Intersecting number wheels: Difference between revisions

 
(28 intermediate revisions by 14 users not shown)
Line 61:
 
<br>
 
=={{header|11l}}==
{{trans|Python}}
 
<syntaxhighlight lang="11l">F nextfrom(&w, =name)
L
V nxt = w[name][0]
w[name] = w[name][1..] + w[name][0.<1]
I nxt[0] C ‘0’..‘9’
R nxt
name = nxt
 
L(group) |‘A: 1 2 3
A: 1 B 2; B: 3 4
A: 1 D D; D: 6 7 8
A: 1 B C; B: 3 4; C: 5 B’.split("\n")
print("Intersecting Number Wheel group:\n "group)
[String = [String]] wheel
V first = ‘’
L(w) group.split(‘;’)
V s = w.trim(‘ ’).split(‘ ’)
V name = s[0]
wheel[name[0 .< (len)-1]] = s[1..]
first = I first == ‘’ {name[0 .< (len)-1]} E first
V gen = (0.<20).map(i -> nextfrom(&@wheel, @first)).join(‘ ’)
print(" Generates:\n "gen" ...\n")</syntaxhighlight>
 
{{out}}
<pre>
Intersecting Number Wheel group:
A: 1 2 3
Generates:
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 ...
 
Intersecting Number Wheel group:
A: 1 B 2; B: 3 4
Generates:
1 3 2 1 4 2 1 3 2 1 4 2 1 3 2 1 4 2 1 3 ...
 
Intersecting Number Wheel group:
A: 1 D D; D: 6 7 8
Generates:
1 6 7 1 8 6 1 7 8 1 6 7 1 8 6 1 7 8 1 6 ...
 
Intersecting Number Wheel group:
A: 1 B C; B: 3 4; C: 5 B
Generates:
1 3 5 1 4 3 1 4 5 1 3 4 1 3 5 1 4 3 1 4 ...
</pre>
 
=={{header|ALGOL 68}}==
<langsyntaxhighlight lang="algol68">BEGIN
# a number wheel element #
MODE NWELEMENT = UNION( CHAR # wheel name #, INT # wheel value # );
Line 117 ⟶ 167:
, NW( "B", LOC INT := 1, ( 3, 4 ) )
, NW( "C", LOC INT := 1, ( 5, "B" ) ) ) )
END</langsyntaxhighlight>
{{out}}
<pre>
Line 141 ⟶ 191:
 
</pre>
 
=={{header|AutoHotkey}}==
<syntaxhighlight lang="autohotkey">obj1 := {"A":[1, 2, 3]}
obj2 := {"A":[1, "B", 2] , "B":[3, 4]}
obj3 := {"A":[1, "D", "D"] , "D":[6, 7, 8]}
obj4 := {"A":[1, "B", "C"] , "B":[3, 4] , "C":[5, "B"]}
 
loop 4
{
str := ""
for k, v in obj%A_Index% {
str .= "{" k " : "
for i, t in v
str .= t ","
str := Trim(str, ",") "}, "
}
str := Trim(str, ", ")
x := INW(obj%A_Index%)
result .= str "`n" x.1 "`n" x.2 "`n------`n"
}
MsgBox % result
return
 
INW(obj, num:=20){
sets := [], ptr := []
for k, v in obj {
if A_Index=1
s := k, s1 := k
%k% := v, sets.Push(k), ptr[k] := 0
}
loop % num {
ptr[s]++
while !((v := %s%[ptr[s]]) ~= "\d") {
s := %s%[ptr[s]]
ptr[s]++
}
key .= s "." ptr[s] ", "
result .= %s%[ptr[s]] " "
s := s1
for i, set in sets
ptr[set] := ptr[set] = %set%.count() ? 0 : ptr[set]
}
return [key, result]
}</syntaxhighlight>
{{out}}
<pre>{A : 1,2,3}
A.1, A.2, A.3, A.1, A.2, A.3, A.1, A.2, A.3, A.1, A.2, A.3, A.1, A.2, A.3, A.1, A.2, A.3, A.1, A.2,
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2
------
{A : 1,B,2}, {B : 3,4}
A.1, B.1, A.3, A.1, B.2, A.3, A.1, B.1, A.3, A.1, B.2, A.3, A.1, B.1, A.3, A.1, B.2, A.3, A.1, B.1,
1 3 2 1 4 2 1 3 2 1 4 2 1 3 2 1 4 2 1 3
------
{A : 1,D,D}, {D : 6,7,8}
A.1, D.1, D.2, A.1, D.3, D.1, A.1, D.2, D.3, A.1, D.1, D.2, A.1, D.3, D.1, A.1, D.2, D.3, A.1, D.1,
1 6 7 1 8 6 1 7 8 1 6 7 1 8 6 1 7 8 1 6
------
{A : 1,B,C}, {B : 3,4}, {C : 5,B}
A.1, B.1, C.1, A.1, B.2, B.1, A.1, B.2, C.1, A.1, B.1, B.2, A.1, B.1, C.1, A.1, B.2, B.1, A.1, B.2,
1 3 5 1 4 3 1 4 5 1 3 4 1 3 5 1 4 3 1 4
------</pre>
 
=={{header|C}}==
<langsyntaxhighlight lang="c">#include <stdio.h>
#include <stdlib.h>
#include <string.h>
Line 283 ⟶ 394:
 
return 0;
}</langsyntaxhighlight>
{{out}}
<pre> 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2
Line 289 ⟶ 400:
1 6 7 1 8 6 1 7 8 1 6 7 1 8 6 1 7 8 1 6
1 3 5 1 4 3 1 4 5 1 3 4 1 3 5 1 4 3 1 4</pre>
 
=={{header|C sharp}}==
<syntaxhighlight lang="csharp">using System;
using System.Collections.Generic;
using System.Linq;
 
public static class IntersectingNumberWheels
{
public static void Main() {
TurnWheels(('A', "123")).Take(20).Print();
TurnWheels(('A', "1B2"), ('B', "34")).Take(20).Print();
TurnWheels(('A', "1DD"), ('D', "678")).Take(20).Print();
TurnWheels(('A', "1BC"), ('B', "34"), ('C', "5B")).Take(20).Print();
}
 
static IEnumerable<char> TurnWheels(params (char name, string values)[] wheels) {
var data = wheels.ToDictionary(wheel => wheel.name, wheel => wheel.values.Loop().GetEnumerator());
var primary = data[wheels[0].name];
while (true) {
yield return Turn(primary);
}
 
char Turn(IEnumerator<char> sequence) {
sequence.MoveNext();
char c = sequence.Current;
return char.IsDigit(c) ? c : Turn(data[c]);
}
}
 
static IEnumerable<T> Loop<T>(this IEnumerable<T> seq) {
while (true) {
foreach (T element in seq) yield return element;
}
}
 
static void Print(this IEnumerable<char> sequence) => Console.WriteLine(string.Join(" ", sequence));
}</syntaxhighlight>
{{out}}
<pre>
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2
1 3 2 1 4 2 1 3 2 1 4 2 1 3 2 1 4 2 1 3
1 6 7 1 8 6 1 7 8 1 6 7 1 8 6 1 7 8 1 6
1 3 5 1 4 3 1 4 5 1 3 4 1 3 5 1 4 3 1 4</pre>
 
=={{header|C++}}==
{{trans|D}}
<langsyntaxhighlight lang="cpp">#include <initializer_list>
#include <iostream>
#include <map>
Line 415 ⟶ 569:
 
return 0;
}</langsyntaxhighlight>
{{out}}
<pre> 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2
Line 421 ⟶ 575:
1 6 7 1 8 6 1 7 8 1 6 7 1 8 6 1 7 8 1 6
1 3 5 1 4 3 1 4 5 1 3 4 1 3 5 1 4 3 1 4</pre>
 
=={{header|C sharp}}==
<lang csharp>using System;
using System.Collections.Generic;
using System.Linq;
 
public static class IntersectingNumberWheels
{
public static void Main() {
TurnWheels(('A', "123")).Take(20).Print();
TurnWheels(('A', "1B2"), ('B', "34")).Take(20).Print();
TurnWheels(('A', "1DD"), ('D', "678")).Take(20).Print();
TurnWheels(('A', "1BC"), ('B', "34"), ('C', "5B")).Take(20).Print();
}
 
static IEnumerable<char> TurnWheels(params (char name, string values)[] wheels) {
var data = wheels.ToDictionary(wheel => wheel.name, wheel => wheel.values.Loop().GetEnumerator());
var primary = data[wheels[0].name];
while (true) {
yield return Turn(primary);
}
 
char Turn(IEnumerator<char> sequence) {
sequence.MoveNext();
char c = sequence.Current;
return char.IsDigit(c) ? c : Turn(data[c]);
}
}
 
static IEnumerable<T> Loop<T>(this IEnumerable<T> seq) {
while (true) {
foreach (T element in seq) yield return element;
}
}
 
static void Print(this IEnumerable<char> sequence) => Console.WriteLine(string.Join(" ", sequence));
}</lang>
{{out}}
<pre>
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2
1 3 2 1 4 2 1 3 2 1 4 2 1 3 2 1 4 2 1 3
1 6 7 1 8 6 1 7 8 1 6 7 1 8 6 1 7 8 1 6
1 3 5 1 4 3 1 4 5 1 3 4 1 3 5 1 4 3 1 4</pre>
 
=={{header|D}}==
<langsyntaxhighlight lang="d">import std.exception;
import std.range;
import std.stdio;
Line 575 ⟶ 686:
group3();
group4();
}</langsyntaxhighlight>
{{out}}
<pre>["1", "2", "3", "1", "2", "3", "1", "2", "3", "1", "2", "3", "1", "2", "3", "1", "2", "3", "1", "2"]
Line 583 ⟶ 694:
 
=={{header|F_Sharp|F#}}==
<langsyntaxhighlight lang="fsharp">
// Wheels within wheels. Nigel Galloway: September 30th., 2019.
let N(n)=fun()->n
Line 603 ⟶ 714:
for n in 0..20 do printf "%d " (A4())
printfn ""
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 628 ⟶ 739:
⁠— a dictionary-like structure that is transformed into a lazy list which yields the expected sequence elements.
{{works with|Factor|0.99 2019-07-10}}
<langsyntaxhighlight lang="factor">USING: accessors assocs circular io kernel lists lists.lazy math
math.parser multiline peg.ebnf prettyprint prettyprint.custom
sequences strings ;
Line 663 ⟶ 774:
 
: .take ( n group -- )
list>> ltake list>array [ pprint bl ] each "..." print ;</langsyntaxhighlight>
Now the interface defined above may be used:
<langsyntaxhighlight lang="factor">USING: generalizations io kernel prettyprint
rosetta-code.number-wheels ;
 
Line 691 ⟶ 802:
"Intersecting number wheel group:" print
[ . ] [ "Generates:" print 20 swap .take nl ] bi
] 4 napply</langsyntaxhighlight>
{{out}}
<pre>
Line 720 ⟶ 831:
 
=={{header|Go}}==
<langsyntaxhighlight lang="go">package main
 
import (
Line 808 ⟶ 919:
generate(wheels, "A", 20)
}
}</langsyntaxhighlight>
 
{{out}}
Line 842 ⟶ 953:
terminating at the first digit found, and printing a map-accumulation of that recursion over a list of given length but arbitrary content.
 
<syntaxhighlight lang ="haskell">import qualified Data.Map.Strict asChar M(isDigit)
import Data.Maybe (fromMaybe)
import Data.List (mapAccumL)
import qualified Data.CharMap.Strict as (isDigit)M
import Data.BoolMaybe (boolfromMaybe)
 
---------------- INTERSECTING NUMBER WHEELS --------------
 
clockWorkTick :: M.Map Char String -> (M.Map Char String, Char)
M.Map Char String ->
(M.Map Char String, Char)
clockWorkTick = flip click 'A'
where
click wheels name =
let| wheelisDigit name = fromMaybe ['?'] (M.lookupwheels, name wheels)
| votherwise = head wheel
in bool ( click
click . flip
(,M.insert name . leftRotate)
(isDigit v || '?' == v)wheels
(M.insert name<*> (leftRotate wheel) wheels)head
v)
$ fromMaybe ['?'] $ M.lookup name wheels
 
leftRotate :: [a] -> [a]
leftRotate = take . length <*> (tail . cycle)
 
--------------------------- TEST -------------------------
 
-- TEST ---------------------------------------------------
main :: IO ()
main = do
let wheelSets =
[ [('A', "123")],
, [('A', "1B2"), ('B', "34")],
, [('A', "1DD"), ('D', "678")],
, [('A', "1BC"), ('B', "34"), ('C', "5B")]
]
putStrLn "State of each wheel-set after 20 clicks:\n"
mapM_ print $
fmap
( flip
(flip (mapAccumL (const . clockWorkTick)) (replicate 20 ' ') . M.fromList)
(mapAccumL (const . clockWorkTick))
(replicate 20 undefined)
. M.fromList
)
wheelSets
putStrLn "\nInitial state of the wheel-sets:\n"
mapM_ print wheelSets</langsyntaxhighlight>
{{Out}}
<pre>State of each wheel-set after 20 clicks:
Line 896 ⟶ 1,013:
[('A',"1DD"),('D',"678")]
[('A',"1BC"),('B',"34"),('C',"5B")]</pre>
 
=={{header|J}}==
Implementation:
<syntaxhighlight lang="j">
wheelgroup=:{{
yield_wheelgroup_=: {{
i=. wheels i.<;y
j=. i{inds
k=. ".;y
l=. j{k
inds=: ((#k)|1+j) i} inds
if. l e. wheels
do.yield l
else.{.".;l
end.
}}
gen_wheelgroup_=: {{
yield wheel
}}
grp=. cocreate ''
coinsert__grp 'wheelgroup'
specs__grp=: cut each boxopen m
wheel__grp=: ;{.wheels__grp=: {.every specs__grp
init__grp=: {{('inds';wheels)=:(0#~#specs);}.each specs}}
init__grp''
('gen_',(;grp),'_')~
}}
</syntaxhighlight>
 
Task examples:
 
<syntaxhighlight lang="j">
task=: {{y wheelgroup^:(1+i.20)_}}
task 'A 1 2 3'
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2
task 'A 1 B 2';'B 3 4'
1 3 2 1 4 2 1 3 2 1 4 2 1 3 2 1 4 2 1 3
task 'A 1 D D';'D 6 7 8'
1 6 7 1 8 6 1 7 8 1 6 7 1 8 6 1 7 8 1 6
task 'A 1 B C';'B 3 4';'C 5 B'
1 3 5 1 4 3 1 4 5 1 3 4 1 3 5 1 4 3 1 4
</syntaxhighlight>
 
=={{header|Java}}==
<syntaxhighlight lang="java">
<lang Java>
package intersectingNumberWheels;
import java.util.ArrayList;
Line 983 ⟶ 1,143:
}
}
</syntaxhighlight>
</lang>
Output:
{A=[1, 2, 3]}
Line 993 ⟶ 1,153:
{A=[1, B, C], B=[3, 4], C=[5, B]}
1 3 5 1 4 3 1 4 5 1 3 4 1 3 5 1 4 3 1 4
 
 
=={{header|JavaScript}}==
Line 1,000 ⟶ 1,159:
{{Trans|Haskell}}
{{Trans|Python}}
<langsyntaxhighlight lang="javascript">(() => {
'use strict';
 
Line 1,160 ⟶ 1,319:
// MAIN ---
return main();
})();</langsyntaxhighlight>
{{Out}}
<pre>Series and state of each wheel-set after 20 clicks:
Line 1,175 ⟶ 1,334:
{"A":"1DD"},{"D":"678"}
{"A":"1BC"},{"B":"34"},{"C":"5B"}</pre>
 
=={{header|jq}}==
{{works with|jq}}
'''Also works with gojq, the Go implementation of jq'''
 
In this entry, a single wheel is simply represented by
a JSON object of the form { name: array }
 
where `name` is its name, and `array` is an array of the values on the wheel in the order
in which they would be read.
 
A set of of number of wheels can thus be represented simply as the sum of the objects corresponding to each wheel.
Thus the collection of illustrative number wheel groups can be defined as follows:
<syntaxhighlight lang="jq">
def wheels: [
{
"A": [1, 2, 3]
},
{
"A": [1, "B", 2],
"B": [3, 4]
},
{
"A": [1, "D", "D"],
"D": [6, 7, 8]
},
{
"A": [1, "B", "C"],
"B": [3, 4],
"C": [5, "B"]
}
];
</syntaxhighlight>
<syntaxhighlight lang="jq">
# read($wheel)
# where $wheel is the wheel to be read (a string)
# Input: a set of wheels
# Output: an object such that .value is the next value,
# and .state is the updated state of the set of wheels
def read($wheel):
 
# Input: an array
# Output: the rotated array
def rotate: .[1:] + [.[0]];
 
.[$wheel][0] as $value
| (.[$wheel] |= rotate) as $state
| if ($value | type) == "number"
then {$value, $state}
else $state | read($value)
end;
 
# Read wheel $wheel $n times
def multiread($wheel; $n):
if $n <= 0 then empty
else read($wheel)
| .value, (.state | multiread($wheel; $n - 1))
end;
 
def printWheels:
keys[] as $k
| "\($k): \(.[$k])";
 
# Spin each group $n times
def spin($n):
wheels[]
| "The number wheel group:",
printWheels,
"generates",
([ multiread("A"; $n) ] | join(" ") + " ..."),
"";
 
spin(20)
</syntaxhighlight>
'''Invocation'''
<pre>
jq -nr -f intersecting-number-wheels.jq
</pre>
 
{{output}}
<pre>
The number wheel group:
A: [1,2,3]
generates
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 ...
 
The number wheel group:
A: [1,"B",2]
B: [3,4]
generates
1 3 2 1 4 2 1 3 2 1 4 2 1 3 2 1 4 2 1 3 ...
 
The number wheel group:
A: [1,"D","D"]
D: [6,7,8]
generates
1 6 7 1 8 6 1 7 8 1 6 7 1 8 6 1 7 8 1 6 ...
 
The number wheel group:
A: [1,"B","C"]
B: [3,4]
C: [5,"B"]
generates
1 3 5 1 4 3 1 4 5 1 3 4 1 3 5 1 4 3 1 4 ...
</pre>
 
=={{header|Julia}}==
<langsyntaxhighlight lang="julia">const d1 = Dict("A" => [["1", "2", "3"], 1])
const d2 = Dict("A" => [["1", "B", "2"], 1], "B" => [["3", "4"], 1])
const d3 = Dict("A" => [["1", "D", "D"], 1], "D" => [["6", "7", "8"], 1])
Line 1,207 ⟶ 1,471:
 
foreach(testwheels, [d1, d2, d3, d4])
</langsyntaxhighlight>{{out}}
<pre>
Number Wheels:
Line 1,232 ⟶ 1,496:
=={{header|Kotlin}}==
{{trans|Java}}
<langsyntaxhighlight lang="scala">import java.util.Collections
import java.util.stream.IntStream
 
Line 1,306 ⟶ 1,570:
endPosition = list.size - 1
}
}</langsyntaxhighlight>
{{out}}
<pre>{A=[1, 2, 3]}
Line 1,319 ⟶ 1,583:
=={{header|Maple}}==
 
<syntaxhighlight lang="maple">
<lang Maple>
with(ArrayTools):
 
Line 1,372 ⟶ 1,636:
 
seq(currentValue(A), 1..20);
</syntaxhighlight>
</lang>
 
{{out}}<pre>
Line 1,384 ⟶ 1,648:
 
</pre>
 
=={{header|Nim}}==
<syntaxhighlight lang="nim">import strutils, tables
 
type
 
ElemKind = enum eValue, eWheel
 
Elem = object
case kind: ElemKind
of eValue:
value: Natural
of eWheel:
name: char
 
Wheel = ref object
elems: seq[Elem]
index: Natural
 
Wheels = Table[char, Wheel]
 
WheelDescription = tuple[name: char; elems: string]
 
 
func initWheels(wheels: openArray[WheelDescription]): Wheels =
## Initialize a table of wheels from an array of wheel descriptions.
 
for (name, elems) in wheels:
let wheel = new(Wheel)
for e in elems.splitWhitespace():
if e[0].isUpperAscii():
wheel.elems.add Elem(kind: eWheel, name: e[0])
else:
wheel.elems.add Elem(kind: eValue, value: e.parseInt())
result[name] = wheel
 
 
func next(wheels: Wheels; name: char): Natural =
## Return the next element from a wheel.
 
let wheel = wheels[name]
let elem = wheel.elems[wheel.index]
wheel.index = (wheel.index + 1) mod wheel.elems.len
result = case elem.kind
of eValue: elem.value
of eWheel: wheels.next(elem.name)
 
 
when isMainModule:
 
proc generate(wheelList: openArray[WheelDescription]; count: Positive) =
## Create the wheels from their description, then display
## the first "count" values generated by wheel 'A'.
 
let wheels = wheelList.initWheels()
for (name, elems) in wheelList:
echo name, ": ", elems
echo "generates:"
for _ in 1..count:
stdout.write ' ', wheels.next('A')
echo '\n'
 
 
{'A': "1 2 3"}.generate(20)
{'A': "1 B 2", 'B': "3 4"}.generate(20)
{'A': "1 D D", 'D': "6 7 8"}.generate(20)
{'A': "1 B C", 'B': "3 4", 'C': "5 B"}.generate(20)</syntaxhighlight>
 
{{out}}
<pre>A: 1 2 3
generates:
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2
 
A: 1 B 2
B: 3 4
generates:
1 3 2 1 4 2 1 3 2 1 4 2 1 3 2 1 4 2 1 3
 
A: 1 D D
D: 6 7 8
generates:
1 6 7 1 8 6 1 7 8 1 6 7 1 8 6 1 7 8 1 6
 
A: 1 B C
B: 3 4
C: 5 B
generates:
1 3 5 1 4 3 1 4 5 1 3 4 1 3 5 1 4 3 1 4</pre>
 
=={{header|Perl}}==
{{trans|Julia}}
<langsyntaxhighlight lang="perl">use strict;
use warnings;
use feature 'say';
Line 1,411 ⟶ 1,763:
{'A' => [['1', 'D', 'D'], 0], 'D' => [['6', '7', '8'], 0]},
{'A' => [['1', 'B', 'C'], 0], 'B' => [['3', '4'], 0], 'C' => [['5', 'B'], 0]},
);</langsyntaxhighlight>
{{out}}
<pre>A: 1, 2, 3
Line 1,428 ⟶ 1,780:
C: 5, B
1 3 5 1 4 3 1 4 5 1 3 4 1 3 5 1 4 3 1 4</pre>
 
=={{header|Perl 6}}==
A succinct Perl 6 example using a few additional language features. Wheels are implemented as infinite repeating sequences, allowing a single iterator to keep track of the current position. This means the code contains no position tracking whatsoever.
<lang perl6>
#| advance rotates a named wheel $n by consuming an item from an infinite sequence. It is called
#| from within a gather block and so can use take in order to construct an infinite, lazy sequence
#| of result values
sub advance($g, $n) {
given $g{$n}.pull-one {
when /\d/ { take $_ }
default { samewith $g, $_ } # samewith re-calls this function with new parameters
}
}
 
#| Input groups are a hash containing each wheel name as the key, and a list of values constructed
#| using <> to split on whitespace. They are transformed using xx * to repeat the list infinitely.
#| We then retrieve the underlying iterator in order for wheel position to be persistent. Each group
#| is then aggregated into a lazy output sequence using an infinite loop inside a gather block.
[
{A => <1 2 3>},
{A => <1 B 2>, B => <3 4>},
{A => <1 D D>, D => <6 7 8>},
{A => <1 B C>, B => <3 4>, C => <5 B>},
]
#| %() converts a list of pairs produced by map into a hash. $^k and $^v are implicit variables.
#| They are processed in alphabetical order and make the block arity 2, called with two vars.
#| .kv gets the list of wheel names and wheel values from the input entry
==> map({ %(.kv.map: { $^k => (|$^v xx *).iterator }) })
#| gather constructs a lazy sequence, in which we infinitely loop advancing wheel A
==> map({ gather { loop { advance $_, 'A' }} })
#| state variables are only initialised once, and are kept between invocations.
==> map({ state $i = 1; say "Group {$i++}, First 20 values: $_[^20]" })
</lang>{{Output}}
<pre>
Group 1, First 20 values: 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2
Group 2, First 20 values: 1 3 2 1 4 2 1 3 2 1 4 2 1 3 2 1 4 2 1 3
Group 3, First 20 values: 1 6 7 1 8 6 1 7 8 1 6 7 1 8 6 1 7 8 1 6
Group 4, First 20 values: 1 3 5 1 4 3 1 4 5 1 3 4 1 3 5 1 4 3 1 4
</pre>
 
=={{header|Phix}}==
<!--<syntaxhighlight lang="phix">(phixonline)-->
<lang Phix>function terms(sequence wheels, integer n)
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
sequence res = repeat(' ',n),
<span style="color: #008080;">function</span> <span style="color: #000000;">terms</span><span style="color: #0000FF;">(</span><span style="color: #004080;">sequence</span> <span style="color: #000000;">wheels</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">integer</span> <span style="color: #000000;">n</span><span style="color: #0000FF;">)</span>
pos = repeat(2,length(wheels)),
<span style="color: #004080;">sequence</span> <span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">repeat</span><span style="color: #0000FF;">(</span><span style="color: #008000;">' '</span><span style="color: #0000FF;">,</span><span style="color: #000000;">n</span><span style="color: #0000FF;">),</span>
wvs = vslice(wheels,1)
<span style="color: #000000;">pos</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">repeat</span><span style="color: #0000FF;">(</span><span style="color: #000000;">2</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">wheels</span><span style="color: #0000FF;">)),</span>
integer wheel = 1, rdx = 1
<span style="color: #000000;">wvs</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">vslice</span><span style="color: #0000FF;">(</span><span style="color: #000000;">wheels</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)</span>
while rdx<=n do
<span style="color: #004080;">integer</span> <span style="color: #000000;">wheel</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">1</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">rdx</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">1</span>
integer p = pos[wheel],
<span style="color: #008080;">while</span> <span style="color: #000000;">rdx</span><span style="color: #0000FF;"><=</span><span style="color: #000000;">n</span> <span style="color: #008080;">do</span>
c = wheels[wheel][p]
<span style="color: #004080;">integer</span> <span style="color: #000000;">p</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">pos</span><span style="color: #0000FF;">[</span><span style="color: #000000;">wheel</span><span style="color: #0000FF;">],</span>
p = iff(p=length(wheels[wheel])?2:p+1)
<span style="color: #000000;">c</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">wheels</span><span style="color: #0000FF;">[</span><span style="color: #000000;">wheel</span><span style="color: #0000FF;">][</span><span style="color: #000000;">p</span><span style="color: #0000FF;">]</span>
pos[wheel] = p
<span style="color: #000000;">p</span> <span style="color: #0000FF;">=</span> <span style="color: #008080;">iff</span><span style="color: #0000FF;">(</span><span style="color: #000000;">p</span><span style="color: #0000FF;">=</span><span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">wheels</span><span style="color: #0000FF;">[</span><span style="color: #000000;">wheel</span><span style="color: #0000FF;">])?</span><span style="color: #000000;">2</span><span style="color: #0000FF;">:</span><span style="color: #000000;">p</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)</span>
if c>'9' then
<span style="color: #000000;">pos</span><span style="color: #0000FF;">[</span><span style="color: #000000;">wheel</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">p</span>
wheel = find(c,wvs)
<span style="color: #008080;">if</span> <span style="color: #000000;">c</span><span style="color: #0000FF;">></span><span style="color: #008000;">'9'</span> <span style="color: #008080;">then</span>
else
<span style="color: #000000;">wheel</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">find</span><span style="color: #0000FF;">(</span><span style="color: #000000;">c</span><span style="color: #0000FF;">,</span><span style="color: #000000;">wvs</span><span style="color: #0000FF;">)</span>
res[rdx] = c
<span rdx +style="color: 1#008080;">else</span>
<span style="color: #000000;">res</span><span style="color: #0000FF;">[</span><span style="color: #000000;">rdx</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">c</span>
wheel = 1
<span style="color: #000000;">rdx</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">1</span>
end if
<span style="color: #000000;">wheel</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">1</span>
end while
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
return res
<span style="color: #008080;">end</span> <span style="color: #008080;">while</span>
end function
<span style="color: #008080;">return</span> <span style="color: #000000;">res</span>
 
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
constant wheels = {{"A123"},
{"A1B2","B34"},
<span style="color: #008080;">constant</span> <span style="color: #000000;">wheels</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{{</span><span style="color: #008000;">"A123"</span><span style="color: #0000FF;">},</span>
{"A1DD","D678"},
<span style="color: #0000FF;">{</span><span style="color: #008000;">"A1B2"</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"B34"</span><span style="color: #0000FF;">},</span>
{"A1BC","B34","C5B"}}
<span style="color: #0000FF;">{</span><span style="color: #008000;">"A1DD"</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"D678"</span><span style="color: #0000FF;">},</span>
 
<span style="color: #0000FF;">{</span><span style="color: #008000;">"A1BC"</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"B34"</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"C5B"</span><span style="color: #0000FF;">}}</span>
for i=1 to length(wheels) do
?terms(wheels[i],20)
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">wheels</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span>
end for</lang>
<span style="color: #0000FF;">?</span><span style="color: #000000;">terms</span><span style="color: #0000FF;">(</span><span style="color: #000000;">wheels</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">],</span><span style="color: #000000;">20</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<!--</syntaxhighlight>-->
{{out}}
<pre>
Line 1,508 ⟶ 1,824:
=={{header|Python}}==
===Python: Original class and generator based===
<langsyntaxhighlight lang="python">from itertools import islice
 
class INW():
Line 1,561 ⟶ 1,877:
]:
w = INW(**group)
print(f"{w}\n Generates:\n {first(w, 20)} ...\n")</langsyntaxhighlight>
 
{{out}}
Line 1,589 ⟶ 1,905:
 
===Python: Simplified procedural===
<langsyntaxhighlight lang="python">def nextfrom(w, name):
while True:
nxt, w[name] = w[name][0], w[name][1:] + w[name][:1]
Line 1,609 ⟶ 1,925:
first = name[:-1] if first is None else first
gen = ' '.join(nextfrom(wheel, first) for i in range(20))
print(f" Generates:\n {gen} ...\n")</langsyntaxhighlight>
 
{{out}}
Line 1,637 ⟶ 1,953:
Input is just a list of Python dicts, and depends on c-python dicts being odered by key insertion order.
 
<langsyntaxhighlight lang="python">def nextfromr(w, name):
nxt, w[name] = w[name][0], w[name][1:] + w[name][:1]
return nxt if '0' <= nxt[0] <= '9' else nextfromr(w, nxt)
Line 1,649 ⟶ 1,965:
first = next(group.__iter__())
gen = ' '.join(nextfromr(group, first) for i in range(20))
print(f" Generates:\n {gen} ...\n")</langsyntaxhighlight>
 
{{out}}
Line 1,678 ⟶ 1,994:
{{Trans|Haskell}}
{{Works with|Python|3.7}}
<langsyntaxhighlight lang="python">'''Intersecting number wheels'''
 
from functools import reduce
from itertools import cycle, islice
from functools import reduce
 
 
Line 1,696 ⟶ 2,012:
insertDict(wheelName)(leftRotate(wheel))(wheels)
)(v)
return lambda name: go(name)
return click(wheelMap)('A')
 
Line 1,708 ⟶ 2,024:
 
 
# TEST --------------------------- TEST -------------------------
# main :: IO ()
def main():
Line 1,732 ⟶ 2,048:
 
 
# GENERIC ------------------------- GENERIC ------------------------
 
# Tuple (,) :: a -> b -> (a, b)
Line 1,760 ⟶ 2,076:
# insertDict :: String -> a -> Dict -> Dict
def insertDict(k):
'''A new dictionary updated with a (k, v) pair.'''
def go(v, dct):
dup =return dict(dct, **{k: v})
dup.update({k: v})
return dup
return lambda v: lambda dct: go(v, dct)
 
Line 1,770 ⟶ 2,084:
# mapAccumL :: (acc -> x -> (acc, y)) -> acc -> [x] -> (acc, [y])
def mapAccumL(f):
'''A tuple of an accumulation and a list derived by amap
combined map and fold,
with accumulation from left to right.
'''
def gonxt(a, x):
tpl = f(a[0])(x)
return (tpl[0], a[1] + [tpl[1]])
 
return lambda acc: lambda xs: (
def reduce(go, xs, (acc, [])):
def g(xs):
return reduce(nxt, xs, (acc, []))
return g
return go
 
 
# MAIN ---
if __name__ == '__main__':
main()</langsyntaxhighlight>
{{Out}}
<pre>New state of wheel sets, after 20 clicks of each:
Line 1,798 ⟶ 2,114:
{'A': '1DD', 'D': '678'}
{'A': '1BC', 'B': '34', 'C': '5B'}</pre>
 
=={{header|Quackery}}==
 
As the contents of a wheel (e.g. <code>[ 1 B 2 ]</code>) is just Quackery code, wheels can be extended in interesting ways.
 
They could, for example, contain a nest that randomly selects a wheel to advance; <code>[ 1 [ 2 random table [ B C ] ] 2 ]</code> would do the same as <code>[ 1 B 2 ]</code>, except that on the second click of the wheel, instead of always advancing wheel <code>B</code>, <code>[ 2 random table [ B C ] ]</code> would be evaluated, causing either wheel <code>B</code> or wheel <code>C</code> to advance arbitrarily.
 
<syntaxhighlight lang="quackery"> [ ]this[ ]done[
dup take behead
dup dip
[ nested join
swap put ]
do ] is wheel ( --> n )
 
[ ]'[
]'[ nested
' [ wheel ]
swap join
swap replace ] is newwheel ( --> )
forward is A forward is B forward is C
forward is D ( and so on, as required )
[ wheel [ 1 2 3 ] ] resolves A ( --> n )
 
[ wheel [ 3 4 ] ] resolves B ( --> n )
 
[ wheel [ 5 B ] ] resolves C ( --> n )
 
[ wheel [ 6 7 8 ] ] resolves D ( --> n )
 
 
20 times [ A echo sp ] cr
newwheel A [ 1 B 2 ]
20 times [ A echo sp ] cr
newwheel A [ 1 D D ]
20 times [ A echo sp ] cr
newwheel A [ 1 B C ]
newwheel B [ 3 4 ] ( As B has been used already )
( it's state may be [ 4 3 ]. )
( So we reset it to [ 3 4 ]. )
 
20 times [ A echo sp ] cr</syntaxhighlight>
 
{{out}}
 
<pre>1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2
1 3 2 1 4 2 1 3 2 1 4 2 1 3 2 1 4 2 1 3
1 6 7 1 8 6 1 7 8 1 6 7 1 8 6 1 7 8 1 6
1 3 5 1 4 3 1 4 5 1 3 4 1 3 5 1 4 3 1 4 </pre>
 
=={{header|Raku}}==
(formerly Perl 6)
A succinct Raku example using a few additional language features. Wheels are implemented as infinite repeating sequences, allowing a single iterator to keep track of the current position. This means the code contains no position tracking whatsoever.
<syntaxhighlight lang="raku" line>
#| advance rotates a named wheel $n by consuming an item from an infinite sequence. It is called
#| from within a gather block and so can use take in order to construct an infinite, lazy sequence
#| of result values
sub advance($g, $n) {
given $g{$n}.pull-one {
when /\d/ { take $_ }
default { samewith $g, $_ } # samewith re-calls this function with new parameters
}
}
 
#| Input groups are a hash containing each wheel name as the key, and a list of values constructed
#| using <> to split on whitespace. They are transformed using xx * to repeat the list infinitely.
#| We then retrieve the underlying iterator in order for wheel position to be persistent. Each group
#| is then aggregated into a lazy output sequence using an infinite loop inside a gather block.
[
{A => <1 2 3>},
{A => <1 B 2>, B => <3 4>},
{A => <1 D D>, D => <6 7 8>},
{A => <1 B C>, B => <3 4>, C => <5 B>},
]
#| %() converts a list of pairs produced by map into a hash. $^k and $^v are implicit variables.
#| They are processed in alphabetical order and make the block arity 2, called with two vars.
#| .kv gets the list of wheel names and wheel values from the input entry
==> map({ %(.kv.map: { $^k => (|$^v xx *).iterator }) })
#| gather constructs a lazy sequence, in which we infinitely loop advancing wheel A
==> map({ gather { loop { advance $_, 'A' }} })
#| state variables are only initialised once, and are kept between invocations.
==> map({ state $i = 1; say "Group {$i++}, First 20 values: $_[^20]" })
</syntaxhighlight>{{Output}}
<pre>
Group 1, First 20 values: 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2
Group 2, First 20 values: 1 3 2 1 4 2 1 3 2 1 4 2 1 3 2 1 4 2 1 3
Group 3, First 20 values: 1 6 7 1 8 6 1 7 8 1 6 7 1 8 6 1 7 8 1 6
Group 4, First 20 values: 1 3 5 1 4 3 1 4 5 1 3 4 1 3 5 1 4 3 1 4
</pre>
 
=={{header|REXX}}==
Line 1,804 ⟶ 2,213:
 
This REXX program uses &nbsp; ''numbers'' &nbsp; (any form), &nbsp; not &nbsp; ''digits'' &nbsp; (for the values on the wheels).
<langsyntaxhighlight lang="rexx">/*REXX program expresses numbers from intersecting number wheels (or wheel sets). */
@.= /*initialize array to hold the wheels. */
parse arg lim @.1 /*obtain optional arguments from the CL*/
Line 1,813 ⟶ 2,222:
@.4= ' A: 1 B C, B: 3 4, C: 5 B '
end
do i=1 while @.i\=''; call buildrun /*construct the wheel set and (gear"execute" sets)it.*/
call run /*execute " " " " " */
end /*i*/
exit 0 /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
error: say; say; say '***error***' arg(1); say; say; exit 12
isLet: return datatype( arg(1), 'M') & length( arg(1) )==1
isNum: return datatype( arg(1), 'N')
/*──────────────────────────────────────────────────────────────────────────────────────*/
error: procedure; say; say; say '***error***' arg(1); say; say; exit 12
build: @wn= 'wheel name'; first=; @wnnfbac= 'wheel name not followed by a colon:'
isLet: procedure; parse arg y; return datatype(y, 'M') & length(y)==1 /*is a letter? */
@gn= 'gear name' ; gear.=; say copies('═', 79)
isNum: procedure; parse arg y; return saydatatype(y, 'buildingN') wheel group for: ' @.i; wheels= space(@.i); /*is a uppernumber? wheels*/
do y=1 while wheels\=''; parse var wheels w gears ',' wheels; L= length(w)
if L==2 then do; !.y= left(w, 1) /*obtain the 1-char gear name.*/
if right(w, 1)\==':' then call error @wnnfbac w
if \isLet(!.y) then call error @wn "not a letter:" w
end
else call error "first token isn't a" @wn':' w
if y==1 then first= !.1 /*Is this is the 1st wheel set? Use it*/
if first=='' then call error "no wheel name was specified."
n= !.y /*obtain the name of the 1st wheel set.*/
gear.n.0= 1 /*initialize default 1st gear position.*/
say ' setting gear.name:' n ' gears=' gears
do g=1 for words(gears); _= word(gears, g)
if isNum(_) | isLet(_) then do; gear.n.g= _; iterate; end
call error @gn "isn't a number or a gear name:" _
end /*g*/
end /*y*/; return
/*──────────────────────────────────────────────────────────────────────────────────────*/
run: say;@wn= 'wheel say center(name'; running the wheel named ' first"=; ", 79, "─"); @noColon= "wheel name not followed by a $=colon:"
@gn= 'gear name' do; #=0 by 0 until words($)gear.==lim; say copies("═", n= first79)
say 'building wheel z=group gear.n.0;for: ' @.i; xwheels= gearspace(@.n.zi); z= z +upper 1wheels
do #=1 while wheels\=''; parse var wheels w gears "," wheels; L= length(w)
if L==2 then do; !.#= left(w, 1) /*obtain the one─character gear name. */
if right(w, 1)\==':' then call error @noColon w
if \isLet(!.#) then call error @wn "not a letter:" w
end
else call error "first token isn't a" @wn':' w
if #==1 then first= !.1 /*Is this is the 1st wheel set? Use it*/
if first=='' then call error "no wheel name was specified."
n= !.# /*obtain the name of the 1st wheel set.*/
gear.n.0= 1 /*initialize default 1st gear position.*/
say ' setting gear.name:' n " gears=" gears
do g=1 for words(gears); _= word(gears, g)
if isNum(_) | isLet(_) then do; gear.n.g= _; iterate; end
call error @gn "isn't a number or a gear name:" _
end /*g*/
end /*#*/
say; say center(' running the wheel named ' first" ", 79, '─'); $=
do dummy=0 by 0 until words($)==lim; n= first
z= gear.n.0; x= gear.n.z; z= z + 1
gear.n.0= z; if gear.n.z=='' then gear.n.0= 1
if isNum(x) then do; $= $ x; iterate; end /*found a number, use it.*/
xx= x /*different gear, keep switching until'til #.X*/
do forever; nn= xx
if gear.nn.0=='' then call error "a gear is using an unknown gear name:" x
zz= gear.nn.0; xx= gear.nn.zz
zz= zz + 1; gear.nn.0= zz; if gear.nn.zz=='' then gear.nn.0= 1
if isNum(xx) then do; $= $ xx; iterate #dummy; end
end /*forever*/ /* [↑] found a number, now use FIRST. */
end /*dummy*/ /*"DUMMY" is needed for the ITERATE. */
end /*until*/
say '('lim "results): " strip($); say; say; return</langsyntaxhighlight>
{{out|output|text=&nbsp; when using the default inputs:}}
<pre>
Line 1,894 ⟶ 2,301:
</pre>
 
=={{header|Ruby}}==
<syntaxhighlight lang="ruby">groups = [{A: [1, 2, 3]},
{A: [1, :B, 2], B: [3, 4]},
{A: [1, :D, :D], D: [6, 7, 8]},
{A: [1, :B, :C], B: [3, 4], C: [5, :B]} ]
 
groups.each do |group|
p group
wheels = group.transform_values(&:cycle)
res = 20.times.map do
el = wheels[:A].next
el = wheels[el].next until el.is_a?(Integer)
el
end
puts res.join(" "),""
end
</syntaxhighlight>
{{out}}
<pre>{:A=>[1, 2, 3]}
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2
 
{:A=>[1, :B, 2], :B=>[3, 4]}
1 3 2 1 4 2 1 3 2 1 4 2 1 3 2 1 4 2 1 3
 
{:A=>[1, :D, :D], :D=>[6, 7, 8]}
1 6 7 1 8 6 1 7 8 1 6 7 1 8 6 1 7 8 1 6
 
{:A=>[1, :B, :C], :B=>[3, 4], :C=>[5, :B]}
1 3 5 1 4 3 1 4 5 1 3 4 1 3 5 1 4 3 1 4
</pre>
=={{header|Visual Basic .NET}}==
{{trans|C#}}
<langsyntaxhighlight lang="vbnet">Imports System.Runtime.CompilerServices
 
Module Module1
Line 1,936 ⟶ 2,373:
End Sub
 
End Module</langsyntaxhighlight>
{{out}}
<pre>1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2
Line 1,942 ⟶ 2,379:
1 6 7 1 8 6 1 7 8 1 6 7 1 8 6 1 7 8 1 6
1 3 5 1 4 3 1 4 5 1 3 4 1 3 5 1 4 3 1 4</pre>
 
=={{header|Wren}}==
{{trans|Go}}
{{libheader|Wren-dynamic}}
{{libheader|Wren-sort}}
{{libheader|Wren-fmt}}
<syntaxhighlight lang="wren">import "./dynamic" for Struct
import "./sort" for Sort
import "./fmt" for Fmt
 
var Wheel = Struct.create("Wheel", ["next", "values"])
 
var generate = Fn.new { |wheels, start, maxCount|
var count = 0
var w = wheels[start]
while (true) {
var s = w.values[w.next]
var v = Num.fromString(s)
w.next = (w.next + 1) % w.values.count
wheels[start] = w
if (v) {
System.write("%(v) ")
count = count + 1
if (count == maxCount) {
System.print("...\n")
return
}
} else {
while (true) {
var w2 = wheels[s]
var ss = s
s = w2.values[w2.next]
w2.next = (w2.next + 1) % w2.values.count
wheels[ss] = w2
v = Num.fromString(s)
if (v) {
System.write("%(v) ")
count = count + 1
if (count == maxCount) {
System.print("...\n")
return
}
break
}
}
}
}
}
 
var printWheels = Fn.new { |wheels|
var names = []
for (name in wheels.keys) names.add(name)
Sort.quick(names)
System.print("Intersecting Number Wheel group:")
for (name in names) {
Fmt.print(" $s: $n", name, wheels[name].values)
}
System.write(" Generates:\n ")
}
 
var wheelMaps = [
{
"A": Wheel.new(0, ["1", "2", "3"])
},
{
"A": Wheel.new(0, ["1", "B", "2"]),
"B": Wheel.new(0, ["3", "4"])
},
{
"A": Wheel.new(0, ["1", "D", "D"]),
"D": Wheel.new(0, ["6", "7", "8"])
},
{
"A": Wheel.new(0, ["1", "B", "C"]),
"B": Wheel.new(0, ["3", "4"]),
"C": Wheel.new(0, ["5", "B"])
}
]
for (wheels in wheelMaps) {
printWheels.call(wheels)
generate.call(wheels, "A", 20)
}</syntaxhighlight>
 
{{out}}
<pre>
Intersecting Number Wheel group:
A: [1, 2, 3]
Generates:
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 ...
 
Intersecting Number Wheel group:
A: [1, B, 2]
B: [3, 4]
Generates:
1 3 2 1 4 2 1 3 2 1 4 2 1 3 2 1 4 2 1 3 ...
 
Intersecting Number Wheel group:
A: [1, D, D]
D: [6, 7, 8]
Generates:
1 6 7 1 8 6 1 7 8 1 6 7 1 8 6 1 7 8 1 6 ...
 
Intersecting Number Wheel group:
A: [1, B, C]
B: [3, 4]
C: [5, B]
Generates:
1 3 5 1 4 3 1 4 5 1 3 4 1 3 5 1 4 3 1 4 ...
</pre>
 
=={{header|zkl}}==
<langsyntaxhighlight lang="zkl">fcn intersectingNumberWheelsW(wheels){ // ("A":(a,b,"C"), "C":(d,e) ...)
ws:=wheels.pump(Dictionary(),fcn([(k,v)]){ return(k,Walker.cycle(v)) }); // new Dictionary
Walker.zero().tweak(fcn(w,wheels){
Line 1,952 ⟶ 2,498:
}
}.fp("A",ws)) // assume wheel A exists and is always first
}</langsyntaxhighlight>
<langsyntaxhighlight lang="zkl">wheelSets:=T( Dictionary("A",T(1,2,3)),
Dictionary("A",T(1,"B",2), "B",T(3,4)),
Dictionary("A",T(1,"D","D"), "D",T(6,7,8)),
Line 1,961 ⟶ 2,507:
ws.pump(String,fcn([(k,v)]){ " %s: %s\n".fmt(k,v.concat(" ")) }).print();
println("-->",intersectingNumberWheelsW(ws).walk(20).concat(" "));
}</langsyntaxhighlight>
{{out}}
<pre>
2,472

edits