Legendre prime counting function: Difference between revisions

From Rosetta Code
Content added Content deleted
No edit summary
Line 83: Line 83:
N =< Last -> small_pi(N);
N =< Last -> small_pi(N);
true ->
true ->
A = pi(imath:sqrt(N)),
A = pi(floor(math:sqrt(N))),
phi(N, A) + A - 1
phi(N, A) + A - 1
end.
end.

Revision as of 23:51, 4 August 2021

Task
Legendre prime counting function
You are encouraged to solve this task according to the task description, using any language you may know.

The prime-counting function π(n) computes the number of primes not greater than n. Legendre was the first mathematician to create a formula to compute π(n) based on the inclusion/exclusion principle.

To calculate:

Define

φ(x, 0) = x
φ(x, a) = φ(x, a−1) − φ(⌊x/pa⌋, a−1), where pa is the ath prime number.

then

π(n) = φ(x, a) + a - 1, where a = π(√n)

The Legendre formula still requires the use of a sieve to enumerate primes; however it's only required to sieve up to the √n, and for counting primes, the Legendre method is much faster than sieving up to n.

Task

Calculate π(n) for values up to 1 billion. Show π(n) for n = 1, 10, 100, ... 109.

For this task, you may refer to a prime number sieve (such as the Sieve of Eratosthenes or the extensible sieve) in an external library to enumerate the primes required by the formula. Also note that it will be necessary to memoize the results of φ(x, a) in order to have reasonable performance, since the recurrence relation would otherwise take exponential time.

CoffeeScript

<lang CoffeeScript> sorenson = require('sieve').primes # Sorenson's extensible sieve from task: Extensible Prime Number Generator

  1. put in outer scope to avoid recomputing the cache

memoPhi = {} primes = []

isqrt = (x) -> Math.floor Math.sqrt x

pi = (n) ->

   phi = (x, a) ->
       y = memoPhix,a
       return y unless y is undefined
       memoPhix,a =
           if a is 0 then x
           else
               p = primes[a - 1]
               throw "You need to generate at least #{a} primes." if p is undefined
               phi(x, a - 1) - phi(x // p, a - 1)
   if n < 2
       0
   else
       a = pi isqrt n
       phi(n, a) + a - 1

maxPi = 1e9 gen = sorenson() primes = while (p = gen.next().value) < isqrt maxPi then p

n = 1 for i in [0..9]

   console.log "10^#{i}\t#{pi(n)}"
   n *= 10

</lang>

Output:
10^0	0
10^1	4
10^2	25
10^3	168
10^4	1229
10^5	9592
10^6	78498
10^7	664579
10^8	5761455
10^9	50847534

Erlang

<lang Erlang> -mode(native).

-define(LIMIT, 1000000000).

nthprime(N) -> array:get(N - 1, get(primes)).

pi(N) ->

   Primes = get(primes),
   Last = array:get(array:size(Primes) - 1, Primes),
   if
       N =< Last -> small_pi(N);
       true ->
           A = pi(floor(math:sqrt(N))),
           phi(N, A) + A - 1
   end.

small_pi(N) ->

   Primes = get(primes),
   small_pi(N, Primes, 0, array:size(Primes)).

small_pi(_, _, L, H) when L >= (H - 1) -> L + 1; small_pi(N, Primes, L, H) ->

   M = (L + H) div 2,
   P = array:get(M, Primes),
   if
       N > P -> small_pi(N, Primes, M, H);
       N < P -> small_pi(N, Primes, 0, M);
       true -> M + 1
   end.

phi(X, 0) -> X; phi(X, A) ->

   case ets:lookup(memphi, {X, A}) of
       [] ->
           Phi = phi(X, A-1) - phi(X div nthprime(A), A-1),
           ets:insert(memphi, {{X, A}, Phi}),
           Phi;
       [{{X, A}, Phi}] -> Phi
   end.

output(A, B) -> output(A, B, 1). output(A, B, _) when A > B -> ok; output(A, B, N) ->

   io:format("10^~b    ~b~n", [A, pi(N)]),
   output(A + 1, B, N * 10).

main(_) ->

   put(primes, array:from_list(primality:sieve(floor(math:sqrt(?LIMIT))))),
   ets:new(memphi, [set, named_table, protected]),
   output(0, 9).

</lang>

Output:
10^0    1
10^1    4
10^2    25
10^3    168
10^4    1229
10^5    9592
10^6    78498
10^7    664579
10^8    5761455
10^9    50847534

Raku

Seems like an awful lot of pointless work. Using prime sieve anyway, why not just use it? <lang perl6>use Math::Primesieve;

my $sieve = Math::Primesieve.new;

say "10^$_\t" ~ $sieve.count: exp($_,10) for ^10;

say (now - INIT now) ~ ' elapsed seconds';</lang>

Output:
10^0	0
10^1	4
10^2	25
10^3	168
10^4	1229
10^5	9592
10^6	78498
10^7	664579
10^8	5761455
10^9	50847534
0.071464489 elapsed seconds