print &H40 '' Hexadecimal literal
IO.Put(" ");
Print &O100 '' Octal Literal
IO.PutInt(10_727);
Print &B1000000 '' Binary literal
IO.Put(" ");
 
IO.PutInt(8_1327);
' integer literals of specific types
IO.Put(" ");
' Integer type is 4 bytes on 32 bit and 8 bytes on 64 bit platform
IO.PutInt(2_1011010111);
Print 64% '' Decimal signed 4/8 byte integer (Integer)
IO.Put("\n");
Print 64L '' Decimal signed 4 byte integer (Long)
END Literals.</lang>
Print 64& '' Decimal signed 4 byte integer (Long) - alternative suffix
Print 64LL '' Decimal unsigned 4 byte integer (ULong)
Print 64LL '' Decimal signed 8 byte integer (LongInt)
Print 64ULL '' Decimal unsigned 8 byte integer (ULongInt)
 
Sleep</syntaxhighlight>
 
=={{header|Frink}}==
Bases from 2 to 36 are allowed in Frink. All literals can be arbitrarily large. Frink does not subscribe to the insanity that a leading 0 implies octal.
<syntaxhighlight lang="frink">
123456789123456789 // (a number in base 10)
123_456_789_123_456_789 // (the same number in base 10 with underscores for readability)
1 quadrillion // (named numbers are fine in Frink.)
1ee39 // (exact exponent, an integer with exact value 10^39)
6.02214076ee23 // (exact exponent, Avogadro's number now defined as the exact integer 602214076000000000000000 )
100001000101111111101101\\2 // (a number in base 2)
1000_0100_0101_1111_1110_1101\\2 // (a number in base 2 with underscores for readability)
845FED\\16 // (a number in base 16... bases from 2 to 36 are allowed)
845fed\\16 // (The same number in base 16... upper or lowercase are allowed.)
845_fed\\16 // (a number in base 16 with underscores for readability)
FrinkRulesYou\\36 // (a number in base 36)
0x845fed // (Common hexadecimal notation)
0x845FED // (Common hexadecimal notation)
0xFEED_FACE // (Hexadecimal with underscores for readability)
0b100001000101111111101101 // (Common binary notation)
0b1000_0100_0101_1111_1110_1101 // (Binary with underscores for readability)
</syntaxhighlight>
 
=={{header|FutureBasic}}==
<syntaxhighlight lang="futurebasic">window 1
 
printf @" Decimal: %ld", 100
printf @" Hexadecimal: %x", 100
printf @" Octal: %o", 100
print @" Binary: "; bin$(100)
 
HandleEvents</syntaxhighlight>
Output:
<pre>
Decimal: 100
Hexadecimal: 64
Octal: 144
Binary: 00000000000000000000000001100100
</pre>
 
=={{header|GAP}}==
 
<syntaxhighlight lang="gap"># Only decimal integers, but of any length
31415926
1606938044258990275541962092341162602522202993782792835301376</syntaxhighlight>
 
=={{header|Go}}==
For integer literals, octal is represented by a leading <code>0</code> or the prefix <code>0o</code>. <code>0x</code> or <code>0X</code> means hexadecimal. <code>0b</code> or <code>0B</code> is binary. Otherwise, it is just decimal.
 
Character literals though, also specify integer values. Go source is specified to be UTF-8 encoded. The value of a character literal is the Unicode value of the UTF-8 encoded character.
 
There is no size or type specification with an integer literal, they are of arbitrary precision and do not overflow (compilers are required to represent integer constants with at least 256 bits and give an error if unable to represent an integer constant precisely).
Constant expressions are evaluated at compile time at an arbitrary precision.
It is only when a constant is assigned to a variable that it is given a type and an error produced if the constant value cannot be represented as a value of the respective type.
<syntaxhighlight lang="go">package main
 
import "fmt"
 
func main() {
fmt.Println(727 == 0x2d7) // prints true
fmt.Println(727 == 01327) // prints true
fmt.Println(727 == 0b10110_10111) // prints true
fmt.Println(727 == '˗') // prints true
}
</syntaxhighlight>
 
=={{header|Groovy}}==
Solution:
<syntaxhighlight lang="groovy">println 025 // octal
println 25 // decimal integer
println 25l // decimal long
println 25g // decimal BigInteger
println 0x25 // hexadecimal</syntaxhighlight>
 
Output:
<pre>21
25
25
25
37</pre>
 
=={{header|Harbour}}==
Hexademical integer literals are supported - the leading symbols must be 0x or 0X:
<syntaxhighlight lang="visualfoxpro">? 0x1f</syntaxhighlight>
Output:
<pre>31</pre>
 
=={{header|Haskell}}==
Line 235 ⟶ 1,122:
 
Oct(leading 0o or 0O), Hex(leading 0x or 0X)
<syntaxhighlight lang="haskell">Prelude> 727 == 0o1327
<lang haskell>
Prelude> 727 == 0o1327
True
Prelude> 727 == 0x2d7
True</syntaxhighlight>
True
 
</lang>
=={{header|hexiscript}}==
<syntaxhighlight lang="hexiscript"># All equal to 15
println 15
println 000015 # Leading zeros are ignored
println 0b1111
println 0o17
println 0xf</syntaxhighlight>
 
=={{header|HicEst}}==
HicEst only supports decimal integer literals.
 
=={{header|HolyC}}==
HolyC supports various integer sizes.
 
<syntaxhighlight lang="holyc">U8 i; // 8 bit integer
U16 i; // 16 bit integer
U32 i; // 32 bit integer
U64 i; // 64 bit integer</syntaxhighlight>
 
By default all integers are decimal. Leading "0x" implies hexadecimal.
<syntaxhighlight lang="holyc">U16 i = 727; // decimal
U16 i = 0x2d7; // hexadecimal</syntaxhighlight>
 
=={{header|Icon}} and {{header|Unicon}}==
Icon/Unicon supports digit literals of the form <base>r<value> with base being from 2-36 and the digits being from 0..9 and a..z.
<syntaxhighlight lang="icon">procedure main()
L := [1, 2r10, 3r10, 4r10, 5r10, 6r10, 7r10, 8r10, 9r10, 10r10, 11r10, 12r10, 13r10, 14r10,
15r10, 16r10, 17r10, 18r10,19r10, 20r10, 21r10, 22r10, 23r10, 24r10, 25r10, 26r10, 27r10,
28r10, 29r10, 30r10, 31r10, 32r10, 33r10, 34r10, 35r10, 36r10]
 
every write(!L)
end</syntaxhighlight>
 
=={{Header|Insitux}}==
 
<syntaxhighlight lang="insitux">
[123 0x7F 0xFFF 0b0101001]
</syntaxhighlight>
 
{{out}}
 
<pre>
[123 127 4095 41]
</pre>
 
=={{header|J}}==
 
J's numeric [http://www.jsoftware.com/help/dictionary/dcons.htm mini-language] allows spaces, underlines, dots and lower case alphabetic characters in its numeric literals.
 
Arbitrary base numbers begin with a base ten literal (which represents the base of this number), and then the letter 'b' and then an arbitrary sequence of digits and letters which represents the number in that base. Letters a..z represent digits in the range 10..35. Each numeric item in a numeric constant must have its base specified independently.
 
<syntaxhighlight lang="j"> 10b123 16b123 8b123 20b123 2b123 1b123 0b123 100b123 99 0 0bsilliness
1
123 291 83 443 11 6 3 10203 99 0 1 28</syntaxhighlight>
 
This may be used to enter hexadecimal or octal or binary numbers. However, note also that J's primitives support a variety of binary operations on numbers represented as sequences of 0s and 1s, like this:
 
<syntaxhighlight lang="j">0 1 0 0 0 1 0 0 0 1 1 1 1</syntaxhighlight>
 
 
J also supports extended precision integers, if one member of a list ends with an 'x' when they are parsed. Extended precision literals can not be combined, in the same constant, with arbitrary base literals. (The notation supports no way of indicating that extra precision in an arbitrary base literal should be preserved and the extra complexity to let this attribute bleed from any member of a list to any other member was deemed not worth implementing.)
 
<syntaxhighlight lang="j"> 123456789123456789123456789 100000000000x
123456789123456789123456789 100000000000
 
16b100 10x
|ill-formed number</syntaxhighlight>
 
J also allows integers to be entered using other notations, such as scientific or rational.
 
<syntaxhighlight lang="j"> 1e2 100r5
100 20</syntaxhighlight>
 
Internally, J freely [http://www.jsoftware.com/help/dictionary/dictg.htm converts] fixed precision integers to floating point numbers when they overflow, and numbers (including integers) of any type may be combined using any operation where they would individually be valid arguments.
 
Internally, J represents numeric constants in their simplest type, regardless of how they were specified. In other words 9r1, although it is "specified as a rational" is represented as an extended precision integer. Similarly, 2.0, although it is "specified as a floating point value" is represented as an integer, and 1.0 is represented as a boolean.
 
That said, note that "type" is a property of the array, and not a property of the value. And, code that modifies the structure of an array leaves its type alone. So, if you need an array of a type different than that specified by J's "simplest type for constants" rule, you can extract the constant you need from an array which contains it and has the type you need. For example <code>{.1 2</code> would give you an integer 1 instead of a boolean 1.
 
=={{header|Java}}==
 
LeadingA leading 0 means octal, 0x or 0X means hexadecimal. Otherwise, it is just decimal.
 
<langsyntaxhighlight lang="java5">public class IntegerLiterals {
public static void main(String[] args) {
System.out.println( 727 == 0x2d7 &&
727 == 01327 );
}
}</langsyntaxhighlight>
 
You may also specify a <tt>long</tt> literal by adding an <tt>l</tt> or <tt>L</tt> (uppercase is preferred as the lowercase looks like a "1" in some fonts) to the end (ex: <tt>long a = 574298540721727L</tt>). This is required for numbers that are too large to be expressed as an <tt>int</tt>.
Java has no way of specifying integers in binary.
 
{{works with|Java|7}}
You may also specify a <tt>long</tt> literal by adding an <tt>l</tt> or <tt>L</tt> (the latter form is preferred as the former looks like a "1") to the end (ex: <tt>long a = 574298540721727L</tt>), and this is required for numbers that are too large to be expressed as an <tt>int</tt>.
Java 7 has added binary literals to the language. A leading 0b means binary. You may also use underscores as separators in all bases.
<syntaxhighlight lang="java5">public class BinaryLiteral {
public static void main(String[] args) {
System.out.println( 727 == 0b10_1101_0111 );
}
}</syntaxhighlight>
 
=={{header|JavaScript}}==
 
<langsyntaxhighlight lang="javascript">if ( 727 == 0x2d7 &&
if ( 727 == 0x2d7 &&
727 == 01327 )
window.alert("true");</syntaxhighlight>
 
</lang>
=={{header|jq}}==
jq only supports JSON data types, and thus the only supported integer literals are decimals, which may, however, be expressed using digits in the conventional way, or using the "e" notation, e.g. 10 == 1e1. Other ways to express 10 include 1e+1, 10e0, 10E-0, etc.
 
=={{header|Julia}}==
Julia has binary, octal and hexadecimal literals. We check that they give the same value.
<syntaxhighlight lang="julia">julia> 0b1011010111 == 0o1327 == 0x2d7 == 727
true</syntaxhighlight>
 
=={{header|Kotlin}}==
Kotlin supports 3 types of integer literal: decimal, hexadecimal and binary. Hexadecimal literals are prefixed with <code>0x</code> or <code>0X</code>, and binary literals with <code>0b</code> or <code>0B</code>. Hexadecimal digits can be uppercase or lowercase, or a combination of the two.
 
A signed integer literal can be assigned to a variable of any signed integer type. If no type is specified, Int (4 bytes) is assumed. If the value cannot fit into an Int, Long (8 bytes) is assumed.
 
An unsigned integer literal is made by appending <code>u</code> or <code>U</code> to a signed integer literal. Unsigned literals can be assigned to any unsigned integer type, with UInt (4 bytes) being assumed if none is specified, or ULong (8 bytes) if the value cannot fit into a UInt.
 
Signed and unsigned integer literals can be forced to be interpreted as Long or ULong respectively by appending the suffix <code>L</code> to the literal (lower case 'l' is not allowed as it is easily confused with the digit '1').
 
Underscores can be used between digits of a literal for clarity.
 
<syntaxhighlight lang="kotlin">
fun main() {
// signed integer literals
val d = 255 // decimal
val h = 0xff // hexadecimal (can use 0X instead of 0x)
val b = 0b11111111 // binary (can use 0B instead of 0b)
 
// signed long integer literals (cannot use l instead of L)
val ld = 255L // decimal
val lh = 0xffL // hexadecimal
val lb = 0b11111111L // binary
 
// unsigned integer literals (can use U instead of u)
val ud = 255u // decimal
val uh = 0xffu // hexadecimal
val ub = 0b11111111u // binary
 
// unsigned long integer literals (can use U instead of u)
val uld = 255uL // decimal
val ulh = 0xffuL // hexadecimal
val ulb = 0b11111111uL // binary
 
// implicit conversions
val ld2 = 2147483648 // decimal signed integer literal automatically converted to Long since it cannot fit into an Int
val ush : UShort = 0x7fu // hexadecimal unsigned integer literal automatically converted to UShort
val bd : Byte = 0b01111111 // binary signed integer literal automatically converted to Byte
 
println("$d $h $b $ud $uh $ub $ld $lh $lb $uld $ulh $ulb $ld2 $ush $bd")
}</syntaxhighlight>
 
{{out}}
<pre>
255 255 255 255 255 255 255 255 255 255 255 255 2147483648 127 127
</pre>
 
=={{header|Lasso}}==
<syntaxhighlight lang="lasso">42
0x2a</syntaxhighlight>
 
=={{header|Limbo}}==
Integer literals in Limbo can be written in any base from 2 to 36 by putting the base (or radix), then 'r' or 'R', and the digits of the number. If no base is explicitly given then the number will be in base 10.
<syntaxhighlight lang="limbo">implement Command;
 
include "sys.m";
sys: Sys;
 
include "draw.m";
 
include "sh.m";
 
init(nil: ref Draw->Context, nil: list of string)
{
sys = load Sys Sys->PATH;
 
sys->print("%d\n", 2r1111); # binary
sys->print("%d\n", 8r17); # octal
sys->print("%d\n", 15); # decimal
sys->print("%d\n", 16rF); # hexadecimal
}</syntaxhighlight>
 
=={{header|LiveCode}}==
LiveCode supports hexadecimal literals, and if "convertOctals" is set to true, then integer literals with leading zeroes are interpreted as octal and not base 10.
 
Hex example<syntaxhighlight lang="livecode">put 0x1 + 0xff</syntaxhighlight>
 
=={{header|Logo}}==
Logo only supports decimal integer literals.
 
=={{header|Logtalk}}==
Built-in support for bases 2, 8, 10, and 16:
<syntaxhighlight lang="logtalk">
:- object(integers).
 
:- public(show/0).
 
show :-
write('Binary 0b11110101101 = '), write(0b11110101101), nl,
write('Octal 0o3655 = '), write(0o3655), nl,
write('Decimal 1965 = '), write(1965), nl,
write('Hexadecimal 0x7AD = '), write(0x7AD), nl.
 
:- end_object.
</syntaxhighlight>
Sample output:
<syntaxhighlight lang="text">
| ?- integers::show.
Binary 0b11110101101 = 1965
Octal 0o3655 = 1965
Decimal 1965 = 1965
Hexadecimal 0x7AD = 1965
yes
</syntaxhighlight>
 
=={{header|Lua}}==
Lua supports either base ten or hex
<syntaxhighlight lang="lua">
45, 0x45
</syntaxhighlight>
 
=={{header|M2000 Interpreter}}==
<syntaxhighlight lang="m2000 interpreter">
Def ExpType$(x)=Type$(x)
Print ExpType$(12345678912345#)="Currency", 12345678912345#
Print ExpType$(123456789123456789123456@)="Decimal", 123456789123456789123456@
Print ExpType$(12&)="Long", 12&, 0xFFFFFFFF&=-1
Print ExpType$(12%)="Integer", 12%, 0xFFFF%=-1
\\ used for unsigned integers (but it is double)
Print ExpType$(0xFFFFFFFF)="Double", 0xFFFFFFFF=4294967295
</syntaxhighlight>
 
=={{header|M4}}==
m4 has decimal, octal and hexadecimal literals like C.
 
<syntaxhighlight lang="m4">eval(10) # base 10
eval(010) # base 8
eval(0x10) # base 16</syntaxhighlight>
 
Output: <pre>10 # base 10
8 # base 8
16 # base 16</pre>
 
As an extension, GNU m4 provides "0b" and "0r" literals.
 
{{works with|GNU m4}}
 
<syntaxhighlight lang="m4">eval(0b10) # base 2
eval(`0r2:10') # base 2
...
eval(`0r36:10') # base 36</syntaxhighlight>
 
Output: <pre>2 # base 2
2 # base 2
...
36 # base 36</pre>
 
=={{header|Mathematica}}/{{header|Wolfram Language}}==
<syntaxhighlight lang="mathematica">b^^nnnn is a valid number in base b (with b ranging from 2 to 36) :
2^^1011
-> 11
 
36^^1011
-> 46693</syntaxhighlight>
 
=={{header|MATLAB}} / {{header|Octave}}==
Matlab uses only base 10 integers.
<syntaxhighlight lang="matlab">> 11
ans = 11</syntaxhighlight>
 
Octave allows also a hexadecimal representation
<syntaxhighlight lang="octave">> 0x11
ans = 17</syntaxhighlight>
 
Other representation of other bases need to be converted by functions
<syntaxhighlight lang="matlab">hex2dec(s)
bin2dec(s)
base2dec(s,base)</syntaxhighlight>
 
Different integer types can be defined by casting.
<syntaxhighlight lang="matlab">int8(8)
uint8(8)
int16(8)
uint16(8)
int32(8)
uint32(8)
int64(8)
uint64(8)</syntaxhighlight>
 
=={{header|Maxima}}==
<syntaxhighlight lang="maxima">/* Maxima has integers of arbitrary length */
170141183460469231731687303715884105727</syntaxhighlight>
 
=={{header|Mercury}}==
 
<syntaxhighlight lang="mercury">Bin = 0b010101,
Octal = 0o666,
Hex = 0x1fa,
CharCode = 0'a.</syntaxhighlight>
 
An integer is either a decimal, binary, octal, hexadecimal, or character-code literal. A decimal literal is any sequence of decimal digits. A binary literal is <tt>0b</tt> followed by any sequence of binary digits. An octal literal is <tt>0o</tt> followed by any sequence of octal digits. A hexadecimal literal is <tt>0x</tt> followed by any sequence of hexadecimal digits. A character-code literal is <tt>0'</tt> followed by any single character.
 
=={{header|Metafont}}==
 
<syntaxhighlight lang="metafont">num1 := oct"100";
num2 := hex"100";</syntaxhighlight>
 
Metafont numbers can't be greater than 4096, so that the maximum octal and hexadecimal legal values are <tt>7777</tt> and <tt>FFF</tt> respectively. To be honest, <tt>"100"</tt> is a string, and <tt>oct</tt> is an "internal" "''macro''"; but this is the way Metafont specifies numbers in base 8 and 16.
 
=={{header|MIPS Assembly}}==
This ultimately depends on the assembler you're using.
{{works with|https://github.com/Kingcom/armips ARMIPS}}
Hexadecimal numbers are prefixed with <tt>0x</tt>, binary with <tt>0b</tt>. A number with no prefix is decimal.
 
If fewer than the maximum number of digits is specified, the number is padded with zeroes to fill the declared space.
 
<code>.byte</code> is 8-bit, <code>.halfword</code> is 16-bit, and <code>.word</code> is 32-bit.
 
The endianness of your CPU determines what order the bytes are actually stored in. Bytes are always stored in the order they are declared, but words and halfwords will be endian-swapped if you are assembling for a little-endian MIPS CPU such as the PlayStation 1. On a big-endian MIPS CPU (e.g. Nintendo 64), words and halfwords are assembled as-is.
 
You can have multiple declarations on the same line separated by commas, and if you do, you only need to specify the data type once for that entire line. (Everything in that line is understood to be the same data type.) Or, you can put each on its own line with the data type declaration in front of each. Either way, the memory layout of the declared literals is the same. How you present the data in your source code is up to you, so it's best to display it in a way that maximizes readability and communicates your intent.
 
<syntaxhighlight lang="mips">.word 0xDEADBEEF
.byte 0b00000000,0b11111111,0,255
.halfword 0xCAFE,0xBABE</syntaxhighlight>
 
A minus sign can be used to indicate a negative number. Negative number literals are sign-extended to fit whatever operand size matches the context.
<syntaxhighlight lang="mips">addi $t0,-1 ;assembled the same as "addi $t0,0xFFFF"
li $t0,-2 ;assembled the same as "li $t0,0xFFFFFFFE"</syntaxhighlight>
 
=={{header|Modula-3}}==
All numbers 2 to 16 are allowed to be bases.
<syntaxhighlight lang="modula3">MODULE Literals EXPORTS Main;
 
IMPORT IO;
 
BEGIN
IO.PutInt(16_2D7);
IO.Put(" ");
IO.PutInt(10_727);
IO.Put(" ");
IO.PutInt(8_1327);
IO.Put(" ");
IO.PutInt(2_1011010111);
IO.Put("\n");
END Literals.</syntaxhighlight>
 
=={{header|Neko}}==
Neko supports base 10 and 0x prefixed base 16 integer literals. Leading zero is NOT octal.
 
<syntaxhighlight lang="actionscript">/**
Integer literals, in Neko
Base 10 and Base 16, no leading zero octal in Neko
*/
 
var num = 2730
if (num == 02730) $print("base 10, even with leading zero\n")
if (num == 0xAAA) $print("base 16, with leading 0x or 0X\n")</syntaxhighlight>
 
=={{header|Nemerle}}==
<syntaxhighlight lang="nemerle">42 // integer literal
1_000_000 // _ can be used for readability
1_42_00 // or unreadability...
0x2a // hexadecimal integer literal
0o52 // octal integer literal
0b101010 // binary integer literal
10u // unsigned int
10b, 10sb, 10bs // signed byte
10ub, 10bu // unsigned byte
10L // long
10UL, 10LU // unsigned long</syntaxhighlight>
 
Formally (adapted from [http://nemerle.org/wiki/index.php?title=Lexical_structure_%28ref%29 Reference Manual]):
<pre><decimal_literal> ::=
[ <prefix> ] <digits> [ { '_' <digits> } ] [ <suffix> ]
<prefix> ::=
'0x'
| '0o'
| '0b'
<digits> ::=
{ <decimal_digit> }
<suffix> ::=
'b'
| 'sb'
| 'ub'
| 's'
| 'us'
| 'u'
| 'l'
| 'lu'</pre>
 
=={{header|NetRexx}}==
Along with decimal notation NetRexx accepts numeric literals in hexadecimal and binary formats.
 
The NetRexx documentation describes hexadecimal and binary literal symbol notation in more detail; a summary follows:
 
A ''hexadecimal numeric symbol'' describes a whole number, and is of the form ''nXstring'' where, ''n'' is a
simple number which describes the effective length of the hexadecimal string and ''string'' is a string of one or more hexadecimal characters.
 
A ''binary numeric symbol'' describes a whole number using the same rules, except that the identifying
character is <tt>B</tt> or <tt>b</tt>, and the digits of ''string'' must be either <tt>0</tt> or <tt>1</tt>, each representing a single bit.
 
<syntaxhighlight lang="netrexx">/* NetRexx */
options replace format comments java crossref symbols
 
iv = 8; say '8'.right(20) '==' iv.right(8) -- 8
iv = -8; say '-8'.right(20) '==' iv.right(8) -- -8
iv = 1x8; say '1x8'.right(20) '==' iv.right(8) -- -8
iv = 2x8; say '2x8'.right(20) '==' iv.right(8) -- 8
iv = 2x08; say '2x08'.right(20) '==' iv.right(8) -- 8
iv = 0x08; say '0x08'.right(20) '==' iv.right(8) -- 8
iv = 0x10; say '0x10'.right(20) '==' iv.right(8) -- 16
iv = 0x81; say '0x81'.right(20) '==' iv.right(8) -- 129
iv = 2x81; say '2x81'.right(20) '==' iv.right(8) -- -127
iv = 3x81; say '3x81'.right(20) '==' iv.right(8) -- 129
iv = 4x81; say '4x81'.right(20) '==' iv.right(8) -- 129
iv = 04x81; say '04x81'.right(20) '==' iv.right(8) -- 129
iv = 16x81; say '16x81'.right(20) '==' iv.right(8) -- 129
iv = 4xF081; say '4xF081'.right(20) '==' iv.right(8) -- -3967
iv = 8xF081; say '8xF081'.right(20) '==' iv.right(8) -- 61569
iv = 0Xf081; say '0Xf081'.right(20) '==' iv.right(8) -- 61569
iv = 0xffff; say '0xffff'.right(20) '==' iv.right(8) -- 65535
iv = 4xffff; say '4xffff'.right(20) '==' iv.right(8) -- -1
iv = 8xffff; say '8xffff'.right(20) '==' iv.right(8) -- 65535
iv = 1b0; say '1b0'.right(20) '==' iv.right(8) -- 0
iv = 1b1; say '1b1'.right(20) '==' iv.right(8) -- -1
iv = 2b1; say '2b1'.right(20) '==' iv.right(8) -- 1
iv = 0b10; say '0b10'.right(20) '==' iv.right(8) -- 2
iv = 2b10; say '2b10'.right(20) '==' iv.right(8) -- -2
iv = 3b10; say '3b10'.right(20) '==' iv.right(8) -- 2
iv = 0b100; say '0b100'.right(20) '==' iv.right(8) -- 4
iv = 3b100; say '3b100'.right(20) '==' iv.right(8) -- -4
iv = 4b100; say '4b100'.right(20) '==' iv.right(8) -- 4
iv = 4b1000; say '4b1000'.right(20) '==' iv.right(8) -- -8
iv = 8B1000; say '8B1000'.right(20) '==' iv.right(8) -- 8
iv = 00B1111111111111111; say '00B1111111111111111'.right(20) '==' iv.right(8) -- 65535
iv = 16B1111111111111111; say '16B1111111111111111'.right(20) '==' iv.right(8) -- -1
iv = 32B1111111111111111; say '32B1111111111111111'.right(20) '==' iv.right(8) -- 65535
 
return</syntaxhighlight>
'''Output:'''
<pre>
8 == 8
-8 == -8
1x8 == -8
2x8 == 8
2x08 == 8
0x08 == 8
0x10 == 16
0x81 == 129
2x81 == -127
3x81 == 129
4x81 == 129
04x81 == 129
16x81 == 129
4xF081 == -3967
8xF081 == 61569
0Xf081 == 61569
0xffff == 65535
4xffff == -1
8xffff == 65535
1b0 == 0
1b1 == -1
2b1 == 1
0b10 == 2
2b10 == -2
3b10 == 2
0b100 == 4
3b100 == -4
4b100 == 4
4b1000 == -8
8B1000 == 8
00B1111111111111111 == 65535
16B1111111111111111 == -1
32B1111111111111111 == 65535
</pre>
 
=={{header|Nim}}==
<syntaxhighlight lang="nim">var x: int
x = 0b1011010111
x = 0b10_1101_0111
x = 0o1327
x = 0o13_27
x = 727
x = 727_000_000
x = 0x2d7
x = 0x2d7_2d7
 
# Literals of specific size:
var a = -127'i8 # 8 bit Integer
var b = -128'i16
var c = -129'i32
var d = -129'i64
var e = 126'u # Unsigned Integer
var f = 127'u8 # 8 bit uint
var g = 128'u16
var h = 129'u32
var i = 130'u64</syntaxhighlight>
 
=={{header|Objeck}}==
As of v1.1, Objeck only supports hexadecimal and decimal literals.
<syntaxhighlight lang="objeck">
bundle Default {
class Literal {
function : Main(args : String[]) ~ Nil {
(727 = 0x2d7)->PrintLine();
}
}
}
</syntaxhighlight>
 
=={{header|OCaml}}==
Line 270 ⟶ 1,646:
 
Bin(leading 0b or 0B), Oct(leading 0o or 0O), Hex(leading 0x or 0X)
<syntaxhighlight lang="ocaml"># 727 = 0b1011010111;;
<lang ocaml>
# 727 = 0b1011010111;;
- : bool = true
# 727 = 0o1327;;
Line 278 ⟶ 1,653:
- : bool = true
# 12345 = 12_345 (* underscores are ignored; useful for keeping track of places *);;
- : bool = true</syntaxhighlight>
</lang>
 
Literals for the other built-in integer types:
Line 285 ⟶ 1,659:
* <tt>727L</tt> - int64
* <tt>727n</tt> - nativeint
 
=={{header|Oforth}}==
 
Integers can be expressed into base 10 (default), base 16 (using 0x prefix) or base 2 (using 0b prefix).
 
 
Those prefixes can be used for arbitrary precision integers :
 
{{out}}
<pre>
>0b100000000000000000000000000 println
67108864
ok
>0xFFFFFFFFFFFFFFFFFFFFFFFFFFF println
324518553658426726783156020576255
ok
</pre>
 
=={{header|Oz}}==
To demonstrate the different numerical bases, we unify the identical values:
<syntaxhighlight lang="oz">try
%% binary octal dec. hexadecimal
0b1011010111 = 01327 = 727 = 0x2d7
{Show success}
catch _ then
{Show unexpectedError}
end</syntaxhighlight>
 
Negative integers start with "~":
<syntaxhighlight lang="oz">X = ~42</syntaxhighlight>
 
=={{header|PARI/GP}}==
GP allows input in binary <code>0b11</code> and hexadecimal <code>0xff</code>. PARI of course supports precisely those bases supported by [[#C|C]].
 
=={{header|Pascal}}==
See [[Literals/Integer#Delphi | Delphi]]
 
FreePascal also supports:
 
hexadecimal (with leading dollar sign: $)
octal (with leading ampersand: &) and
binary (with leading percent sign: %) literals:
<syntaxhighlight lang="pascal">const
 
DEC_VALUE = 15;
HEX_VALUE = $F;
OCTAL_VALUE = &017;
BINARY_VALUE = %1111;
</syntaxhighlight>
 
=={{header|Perl}}==
 
<syntaxhighlight lang="perl">print "true\n" if ( 727 == 0x2d7 &&
<lang perl>
print "true\n" if ( 727 == 0x2d7 &&
727 == 01327 &&
727 == 0b1011010111 &&
12345 == 12_345 # underscores are ignored; useful for keeping track of places
);</syntaxhighlight>
 
</lang>
=={{header|Phix}}==
{{libheader|Phix/basics}}
Phix supports more bases and number formats than average. Standard decimals and hexadecimals are eg 255=#FF.
For hexadecimal numbers you can use upper or lower case for digits above 9 (A..F or a..f).<br>
Phix also supports 0b01, 0o07, (0t07,) 0d09, and 0x0F for binary, octal, (octal,) decimal, and hexadecimal values.
(The only difference between 0o07 and 0t07 is personal preference.) There is no difference whatsoever between 1 and 1.0.<br>
Given the need for 2, 8, 10, and 16, rather than four routines I wrote one that could handle all of them, and trivially
extended it to cope up to base 36. Thus Phix (also) allows any base between 2 and 36, using the notation o(<base>)digits,
eg o(7)16 is the base 7 representation of the decimal 13 (ie 1*7^1 + 6*7^0).
Phix does not however support "leading 0 is octal", or "trailing h is hex" or any other trailing qualifiers.
There is also a specialist "bytewise octal" that I personally wanted for x86 opcodes/listing files, eg 0ob377377377377==#FFFFFFFF.<br>
An integer literal representing a character code can also be expressed by surrounding the character with single quotes, for example the statement <code>for i='A' to 'Z'</code> is/behaves exactly the same as <code>for i=65 to 90</code>.<br>
Elements (8-bit characters) of an ansi string can likewise be treated as integers. Strings representing a number can/must be converted using eg scanf().<br>
In the 32-bit version, integers outside -1,073,741,824 to +1,073,741,823 must be stored as atoms, which [ie a 64-bit float] can (accurately) store integers up to 9,007,199,254,740,992:
between 9,007,199,254,740,992 and 18,014,398,509,481,984 you can only store even numbers, and between 18,014,398,509,481,984 and 36,028,797,018,963,968, you can only store numbers divisible by 4, and so on. (ie as you need more and more bits on the front, eventually bits must start falling off the end)<br>
In the 64-bit version the limits of integers are -4,611,686,018,427,387,904 to +4,611,686,018,427,387,903.<br>
The included mpfr/gmp library allows working with extremely large integers with arbitrary precision, very efficiently.
 
<!--<syntaxhighlight lang="phix">(phixonline)-->
<span style="color: #0000FF;">?{</span><span style="color: #000000;">65</span><span style="color: #0000FF;">,</span><span style="color: #000000;">#41</span><span style="color: #0000FF;">,</span><span style="color: #008000;">'A'</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">scanf</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"55"</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"%d"</span><span style="color: #0000FF;">),</span><span style="color: #000000;">0o10</span><span style="color: #0000FF;">,</span><span style="color: #000000;">0(7)11</span><span style="color: #0000FF;">}</span>
<!--</syntaxhighlight>-->
 
{{out}}
<pre>
{65,65,65,{{55}},8,8}
</pre>
 
=={{header|PHP}}==
 
<langsyntaxhighlight lang="php"><?php
if ( 727 == 0x2d7 &&
727 == 01327) ){
echo "true\n";
}
?></lang>
 
$a = 1234; // decimal number
$a = 0123; // octal number (equivalent to 83 decimal)
$a = 0x1A; // hexadecimal number (equivalent to 26 decimal)
$a = 0b11111111; // binary number (equivalent to 255 decimal)
$a = 1_234_567; // decimal number (as of PHP 7.4.0)
</syntaxhighlight>
 
=={{header|Picat}}==
All output are in base 10.
<syntaxhighlight lang="picat">% All outputs are in base 10
main =>
println(100), % plain integer
println(1_234_567_890), % underscores can be used for clarity
println(1_000_000_000_070_000_030_000_001), % arbitrary precision
nl,
 
println(0x10ABC), % Hexadecimal
println(0xBe_ad_ed_83), % lower or upper case are the same
nl,
println(0o666), % Octal
println(0o555_666_777),
nl,
 
println(0b1111111111111), % binary
println(0b1011_1111_1110)</syntaxhighlight>
 
{{out}}
<pre>1234567890
1000000000070000030000001
 
68284
3199069571
 
438
95907327
 
8191
3070</pre>
 
 
=={{header|PicoLisp}}==
In the strict sense of this task, PicoLisp reads only integers at bases which are a power of ten (scaled fixpoint numbers). This is controlled via the global variable '[http://software-lab.de/doc/refS.html#*Scl *Scl]':
<syntaxhighlight lang="picolisp">: (setq *Scl 4)
-> 4
 
: 123.456789
-> 1234568</syntaxhighlight>
However, the reader is normally augmented by read macros, which can read any
base or any desired format. Read macros are not executed at runtime, but
intially when the sources are read.
<syntaxhighlight lang="picolisp">: '(a `(hex "7F") b `(oct "377") c)
-> (a 127 b 255 c)</syntaxhighlight>
In addition to standard formats like
'[http://software-lab.de/doc/refH.html#hex hex]' (hexadecimal) and
'[http://software-lab.de/doc/refO.html#oct oct]' (octal),
there are also more esoteric formats like
'[http://software-lab.de/doc/refF.html#fmt64 fmt64]' (base 64) and
'[http://software-lab.de/doc/refH.html#hax hax]' (hexadecimal numbers
coded with alphabetic characters).
 
=={{header|PL/I}}==
<syntaxhighlight lang="pl/i">
12345
'b4'xn /* a hexadecimal literal integer. */
'ffff_ffff'xn /* a longer hexadecimal hexadecimal integer. */
1101b /* a binary integer, of value decimal 13. */
</syntaxhighlight>
 
=={{header|Plain English}}==
Plain English has two types of numerical literals. The first is the ordinary "number literal", which is expressed in base ten.
<syntaxhighlight lang="text">
12345
-12345 \ with a negative sign
+12345 \ with a positive sign
</syntaxhighlight>
 
The second is the "nibble literal", which is a dollar sign followed by a hexadecimal literal.
<syntaxhighlight lang="text">$12345DEADBEEF</syntaxhighlight>
 
Numerical literals can also be embedded into "ratio" or "mixed literals".
<syntaxhighlight lang="text">
123/456 \ ratio literal
1-2/3 \ mixed literal
</syntaxhighlight>
 
=={{header|PostScript}}==
Integer literals in PostScript can be either standard decimal literals or in the form ''base''<code>#</code>''number''. ''base'' can be any decimal integer between 2 and 36, ''number'' can then use digits from <code>0</code> to ''base''&nbsp;−&nbsp;1. Digits above <code>9</code> are replaced by <code>A</code> through <code>Z</code> and case does not matter.
<syntaxhighlight lang="postscript">123 % 123
8#1777 % 1023
16#FFFE % 65534
2#11011 % 27
5#44 % 24</syntaxhighlight>
 
=={{header|PowerShell}}==
PowerShell only supports base 10 and 16 directly:
<syntaxhighlight lang="powershell">727 # base 10
0x2d7 # base 16</syntaxhighlight>
Furthermore there are special suffices which treat the integer as a multiple of a specific power of two, intended to simplify file size operations:
<syntaxhighlight lang="powershell">3KB # 3072
3MB # 3145728
3GB # 3221225472
3TB # 3298534883328</syntaxhighlight>
A number can be suffixed with <code>d</code> to make it a <code>decimal</code>. This doesn't work in conjunction with above suffixes, though:
<pre>PS> 4d.GetType().ToString()
System.Decimal</pre>
 
=={{header|PureBasic}}==
PureBasic allows integer literals to be specified in base 10, base 2 by using the prefix '%', or base 16 by using the prefix '$'.
<syntaxhighlight lang="purebasic">x = 15 ;15 in base 10
x = %1111 ;15 in base 2
x = $f ;15 in base 16</syntaxhighlight>
An integer literal representing a character code can also be expressed by surrounding the character with single quotes. More than one character can be included in the single quotes (i.e. 'abc'). Depending on whether code is compiled in Ascii or Unicode mode this will result in the integer value being specified in base 256 or base 65536 respectively.
 
<syntaxhighlight lang="purebasic">x = 'a' ;129</syntaxhighlight>
 
=={{header|Python}}==
{{works with|Python|3.0}}
Python 3.0 brought in the binary literal and uses 0o or 0O exclusively for octal.
<langsyntaxhighlight lang="python">>>> # Bin(leading 0b or 0B), Oct(leading 0o or 0O), Dec, Hex(leading 0x or 0X), in order:
>>> 0b1011010111 == 0o1327 == 727 == 0x2d7
True
>>></syntaxhighlight>
>>>
</lang>
{{works with|Python|2.6}}
Python 2.6 has the binary and new octal formats of 3.0, as well as keeping the earlier leading 0 octal format of previous 2.X versions for compatability.
<langsyntaxhighlight lang="python">>>> # Bin(leading 0b or 0B), Oct(leading 0o or 0O, or just 0), Dec, Hex(leading 0x or 0X), in order:
>>> 0b1011010111 == 0o1327 == 01327 == 727 == 0x2d7
True
>>></syntaxhighlight>
>>>
</lang>
{{works with|Python|2.5}}
<langsyntaxhighlight lang="python">>>> # Oct(leading 0), Dec, Hex(leading 0x or 0X), in order:
>>> 01327 == 727 == 0x2d7
True
>>></syntaxhighlight>
>>>
</lang>
 
In Python 2.x you may also specify a <tt>long</tt> literal by adding an <tt>l</tt> or <tt>L</tt> (the latter form is preferred as the former looks like a "1") to the end (ex: <tt>574298540721727L</tt>), but this is optional, as integer literals that are too large for an <tt>int</tt> will be interpreted as a <tt>long</tt>.
 
=={{header|Quackery}}==
 
The default base for the Quackery compiler is decimal. This can be overridden for a single hexadecimal number with the building word (compiler directive) <code>hex</code> like this; <code>hex DEFACEABADFACADE</code>.
 
The default base can be overridden for a section of code using the compiler directive <code>now!</code> like this;
 
<syntaxhighlight lang="quackery">[ 2 base put ] now!
 
( The Quackery compiler now expects numeric literals to be in binary. )
 
[ base release ] now!
 
( The Quackery compiler now expects numeric literals to be in whichever
base they were previously. The default base is decimal. )</syntaxhighlight>
 
If a new compiler directive akin to <code>hex</code> is required, say to allow occasional octal literals in the form <code>octal 7777</code>, the compiler can be extended like this;
 
<syntaxhighlight lang="quackery"> [ 8 base put
nextword dup
$ '' = if
[ $ '"octal" needs a number after it.'
message put bail ]
dup $->n iff
[ nip swap dip join ]
else
[ drop
char " swap join
$ '" is not octal.'
join message put bail ]
base release ] builds octal ( [ $ --> [ $ )</syntaxhighlight>
 
=={{header|R}}==
0x or 0X followed by digits or the letters a-f denotes a hexadecimal number. The suffix L means that the number should be stored as an integer rather than numeric (floating point).
<syntaxhighlight lang="r">0x2d7==727 # TRUE
identical(0x2d7, 727) # TRUE
is.numeric(727) # TRUE
is.integer(727) # FALSE
is.integer(727L) # TRUE
is.numeric(0x2d7) # TRUE
is.integer(0x2d7) # FALSE
is.integer(0x2d7L) # TRUE</syntaxhighlight>
For more information, see [http://cran.r-project.org/doc/manuals/R-lang.pdf Section 10.3.1 of the R Language definition] (PDF).
 
=={{header|Racket}}==
 
<syntaxhighlight lang="racket">
#lang racket
#b1011010111
#o1327
#d727
#x2d7
</syntaxhighlight>
 
Output:
<pre>
727
727
727
727
</pre>
 
=={{header|Raku}}==
(formerly Perl 6)
These all print 255.
<syntaxhighlight lang="raku" line>say 255;
say 0d255;
say 0xff;
say 0o377;
say 0b1111_1111;
 
say :10<255>;
say :16<ff>;
say :8<377>;
say :2<1111_1111>;
say :3<100110>;
say :4<3333>;
say :12<193>;
say :36<73>;</syntaxhighlight>
There is a specced form for bases above 36, but rakudo does not yet implement it.
 
=={{header|REBOL}}==
<syntaxhighlight lang="rebol">1</syntaxhighlight>
 
=={{header|Retro}}==
<syntaxhighlight lang="retro">#100 ( decimal )
%100 ( binary )
$100 ( hex )
'c ( ascii character )
100 ( number in current base )</syntaxhighlight>
 
Numbers without a prefix are interpreted using the current '''base''', which is a variable Valid characters are stored in a string called '''numbers''', which can also be altered to allow for larger bases.
 
=={{header|REXX}}==
<syntaxhighlight lang="rexx">/*REXX pgm displays an integer (expressed in the pgm as a literal) in different bases*/
/*────────── expressing decimal numbers ──────────*/
ddd = 123 /*a decimal number (expressed as a literal). */
ddd = '123' /*this is exactly the same as above. */
ddd = "123" /*this is exactly the same as above also. */
/*────────── expressing hexadecimal numbers ──────*/
hhh = '7b'x /*a value, expressed as a hexadecimal literal. */
hhh = '7B'x /* (same as above) using a capital "B". */
hhh = '7B'X /* (same as above) using a capital "X". */
cow = 'dead beef'x /*another value, with a blank for the eyeballs.*/
cow = 'de ad be ef'x /* (same as above) with blanks for the eyeballs.*/
/*────────── expressing binary numbers ───────────*/
bbb = '1111011'b /*a value, expressed as a binary literal. */
bbb = '01111011'b /* (same as above) with a full 8 binary digits. */
bbb = '0111 1011'b /* (same as above) with a blank for the eyeballs.*/
 
say ' base 10=' ddd
say ' base 2=' x2b( d2x( ddd ) )
say ' base 16=' d2x( ddd )
say ' base 256=' d2c( ddd ) /*the output displayed is ASCII (or maybe EBCDIC).*/
 
thingy1= +123 /*╔══════════════════════════════════════════════╗*/
thingy2= '+123' /*║ All of the THINGYs variables aren't strictly ║*/
thingy3= ' 123' /*║ (exactly) equal to the DDD variable, but ║*/
thingy4= 123. /*║ they do compare numerically equal. When ║*/
thingy5= 12.3e+1 /*║ compared numerically, numbers are rounded to ║*/
thingy6= 1230e-1 /*║ the current setting of NUMERIC DIGITS. The ║*/
thingy7= 1230E-0001 /*║ default for (decimal) NUMERIC DIGITS is 9 ║*/
thingy8= ' + 123 ' /*╚══════════════════════════════════════════════╝*/
 
/*stick a fork in it, we're all done. */</syntaxhighlight>
{{out|output}}
<pre>
base 10= 123
base 2= 01111011
base 16= 7B
base 256= {
</pre>
 
On TSO d2c(37) does not result in a displayable character.
With thing=c2d('A') I see:
<pre>
base 10= 193
base 2= 11000001
base 16= C1
base 256= A
</pre>
The first three lines are platform-independent.
 
=={{header|Ring}}==
<syntaxhighlight lang="ring">
see "Decimal literal = " + 1234 + nl
see "Hexadecimal literal = " + dec("4D2") + nl
see "Octal Literal = " + octal(668) + nl
see "Binary literal = " + bintodec("10011010010")
 
func bintodec(bin)
binsum = 0
for n=1 to len(bin)
binsum = binsum + number(bin[n]) *pow(2, len(bin)-n)
next
return binsum
func octal m
output = ""
w = m
while fabs(w) > 0
oct = w & 7
w = floor(w / 8)
output = string(oct) + output
end
return output
</syntaxhighlight>
Output:
<pre>
Decimal literal = 1234
Hexadecimal literal = 1234
Octal Literal = 1234
Binary literal = 1234
</pre>
 
Unsigned integers, which must begin with <code>#</code>, can be expressed in binary, octal, decimal or hexadecimal. A final lowercase letter defines the base.
#100111010b
#472o
#314d
#13Ah
 
=={{header|RPL}}==
#1011b <span style="color:grey">@ Base 2</span>
#1234o <span style="color:grey">@ Base 8</span>
#6789d <span style="color:grey">@ Base 10</span>
#ABCDh <span style="color:grey">@ Base 16</span>
=={{header|Ruby}}==
 
<syntaxhighlight lang="ruby">727 == 0b1011010111 # => true, binary
(This is an interactive irb session)
727 == 0x2d7 # => true, hex
727 == 0o1327 # => true, octal
727 == 01327 # => true, octal
 
12345 == 12_345 # => true underscores are ignored; useful for keeping track of places
</syntaxhighlight>
 
=={{header|Rust}}==
<syntaxhighlight lang="rust">10 // Decimal
0b10 // Binary
0x10 // Hexadecimal
0o10 // Octal
1_000 // Underscores may appear anywhere in the numeric literal for clarity
10_i32 // The type (in this case i32, a 32-bit signed integer) may also be appended.
10i32 // With or without underscores</syntaxhighlight>
 
=={{header|Scala}}==
Scala has signed integers of 8, 16, 32 and 64 bits. They can be represented in decimal, octal by prefixing
<code>0</code>, or hexadecimal by prefixing <code>0x</code> or <code>0X</code>. Without any other type hint,
it defaults to 32 bits integers, or an <code>Int</code>. An <code>l</code> or <code>L</code> suffix will
indicate a 64 bits integer, or a <code>Long</code>. The other two types, <code>Byte</code> and <code>Short</code>,
can be represented using type ascription, as shown below.
 
<pre>
scala> 16
irb(main):001:0> 727 == 0b1011010111
res10: Int = 16
=> true
 
irb(main):002:0> 727 == 0x2d7
scala> 020L
=> true
res11: Long = 16
irb(main):003:0> 727 == 01327
 
=> true
scala> 0x10 : Byte
irb(main):001:0> 12345 == 12_345 # underscores are ignored; useful for keeping track of places
res12: Byte = 16
=> true
 
scala> 16 : Short
res13: Short = 16
 
scala> 020 : Int
res14: Int = 16
 
scala> 0x10 : Long
res15: Long = 16
</pre>
 
Line 348 ⟶ 2,125:
 
binary: #b, octal: #o, decimal: #d (optional obviously), hex: #x
<syntaxhighlight lang="scheme">> (= 727 #b1011010111)
<pre>
> (= 727 #b1011010111)
#t
> (= 727 #o1327)
Line 356 ⟶ 2,132:
#t
> (= 727 #x2d7)
#t</syntaxhighlight>
#t
 
=={{header|Seed7}}==
In [[Seed7]] integer literals may have the form <base>#<numeral>. Here <base> can be from the range 2..36. For example:
<syntaxhighlight lang="seed7">$ include "seed7_05.s7i";
 
const proc: main is func
begin
writeln(727);
writeln(32#MN);
writeln(16#2D7);
writeln(10#727);
writeln(8#1327);
writeln(2#1011010111);
end func;
</syntaxhighlight>
Sample output:
<pre>
727
727
727
727
727
727
</pre>
 
=={{header|Sidef}}==
<syntaxhighlight lang="ruby">say 255;
say 0xff;
say 0377;
say 0b1111_1111;</syntaxhighlight>
{{out}}
<pre>255
255
255
255</pre>
 
=={{header|Slate}}==
<syntaxhighlight lang="slate">2r1011010111 + 8r1327 + 10r727 + 16r2d7 / 4</syntaxhighlight>
 
=={{header|Smalltalk}}==
<syntaxhighlight lang="smalltalk">2r1011010111 + 5r100 + 8r1327 + 10r727 + 16r2d7 / 4</syntaxhighlight>
binary, base-5, octal, decimal, binary, decimal (default).
Any base between 2 and 32 can be used (although only 2, 8, 10 and 16 are typically needed).
 
There is no size limit (except memory constraints), the runtime chooses an appropriate representation automatically:
<syntaxhighlight lang="smalltalk">16r1B30964EC395DC24069528D54BBDA40D16E966EF9A70EB21B5B2943A321CDF10391745570CCA9420C6ECB3B72ED2EE8B02EA2735C61A000000000000000000000000 = 100 factorial
"evaluates to true"
 
2r101010101011111100000011111000000111111111111111110101010101010101010100101000000000111111100000000111
bitCount -> 55</syntaxhighlight>
 
=={{header|Standard ML}}==
(This is an interactive SML/NJ session)
 
Hex(leading 0x), Word (unsigned ints, leading 0w), Word Hex (leading 0wx)
<syntaxhighlight lang="sml">- 727 = 0x2d7;
val it = true : bool
- 727 = Word.toInt 0w727;
val it = true : bool
- 0w727 = 0wx2d7;
val it = true : bool
- ~727; (* negative number;
* ~ is the unary negation operator for all numbers, including reals and ints;
* worth mentioning because it's unusual
*)
val it = ~727 : int</syntaxhighlight>
 
=={{header|Stata}}==
 
Stata does not have an integer type, except for dataset storage, in order to reduce data size in memory or on disk. Computations are done with floating-point doubles, which can hold exact integers in the range -9007199254740992 to 9007199254740992 (that is, -2^53 to 2^53). Only decimal literals are supported.
 
=={{header|Swift}}==
<syntaxhighlight lang="swift">let hex = 0x2F // Hexadecimal
let bin = 0b101111 // Binary
let oct = 0o57 // Octal</syntaxhighlight>
 
=={{header|Tcl}}==
{{works with|Tcl|8.5}}
(This is an interactive tclsh session; <tt>expr</tt> is only called to evaluate the equality test.)
<syntaxhighlight lang="tcl">% expr 727 == 0x2d7
1
% expr 727 == 0o1327
1
% expr 727 == 01327
1
% expr 727 == 0b1011010111
1</syntaxhighlight>
 
=={{header|TI-89 BASIC}}==
 
Binary, decimal, and hexadecimal are supported. The system base mode sets the default output base, but does not affect input; unmarked digits are always decimal.
 
<syntaxhighlight lang="ti89b">0b10000001 = 129 = 0h81</syntaxhighlight>
 
=={{header|UNIX Shell}}==
The <tt>expr</tt> command accepts only decimal literals.
 
<syntaxhighlight lang="bash">$ expr 700 - 1
{{works with|bash}}
699
$ expr 0700 - 01
699</syntaxhighlight>
 
Some shells have arithmetic expansion. These shells may accept literals in other bases. This syntax only works in places that do arithmetic expansion, such as in <tt>$(( ))</tt>, or in Bash's <tt>let</tt> command.
As manual states, 0x or 0X is the prefix for hexadecimal numbers, while 0 is the one for octal, and nothing means the number is decimal. But the sintax <tt>BASE#NUMBER</tt> can be used, with BASE going from 2 to 64, and the symbols used are digits, lowercase letters, uppercase letters, @ and _ <cite>in that order</cite>; <cite>if the BASE is less than or equal to 36, lowercase and uppercase letters can be used interchangeably to represent number from 10 and 35.</cite> (From the info manual of the Bash). This syntax works only in some circumstances, i.e. in the shell expansion (e.g. inside <tt>$(( ))</tt>) or using <tt>let</tt>.
 
Quoting the manual page of [[pdksh]]:
<pre>
 
dec=727
Integer constants may be specified with arbitrary bases using the
notation <u>base</u>#<u>number</u>, where <u>base</u> is a decimal integer specifying the
base, and <u>number</u> is a number in the specified base. Additionally,
integers may be prefixed with `0X' or `0x' (specifying base 16) or `0'
(base 8) in all forms of arithmetic expressions, except as numeric
arguments to the '''test''' command.
 
[[pdksh]] allows bases from 2 to 36. The letters a-z or A-Z represent numbers 10 to 35.
 
[[Bash]] allows the same syntax as pdksh. In addition, Bash can handle bases as high as 64: the symbols used are digits, lowercase letters, uppercase letters, @ and _ <cite>in that order</cite>; <cite>if the BASE is less than or equal to 36, lowercase and uppercase letters can be used interchangeably to represent number from 10 and 35.</cite> (From the info manual of the Bash).
 
{{works with|bash}}
<syntaxhighlight lang="bash">dec=727
oct=$(( 01327 ))
bin=$(( 2#1011010111 ))
Line 372 ⟶ 2,259:
# or e.g.
let bin=2#1011010111
let "baseXX = 20#1g7"</syntaxhighlight>
 
{{works with|pdksh|5.2.14}}
<syntaxhighlight lang="bash">dec=727
oct=$(( 01327 ))
bin=$(( 2#1011010111 ))
hex=$(( 0x2d7 ))
# or e.g.
(( bin = 2#1011010111 ))
(( baseXX = 20#1g7 ))</syntaxhighlight>
 
=={{header|Ursa}}==
Ursa supports signed, base-10 integers.
<syntaxhighlight lang="ursa">decl int i
set i 123
set i -456</syntaxhighlight>
 
=={{header|Ursala}}==
 
Natural numbers (i.e., unsigned integers) of any size are supported. Only decimal integer literals are recognized by the compiler, as in a declaration such as the following.
<syntaxhighlight lang="ursala">n = 724</syntaxhighlight>
Signed integers are also recognized and are considered a separate type from natural numbers, but non-negative integers and natural numbers have compatible binary representations.
<syntaxhighlight lang="ursala">z = -35</syntaxhighlight>
Signed rational numbers of unlimited precision are yet another primitive type and can be expressed
in conventional decimal form.
<syntaxhighlight lang="ursala">m = -2/3</syntaxhighlight>
The forward slash in a rational literal is part of the syntax and not a division operator. Finally, a signed or unsigned integer with a trailing underscore, like this
<syntaxhighlight lang="usala">t = 4534934521_</syntaxhighlight>
is used for numbers stored in binary converted decimal format, also with unlimited precision, which may perform better in applications involving very large decimal numbers.
 
=={{header|Uxntal}}==
Uxntal only allows hexadecimal literals, and they can be either one or two bytes. In order to push them to the stack, rather than writing them directly to the assembled binary, they must be prefixed with <code>#</code>.
<syntaxhighlight lang="Uxntal">#2a ( byte literal )
#c0de ( short literal )</syntaxhighlight>
And yes, they do have to be in lowercase hex.
 
=={{header|Verbexx}}==
<syntaxhighlight lang="verbexx">// Integer Literals:
//
// If present, base prefix must be: 0b 0B (binary) 0o 0O (octal)
// 0x 0X (hex)
//
// If present, length suffix must be: i I i64 I64 (INT64_T)
// u U u64 U64 (UINT64_T)
// i32 I32 (INT32_T) u32 U32 (UINT32_T)
// i16 I16 (INT16_T) u16 U16 (UINT16_T)
// i8 I8 (INT8_T) u8 U8 (UINT8_T)
// u1 U1 (BOOL_T) u0 U0 (UNIT_T)
// iV iv Iv IV (INTV_T)
 
// Binary Octal Decimal Hexadecimal
// ------------ ---------- ------------ --------------
@SAY 0b1101 0o016 19999999 0xFfBBcC0088 ; // INT64_T
@SAY 0B0101 0O777 -12345678 0X0a2B4c6D8eA ; // INT64_T
@SAY 0b1101I64 0o707I64 12345678i64 0xFfBBcC00i64 ; // INT64_T
@SAY 0b1101I 0o57707i -2345678I 0xfafbbCc99i ; // INT64_T
@SAY 0b1001U64 0o555u64 33345678u64 0xFfaBcC00U64 ; // UINT64_T
@SAY 0b10010100U 0o1234567u 3338u 0x99faBcC0EU ; // UINT64_T
@SAY 0B0101i32 0O753I32 987654i32 0XAAb4cCeeI32 ; // INT32_T
@SAY 0B0101u32 0O573u32 987654U32 0X0BAb4cCeeU32 ; // UINT32_T
@SAY 0B0101i16 0O753i16 -017654I16 0X000cCffi16 ; // INT16_T
@SAY 0B0101u16 0O633U16 27654U16 0X000dDbBu16 ; // UINT16_T
@SAY 0B0101i8 0O153i8 -000114I8 0X000ffi8 ; // INT8_T
@SAY 0B0101u8 0O132U8 00094U8 0X0000bu8 ; // UINT8_T
@SAY 0b0u1 0o0u1 00u1 0U1 0x000u1 ; // BOOL_T (FALSE)
@SAY 0B001u1 0O1u1 1u1 01U1 0X1u1 0x001U1 ; // BOOL_T (TRUE )
@SAY 0b0u0 0o000u0 00u0 0U0 0x0u0 0X000U0 ; // UNIT_T
@SAY -1234iV ; // INTV_T (cpp_int)
@SAY 56781234Iv ; // INTV_T (cpp_int)
 
// note: _ (underscores) can appear in the main numeric part of the literal,
// after any base prefix, and before any length suffix. If there is
// no prefix, the numeric literal cannot begin with underscore:
 
@SAY 100_000 1_u1 0x_FFFF_u16 1__0__ 0x__7890_ABCD_EFAB_CDEF__u64; </syntaxhighlight>
 
=={{header|Visual Basic}}==
{{works with|Visual Basic|5}}
{{works with|Visual Basic|6}}
{{works with|VBA|Access 97}}
{{works with|VBA|6.5}}
{{works with|VBA|7.1}}
Integer literals can be expressed in octal, decimal and hexadecimal form.
<syntaxhighlight lang="vb">Sub Main()
 
'Long: 4 Bytes (signed), type specifier = &
Dim l1 As Long, l2 As Long, l3 As Long
'Integer: 2 Bytes (signed), type specifier = %
Dim i1 As Integer, i2 As Integer, i3 As Integer
'Byte: 1 Byte (unsigned), no type specifier
Dim b1 As Byte, b2 As Byte, b3 As Byte
l1 = 1024&
l2 = &H400&
l3 = &O2000&
Debug.Assert l1 = l2
Debug.Assert l2 = l3
i1 = 1024
i2 = &H400
i3 = &O2000
Debug.Assert i1 = i2
Debug.Assert i2 = i3
b1 = 255
b2 = &O377
b3 = &HFF
Debug.Assert b1 = b2
Debug.Assert b2 = b3
End Sub</syntaxhighlight>
 
=={{header|V (Vlang)}}==
<syntaxhighlight lang="Vlang">
fn main() {
w := 727
x := 0x2d7
y := 0o1327
z := 0b10110_10111
println([w, x, y, z])
}
</syntaxhighlight>
 
{{out}}
<pre>
[727, 727, 727, 727]
</pre>
 
=={{header|Wren}}==
Wren supports just two kinds of integer literal: decimal and hexadecimal.
 
Despite being written in C, Wren doesn't support octal literals using the 'leading zero' notation. These are just treated as ordinary decimal literals with the leading zeros ignored.
 
All numbers, whether integers or not, are instances of the built-in Num class which is always 8 bytes in size. A consequence of this is that integers whose absolute magnitude exceeds 2^53-1 cannot be accurately represented in Wren.
 
As the only difference between integers and other numbers is that the former do not have a decimal part, it is also possible to represent integers using scientific notation.
<syntaxhighlight lang="wren">var a = 255
var b = 0xff
var c = 0255 // not an octal literal
var d = 2.55e2
System.print([a, b, c, d])</syntaxhighlight>
 
{{out}}
<pre>
[255, 255, 255, 255]
</pre>
 
=={{header|XPL0}}==
<syntaxhighlight lang="xpl0">code CrLf=9, IntOut=11;
def A=123, B=$123, C=%11_0011, D=^A;
[IntOut(0, A); CrLf(0); \decimal
IntOut(0, B); CrLf(0); \hex
IntOut(0, C); CrLf(0); \binary
IntOut(0, D); CrLf(0); \ASCII
]</syntaxhighlight>
 
Output:
<pre>
123
291
51
65
</pre>
 
=={{header|Z80 Assembly}}==
Numeric values can be defined in decimal, binary, or hexadecimal.
<syntaxhighlight lang="z80">byte &55 ;hexadecimal 55
byte $42 ;hexadecimal 42
byte 33 ;decimal 33
byte %00001111 ;binary equivalent of &0F</syntaxhighlight>
 
=={{header|zkl}}==
Three int types the compiler understands: decimal, hex, binary. Other bases (2-36) require a method call.
<syntaxhighlight lang="zkl">123, 0d1_000
0x123, 0x12|34
0b1111|0000</syntaxhighlight>
 
 
{{omit from|ML/I}}
9,492

edits