Integer sequence: Difference between revisions

m (→‎{{header|Ada}}: adjust start value)
 
(346 intermediate revisions by more than 100 users not shown)
Line 1:
{{task}}
{{draft task}}Create a program that, when run, would display all integers from 1 to ∞ (or any relevant implementation limit), in sequence (i.e. 1, 2, 3, 4, etc) if given enough time.
 
;Task:
Create a program that, when run, would display all integers from &nbsp; '''1''' &nbsp; to &nbsp; <big><big> ''' <b> &infin; </b> ''' </big></big> &nbsp; (or any relevant implementation limit), &nbsp; in sequence &nbsp; (i.e. &nbsp; 1, 2, 3, 4, etc) &nbsp; if given enough time.
 
 
An example may not be able to reach arbitrarily-large numbers based on implementations limits. &nbsp; For example, if integers are represented as a 32-bit unsigned value with 0 as the smallest representable value, the largest representable value would be 4,294,967,295. &nbsp; Some languages support arbitrarily-large numbers as a built-in feature, while others make use of a module or library.
 
If appropriate, provide an example which reflect the language implementation's common built-in limits as well as an example which supports arbitrarily large numbers, and describe the nature of such limitations—or lack thereof.
<br><br>
 
=={{header|0815}}==
<syntaxhighlight lang="0815">}:_:<:1:+%<:a:~$^:_:</syntaxhighlight>
 
=={{header|11l}}==
<syntaxhighlight lang="11l">L(i) 1..
print(i)</syntaxhighlight>
 
=={{header|360 Assembly}}==
For maximum compatibility, this program uses only the basic instruction set (S/360).
<syntaxhighlight lang="360asm">* Integer sequence 06/05/2016
INTSEQED CSECT
USING INTSEQED,12
LR 12,15
LA 6,1 i=1
LOOP CVD 6,DW binary to pack decimal
MVC WTOMSG+4(12),EM12 load mask
ED WTOMSG+4(12),DW+2 packed dec to char
WTO MF=(E,WTOMSG) write to console
LA 6,1(6) i=i+1
B LOOP goto loop
WTOMSG DC 0F,H'80',H'0',CL80' '
DW DS 0D,PL8 pack dec 15num
EM12 DC X'402020202020202020202120' mask CL12 11num
END INTSEQED</syntaxhighlight>
{{out}}
<pre>
...
314090
314091
314092
314093
314094
314095
314096
314097
314098
314099
...
</pre>
 
=={{header|6502 Asembler}}==
 
I no longer have my personal copy of:
6502 assembly language subroutines
by Lance A. Leventhal, Winthrop Saville
pub Osborne/McGraw-Hill
(destroyed in bushfire)
It is available on the Wayback Machine (archive.org)
Pages 253ff contains a general purpose Multiple-Precision Binary Addition subroutine
Not needing to re-invent the wheel, I used this as the basis for my solution.
 
.multiple_precision_add
 
=={{header|8080 Assembly}}==
Actually printing the numbers out would depend on the hardware and operating system.
<syntaxhighlight lang="8080asm"> ORG 0100H
MVI A, 0 ; move immediate
LOOP: INR A ; increment
; call 'PRINT' subroutine, if required
JMP LOOP ; jump unconditionally
 
END</syntaxhighlight>
 
A more complex, arbitrary precision version that can count as high as you have free bytes of memory to use. (This does assemble with CP/M's MAC assembler, but since it doesn't implement PRBUFR, it's only useful for exposition purposes, or for loading into DDT.)
 
<syntaxhighlight lang="8080asm">
ORG 0100H
BITS EQU 128 ; 128 bits of precision
BYTES EQU BITS / 8 ; Number of bytes we store those bits in
 
; Zero out the storage for our number
LXI H,BUFR ; HL points at BUFR. (HL is idiomatically used for pointers)
MVI C,BYTES ; C holds the number of bytes we'll use
XRA A ; XOR with A is a 1-byte instruction to set A to zero
INIT: MOV M,A ; Store 0 to address pointed to by HL
INX H ; Advance HL to the next byte
DCR C ; Count down
JNZ INIT ; Keep looping if we're not done
 
; The "very long integer" is zeroed, so start the loop
LOOP: CALL PRBUFR ; Output our number
LXI H,BUFR ; HL Points to BUFR
MVI C,BYTES ; Count down (assume fewer than 256 bytes in our integer)
NEXT: INR M ; Increment the byte pointed to by HL. Sets the zero flag
JNZ LOOP ; If the increment didn't overflow A, start the loop over
; This byte overflowed, so we need to advance to the next byte in our number
INX H ; We store our byes in order of increasing significance
DCR C ; Count down to make sure we don't overflow our buffer
JNZ NEXT ; jump to process the next, more significant byte
 
; If we get here, we have overflowed our integer!
HALT ; TODO: probably something other than "halt the CPU"
 
PRBUFR: ; TODO, a subroutine that shows all of the digits in BUFR on the console
; Assume that this code trashes all our registers...
RET
 
BUFR: ; This space will hold our number
; We zero this memory before the loop
END</syntaxhighlight>
 
=={{header|Action!}}==
<syntaxhighlight lang="action!">PROC Main()
CARD i
 
i=0
DO
PrintF("%U ",i)
i==+1
UNTIL i=0
OD
RETURN</syntaxhighlight>
{{out}}
[https://gitlab.com/amarok8bit/action-rosetta-code/-/raw/master/images/Integer_sequence.png Screenshot from Atari 8-bit computer]
<pre>
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 ...
</pre>
 
=={{header|Ada}}==
<langsyntaxhighlight Adalang="ada">with Ada.Text_IO;
procedure Integers is
Value : Integer := 1;
Line 8 ⟶ 136:
loop
Ada.Text_IO.Put_Line (Integer'Image (Value));
Value := Value + 1; -- raises exception Constraint_Error on overflow
end loop;
end Integers;</langsyntaxhighlight>
Alternative (iterating through all values of Positive (positive part of Integer) without endless loop):
<syntaxhighlight lang="ada">with Ada.Text_IO;
procedure Positives is
begin
for Value in Positive'Range loop
Ada.Text_IO.Put_Line (Positive'Image (Value));
end loop;
end Positives;</syntaxhighlight>
 
=={{header|ALGOL 68}}==
{{works with|ALGOL 68|Revision 1 - no extensions to language used.}}
{{works with|ALGOL 68G|Any - tested with release [http://sourceforge.net/projects/algol68/files/algol68g/algol68g-1.18.0/algol68g-1.18.0-9h.tiny.el5.centos.fc11.i386.rpm/download 1.18.0-9h.tiny].}}
{{wont work with|ELLA ALGOL 68|Any (with appropriate job cards) - tested with release [http://sourceforge.net/projects/algol68/files/algol68toc/algol68toc-1.8.8d/algol68toc-1.8-8d.fc9.i386.rpm/download 1.8-8d] - due to extensive use of '''format'''[ted] ''transput''.}}
The upper limit of the loop variable ''i'' is ''max int'' currently ''+2147483647'' for [[ALGOL 68G]].
<syntaxhighlight lang="algol68">main:
(
FOR i DO
printf(($g(0)","$,i))
OD
)</syntaxhighlight>
Partial output:
<pre>
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,...
</pre>
 
=={{header|ALGOL W}}==
<syntaxhighlight lang="algolw">begin
% print the integers from 1 onwards %
% Algol W only has 32-bit integers. When i reaches 2^32, %
% an integer overflow event would be raised which by default, %
% should terminate the program %
integer i;
i := 1;
while true do begin
write( i );
i := i + 1
end loop_forever ;
end.</syntaxhighlight>
 
=={{header|Applesoft BASIC}}==
Integer variables can be within the range of -32767 to 32767.
<syntaxhighlight lang="applesoft basic"> 10 I% = 1
20 PRINT I%;
30 I% = I% + 1
40 PRINT ", ";
50 GOTO 20</syntaxhighlight>
Last screen of scrolled output:
<syntaxhighlight lang="applesoft basic">, 32646, 32647, 32648, 32649, 32650, 326
51, 32652, 32653, 32654, 32655, 32656, 3
2657, 32658, 32659, 32660, 32661, 32662,
32663, 32664, 32665, 32666, 32667, 3266
8, 32669, 32670, 32671, 32672, 32673, 32
674, 32675, 32676, 32677, 32678, 32679,
32680, 32681, 32682, 32683, 32684, 32685
, 32686, 32687, 32688, 32689, 32690, 326
91, 32692, 32693, 32694, 32695, 32696, 3
2697, 32698, 32699, 32700, 32701, 32702,
32703, 32704, 32705, 32706, 32707, 3270
8, 32709, 32710, 32711, 32712, 32713, 32
714, 32715, 32716, 32717, 32718, 32719,
32720, 32721, 32722, 32723, 32724, 32725
, 32726, 32727, 32728, 32729, 32730, 327
31, 32732, 32733, 32734, 32735, 32736, 3
2737, 32738, 32739, 32740, 32741, 32742,
32743, 32744, 32745, 32746, 32747, 3274
8, 32749, 32750, 32751, 32752, 32753, 32
754, 32755, 32756, 32757, 32758, 32759,
32760, 32761, 32762, 32763, 32764, 32765
, 32766, 32767
?ILLEGAL QUANTITY ERROR IN 30
]</syntaxhighlight>
 
=={{header|ARM Assembly}}==
<syntaxhighlight lang="armasm">.text
.global main
 
@ An ARM program that keeps incrementing R0 forever
@
@ If desired, a call to some 'PRINT' routine --
@ which would depend on the OS -- could be included
 
main:
mov r0, #0 @ start with R0 = 0
repeat:
@ call to 'PRINT' routine
add r0, r0, #1 @ increment R0
b repeat @ unconditional branch</syntaxhighlight>
 
Alternative version
 
<pre>
Developed on an Acorn A5000 with RISC OS 3.10 (30 Apr 1992)
Using the assembler contained in ARM BBC BASIC V version 1.05 (c) Acorn 1989
 
The Acorn A5000 is the individual computer used to develop the code,
the code is applicable to all the Acorn Risc Machines (ARM)
produced by Acorn and the StrongARM produced by digital.
 
Investigation (a)
If all that was needed was to increment without doing the required display part of the task
then:
.a_loop
ADDS R0 , R0, #1
ADCS R1 , R1, #0
ADCS R2 , R2, #0
ADCS R3 , R3, #0
B a_loop
will count a 128 bit number
Investigation (b)
How long does it take?
.b_loop_01 \ took 71075 cs = 11.85 mins
ADDS R0, R0, #1 \ only a single ADD in the loop - unable to get the pipeline going
B B_loop_01
.b_loop_04 \ took 31100 cs = 5.18 mins
ADDS R0, R0, #1 \ with four instructions within the loop
ADDS R0, R0, #1
ADDS R0, R0, #1
ADDS R0, R0, #1
B B_loop_04
.b_loop_16 \ took 21112 cs = 3.52 mins
ADDS R0, R0, #1 \ with sixteen instructions within the loop
followed by a further 15 ADDS instructions
B B_loop_16
so there clearly is a time advantage to putting enough inline instructions to make the pipeline effective
But beware - for a 64 bit number (paired ADDS and ADCS) it took 38903 cs = 6.48 mins to count to only 32 bits,
a 128 bit number will take 4,294,967,296 * 4,294,967,296 * 4,294,967,296 times 6.48 mins.
My pet rock will tell you how long that took as it will have evolved into a sentient being by then.
The task
Producing a solution in say 64 bits or 128 bits is trivial when only looking at the increment.
Hovever the display part of the task is very difficult.
So instead go for BCD in as many bits as required. This makes the increment more involved, but
the display part of the task becomes manageable.
So a solution is:
.bcd_32bits_vn02
MOV R4 , #0 \ if eventually 4 registers each with 8 BCD
MOV R5 , #0 \ then 32 digits total
MOV R6 , #0
MOV R7 , #0
MOV R8 , #0 \ general workspace
MOV R9 , #0 \ a flag in the display - either doing leading space or digits
MVN R10 #&0000000F \ preset a mask of &FFFFFFF0
\ preset in R10 as the ARM has a very limited
\ range of immediate literals
MOV R11 , #&F \ preset so can be used in AND etc together with shifts
B bcd_32bits_loop_vn02 \ intentionally jump to inside the loop as this
\ single branch saves the need for multiple branches
\ later on (every branch resets the instruction pipeline)
\ the repeated blocks of code could be extracted into routines, however as they are small
\ I have decided to keep them as inline code as I have decided that the improved execution
\ from better use of the pipeline is greater than the small overall code size
.bcd_32bits_display_previous_number_vn02
MOV R9 , #0 \ start off with leading spaces (when R9<>0 output "0" instead)
ANDS R8 , R11 , R4, LSR#28 \ extract just the BCD in bits 28 to 31 of R4
MOVNE R9 , #1 \ if the BCD is non-zero then stop doing leading spaces
CMP R9 , #0 \ I could not find a way to eliminate this CMP
MOVEQ R0 , #&20 \ leading space
ORRNE R0 , R8 , #&30 \ digit 0 to 9 all ready for output
SWI OS_WriteC \ output the byte in R0
ANDS R8 , R11 , R4, LSR#24 \ extract just the BCD in bits 24 to 27 of R4
MOVNE R9 , #1
CMP R9 , #0
MOVEQ R0 , #&20
ORRNE R0 , R8 , #&30
SWI OS_WriteC
ANDS R8 , R11 , R4, LSR#20 \ extract just the BCD in bits 20 to 23 of R4
MOVNE R9 , #1
CMP R9 , #0
MOVEQ R0 , #&20
ORRNE R0 , R8 , #&30
SWI OS_WriteC
ANDS R8 , R11 , R4, LSR#16 \ extract just the BCD in bits 16 to 19 of R4
MOVNE R9 , #1
CMP R9 , #0
MOVEQ R0 , #&20
ORRNE R0 , R8 , #&30
SWI OS_WriteC
ANDS R8 , R11 , R4, LSR#12 \ extract just the BCD in bits 12 to 15 of R4
MOVNE R9 , #1
CMP R9 , #0
MOVEQ R0 , #&20
ORRNE R0 , R8 , #&30
SWI OS_WriteC
ANDS R8 , R11 , R4, LSR#8 \ extract just the BCD in bits 8 to 11 of R4
MOVNE R9 , #1
CMP R9 , #0
MOVEQ R0 , #&20
ORRNE R0 , R8 , #&30
SWI OS_WriteC
ANDS R8 , R11 , R4, LSR#4 \ extract just the BCD in bits 4 to 7 of R4
MOVNE R9 , #1
CMP R9 , #0
MOVEQ R0 , #&20
ORRNE R0 , R8 , #&30
SWI OS_WriteC
\ have reached the l.s. BCD - so will always output a digit, never a space
AND R8 , R11 , R4 \ extract just the BCD in bits 0 to 3 of R4
ORR R0 , R8 , #&30 \ digits 0 to 9 all ready for output
SWI OS_WriteC \ output the byte in R0
MOV R0 , #&13 \ carriage return
SWI OS_WriteC
MOV R0 , #&10 \ line feed
SWI OS_WriteC
\ there is no need for a branch instruction here
\ instead just fall through to the next increment
.bcd_32bits_loop_vn02
ADD R4 , R4 , #1 \ increment the l.s. BCD in bits 0 to 3
AND R8 , R4 , #&F \ extract just the BCD nibble after increment
CMP R8 , #10 \ has it reached 10?
\ if not then about to branch to the display code
BLT bcd_32bits_display_previous_number_vn02
\ have reached 10
ANDEQ R4 , R4 , R10 \ R10 contains &FFFFFFF0 so the BCD is set to 0
\ but now need to add in the carry to the next BCD
\ I have noticed that the EQ is superfluous here
\ but it does no harm
\ now work with the nibble in bits 4 to 7 (bit 31 is m.s. and bit 0 is l.s.)
MOV R4 , R4 , ROR #4 \ rotate R4 right by 4 bits
ADD R4 , R4 , #1 \ add in the carry
AND R8 , R4 , #&F \ extract just the BCD nibble after carry added
CMP R8 , #10 \ has it reached 10?
\ if less than 10 then rotate back to correct place
\ then branch to the display code
MOVLT R4 , R4 , ROR #28 \ finished adding in carry - rotate R4 right by 32-4=28 bits
BLT bcd_32bits_display_previous_number_vn02
\ yet another carry
ANDEQ R4 , R4 , R10 \ R10 contains &FFFFFFF0 so the BCD is set to 0
\ but now need to add in the carry to the next BCD
\ now work with the nibble in bits 8 to 11 (bit 31 is m.s. and bit 0 is l.s.)
MOV R4 , R4 , ROR #4 \ rotate R4 right by 4 bits
ADD R4 , R4 , #1 \ add in the carry
AND R8 , R4 , #&F \ extract just the BCD nibble after carry added
CMP R8 , #10 \ has it reached 10?
\ if less than 10 then rotate back to correct place
\ then branch to the display code
MOVLT R4 , R4 , ROR #24 \ finished adding in carry - rotate R4 right by 32-8=24 bits
BLT bcd_32bits_display_previous_number_vn02
\ yet another carry
ANDEQ R4 , R4 , R10
\ now work with the nibble in bits 12 to 15 (bit 31 is m.s. and bit 0 is l.s.)
MOV R4 , R4 , ROR #4
ADD R4 , R4 , #1
AND R8 , R4 , #&F
CMP R8 , #10
MOVLT R4 , R4 , ROR #20 \ finished adding in carry - rotate R4 right by 32-12=20 bits
BLT bcd_32bits_display_previous_number_vn02
\ yet another carry
ANDEQ R4 , R4 , R10
\ now work with the nibble in bits 16 to 19 (bit 31 is m.s. and bit 0 is l.s.)
MOV R4 , R4 , ROR #4
ADD R4 , R4 , #1
AND R8 , R4 , #&F
CMP R8 , #10
MOVLT R4 , R4 , ROR #16 \ finished adding in carry - rotate R4 right by 32-16=16 bits
BLT bcd_32bits_display_previous_number_vn02
\ yet another carry
ANDEQ R4 , R4 , R10
\ now work with the nibble in bits 20 to 23 (bit 31 is m.s. and bit 0 is l.s.)
MOV R4 , R4 , ROR #4
ADD R4 , R4 , #1
AND R8 , R4 , #&F
CMP R8 , #10
MOVLT R4 , R4 , ROR #12 \ finished adding in carry - rotate R4 right by 32-20=12 bits
BLT bcd_32bits_display_previous_number_vn02
\ yet another carry
ANDEQ R4 , R4 , R10
\ now work with the nibble in bits 24 to 27 (bit 31 is m.s. and bit 0 is l.s.)
MOV R4 , R4 , ROR #4
ADD R4 , R4 , #1
AND R8 , R4 , #&F
CMP R8 , #10
MOVLT R4 , R4 , ROR #8 \ finished adding in carry - rotate R4 right by 32-24=8 bits
BLT bcd_32bits_display_previous_number_vn02
\ yet another carry
ANDEQ R4 , R4 , R10
\ now work with the nibble in bits 28 to 31 (bit 31 is m.s. and bit 0 is l.s.)
MOV R4 , R4 , ROR #4
ADD R4 , R4 , #1
AND R8 , R4 , #&F
CMP R8 , #10
MOVLT R4 , R4 , ROR #4 \ finished adding in carry - rotate R4 right by 32-28=4 bits
BLT bcd_32bits_display_previous_number_vn02
\ yet another carry
ANDEQ R4 , R4 , R10
\ to continue the carry needs to be added to the next register (probably R5) if more than 8 BCD are required
\ if yet more than 16 BCD then continue to the next register (R6)
\ the extra code required will be as above but using R5 (or R6) instead of R4
MOVS PC , R14 \ return
 
</pre>
 
=={{header|ArnoldC}}==
<syntaxhighlight lang="arnoldc">IT'S SHOWTIME
HEY CHRISTMAS TREE n
YOU SET US UP @NO PROBLEMO
STICK AROUND @NO PROBLEMO
TALK TO THE HAND n
GET TO THE CHOPPER n
HERE IS MY INVITATION n
GET UP @NO PROBLEMO
ENOUGH TALK
CHILL
YOU HAVE BEEN TERMINATED</syntaxhighlight>
 
=={{header|Arturo}}==
<syntaxhighlight lang="rebol">i:0
while ø [
print i
inc 'i
]</syntaxhighlight>
 
=={{header|AutoHotkey}}==
This uses traytip to show the results. A msgbox, tooltip, or fileappend could also be used.
<syntaxhighlight lang="autohotkey">x=0
Loop
TrayTip, Count, % ++x</syntaxhighlight>
 
=={{header|AWK}}==
<syntaxhighlight lang="awk">BEGIN {
for( i=0; i != i + 1; i++ )
print( i )
}</syntaxhighlight>
 
Awk uses floating-point numbers. This loop terminates when <code>i</code> becomes too large for integer precision. With IEEE doubles, this loop terminates when <code>i</code> reaches <code>2 ^ 53</code>.
 
=={{header|Axe}}==
Integers in Axe are limited to 16 bits, or a maximum of 65535. This script will run infinitely until either the variable overflows or a key is pressed.
 
<syntaxhighlight lang="axe">While getKey(0)
End
0→I
Repeat getKey(0)
Disp I▶Dec,i
I++
EndIf I=0</syntaxhighlight>
 
=={{header|BASIC}}==
{{works with|ZX Spectrum Basic}}
<lang basic>5 LET A = 0
<syntaxhighlight lang="zxbasic">10 LET A = A + 10
20 PRINTLET A = A + 1
30 GOTOPRINT 10</lang>A
40 GO TO 20</syntaxhighlight>
{{works with|QBasic}}
<syntaxhighlight lang="qbasic">A = 0
DO: A = A + 1: PRINT A: LOOP 1</syntaxhighlight>
 
=={{header|BASIC256}}==
<syntaxhighlight lang="basic256">i = 1
 
do
print i
i += 1
until i = 0</syntaxhighlight>
 
 
=={{header|Batch File}}==
Variables are limited to 32bit integer, capable of a maximum value of <code>2,147,483,647</code>
<syntaxhighlight lang="dos">
@echo off
set number=0
:loop
set /a number+=1
echo %number%
goto loop
</syntaxhighlight>
{{out}}
<pre>
...
2147483644
2147483645
2147483646
2147483647
-2147483648
-2147483647
-2147483646
-2147483645
...
</pre>
 
=={{header|BBC BASIC}}==
{{works with|BBC BASIC for Windows}}
Native version, limited to 53-bit integers (maximum output 9007199254740992):
<syntaxhighlight lang="bbcbasic"> *FLOAT 64
REPEAT
i += 1
PRINT TAB(0,0) i;
UNTIL FALSE</syntaxhighlight>
Version using Huge Integer Math and Encryption library (up to 2^31 bits, but this program limited to 65535 decimal digits because of maximum string length):
<syntaxhighlight lang="bbcbasic"> INSTALL @lib$+"HIMELIB"
PROC_himeinit("")
reg% = 1
PROC_hiputdec(reg%, "0")
REPEAT
SYS `hi_Incr`, ^reg%, ^reg%
PRINT TAB(0,0) FN_higetdec(reg%);
UNTIL FALSE</syntaxhighlight>
 
=={{header|bc}}==
<syntaxhighlight lang="bc">while (++i) i</syntaxhighlight>
 
=={{header|beeswax}}==
Using an ordinary loop structure:
<syntaxhighlight lang="beeswax"> qNP<
_1>{d</syntaxhighlight>
 
Using a jump instruction:
<syntaxhighlight lang="beeswax">_1F6~@{PN@J</syntaxhighlight>
 
Numbers in beeswax are unsigned 64-bit integers, so after reaching 2^64-1 the counter wraps around to 0.
 
=={{header|Befunge}}==
The range of a numeric value in Befunge is implementation dependent, but is commonly 32 bit signed integers for the stack, so a maximum value of 2147483647. However, note that some implementations have a smaller range for ''displayed'' values, so the sequence may appear to wrap to negative numbers while the internal value is in fact still increasing.
 
Also note that the range of values written to the code page or 'playfield' is often much smaller - frequently only supporting 8 bits, sometimes signed, sometimes unsigned.
 
<syntaxhighlight lang="befunge">1+:0`!#@_:.55+,</syntaxhighlight>
 
=={{header|BQN}}==
 
While the input is lesser than or equal to infinity, print, then increment.
<syntaxhighlight lang="bqn">_while_ ← {𝔽⍟𝔾∘𝔽_𝕣_𝔾∘𝔽⍟𝔾𝕩}
(1+•Show) _while_ (≤⟜∞) 1</syntaxhighlight>
 
=={{header|Bracmat}}==
{{trans|Ruby}}
Bracmat uses big numbers. Numbers are stored with a radix 10, each decimal digit occupying one byte. When multiplying or dividing, numbers are temporarily converted to radix 10000 (32-bit systems: 1 digit occupies two bytes) or radix 100000000 (64-bit systems: 1 digit occupies four bytes) to speed up the computation.
<syntaxhighlight lang="text">0:?n&whl'out$(1+!n:?n)</syntaxhighlight>
 
=={{header|Brainf***}}==
This program assumes that decrementing past zero wraps around, but it doesn't rely on cell size, other than that a cell can hold at least six bits. It also assumes the ASCII character set. This is an arbitrarily large number implementation.
<syntaxhighlight lang="brainf***">++++++++++>>>+[[->>+<[+>->+<<---------------------------------------
-------------------[>>-<++++++++++<[+>-<]]>[-<+>]<++++++++++++++++++
++++++++++++++++++++++++++++++>]<[<]>>[-<+++++++++++++++++++++++++++
++++++++++++++++++++++>]>]>[>>>]<<<[.<<<]<.>>>+]</syntaxhighlight>
 
This modification of the previous program will print out 1 to the maximum cell value, still assuming wrapping. On many implementations, this will print out 1-255.
<syntaxhighlight lang="brainf***">++++++++++>>-[>+[->>+<[+>->+<<--------------------------------------
--------------------[>>-<++++++++++<[+>-<]]>[-<+>]<+++++++++++++++++
+++++++++++++++++++++++++++++++>]<[<]>>[-<++++++++++++++++++++++++++
+++++++++++++++++++++++>]>]>[>>>]<<<[.<<<]<.>>-]</syntaxhighlight>
 
This program can count in any base counting system under 256. '''Note:''' Change the characters in quotes equal to the base counting system you want to use.
<syntaxhighlight lang="brainf***">+[<<+>>[[<<"-----------"["+++++++++++"<]>]>[<<<<+>>+>>[>>]<]<]>>[>>]<<]</syntaxhighlight>
 
=={{header|Brat}}==
<syntaxhighlight lang="brat">i = 1
 
loop {
p i
i = i + 1
}</syntaxhighlight>
 
=={{header|Burlesque}}==
 
<syntaxhighlight lang="burlesque">
1R@
</syntaxhighlight>
 
=={{header|C}}==
Prints from 1 to max unsigned integer (usually 2**32 -1), then stops.
<lang c>#include <stdio.h>
<syntaxhighlight lang="c">#include <stdintstdio.h>
 
int main()
{
unsigned uint32_tint i = 0;
while (1++i) printf("%u\n", i);
{
printf("%u\n", ++i);
}
 
return 0;
}</langsyntaxhighlight>
 
==={{libheader|GMP}}===
Alternatively:
This one never stops. It's not even likely that you'll run out of memory before you run out of patience. <syntaxhighlight lang="c">#include <gmp.h>
<lang c>#include <stdio.h>
#include <stdint.h>
 
int main()
{
mpz_t i;
for (uint32_t i = 1; 1; i++)
mpz_init(i); /* zero now */
printf("%u\n", i);
 
while (1) {
mpz_add_ui(i, i, 1); /* i = i + 1 */
gmp_printf("%Zd\n", i);
}
 
return 0;
}</syntaxhighlight>
 
==={{libheader|OpenSSL}}===
OpenSSL provides arbitrarily large integers.
 
<syntaxhighlight lang="c">#include <openssl/bn.h> /* BN_*() */
#include <openssl/err.h> /* ERR_*() */
#include <stdio.h> /* fprintf(), puts() */
 
void
fail(const char *message)
{
fprintf(stderr, "%s: error 0x%08lx\n", ERR_get_error());
exit(1);
}
 
int
main()
{
BIGNUM i;
char *s;
 
BN_init(&i);
for (;;) {
if (BN_add_word(&i, 1) == 0)
fail("BN_add_word");
s = BN_bn2dec(&i);
if (s == NULL)
fail("BN_bn2dec");
puts(s);
OPENSSL_free(s);
}
/* NOTREACHED */
}</syntaxhighlight>
 
return 0;
}</lang>
=={{header|C sharp|C#}}==
<langsyntaxhighlight lang="csharp">using System;
using System.Numerics;
 
Line 58 ⟶ 743:
}
}
}</langsyntaxhighlight>
 
=={{header|C++}}==
<langsyntaxhighlight lang="cpp">#include <iostreamcstdint>
#include <cstdintiostream>
#include <limits>
 
int main()
{
uint32_tauto i = 0std::uintmax_t{};
while(true)
while (i < std::cout numeric_limits<< ++decltype(i << std)>::endl;max())
std::cout << ++i << '\n';
}</syntaxhighlight>
<!--
<syntaxhighlight lang="cpp">// Using the proposed unbounded integer library
 
#include <iostream>
return 0;
#include <seminumeric>
}</lang>
 
int main()
{
try
{
auto i = std::experimental::seminumeric::integer{};
while (true)
std::cout << ++i << '\n';
}
catch (...)
{
// Do nothing
}
}</syntaxhighlight>
-->
 
=={{header|ChucK}}==
Math.INT_MAX is a constant value that represents the greater integer, 32 bit , 64 bit systems.
<syntaxhighlight lang="text">
for(1 => int i; i < Math.INT_MAX; i ++)
{
<<< i >>>;
}
</syntaxhighlight>
 
=={{header|Clean}}==
In Clean this example has a limit of basically 2147483648.
<syntaxhighlight lang="clean">module IntegerSequence
 
import StdEnv
 
Start = [x \\ x <- [1..]]</syntaxhighlight>
 
Output:
<pre>[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,..</pre>
 
=={{header|Clojure}}==
<syntaxhighlight lang="clojure">(map println (next (range)))</syntaxhighlight>
 
=={{header|CLU}}==
<syntaxhighlight lang="clu">% This iterator will generate all integers until the built-in type
% overflows. It is a signed machine-sized integer; so 64 bits on
% a modern machine. After that it will raise an exception.
to_infinity_and_beyond = iter () yields (int)
i: int := 0
while true do
i := i + 1
yield(i)
end
end to_infinity_and_beyond
 
start_up = proc ()
po: stream := stream$primary_output()
for i: int in to_infinity_and_beyond() do
stream$putl(po, int$unparse(i))
end
end start_up </syntaxhighlight>
 
=={{header|COBOL}}==
<syntaxhighlight lang="cobol"> IDENTIFICATION DIVISION.
PROGRAM-ID. Int-Sequence.
 
DATA DIVISION.
WORKING-STORAGE SECTION.
* *> 36 digits is the largest size a numeric field can have.
01 I PIC 9(36).
 
PROCEDURE DIVISION.
* *> Display numbers until I overflows.
PERFORM VARYING I FROM 1 BY 1 UNTIL I = 0
DISPLAY I
END-PERFORM
 
GOBACK
.</syntaxhighlight>
 
=={{header|CoffeeScript}}==
Like with most languages, counting is straightforward in CoffeeScript, so the program below tries to handle very large numbers. See the comments for starting the sequence from 1.
 
<syntaxhighlight lang="coffeescript">
# This very limited BCD-based collection of functions
# makes it easy to count very large numbers. All arrays
# start off with the ones columns in position zero.
# Using arrays of decimal-based digits to model integers
# doesn't make much sense for most tasks, but if you
# want to keep counting forever, this does the trick.
 
BcdInteger =
from_string: (s) ->
arr = []
for c in s
arr.unshift parseInt(c)
arr
 
render: (arr) ->
s = ''
for elem in arr
s = elem.toString() + s
s
succ: (arr) ->
arr = (elem for elem in arr)
i = 0
while arr[i] == 9
arr[i] = 0
i += 1
arr[i] ||= 0
arr[i] += 1
arr
# To start counting from 1, change the next line!
big_int = BcdInteger.from_string "199999999999999999999999999999999999999999999999999999"
while true
console.log BcdInteger.render big_int
big_int = BcdInteger.succ big_int
</syntaxhighlight>
 
output
<syntaxhighlight lang="text">
> coffee foo.coffee | head -5
199999999999999999999999999999999999999999999999999999
200000000000000000000000000000000000000000000000000000
200000000000000000000000000000000000000000000000000001
200000000000000000000000000000000000000000000000000002
200000000000000000000000000000000000000000000000000003
</syntaxhighlight>
 
=={{header|Common Lisp}}==
 
<langsyntaxhighlight lang="lisp">(loop for i from 1 do (print i))</langsyntaxhighlight>
 
If your compiler does tail call elimination (note: this has absolutely no advantage over normal loops):
<syntaxhighlight lang="lisp">(defun pp (x) (pp (1+ (print x))))
(funcall (compile 'pp) 1) ; it's less likely interpreted mode will eliminate tails</syntaxhighlight>
 
=={{header|Component Pascal}}==
BlackBox Component Builder
<syntaxhighlight lang="oberon2">
MODULE IntegerSequence;
IMPORT StdLog;
 
PROCEDURE Do*;
VAR
i: INTEGER;
BEGIN
FOR i := 0 TO MAX(INTEGER) DO;
StdLog.Int(i)
END;
StdLog.Ln
END Do;
 
END IntegerSequence.
</syntaxhighlight>
Execute: ^Q IntegerSequence.Do<br/>
Output:
<pre>
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 ...
</pre>
 
=={{header|Computer/zero Assembly}}==
This program counts up to 255 in the accumulator, after which it starts again from zero.
<syntaxhighlight lang="czasm">start: ADD one
JMP start
one: 1</syntaxhighlight>
 
=={{header|Cowgol}}==
 
The largest integer type that Cowgol supports out of the box is the unsigned 32-bit integer.
This program will count up to 2^32-1, and then stop.
 
<syntaxhighlight lang="cowgol">include "cowgol.coh";
 
var n: uint32 := 1;
while n != 0 loop;
print_i32(n);
print_nl();
n := n + 1;
end loop;</syntaxhighlight>
 
The following program will keep going until it runs out of memory, using one byte per digit.
 
<syntaxhighlight lang="cowgol">include "cowgol.coh";
 
sub print_back(s: [uint8]) is
while [s] != 0 loop;
print_char([s]);
s := @prev s;
end loop;
print_nl();
end sub;
 
sub incr(n: [uint8]): (r: [uint8]) is
r := n;
while [n] != 0 loop;
n := @prev n;
end loop;
n := @next n;
loop
if [n] == 0 then
[n] := '1';
[@next n] := 0;
r := n;
break;
elseif [n] == '9' then
[n] := '0';
n := @next n;
continue;
else
[n] := [n] + 1;
break;
end if;
end loop;
end sub;
 
sub init(n: [uint8]): (r: [uint8]) is
[n] := 0;
[n+1] := '0';
[n+2] := 0;
r := n+1;
end sub;
 
var infnum := init(LOMEM);
loop
infnum := incr(infnum);
print_back(infnum);
end loop;</syntaxhighlight>
 
=={{header|Crystal}}==
Will run as long as enough memory to represent numbers.
<syntaxhighlight lang="ruby">require "big"
 
(1.to_big_i ..).each { |i| puts i } </syntaxhighlight>
 
=={{header|D}}==
<syntaxhighlight lang ="d">import std.stdio, std.traits, std.bigint, std.string ;
 
void main() {
BigInt i;
while (true)
writeln(++i);
}</syntaxhighlight>
Alternative:
<syntaxhighlight lang="d">import std.stdio, std.traits, std.bigint, std.string;
 
void integerSequence(T)() if (isIntegral!T || is(T == BigInt)) {
T now = 1;
T max = 0;
static if (!is(T == BigInt))
max = T.max;
 
void integerSequence(T)() if(is(T == BigInt) || isIntegral!T ) {
static if(is(T == BigInt)) {
BigInt now = BigInt(1) ;
BigInt max = BigInt(0) ;
} else {
T now = 1 ;
T max = T.max ;
}
do
write(now, " ") ;
while (now++ != max) ;
 
writeln("\nDone!") ;
writeln("\nDone!");
}
 
void main() {
writeln("How much time do you have?");
string answer ;
whilewriteln(answer" 0.length ==I'm 0)in {hurry.");
writeln("Do you1. haveI've some time?.") ;
writeln(" 12. I'm inon hurryvacation.") ;
writeln(" 23. I'vem some timeunemployed...") ;
writeln(" 34. I'm on vacation.immortal!") ;
write("Enter 0-4 or nothing to quit: ");
writeln(" 4. I'm unemployed...") ;
 
write(" 0. I'm immortal!\nEnter 0-4 or q for quit > ") ;
string readf("%s\n", &answer) ;
readf("%s\n", switch (&answer.tolower) {;
 
case "1": return integerSequence!ubyte ;
switch (answer.toLower()) {
case "2": return integerSequence!short ;
case "30": return integerSequence!uintubyte(); break;
case "41": return integerSequence!longshort(); break;
case "02": return integerSequence!BigIntuint(); break;
case "q3": return writelnintegerSequence!long("Bye); bye!") break;
case "4": integerSequence!BigInt(); default:break;
default: writeln("Pardon?\nBye try again...bye!"); break;
answer = "" ;
}
}
}</syntaxhighlight>
 
=={{header|Dc}}==
}</lang>
<syntaxhighlight lang="dc">1[p1+lpx]dspx</syntaxhighlight>
 
=={{header|DCL}}==
<syntaxhighlight lang="dcl">$ i = 1
$ loop:
$ write sys$output i
$ i = i + 1
$ goto loop</syntaxhighlight>
{{out}}
<pre>1
2
3
...
2147483646
2147483647
-2147483648
-2147483647
...
-1
0
1
...</pre>
 
=={{header|Delphi}}==
<syntaxhighlight lang="delphi">program IntegerSequence;
 
{$APPTYPE CONSOLE}
 
var
i: Integer;
begin
for i := 1 to High(i) do
WriteLn(i);
end.</syntaxhighlight>
 
=={{header|DWScript}}==
High(i) returns the maximum supported value, typically, it is the highest signed 64 bit integer.
<syntaxhighlight lang="delphi">
var i: Integer;
 
for i:=1 to High(i) do
PrintLn(i);
</syntaxhighlight>
 
=={{header|Dyalect}}==
 
<syntaxhighlight lang="dyalect">var n = 0
while true {
n += 1
print(n)
}</syntaxhighlight>
 
=={{header|Déjà Vu}}==
<syntaxhighlight lang="dejavu">1
 
while /= -- dup dup:
!. dup
++
 
drop</syntaxhighlight>
 
This continues to print numbers until double precision IEEE 754 cannot represent adjacent integers any more (9007199254740992, to be exact).
 
In the future, the implementation may switch to arbitrary precision, so it will keep running until memory fills up.
 
=={{header|E}}==
 
<langsyntaxhighlight lang="e">for i in int > 0 { println(i) }</langsyntaxhighlight>
 
=={{header|EasyLang}}==
 
<syntaxhighlight lang="easylang">
max = pow 2 53
repeat
print i
if i = 10
print "."
print "."
i = max - 10
.
until i = max
i += 1
.
</syntaxhighlight>
 
=={{header|EchoLisp}}==
<syntaxhighlight lang="scheme">
(lib 'bigint) ;; arbitrary length integers
(for ((n (in-naturals))) (writeln n))
</syntaxhighlight>
 
=={{header|EDSAC order code}}==
<syntaxhighlight lang="edsac">[ Integer sequence
================
A program for the EDSAC
Displays integers 1,2,3...
in binary form in the first
word of storage tank 2
until stopped
Works with Initial Orders 2 ]
 
T56K [ set load point ]
GK [ set base address ]
A3@ [ increment accumulator ]
U64F [ copy accumulator to 64 ]
E@ [ jump to base address ]
P0D [ constant: 1 ]
EZPF [ begin at load point ]</syntaxhighlight>
 
=={{header|Eiffel}}==
<syntaxhighlight lang="eiffel">
class
APPLICATION
inherit
ARGUMENTS
create
make
feature {NONE} -- Initialization
make
-- Run application.
do
from
number := 0
until
number = number.max_value
loop
print(number)
print(", ")
number := number + 1
end
end
number:INTEGER_64
end
</syntaxhighlight>
 
=={{header|Elena}}==
ELENA 4.x :
<syntaxhighlight lang="elena">import extensions;
public program()
{
var i := 0u;
while (true)
{
console.printLine(i);
i += 1u
}
}</syntaxhighlight>
 
=={{header|Elixir}}==
<syntaxhighlight lang="elixir">Stream.iterate(1, &(&1+1)) |> Enum.each(&(IO.puts &1))</syntaxhighlight>
 
=={{header|Emacs Lisp}}==
Displays in the message area interactively, or to standard output under <code>-batch</code>.
 
<syntaxhighlight lang="lisp">(dotimes (i most-positive-fixnum)
(message "%d" (1+ i)))</syntaxhighlight>
 
=={{header|Erlang}}==
 
<syntaxhighlight lang="erlang"> F = fun(FF, I) -> io:format("~p~n", [I]), FF(FF, I + 1) end, F(F,0). </syntaxhighlight>
 
=={{header|ERRE}}==
<syntaxhighlight lang="text">
.............
A%=0
LOOP
A%=A%+1
PRINT(A%;)
END LOOP
.............
</syntaxhighlight>
% is integer-type specificator. Integer type works on 16-bit signed numbers (reserved constant MAXINT is 32767). Beyond this limit execution will give Runtime error #6 (overflow).
 
=={{header|Euphoria}}==
<syntaxhighlight lang="euphoria">integer i
i = 0
while 1 do
? i
i += 1
end while</syntaxhighlight>
 
=={{header|F_Sharp|F#}}==
 
<langsyntaxhighlight lang="fsharp">// lazy sequence of integers starting with i
let rec integers i =
seq { yield i
yield! integers (i+1) }
 
Seq.iter (printfn "%d") (integers 1)</langsyntaxhighlight>
 
lazy sequence of int32 starting from 0
<syntaxhighlight lang="fsharp">let integers = Seq.initInfinite id</syntaxhighlight>
 
lazy sequence of int32 starting from n
<syntaxhighlight lang="fsharp">let integers n = Seq.initInfinite ((+) n)</syntaxhighlight>
 
lazy sequence (not necessarily of int32) starting from n (using unfold anamorphism)
<syntaxhighlight lang="fsharp">let inline numbers n =
Seq.unfold (fun n -> Some (n, n + LanguagePrimitives.GenericOne)) n</syntaxhighlight>
<div>
> numbers 0 |> Seq.take 10;;
val it : seq<int> = seq [0; 1; 2; 3; ...]
> let bignumber = 12345678901234567890123456789012345678901234567890;;
val bignumber : System.Numerics.BigInteger =
12345678901234567890123456789012345678901234567890
> numbers bignumber |> Seq.take 10;;
val it : seq<System.Numerics.BigInteger> =
seq
[12345678901234567890123456789012345678901234567890 {IsEven = true;
IsOne = false;
IsPowerOfTwo = false;
IsZero = false;
Sign = 1;};
12345678901234567890123456789012345678901234567891 {IsEven = false;
IsOne = false;
IsPowerOfTwo = false;
IsZero = false;
Sign = 1;};
12345678901234567890123456789012345678901234567892 {IsEven = true;
IsOne = false;
IsPowerOfTwo = false;
IsZero = false;
Sign = 1;};
12345678901234567890123456789012345678901234567893 {IsEven = false;
IsOne = false;
IsPowerOfTwo = false;
IsZero = false;
Sign = 1;}; ...]
> numbers 42.42 |> Seq.take 10;;
val it : seq<float> = seq [42.42; 43.42; 44.42; 45.42; ...]
</div>
 
=={{header|Factor}}==
<syntaxhighlight lang="factor">USE: lists.lazy
1 lfrom [ . ] leach</syntaxhighlight>
 
=={{header|Fantom}}==
 
<syntaxhighlight lang="fantom">
class Main
{
public static Void main()
{
i := 1
while (true)
{
echo (i)
i += 1
}
}
}
</syntaxhighlight>
 
Fantom's integers are 64-bit signed, and so the numbers will return to 0 and continue again, if you wait long enough!
You can use Java BigInteger via FFI
 
=={{header|Fermat}}==
<syntaxhighlight lang="fermat">n:=0;
while 1 do !n;!' '; n:=n+1 od</syntaxhighlight>
 
=={{header|Fish}}==
Since there aren't really libraries in Fish and I wouldn't know how to program arbitarily large integers, so here's an example that just goes on until the interpreter's number limit:
<syntaxhighlight lang="fish">0>:n1+v
^o" "<</syntaxhighlight>
 
=={{header|Forth}}==
<syntaxhighlight lang="forth">: ints ( -- )
0 begin 1+ dup cr u. dup -1 = until drop ;</syntaxhighlight>
 
=={{header|Fortran}}==
{{works with|Fortran|90 and later}}
<syntaxhighlight lang="fortran">program Intseq
implicit none
integer, parameter :: i64 = selected_int_kind(18)
integer(i64) :: n = 1
! n is declared as a 64 bit signed integer so the program will display up to
! 9223372036854775807 before overflowing to -9223372036854775808
do
print*, n
n = n + 1
end do
end program</syntaxhighlight>
 
=={{header|FreeBASIC}}==
<syntaxhighlight lang="freebasic">' FB 1.05.0 Win64
 
' FB does not natively support arbitrarily large integers though support can be added
' by using an external library such as GMP. For now we will just use an unsigned integer (32bit).
 
Print "Press Ctrl + C to stop the program at any time"
Dim i As UInteger = 1
 
Do
Print i
i += 1
Loop Until i = 0 ' will wrap back to 0 when it reaches 4,294,967,296
 
Sleep</syntaxhighlight>
 
=={{header|Frink}}==
All of Frink's numbers can be arbitrarily-sized:
<syntaxhighlight lang="frink">
i=0
while true
{
println[i]
i = i + 1
}
</syntaxhighlight>
 
=={{header|FunL}}==
The following has no limit since FunL has arbitrary size integers.
 
<syntaxhighlight lang="funl">for i <- 1.. do println( i )</syntaxhighlight>
 
=={{header|Futhark}}==
 
Infinite loops cannot produce results in Futhark, so this program
accepts an input indicating how many integers to generate. It encodes the size of the returned array in its type.
 
<syntaxhighlight lang="futhark">
fun main(n: int): [n]int = iota n
</syntaxhighlight>
 
 
 
=={{header|FutureBasic}}==
ULLONG_MAX = 18446744073709551615. So this will crash long before getting there!
<syntaxhighlight lang="futurebasic">
include "NSLog.incl"
 
UInt64 i = 1
 
while ( i < ULLONG_MAX )
NSLog( @"%llu\n", i )
i++
wend
 
// NSLog( @"Maximum Unsigned long long: %llu", ULLONG_MAX )
 
HandleEvents
</syntaxhighlight>
 
 
 
=={{header|GAP}}==
<syntaxhighlight lang="gap">InfiniteLoop := function()
local n;
n := 1;
while true do
Display(n);
n := n + 1;
od;
end;
 
# Prepare some coffee
InfiniteLoop();</syntaxhighlight>
 
=={{header|Go}}==
Size of <tt>int</tt> type is implementation dependent. After the maximum positive value, it rolls over to maximum negative, without error. Type <tt>uint</tt> will roll over to zero.
<syntaxhighlight lang="go">package main
 
import "fmt"
 
func main() {
for i := 1;; i++ {
fmt.Println(i)
}
}</syntaxhighlight>
The <tt>big.Int</tt> type does not roll over and is limited only by available memory, or practically, by whatever external factor halts CPU execution: human operator, lightning storm, CPU fan failure, heat death of universe, etc.
<syntaxhighlight lang="go">package main
 
import (
"big"
"fmt"
)
 
func main() {
one := big.NewInt(1)
for i := big.NewInt(1);; i.Add(i, one) {
fmt.Println(i)
}
}</syntaxhighlight>
 
=={{header|Gridscript}}==
<syntaxhighlight lang="gridscript">
#INTEGER SEQUENCE.
 
@width
@height 1
 
(1,1):START
(3,1):STORE 1
(5,1):CHECKPOINT 0
(7,1):PRINT
(9,1):INCREMENT
(11,1):GOTO 0
</syntaxhighlight>
 
=={{header|Groovy}}==
<syntaxhighlight lang="groovy">// 32-bit 2's-complement signed integer (int/Integer)
for (def i = 1; i > 0; i++) { println i }
 
// 64-bit 2's-complement signed integer (long/Long)
for (def i = 1L; i > 0; i+=1L) { println i }
 
// Arbitrarily-long binary signed integer (BigInteger)
for (def i = 1g; ; i+=1g) { println i }</syntaxhighlight>
 
=={{header|GUISS}}==
 
Graphical User Interface Support Script makes use of installed programs. There are no variables, no loop structures and no jumps within the language so iteration is achieved by repetative instructions. In this example, we will just use the desktop calculator and keep adding one to get a counter. We stop after counting to ten in this example.
 
<syntaxhighlight lang="guiss">Start,Programs,Accessories,Calculator,
Button:[plus],Button:1,Button:[equals],Button:[plus],Button:1,Button:[equals],
Button:[plus],Button:1,Button:[equals],Button:[plus],Button:1,Button:[equals],
Button:[plus],Button:1,Button:[equals],Button:[plus],Button:1,Button:[equals],
Button:[plus],Button:1,Button:[equals],Button:[plus],Button:1,Button:[equals],
Button:[plus],Button:1,Button:[equals],Button:[plus],Button:1,Button:[equals]</syntaxhighlight>
 
=={{header|GW-BASIC}}==
<syntaxhighlight lang="gwbasic">10 A#=1
20 PRINT A#
30 A#=A#+1
40 GOTO 20</syntaxhighlight>
 
=={{header|Haskell}}==
<syntaxhighlight lang ="haskell">mapM_ print [1..]</langsyntaxhighlight>
 
Or less imperatively:
 
<langsyntaxhighlight lang="haskell">(putStr .$ unlines .$ map show) [1..]</langsyntaxhighlight>
 
=={{header|HolyC}}==
Prints from 1 to max unsigned 64 bit integer (2**64 -1), then stops.
<syntaxhighlight lang="holyc">U64 i = 0;
while (++i) Print("%d\n", i);
</syntaxhighlight>
 
=={{header|Icon}} and {{header|Unicon}}==
Icon and Unicon support large integers by default. The built-in generator seq(i,j) yields the infinite sequence i, i+j, i+2*j, etc. Converting the results to strings for display will likely eat your lunch before the sequence will take its toll.
 
<syntaxhighlight lang="icon">procedure main()
every write(seq(1)) # the most concise way
end</syntaxhighlight>
 
=={{header|IS-BASIC}}==
<syntaxhighlight lang="is-basic">100 FOR I=1 TO INF
110 PRINT I;
120 NEXT</syntaxhighlight>
 
INF = 9.999999999E62
 
=={{header|J}}==
The following will count indefinitely but once the 32-bit (or 64-bit depending on J engine version) limit is reached, the results will be reported as floating point values (which would immediately halt on 64 bit J and halt with the 53 bit precision limit is exceeded on 32 bit J). Since that could take many, many centuries, even on a 32 bit machine, more likely problems include the user dying of old age and failing to pay the electric bill resulting in the machine being powered off.
 
<syntaxhighlight lang="j"> count=: (echo ] >:)^:_</syntaxhighlight>
 
The above works with both fixed sized integers and floating point numbers (fixed sized integers are automatically promoted to floating point, if they overflow), but also works with extended precision integers (which will not overflow, unless they get so large that they cannot be represented in memory, but that should exceed lifetime of the universe, let alone lifetime of the computer).
 
This adds support for extended precision (in that it converts non-extended precision arguments to extended precision arguments) and will display integers to ∞ (or at least until the machine is turned off or interrupted or crashes).
<syntaxhighlight lang="j"> count=: (echo ] >:)@x:^:_</syntaxhighlight>
 
=={{header|Jakt}}==
Jakt's default integer type is i64. Specifying 1u64 allows it to (theoretically) count to 2^64 - 2 (The range has an implicit exclusive upper bound of 2^64 - 1).
<syntaxhighlight lang="jakt">
fn main() {
for i in (1u64..) {
println("{}", i)
}
}
</syntaxhighlight>
 
=={{header|Java}}==
Long limit:
<syntaxhighlight lang ="java">public class Count{
public static voidclass main(String[]Count args){
public static void main(String[] args) {
for(long i = 1; ;i++) System.out.println(i);
}
}
}</lang>
</syntaxhighlight>
"Forever":
<syntaxhighlight lang="java">
<lang java>import java.math.BigInteger;
import java.math.BigInteger;
 
public class Count {
public static void main(String[] args) {
for(BigInteger i = BigInteger.ONE; ;i = i.add(BigInteger.ONE)) System.out.println(i);
}
}
}</lang>
</syntaxhighlight>
 
==={{libheader|Stream}}===
{{works with|OpenJDK|8}}
This solution leverages the Stream API to create declarative integer sequences, which is arguably more readable than the unbound for loop approach.
 
Overflow-unsafe code using the long primitive:
<syntaxhighlight lang="java">
import java.util.stream.LongStream;
 
public class Count {
public static void main(String[] args) {
LongStream.iterate(1, l -> l + 1)
.forEach(System.out::println);
}
}
</syntaxhighlight>
 
BigInteger solution with arbitrary size integers:
<syntaxhighlight lang="java">
import static java.math.BigInteger.ONE;
 
import java.util.stream.Stream;
 
public class Count {
public static void main(String[] args) {
Stream.iterate(ONE, i -> i.add(ONE))
.forEach(System.out::println);
}
}
</syntaxhighlight>
 
=={{header|JavaScript}}==
This code is accurate up to 2^53 where it will be stuck an 2^53 because a IEEE 64-bit double can not represent 2^53 + 1.
<syntaxhighlight lang="javascript">var i = 0;
 
while (true)
document.write(++i + ' ');</syntaxhighlight>
This example uses a BigInt[https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt] literal to support arbitrary large integers.
<syntaxhighlight lang="javascript">var i = 0n;
 
while (true)
document.write(++i + ' ');</syntaxhighlight>
 
=={{header|Joy}}==
<syntaxhighlight lang="joy">
1 [0 >] [dup put succ] while pop.</syntaxhighlight>
 
Counting stops at <code>maxint</code>: 2147483647
 
=={{header|jq}}==
The Go implementation of jq does support arbitrary-precision integer arithmetic, but currently (2024) the C implementation of jq will resort to floating-point arithmetic for very large integers.
 
Consider, for example:
 
<syntaxhighlight lang="jq">0 | recurse(. + 1)</syntaxhighlight>
 
Using gojq, this will indefinitely generate a stream of integers beginning with 0, but jq (the C implementation) will eventually lose precision.
For generating integers, the built-in function <tt>range(m;n)</tt> is more likely to be useful in practice; if m and n are integers, it generates integers from m to n-1, inclusive. `range(m; infinite)` is also valid for any integer.
 
The C implementation of jq supports tail recursion optimization, and thus the following tail-recursive definition could be used:
<syntaxhighlight lang="jq">def iota: ., (. + 1 | iota);
0 | iota</syntaxhighlight>
 
One could also write:<syntaxhighlight lang="jq">0 | while(true; . + 1)</syntaxhighlight>
 
Integers can of course also be represented by strings of decimal digits, and if this representation is satisfactory, a stream of consecutive integers thus represented can be generated using the same technique as is employed on the
[[Count_in_octal]] page.
 
=={{header|Julia}}==
<syntaxhighlight lang="julia">i = zero(BigInt) # or i = big(0)
while true
println(i += 1)
end</syntaxhighlight>
The built-in <code>BigInt</code> type is an arbitrary precision integer (based on the GMP library), so the value of <code>i</code> is limited only by available memory. To use (much faster) hardware fixed-width integer types, use e.g. <code>zero(Int32)</code> or <code>zero(Int64)</code>. (Initializing <code>i = 0</code> will use fixed-width integers that are the same size as the hardware address width, e.g. 64-bit on a 64-bit machine.)
 
=={{header|K}}==
<syntaxhighlight lang="k"> {`0:"\n",$x+:1;x}/1</syntaxhighlight>
 
Using a <code>while</code> loop:
 
<syntaxhighlight lang="k"> i:0; while[1;`0:"\n",$i+:1]</syntaxhighlight>
 
=={{header|Kotlin}}==
<syntaxhighlight lang="scala">import java.math.BigInteger
 
// version 1.0.5-2
 
fun main(args: Array<String>) {
// print until 2147483647
(0..Int.MAX_VALUE).forEach { println(it) }
 
// print forever
var n = BigInteger.ZERO
while (true) {
println(n)
n += BigInteger.ONE
}
}</syntaxhighlight>
 
=={{header|Lambdatalk}}==
The long_add primitive allow counting beyond the javascript numbers limits, depending on the system memory.
<syntaxhighlight lang="scheme">
{def infinite_set
{lambda {:i}
{if true // will never change
then :i {infinite_set {long_add :i 1}} // extends {+ :i 1}
else You have reached infinity! }}} // probably never.
-> infinite_set
 
{infinite_set 0}
-> 0 1 2 3 ... forever
</syntaxhighlight>
 
=={{header|Lang}}==
<syntaxhighlight lang="lang">
# LONG limit (64 bits signed)
$l = 1L
loop {
fn.println($l)
$l += 1
}
</syntaxhighlight>
 
=={{header|Lang5}}==
<syntaxhighlight lang="lang5">0 do dup . 1 + loop</syntaxhighlight>
 
=={{header|Lasso}}==
<syntaxhighlight lang="lasso">local(number = 1)
while(#number > 0) => {^
#number++
' '
//#number > 100 ? #number = -2 // uncomment this row if you want to halt the run after proving concept
^}</syntaxhighlight>
This will run until you exhaust the system resources it's run under.
 
=={{header|Liberty BASIC}}==
Liberty BASIC handles extremely large integers. The following code was halted by user at 10,000,000 in test run.
<syntaxhighlight lang="lb"> while 1
i=i+1
locate 1,1
print i
scan
wend
</syntaxhighlight>
 
=={{header|Limbo}}==
The int (32 bits) and big (64 bits) types are both signed, so they wrap around. This version uses the infinite precision integer library:
 
<syntaxhighlight lang="limbo">implement CountToInfinity;
 
include "sys.m"; sys: Sys;
include "draw.m";
include "ipints.m"; ipints: IPints;
IPint: import ipints;
 
CountToInfinity: module {
init: fn(nil: ref Draw->Context, nil: list of string);
};
 
init(nil: ref Draw->Context, nil: list of string)
{
sys = load Sys Sys->PATH;
ipints = load IPints IPints->PATH;
 
i := IPint.inttoip(0);
one := IPint.inttoip(1);
for(;;) {
sys->print("%s\n", i.iptostr(10));
i = i.add(one);
}
}
</syntaxhighlight>
 
=={{header|Lingo}}==
<syntaxhighlight lang="lingo">i = 1
repeat while i>0
put i
i = i+1
end repeat</syntaxhighlight>
 
Lingo uses signed 32 bit integers, so max. supported integer value is 2147483647:
<syntaxhighlight lang="lingo">put the maxInteger
-- 2147483647</syntaxhighlight>
 
Beyond this limit values behave like negative numbers:
<syntaxhighlight lang="lingo">put the maxInteger+1
-- -2147483648
put the maxInteger+2
-- -2147483647</syntaxhighlight>
Up to the (quite high) number where floats (double-precission) start rounding, floats can be used to exceed the integer limit:
<syntaxhighlight lang="lingo">the floatPrecision = 0 -- forces floats to be printed without fractional digits
 
put float(the maxInteger)+1
-- 2147483648
 
-- max. whole value that can be stored as 8-byte-float precisely
maxFloat = power(2,53) -- 9007199254740992.0
 
i = 1.0
repeat while i<=maxFloat
put i
i = i+1
end repeat
-- 1
-- 2
-- 3
-- ...</syntaxhighlight>
 
=={{header|LLVM}}==
{{trans|C}}
<syntaxhighlight lang="llvm">; This is not strictly LLVM, as it uses the C library function "printf".
; LLVM does not provide a way to print values, so the alternative would be
; to just load the string into memory, and that would be boring.
 
; Additional comments have been inserted, as well as changes made from the output produced by clang such as putting more meaningful labels for the jumps
 
;--- The declarations for the external C functions
declare i32 @printf(i8*, ...)
 
$"FORMAT_STR" = comdat any
@"FORMAT_STR" = linkonce_odr unnamed_addr constant [4 x i8] c"%u\0A\00", comdat, align 1
 
; Function Attrs: noinline nounwind optnone uwtable
define i32 @main() #0 {
%1 = alloca i32, align 4 ;-- allocate i
store i32 0, i32* %1, align 4 ;-- store i as 0
br label %loop
 
loop:
%2 = load i32, i32* %1, align 4 ;-- load i
%3 = add i32 %2, 1 ;-- increment i
store i32 %3, i32* %1, align 4 ;-- store i
%4 = icmp ne i32 %3, 0 ;-- i != 0
br i1 %4, label %loop_body, label %exit
 
loop_body:
%5 = load i32, i32* %1, align 4 ;-- load i
%6 = call i32 (i8*, ...) @printf(i8* getelementptr inbounds ([4 x i8], [4 x i8]* @"FORMAT_STR", i32 0, i32 0), i32 %5)
br label %loop
 
exit:
ret i32 0
}
 
attributes #0 = { noinline nounwind optnone uwtable "correctly-rounded-divide-sqrt-fp-math"="false" "disable-tail-calls"="false" "less-precise-fpmad"="false" "no-frame-pointer-elim"="false" "no-infs-fp-math"="false" "no-jump-tables"="false" "no-nans-fp-math"="false" "no-signed-zeros-fp-math"="false" "no-trapping-math"="false" "stack-protector-buffer-size"="8" "target-cpu"="x86-64" "target-features"="+fxsr,+mmx,+sse,+sse2,+x87" "unsafe-fp-math"="false" "use-soft-float"="false" }</syntaxhighlight>
 
=={{header|Lua}}==
<syntaxhighlight lang="lua">
i = 1
 
-- in the event that the number inadvertently wraps around,
-- stop looping - this is unlikely with Lua's default underlying
-- number type (double), but on platform without double
-- the C type used for numbers can be changed
while i > 0 do
print( i )
i = i + 1
end
</syntaxhighlight>
 
=={{header|M2000 Interpreter}}==
<syntaxhighlight lang="m2000 interpreter">
\\ easy way
a=1@
\\ Def statement defines one time (second pass produce error)
Rem : Def Decimal a=1
Rem : Def a as decimal=1
\\ Global shadow any global with same name, but not local
\\ globals can change type, local can't change
\\ to assign value to global need <=
\\ Symbol = always make local variables (and shadows globals)
Rem : Global a as decimal =1
\\Local make a new local and shadow one with same name
Rem : Local a as decimal=1
\\ we can create an "auto rounding" variable
\\ an integer with any type (double, single, decimal, currency, long, integer)
\\ rounding to .5 : up for positive numbers and down to negative
\\ 1.5 round to 2 and -1.5 round to -2
a%=1@
 
\\ variables a, a%, a$, arrays/functions a(), a$(), sub a() and the module a can exist together
\\ A block may act as loop structure using an internal flag
\\ A Loop statement mark a flag in the block, so can be anywhere inside,
\\ this flag reset to false before restart.
{loop : Print a : a++}
</syntaxhighlight>
 
=={{header|Maple}}==
Maple has arbitrary-precision integers so there are no built-in limits on the size of the integers represented.
 
<syntaxhighlight lang="maple">for n do
print(n)
end do;</syntaxhighlight>
 
=={{header|Mathematica}} / {{header|Wolfram Language}}==
Built in arbitrary precision support means the following will not overflow.
<syntaxhighlight lang="mathematica">
x = 1;
Monitor[While[True, x++], x]
</syntaxhighlight>
 
=={{header|MATLAB}} / {{header|Octave}}==
 
<syntaxhighlight lang="matlab"> a = 1; while (1) printf('%i\n',a); a=a+1; end; </syntaxhighlight>
 
Typically, numbers are stored as double precision floating point numbers, giving accurate integer values up to about 2^53=bitmax('double')=9.0072e+15. Above this limit, round off errors occur. This limitation can be overcome by defining the numeric value as type int64 or uint64
 
<syntaxhighlight lang="matlab"> a = uint64(1); while (1) printf('%i\n',a); a=a+1; end; </syntaxhighlight>
 
This will run up to 2^64 and then stop increasing, there will be no overflow.
 
<pre>
>> a=uint64(10e16+1) % 10e16 is first converted into a double precision number causing some round-off error.
a = 100000000000000000
>> a=uint64(10e16)+1
a = 100000000000000001
</pre>
 
The above limitations can be overcome with additional toolboxes for symbolic computation or multiprecision computing.
 
Matlab and Octave recommend vectorizing the code, one might pre-allocate the sequence up to a specific N.
 
<syntaxhighlight lang="matlab"> N = 2^30; printf('%d\n', 1:N); </syntaxhighlight>
 
The main limitation is the available memory on your machine. The standard version of Octave has a limit that a single data structure can hold at most 2^31 elements. In order to overcome this limit, Octave must be compiled with "./configure --enable-64", but this is currently not well supported.
 
=={{header|Maxima}}==
<syntaxhighlight lang="maxima">for i do disp(i);</syntaxhighlight>
 
=={{header|min}}==
{{works with|min|0.19.3}}
min's integers are 64-bit signed. This will eventually overflow.
<syntaxhighlight lang="min">0 (dup) () (puts succ) () linrec</syntaxhighlight>
 
=={{header|МК-61/52}}==
<syntaxhighlight lang="text">1 П4 ИП4 С/П КИП4 БП 02</syntaxhighlight>
 
=={{header|ML/I}}==
<syntaxhighlight lang="ml/i">MCSKIP "WITH" NL
"" Integer sequence
"" Will overflow when it reaches implementation-defined signed integer limit
MCSKIP MT,<>
MCINS %.
MCDEF DEMO WITHS NL AS <MCSET T1=1
%L1.%T1.
MCSET T1=T1+1
MCGO L1
>
DEMO</syntaxhighlight>
 
=={{header|Modula-2}}==
<syntaxhighlight lang="modula2">MODULE Sequence;
FROM FormatString IMPORT FormatString;
FROM Terminal IMPORT WriteString,ReadChar;
 
VAR
buf : ARRAY[0..63] OF CHAR;
i : CARDINAL;
BEGIN
i := 1;
WHILE i>0 DO
FormatString("%c ", buf, i);
WriteString(buf);
INC(i)
END;
ReadChar
END Sequence.</syntaxhighlight>
 
=={{header|Nanoquery}}==
All native integers in Nanoquery can become arbitrarily large by default, so this program would run until it ran out of memory.
<syntaxhighlight lang="nanoquery">i = 1
while true
println i
i += 1
end</syntaxhighlight>
 
=={{header|Necromantus}}==
In Necromantus integer size is limited by the java's int.
<syntaxhighlight lang="necromantus">
let i = 0;
while true
{
write(i);
i = i + 1;
}
</syntaxhighlight>
 
=={{header|NetRexx}}==
===Rexx Built In===
NetRexx provides built-in support for very large precision arithmetic via the <tt>Rexx</tt> class.
<syntaxhighlight lang="netrexx">/* NetRexx */
options replace format comments java crossref symbols binary
 
k_ = Rexx
bigDigits = 999999999 -- Maximum setting for digits allowed by NetRexx
numeric digits bigDigits
 
loop k_ = 1
say k_
end k_
</syntaxhighlight>
 
===Using BigInteger===
Java's <tt>BigInteger</tt> class is also available for very large precision arithmetic.
<syntaxhighlight lang="netrexx">/* NetRexx */
options replace format comments java crossref symbols binary
 
import java.math.BigInteger
 
-- allow an option to change the output radix.
parse arg radix .
if radix.length() == 0 then radix = 10 -- default to decimal
k_ = BigInteger
k_ = BigInteger.ZERO
 
loop forever
k_ = k_.add(BigInteger.ONE)
say k_.toString(int radix)
end
</syntaxhighlight>
 
=={{header|NewLISP}}==
<syntaxhighlight lang="newlisp">(while (println (++ i)))</syntaxhighlight>
 
=={{header|Nim}}==
<syntaxhighlight lang="nim">var i:int64 = 0
while true:
inc i
echo i</syntaxhighlight>
 
Using BigInts:
<syntaxhighlight lang="nim">import bigints
 
var i = 0.initBigInt
while true:
i += 1
echo i</syntaxhighlight>
 
=={{header|Oberon-2}}==
Works with oo2c Version 2
<syntaxhighlight lang="oberon2">
MODULE IntegerSeq;
IMPORT
Out,
Object:BigInt;
 
PROCEDURE IntegerSequence*;
VAR
i: LONGINT;
BEGIN
FOR i := 0 TO MAX(LONGINT) DO
Out.LongInt(i,0);Out.String(", ")
END;
Out.Ln
END IntegerSequence;
PROCEDURE BigIntSequence*;
VAR
i: BigInt.BigInt;
BEGIN
i := BigInt.zero;
LOOP
Out.Object(i.ToString() + ", ");
i := i.Add(BigInt.one);
END
END BigIntSequence;
 
END IntegerSeq.
</syntaxhighlight>
 
=={{header|Objeck}}==
<syntaxhighlight lang="objeck">
bundle Default {
class Count {
function : Main(args : String[]) ~ Nil {
i := 0;
do {
i->PrintLine();
i += 1;
} while(i <> 0);
}
}
}
</syntaxhighlight>
 
=={{header|OCaml}}==
with an imperative style:
<syntaxhighlight lang="ocaml">let () =
let i = ref 0 in
while true do
print_int !i;
print_newline ();
incr i;
done</syntaxhighlight>
 
with a functional style:
<syntaxhighlight lang="ocaml">let () =
let rec aux i =
print_int i;
print_newline ();
aux (succ i)
in
aux 0</syntaxhighlight>
 
=={{header|Oforth}}==
 
Oforth handles arbitrary integer precision.
 
The loop will stop when out of memory
 
<syntaxhighlight lang="oforth">: integers 1 while( true ) [ dup . 1+ ] ;</syntaxhighlight>
 
=={{header|Ol}}==
Ol does not limit the size of numbers. So maximal number depends only on available system memory.
<syntaxhighlight lang="scheme">
(let loop ((n 1))
(print n)
(loop (+ 1 n)))
</syntaxhighlight>
 
Sample sequence with break for large numbers:
<syntaxhighlight lang="scheme">
(let loop ((n 2))
(print n)
(unless (> n 100000000000000000000000000000000)
(loop (* n n))))
</syntaxhighlight>
Output:
<pre>
2
4
16
256
65536
4294967296
18446744073709551616
340282366920938463463374607431768211456
</pre>
 
=={{header|OpenEdge/Progress}}==
OpenEdge has three data types that can be used for this task:
<ol><li>INTEGER (32-bit signed integer)
<syntaxhighlight lang="progress">DEF VAR ii AS INTEGER FORMAT "->>>>>>>>9" NO-UNDO.
 
DO WHILE TRUE:
ii = ii + 1.
DISPLAY ii.
END.</syntaxhighlight>
When an integer rolls over its maximum of 2147483647 error 15747 is raised (Value # too large to fit in INTEGER.).
</li>
<li>INT64 (64-bit signed integer)
<syntaxhighlight lang="progress">DEF VAR ii AS INT64 FORMAT "->>>>>>>>>>>>>>>>>>9" NO-UNDO.
 
DO WHILE TRUE:
ii = ii + 1.
DISPLAY ii.
END.</syntaxhighlight>
When a 64-bit integer overflows no error is raised and the signed integer becomes negative.
</li>
<li>DECIMAL (50 digits)
<syntaxhighlight lang="progress">DEF VAR de AS DECIMAL FORMAT "->>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>9" NO-UNDO.
 
DO WHILE TRUE:
de = de + 1.
DISPLAY de.
END.</syntaxhighlight>
When a decimal requires mores than 50 digits error 536 is raised (Decimal number is too large.).
</li>
</ol>
 
=={{header|Order}}==
Order supports arbitrarily-large positive integers natively. However, the simple version:
<syntaxhighlight lang="c">#include <order/interpreter.h>
 
#define ORDER_PP_DEF_8printloop ORDER_PP_FN( \
8fn(8N, \
8do(8print(8to_lit(8N) 8comma 8space), \
8printloop(8inc(8N)))) )
 
ORDER_PP( 8printloop(1) )</syntaxhighlight>
... while technically fulfilling the task, will probably never display anything, as most C Preprocessor implementations won't print their output until the file is done processing. Since the C Preprocessor is not technically Turing-complete, the Order interpreter has a maximum number of steps it can execute - but this number is very, very large (from the documentation: "the Order interpreter could easily be extended with a couple of hundred macros to prolong the wait well beyond the estimated lifetime of the sun"), so the compiler is rather more likely to simply run out of memory.
 
To actually see anything with GCC, add a maximum limit so that the task can complete:
<syntaxhighlight lang="c">#include <order/interpreter.h>
 
#define ORDER_PP_DEF_8printloop ORDER_PP_FN( \
8fn(8N, \
8do(8print(8to_lit(8N) 8comma 8space), \
8when(8less(8N, 99), 8printloop(8inc(8N))))) )
 
ORDER_PP( 8printloop(1) ) // 1, ..., 99,</syntaxhighlight>
 
=={{header|PARI/GP}}==
<syntaxhighlight lang="parigp">n=0; while(1,print(++n))</syntaxhighlight>
 
=={{header|Pascal}}==
See also [[Integer_sequence#Delphi | Delphi]]
{{works with|Free_Pascal}}
Quad word has the largest positive range of all ordinal types
<syntaxhighlight lang="pascal">Program IntegerSequenceLimited;
var
Number: QWord = 0; // 8 bytes, unsigned: 0 .. 18446744073709551615
begin
repeat
writeln(Number);
inc(Number);
until false;
end.</syntaxhighlight>
{{libheader|GMP}}
With the gmp library your patience is probably the limit :-)
<syntaxhighlight lang="pascal">Program IntegerSequenceUnlimited;
 
uses
gmp;
 
var
Number: mpz_t;
 
begin
mpz_init(Number); //* zero now *//
repeat
mp_printf('%Zd' + chr(13) + chr(10), @Number);
mpz_add_ui(Number, Number, 1); //* increase Number *//
until false;
end.</syntaxhighlight>
 
=={{header|PascalABC.NET}}==
Uses functionality from [[Fibonacci n-step number sequences#PascalABC.NET]]
<syntaxhighlight lang="pascal">
// Integer sequence. Nigel Galloway: September 8th., 2022
function initInfinite(start: integer):=unfold(n->(n,n+1),start);
function initInfinite(start: biginteger):=unfold(n->(n,n+1),start);
begin
initInfinite(23).Take(10).Println;
initInfinite(-3).Take(10).Println;
initInfinite(2bi**70).Take(10).Println;
end.
</syntaxhighlight>
{{out}}
<pre>
23 24 25 26 27 28 29 30 31 32
-3 -2 -1 0 1 2 3 4 5 6
1180591620717411303424 1180591620717411303425 1180591620717411303426 1180591620717411303427 1180591620717411303428 1180591620717411303429 1180591620717411303430 1180591620717411303431 1180591620717411303432 1180591620717411303433
</pre>
 
Example 2.
 
<syntaxhighlight lang="pascal">
## 1.Step.Print
</syntaxhighlight>
{{out}}
<pre>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 ...
</pre>
 
=={{header|Perl}}==
<langsyntaxhighlight lang="perl">my $i = 0;
print ++$i, "\n" while 1;</langsyntaxhighlight>
 
=={{header|Perl 6}}==
On 64-bit Perls this will get to <tt>2^64-1</tt> then print <tt>1.84467440737096e+19</tt> forever. On 32-bit Perls using standard doubles this will get to <tt>999999999999999</tt> then start incrementing and printing floats until they lose precision. This behavior can be changed by adding something like:
<lang perl6>.say for 1..*</lang>
<syntaxhighlight lang="perl">use bigint;
my $i = 0; print ++$i, "\n" while 1;</syntaxhighlight>
which makes almost all integers large (ranges are excluded). Faster alternatives exist with non-core modules, e.g.
* <tt>use bigint lib=>"GMP";</tt>
* <tt>use Math::Pari qw/:int/;</tt>
* <tt>use Math::GMP qw/:constant/;</tt>
 
=={{header|Phix}}==
This will crash at 1,073,741,824 on 32 bit, or 4,611,686,018,427,387,904 on 64-bit, and as indicated best not to try this or any below under pwa/p2js:
<!--<syntaxhighlight lang="phix">-->
<span style="color: #008080;">without</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">i</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span>
<span style="color: #008080;">while</span> <span style="color: #000000;">1</span> <span style="color: #008080;">do</span>
<span style="color: #0000FF;">?</span><span style="color: #000000;">i</span>
<span style="color: #000000;">i</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">1</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">while</span>
<!--</syntaxhighlight>-->
This will stall at 9,007,199,254,740,992 on 32-bit, and about twice the above on 64-bit.
(after ~15 or 19 digits of precision, adding 1 will simply cease to have any effect)
<!--<syntaxhighlight lang="phix">-->
<span style="color: #008080;">without</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #004080;">atom</span> <span style="color: #000000;">a</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span>
<span style="color: #008080;">while</span> <span style="color: #000000;">1</span> <span style="color: #008080;">do</span>
<span style="color: #0000FF;">?</span><span style="color: #000000;">a</span>
<span style="color: #000000;">a</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">1</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">while</span>
<!--</syntaxhighlight>-->
{{libheader|Phix/mpfr}}
This will probably carry on until the number has over 300 million digits (32-bit, you can
square that on 64-bit) which would probably take zillions of times longer than the
universe has already existed, if your hardware/OS/power grid kept going that long.
<!--<syntaxhighlight lang="phix">-->
<span style="color: #008080;">without</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #008080;">include</span> <span style="color: #004080;">mpfr</span><span style="color: #0000FF;">.</span><span style="color: #000000;">e</span>
<span style="color: #004080;">mpz</span> <span style="color: #000000;">b</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">mpz_init</span><span style="color: #0000FF;">(</span><span style="color: #000000;">0</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">while</span> <span style="color: #004600;">true</span> <span style="color: #008080;">do</span>
<span style="color: #7060A8;">mpz_add_ui</span><span style="color: #0000FF;">(</span><span style="color: #000000;">b</span><span style="color: #0000FF;">,</span><span style="color: #000000;">b</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">mpfr_printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"%Zd\n"</span><span style="color: #0000FF;">,</span><span style="color: #000000;">b</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">while</span>
<!--</syntaxhighlight>-->
Lastly, a gui version you can run online [http://phix.x10.mx/p2js/Integers.htm here].
{{libheader|Phix/pGUI}}
{{libheader|Phix/online}}
<!--<syntaxhighlight lang="phix">(phixonline)-->
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #008080;">include</span> <span style="color: #000000;">pGUI</span><span style="color: #0000FF;">.</span><span style="color: #000000;">e</span>
<span style="color: #008080;">include</span> <span style="color: #004080;">mpfr</span><span style="color: #0000FF;">.</span><span style="color: #000000;">e</span>
<span style="color: #004080;">Ihandln</span> <span style="color: #000000;">dlg</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">lbl</span>
<span style="color: #004080;">mpz</span> <span style="color: #000000;">i</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">mpz_init</span><span style="color: #0000FF;">(</span><span style="color: #000000;">0</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">increment</span><span style="color: #0000FF;">()</span>
<span style="color: #7060A8;">mpz_add_ui</span><span style="color: #0000FF;">(</span><span style="color: #000000;">i</span><span style="color: #0000FF;">,</span><span style="color: #000000;">i</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">IupSetStrAttribute</span><span style="color: #0000FF;">(</span><span style="color: #000000;">lbl</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"TITLE"</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">mpz_get_str</span><span style="color: #0000FF;">(</span><span style="color: #000000;">i</span><span style="color: #0000FF;">))</span>
<span style="color: #008080;">return</span> <span style="color: #004600;">IUP_DEFAULT</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #7060A8;">IupOpen</span><span style="color: #0000FF;">()</span>
<span style="color: #000000;">lbl</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">IupLabel</span><span style="color: #0000FF;">(</span><span style="color: #008000;">""</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"PADDING=10x10,EXPAND=YES"</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">dlg</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">IupDialog</span><span style="color: #0000FF;">(</span><span style="color: #000000;">lbl</span><span style="color: #0000FF;">,</span> <span style="color: #008000;">"TITLE=Integers,SIZE=160x50"</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">IupShow</span><span style="color: #0000FF;">(</span><span style="color: #000000;">dlg</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">IupSetGlobalFunction</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"IDLE_ACTION"</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">Icallback</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"increment"</span><span style="color: #0000FF;">))</span>
<span style="color: #008080;">if</span> <span style="color: #7060A8;">platform</span><span style="color: #0000FF;">()!=</span><span style="color: #004600;">JS</span> <span style="color: #008080;">then</span>
<span style="color: #7060A8;">IupMainLoop</span><span style="color: #0000FF;">()</span>
<span style="color: #000000;">dlg</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">IupDestroy</span><span style="color: #0000FF;">(</span><span style="color: #000000;">dlg</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">IupClose</span><span style="color: #0000FF;">()</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<!--</syntaxhighlight>-->
 
=={{header|PicoLisp}}==
<syntaxhighlight lang="picolisp">(for (I 1 T (inc I))
(printsp I) )</syntaxhighlight>
 
=={{header|Piet}}==
 
Rendered as a Wiki table because uploading images is not possible.
 
{| style="border-collapse: collapse; border-spacing: 0; font-family: courier-new,courier,monospace; font-size: 18px; line-height: 1.2em; padding: 0px"
| style="background-color:#ffc0c0; color:#ffc0c0;" | ww
| style="background-color:#ff0000; color:#ff0000;" | ww
| style="background-color:#c0ffc0; color:#c0ffc0;" | ww
| style="background-color:#ffc0c0; color:#ffc0c0;" | ww
| style="background-color:#ff00ff; color:#ff00ff;" | ww
| style="background-color:#ff00ff; color:#ff00ff;" | ww
| style="background-color:#c000c0; color:#c000c0;" | ww
|-
 
| style="background-color:#000000; color:#000000;" | ww
| style="background-color:#000000; color:#000000;" | ww
| style="background-color:#0000ff; color:#0000ff;" | ww
| style="background-color:#ff00ff; color:#ff00ff;" | ww
| style="background-color:#ff00ff; color:#ff00ff;" | ww
| style="background-color:#ff00ff; color:#ff00ff;" | ww
| style="background-color:#00c0c0; color:#00c0c0;" | ww
|-
 
| style="background-color:#000000; color:#000000;" | ww
| style="background-color:#000000; color:#000000;" | ww
| style="background-color:#0000ff; color:#0000ff;" | ww
| style="background-color:#0000ff; color:#0000ff;" | ww
| style="background-color:#00c0c0; color:#00c0c0;" | ww
| style="background-color:#00ffff; color:#00ffff;" | ww
| style="background-color:#0000ff; color:#0000ff;" | ww
 
|}
 
Program explanation on my user page: [http://rosettacode.org/wiki/User:Albedo#Integer_Sequence]
 
=={{header|Pike}}==
<syntaxhighlight lang="pike">int i=1;
while(true)
write("%d\n", i++);</syntaxhighlight>
 
=={{header|PILOT}}==
<syntaxhighlight lang="pilot">C :n = 1
*InfiniteLoop
T :#n
C :n = n + 1
J :*InfiniteLoop</syntaxhighlight>
 
=={{header|PL/I}}==
<syntaxhighlight lang="pl/i">
infinity: procedure options (main);
declare k fixed decimal (30);
put skip edit
((k do k = 1 to 999999999999999999999999999998))(f(31));
end infinity;
</syntaxhighlight>
 
=={{header|PL/M}}==
 
PL/M natively supports two integer types, named <code>BYTE</code> and <code>ADDRESS</code>.
<code>ADDRESS</code> is a 16-bit integer, so it can count up to 65536. The following program
will print numbers until the <code>ADDRESS</code> variable overflows.
 
<syntaxhighlight lang="plm">100H:
 
/* CP/M CALL AND NUMBER OUTPUT ROUTINE */
BDOS: PROCEDURE (FN, ARG);
DECLARE FN BYTE, ARG ADDRESS;
GO TO 5;
END BDOS;
 
PRINT: PROCEDURE (STR);
DECLARE STR ADDRESS;
CALL BDOS(9, STR);
END PRINT;
 
PRINT$NUMBER: PROCEDURE (N);
DECLARE S (8) BYTE INITIAL ('.....',13,10,'$');
DECLARE (N, P) ADDRESS, C BASED P BYTE;
P = .S(5);
DIGIT:
P = P - 1;
C = N MOD 10 + '0';
N = N / 10;
IF N > 0 THEN GO TO DIGIT;
CALL PRINT(P);
END PRINT$NUMBER;
 
/* PRINT NUMBERS UNTIL ADDRESS VARIABLE OVERFLOWS */
DECLARE N ADDRESS INITIAL (1);
DO WHILE N <> 0;
CALL PRINT$NUMBER(N);
N = N + 1;
END;
 
CALL BDOS(0,0);
EOF</syntaxhighlight>
 
To get around this limitation, the following program stores the number as an array of digits.
It will keep going until it runs out of memory (and then it will crash).
On a 64K CP/M system it will keep going until it has over 50.000 digits.
 
<syntaxhighlight lang="plm">100H:
 
/* CP/M CALL */
BDOS: PROCEDURE (FN, ARG);
DECLARE FN BYTE, ARG ADDRESS;
GO TO 5;
END BDOS;
 
PUT$CHAR: PROCEDURE (CHAR);
DECLARE CHAR BYTE;
CALL BDOS(2, CHAR);
END PUT$CHAR;
 
/* PRINT STRING BACKWARDS UNTIL ZERO */
PRINT$BACK: PROCEDURE (S);
DECLARE S ADDRESS, C BASED S BYTE;
DO WHILE C <> 0;
CALL PUT$CHAR(C);
S = S - 1;
END;
CALL PUT$CHAR(13);
CALL PUT$CHAR(10);
END PRINT$BACK;
 
/* INCREMENT NUMBER STORED AS ASCII DIGITS */
INCR$BIGINT: PROCEDURE (BI) ADDRESS;
DECLARE (BI, R) ADDRESS, D BASED BI BYTE;
R = BI;
DO WHILE D <> 0; BI = BI - 1; END;
INCR$DIGIT:
BI = BI + 1;
IF D = 0 THEN DO;
D = '1';
D(1) = 0;
RETURN BI;
END;
ELSE IF D = '9' THEN DO;
D = '0';
GO TO INCR$DIGIT;
END;
ELSE DO;
D = D + 1;
RETURN R;
END;
END INCR$BIGINT;
 
/* STORE INITIAL 'BIG INTEGER' */
INIT$BIGINT: PROCEDURE (X) ADDRESS;
DECLARE X ADDRESS, D BASED X BYTE;
D(0) = 0;
D(1) = '0';
D(2) = 0;
RETURN .D(1);
END INIT$BIGINT;
 
/* LOOP PRINTING NUMBERS FOREVER */
DECLARE I ADDRESS;
I = INIT$BIGINT(.MEMORY);
DO WHILE 1;
I = INCR$BIGINT(I);
CALL PRINT$BACK(I);
END;
 
EOF</syntaxhighlight>
 
 
=={{header|Plain English}}==
Numbers are signed 32-bit values, so this will overflow somewhere in the neighborhood of 2.1 billion.
<syntaxhighlight lang="plainenglish">To run:
Start up.
Put 1 into a number.
Loop.
Convert the number to a string.
Write the string to the console.
Bump the number.
Repeat.
Shut down.</syntaxhighlight>
 
=={{header|PostScript}}==
{{libheader|initlib}}
<syntaxhighlight lang="postscript">
1 {succ dup =} loop
</syntaxhighlight>
 
=={{header|PowerShell}}==
<syntaxhighlight lang="powershell">try
{
for ([int]$i = 0;;$i++)
{
$i
}
}
catch {break}</syntaxhighlight>
 
=={{header|Prolog}}==
<syntaxhighlight lang="prolog">loop(I) :-
writeln(I),
I1 is I+1,
loop(I1).
</syntaxhighlight>
 
===Constraint Handling Rules===
Works with SWI-Prolog and library '''CHR''' written by '''Tom Schrijvers''' and '''Jan Wielemaker'''
<syntaxhighlight lang="prolog">:- use_module(library(chr)).
 
:- chr_constraint loop/1.
 
loop(N) <=> writeln(N), N1 is N+1, loop(N1).
</syntaxhighlight>
 
=={{header|PureBasic}}==
<langsyntaxhighlight PureBasiclang="purebasic">OpenConsole()
Repeat
a.q+1
PrintN(Str(a))
ForEver</langsyntaxhighlight>
 
=={{header|Python}}==
<langsyntaxhighlight lang="python">i=1
while i:
print(i)
i += 1</langsyntaxhighlight>
 
Or, alternatively:
<langsyntaxhighlight lang="python">from itertools import count
 
for i in count():
print(i)</langsyntaxhighlight>
 
Pythons integers are of arbitrary large precision and so programs would probably keep going until OS or hardware system failure.
=={{header|QBASIC}}==
 
<lang qbasic>A = 0
 
DO: A = A + 1: PRINT A: LOOP 1</lang>
=={{header|QB64}}==
<syntaxhighlight lang="qb64">
 
Const iMax = 32767, UiMax = 65535
Const lMax = 2147483647, UlMax = 4294967295
Const iQBMax = 9223372036854775807, UiQBMax = 1844674407309551615
 
 
Dim iNum As _Integer64, iCount As _Integer64
Dim sChoice As String, sUnsigned As String, sQuit As String
Do While sChoice <> "I" And sChoice <> "L" And sChoice <> "6"
Input "Please choice among (I)nteger, (L)ong and Integer(6)4 ", sChoice
sChoice = UCase$(sChoice)
Loop
Do While sUnsigned <> "u" And sUnsigned <> "n"
Input "Please choice (U)nsigned or (N)ormal? ", sUnsigned
sUnsigned = LCase$(sUnsigned)
Loop
 
If sChoice = "I" Then
If sUnsigned = "n" Then iNum = iMax Else iNum = UiMax
ElseIf sChoice = "L" Then
If sUnsigned = "n" Then iNum = lMax Else iNum = UlMax
ElseIf sChoice = "6" Then
If sUnsigned = "n" Then iNum = iQBMax Else iNum = UiQBMax
End If
 
 
For iCount = 0 To iNum Step 1
Print iCount; " Press spacebar to exit "
sQuit = InKey$
Next
End
</syntaxhighlight>
 
=={{header|Q}}==
{{trans|K}}
 
Using converge (the <tt>\</tt> adverb):
<syntaxhighlight lang="q">({-1 string x; x+1}\) 1</syntaxhighlight>
 
Using <tt>while</tt>:
<syntaxhighlight lang="q">i:0; while[1;-1 string (i+:1)]</syntaxhighlight>
 
=={{header|Quackery}}==
Quackery uses bignums.
 
<syntaxhighlight lang="quackery">0 [ 1+ dup echo cr again ]</syntaxhighlight>
 
=={{header|R}}==
<syntaxhighlight lang="r">z <- 0
repeat {
print(z)
z <- z + 1
}</syntaxhighlight>
 
=={{header|Racket}}==
 
Racket uses bignums, so counting should continue up to very large numbers. Naturally, printing these numbers will consume quite a bit of power.
 
<syntaxhighlight lang="racket">#lang racket
(for ([i (in-naturals)]) (displayln i))
</syntaxhighlight>
 
=={{header|Raku}}==
(formerly Perl 6)
<syntaxhighlight lang="raku" line>.say for 1..*</syntaxhighlight>
 
=={{header|Rapira}}==
<syntaxhighlight lang="rapira">i := 1
while i do
output: i
i := i + 1
od</syntaxhighlight>
 
=={{header|Raven}}==
Raven uses signed 32 bit integer values.
<syntaxhighlight lang="raven">1 as $i
repeat TRUE while
$i "%d\n" print $i 1000 + as $i</syntaxhighlight>
 
=={{header|Red}}==
<syntaxhighlight lang="rebol">Red ["Integer sequence"]
 
i: 1
forever [
print i
i: i + 1
]</syntaxhighlight>
 
=={{header|Retro}}==
Retro uses signed integer values.
 
<syntaxhighlight lang="retro">#0 [ [ n:put spa ] sip n:inc dup n:-zero? ] while drop</syntaxhighlight>
 
=={{header|REXX}}==
<syntaxhighlight lang="rexx">/*count all the protons, electrons, & whatnot in the universe, and then */
/*keep counting. According to some pundits in-the-know, one version of */
/*the big-bang theory is that the universe will collapse back to where */
/*it started, and this computer program will be still counting. */
/*┌────────────────────────────────────────────────────────────────────┐
│ Count all the protons (and electrons!) in the universe, and then │
│ keep counting. According to some pundits in-the-know, one version │
│ of the big-bang theory is that the universe will collapse back to │
│ where it started, and this computer program will still be counting.│
│ │
│ │
│ According to Sir Arthur Eddington in 1938 at his Tamer Lecture at │
│ Trinity College (Cambridge), he postulated that there are exactly │
│ │
│ 136 ∙ 2^256 │
│ │
│ protons in the universe and the same number of electrons, which is │
│ equal to around 1.57477e+79. │
│ │
│ Although, a modern estimate is around 10^80. │
│ │
│ │
│ One estimate of the age of the universe is 13.7 billion years, │
│ or 4.32e+17 seconds. This'll be a piece of cake. │
└────────────────────────────────────────────────────────────────────┘*/
numeric digits 1000000000 /*just in case the universe slows down. */
 
/*this version of a DO loop increments J*/
do j=1 /*Sir Eddington's number, then a googol.*/
say j /*first, destroy some electrons. */
end
say 42 /*(see below for explanation of 42.) */
exit
 
/*This REXX program (as it will be limited to the NUMERIC DIGITS above, */
/*will only count up to 1000000000000000000000000000000000000000000... */
/*000000000000000000000000000000000000000000000000000000000000000000000 */
/* ... for another (almost) one billion more zeroes (then subtract 1).*/
 
/*if we can count 1,000 times faster than the fastest PeeCee, and we */
/*started at the moment of the big-bang, we'd be at only 1.72e+28, so */
/*we still have a little ways to go, eh? */
 
/*To clarify, we'd be 28 zeroes into a million zeroes. If PC's get */
/*1,000 times faster again, that would be 31 zeroes into a million. */
 
/*It only took Deep Thought 7.5 million years to come up with the */
/*answer to everything (and it double-checked the answer). It was 42.*/</syntaxhighlight>
 
=={{header|Ring}}==
<syntaxhighlight lang="ring">
size = 10
 
for n = 1 to size
see n + nl
next
see nl
 
for n in [1:size]
see n + nl
next
see nl
i = n
while n <= size
see n + nl
n = n + 1
end
</syntaxhighlight>
 
=={{header|RPL}}==
{| class="wikitable"
! RPL code
! Comment
|-
|
64 STWS
#1 '''DO'''
DUP 1 DISP
1 +
'''UNTIL''' #0 == '''END''' CLLCD
≫ ''''COUNT'''' STO
|
'''COUNT''' ''( -- )''
set integer size to 64 bits
Initialize counter and loop
display counter at top of screen
increment
Exit when 2^64-1 has been displayed
|}
 
=={{header|Ruby}}==
<syntaxhighlight lang="ruby">1.step{|n| puts n}</syntaxhighlight>
 
The step method of Numeric takes two optional arguments. The limit defaults to infinity, the step size to 1.
Ruby does not limit the size of integers.
 
Ruby 2.6 introduced open-ended ranges:
 
<syntaxhighlight lang="ruby">(1..).each{|n| puts n}</syntaxhighlight>
 
=={{header|Run BASIC}}==
<syntaxhighlight lang="runbasic">while 1
i = i + 1
print i
wend</syntaxhighlight>
Eventually as it gets larger it becomes a floating point.
 
=={{header|Rust}}==
{{works with|Rust 1.2}}
<syntaxhighlight lang="rust">fn main() {
for i in 0.. {
println!("{}", i);
}
}</syntaxhighlight>
 
 
Looping endlessly:
<syntaxhighlight lang="rust">extern crate num;
 
use num::bigint::BigUint;
use num::traits::{One,Zero};
 
fn main() {
let mut i: BigUint = BigUint::one();
loop {
println!("{}", i);
i = i + BigUint::one();
}
}</syntaxhighlight>
 
=={{header|Salmon}}==
 
Salmon has built-in unlimited-precision integer arithmetic, so these examples will all continue printing decimal values indefinitely, limited only by the amount of memory available (it requires O(log(n)) bits to store an integer n, so if your computer has 1 GB of memory, it will count to a number with on the order of <math>2^{80}</math> digits).
 
<syntaxhighlight lang="salmon">iterate (i; [0...+oo])
i!;</syntaxhighlight>
 
or
 
<syntaxhighlight lang="salmon">for (i; 0; true)
i!;</syntaxhighlight>
 
or
 
<syntaxhighlight lang="salmon">variable i := 0;
while (true)
{
i!;
++i;
};</syntaxhighlight>
 
=={{header|Scala}}==
<syntaxhighlight lang="scala">Stream from 1 foreach println</syntaxhighlight>
 
=={{header|Scheme}}==
 
<syntaxhighlight lang="scheme">
(let loop ((i 1))
(display i) (newline)
(loop (+ 1 i)))
</syntaxhighlight>
 
Scheme does not limit the size of numbers.
 
=={{header|sed}}==
This program expects one line (consisting of a non-negative decimal integer) as start value:
<syntaxhighlight lang="sed">:l
p
s/^9*$/0&/
h
y/0123456789/1234567890/
x
G
s/.9*\n.*\([^0]\)/\1/
bl</syntaxhighlight>
{{out}}
<pre>
$ echo 1 | sed -f count_dec.sed | head
1
2
3
4
5
6
7
8
9
10
</pre>
 
=={{header|Seed7}}==
Limit 2147483647:
<syntaxhighlight lang="seed7">$ include "seed7_05.s7i";
 
const proc: main is func
local
var integer: number is 0;
begin
repeat
incr(number);
writeln(number);
until number = 2147483647;
end func;</syntaxhighlight>
"Forever":
<syntaxhighlight lang="seed7">$ include "seed7_05.s7i";
include "bigint.s7i";
 
const proc: main is func
local
var bigInteger: number is 1_;
begin
repeat
writeln(number);
incr(number);
until FALSE;
end func;</syntaxhighlight>
 
=={{header|Sidef}}==
No limit:
<syntaxhighlight lang="ruby">1..Inf -> each {.say}</syntaxhighlight>
 
=={{header|Smalltalk}}==
<syntaxhighlight lang="smalltalk">i := 0.
[
Stdout print:i; cr.
i := i + 1
] loop</syntaxhighlight>
will run forever.
 
=={{header|SSEM}}==
Since we have no Add instruction, we subtract -1 on each iteration instead of adding 1. The same -1 also serves as a jump target, taking advantage of a quirk of the SSEM architecture (the Current Instruction counter is incremented after the instruction has been executed, not before—so <tt>GOTO address</tt> has to be coded as <tt>GOTO address - 1</tt>).
<syntaxhighlight lang="ssem">01000000000000010000000000000000 0. Sub. 2 acc -= -1
01000000000000000000000000000000 1. 2 to CI goto -1 + 1
11111111111111111111111111111111 2. -1</syntaxhighlight>
 
=={{header|Standard ML}}==
 
This will print up to Int.maxInt and then raise an Overflow exception. On a 32 bit machine
the max is 1073741823. Alternatively you could use Int64.int (64 bit) or
IntInf.int (arbitrary precision).
 
<syntaxhighlight lang="sml">let
fun printInts(n) =
(
print(Int.toString(n) ^ "\n");
printInts(n+1)
)
in
printInts(1)
end;</syntaxhighlight>
 
{{out}}
<pre>1
2
3
...
1073741821
1073741822
1073741823
 
uncaught exception Overflow [overflow]
raised at: <file intSeq.sml></pre>
 
=={{header|SuperCollider}}==
The SuperCollider language has a 32-bit signed int, and a 64 bit signed float. Instead of locking the interpreter with an infinite loop, we post the values over time.
<syntaxhighlight lang="supercollider">
i = Routine { inf.do { |i| i.yield } }; // return all integers, represented by a 64 bit signed float.
fork { inf.do { i.next.postln; 0.01.wait } }; // this prints them incrementally
</syntaxhighlight>
 
A shorter form of the first line above, using list comprehensions:
<syntaxhighlight lang="supercollider">
i = {:i, i<-(0..) };
</syntaxhighlight>
 
=={{header|Swift}}==
<syntaxhighlight lang="swift">var i = 0
while true {
println(i++)
}</syntaxhighlight>
 
=={{header|Symsyn}}==
<syntaxhighlight lang="symsyn">
| The following code will run forever
| Symsyn uses a 64 bit signed integer
| The largest positive integer is 9223372036854775807
| lpi + 1 = -9223372036854775808
 
lp
x []
+ x
go lp
</syntaxhighlight>
 
=={{header|Tcl}}==
<langsyntaxhighlight lang="tcl">package require Tcl 8.5
while true {puts [incr i]}</langsyntaxhighlight>
 
=={{header|TI SR-56}}==
{| class="wikitable"
|+ Texas Instruments SR-56 Program Listing for "Integer sequence"
|-
! Display !! Key !! Display !! Key !! Display !! Key !! Display !! Key
|-
| 00 84 || + || 25 || || 50 || || 75 ||
|-
| 01 01 || 1 || 26 || || 51 || || 76 ||
|-
| 02 94 || = || 27 || || 52 || || 77 ||
|-
| 03 59 || *pause || 28 || || 53 || || 78 ||
|-
| 04 42 || RST || 29 || || 54 || || 79 ||
|-
| 05 || || 30 || || 55 || || 80 ||
|-
| 06 || || 31 || || 56 || || 81 ||
|-
| 07 || || 32 || || 57 || || 82 ||
|-
| 08 || || 33 || || 58 || || 83 ||
|-
| 09 || || 34 || || 59 || || 84 ||
|-
| 10 || || 35 || || 60 || || 85 ||
|-
| 11 || || 36 || || 61 || || 86 ||
|-
| 12 || || 37 || || 62 || || 87 ||
|-
| 13 || || 38 || || 63 || || 88 ||
|-
| 14 || || 39 || || 64 || || 89 ||
|-
| 15 || || 40 || || 65 || || 90 ||
|-
| 16 || || 41 || || 66 || || 91 ||
|-
| 17 || || 42 || || 67 || || 92 ||
|-
| 18 || || 43 || || 68 || || 93 ||
|-
| 19 || || 44 || || 69 || || 94 ||
|-
| 20 || || 45 || || 70 || || 95 ||
|-
| 21 || || 46 || || 71 || || 96 ||
|-
| 22 || || 47 || || 72 || || 97 ||
|-
| 23 || || 48 || || 73 || || 98 ||
|-
| 24 || || 49 || || 74 || || 99 ||
|}
 
Asterisk denotes 2nd function key.
 
{| class="wikitable"
|+ Register allocation
|-
| 0: Unused || 1: Unused || 2: Unused || 3: Unused || 4: Unused
|-
| 5: Unused || 6: Unused || 7: Unused || 8: Unused || 9: Unused
|}
 
Annotated listing:
<syntaxhighlight lang="text">
+ 1 = // Increment the number
*pause // Flash the number on the display
RST // Loop
</syntaxhighlight>
 
'''Usage:'''
 
Press CLR RST R/S. Incrementing numbers will flash on the screen. In one minute, the program counts to 86. Most of this time is taken displaying the number on the screen.
 
'''Note:'''
 
The minimum possible "Integer Sequence" program, which increments the number without displaying it, is:
 
<syntaxhighlight lang="text">
+ 1 // Increment the number
RST // Loop
</syntaxhighlight>
 
This program runs much faster. In one minute, the program counts to 640.
 
=={{header|Tiny BASIC}}==
<syntaxhighlight lang="tinybasic">
REM will overflow after 32767
LET N = 0
10 PRINT N
LET N = N + 1
GOTO 10
</syntaxhighlight>
 
 
=={{header|True BASIC}}==
<syntaxhighlight lang="qbasic">LET i = 0
 
DO
PRINT i
LET i = i + 1
LOOP
 
END</syntaxhighlight>
 
 
=={{header|TUSCRIPT}}==
<syntaxhighlight lang="tuscript">$$ MODE TUSCRIPT
LOOP n=0,999999999
n=n+1
ENDLOOP</syntaxhighlight>
=={{header|Uiua}}==
<syntaxhighlight lang="Uiua">
⍢(&p.+1)1 1
</syntaxhighlight>
{{out}}
<pre>
Previous output truncated...
318259
318260
318261
318262
318263
318264
318265
318266
318267
318268
318269
318270
318271
318272
318273
318274
318275
318276
318277
318278
318279
318280
318281
318282
318283
318284
318285
318286
318287
318288
318289
318290
318291
318292
318293
318294
318295
318296
318297
318298
318299
318300
318301
318302
318303
318304
318305
318306
318307
318308
318309
318310
318311
318312
318313
318314
318315
 
 
You can increase the execution time limit in the editor settings
 
</pre>
=={{header|UNIX Shell}}==
 
<syntaxhighlight lang="sh">#!/bin/sh
num=0
while true; do
echo $num
num=`expr $num + 1`
done</syntaxhighlight>
 
=={{header|Ursa}}==
<syntaxhighlight lang="ursa">#
# integer sequence
#
 
# declare an int and loop until it overflows
decl int i
set i 1
while true
out i endl console
inc i
end while</syntaxhighlight>
 
=={{header|Ursalang}}==
<syntaxhighlight lang="ursalang">
let i = 1
loop {
print(i)
i := i + 1
}
</syntaxhighlight>
 
=={{header|Vala}}==
<syntaxhighlight lang="vala">
uint i = 0;
while (++i < uint.MAX)
stdout.printf("%u\n", i);
</syntaxhighlight>
 
 
=={{header|Verilog}}==
<syntaxhighlight lang="verilog">module main;
integer i;
 
initial begin
i = 1;
 
while(i > 0) begin
$display(i);
i = i + 1;
end
$finish ;
end
endmodule</syntaxhighlight>
 
=={{header|Visual Basic .NET}}==
Visual Basic .NET supports an unsigned, 64 bit Integer (maxing out at a <i>whopping</i> 9 223 372 036 854 775 807), however, this is not an intrinsic type, it is a structure that is <i><b>not</b></i> supported by the CLS (Common Language Specification).
 
The CLS supported type (also a structure) is <i>Decimal</i> (an even more impressive range from positive 79 228 162 514 264 337 593 543 950 335 to negative 79 228 162 514 264 337 593 543 950 335), I have used a standard CLS <i>Integer</i> intrinsic type (from -2 147 483 648 through 2 147 483 647).
 
Note that attempting to store any value larger than the maximum value of any given type (say 2 147 483 648 for an Integer) will result in an OverflowException being thrown (<i>"Arithmetic operation resulted in an overflow."</i>)
 
<syntaxhighlight lang="vbnet"> For i As Integer = 0 To Integer.MaxValue
Console.WriteLine(i)
Next</syntaxhighlight>
 
===Arbitrarily large numbers===
One could use the '''System.Numerics''' library as the C# example did, or one can do the following.<br/>A list of Long Integers is maintained as the incremented number. As the incremented value approaches the maximum allowed (''base'') in the first element of ''ar'', a new item is inserted at the beginning of the list to extend the incremented number. The process has the limitation of when the ''ar'' array is enlarged to the point where the program exhausts the available memory, it ought to indicate failure and terminate. It is my understanding that a '''List''' count is backed by an '''Integer.MaxValue''' limitation and there may also be a 2 GB per object limitation involved. Since writing to the Console is such a slow process, I lack the patience to wait for the program (as written) to fail. If the program is tweaked to fail early, the practical limit seems to be a number 2,415,919,086 digits in length.
<syntaxhighlight lang="vbnet">Imports System.Console
 
Module Module1
 
Dim base, b1 As Long, digits As Integer, sf As String, st As DateTime,
ar As List(Of Long) = {0L}.ToList, c As Integer = ar.Count - 1
 
Sub Increment(n As Integer)
If ar(n) < b1 Then
ar(n) += 1
Else
ar(n) = 0 : If n > 0 Then
Increment(n - 1)
Else
Try
ar.Insert(0, 1L) : c += 1
Catch ex As Exception
WriteLine("Failure when trying to increase beyond {0} digits", CDbl(c) * digits)
TimeStamp("error")
Stop
End Try
End If
End If
End Sub
 
Sub TimeStamp(cause As String)
With DateTime.Now - st
WriteLine("Terminated by {5} at {0} days, {1} hours, {2} minutes, {3}.{4} seconds",
.Days, .Hours, .Minutes, .Seconds, .Milliseconds, cause)
End With
End Sub
 
Sub Main(args As String())
digits = Long.MaxValue.ToString.Length - 1
base = CLng(Math.Pow(10, digits)) : b1 = base - 1
base = 10 : b1 = 9
sf = "{" & base.ToString.Replace("1", "0:") & "}"
st = DateTime.Now
While Not KeyAvailable
Increment(c) : Write(ar.First)
For Each item In ar.Skip(1) : Write(sf, item) : Next : WriteLine()
End While
TimeStamp("keypress")
End Sub
End Module</syntaxhighlight>
{{out}}
<pre>1
2
3
...
10267873
10267874
10267875
Terminated by keypress at 0 days, 0 hours, 30 minutes, 12.980 seconds</pre>
 
=={{header|WDTE}}==
<syntaxhighlight lang="wdte">let s => import 'stream';
 
s.new 0 (+ 1)
-> s.map (io.writeln io.stdout)
-> s.drain
;</syntaxhighlight>
 
WDTE's number type is, at the time of writing, backed by Go's <code>float64</code> type, so all of the same limitations that apply there apply here. Also, this should '''not''' be run in the WDTE playground, as it will run with no output until the browser crashes or is killed.
 
=={{header|Wren}}==
{{libheader|Wren-fmt}}
{{libheader|Wren-big}}
In Wren all numbers are stored in 64-bit floating point form. This means that precise integer calculations are only possible within a maximum absolute magnitude of ''2^53-1'' (16 digits) unless one uses the ''Wren-big'' module whose ''BigInt'' class can deal with integers of arbitrary size.
 
Also, the ''System.print'' method in the standard library will only display a maximum of 14 digits before switching to scientific notation. To get around this one can use instead the ''Fmt.print'' method of the ''Wren-fmt'' module which displays integers 'normally' up to the maximum and also caters for BigInts as well.
<syntaxhighlight lang="wren">import "./fmt" for Fmt
import "./big" for BigInt
 
var max = 2.pow(53) // 9007199254740992 (16 digits)
for (i in 1...max) Fmt.print("$d", i)
 
var bi = BigInt.new(max.toString)
while (true) {
Fmt.print("$i", bi)
bi = bi + 1
}</syntaxhighlight>
 
=={{header|XBasic}}==
{{works with|Windows XBasic}}
<syntaxhighlight lang="qbasic">PROGRAM "integseq"
VERSION "0.0000"
 
DECLARE FUNCTION Entry ()
 
FUNCTION Entry ()
 
DO WHILE $$TRUE
INC i
PRINT i
LOOP
 
END FUNCTION
END PROGRAM</syntaxhighlight>
 
=={{header|XLISP}}==
<syntaxhighlight lang="lisp">(defun integer-sequence-from (x)
(print x)
(integer-sequence-from (+ x 1)) )
 
(integer-sequence-from 1)</syntaxhighlight>
 
=={{header|XPL0}}==
<syntaxhighlight lang="xpl0">\Displays integers up to 2^31-1 = 2,147,483,647
code CrLf=9, IntOut=11;
int N;
[N:= 1;
repeat IntOut(0, N); CrLf(0);
N:= N+1;
until N<0;
]</syntaxhighlight>
 
 
=={{header|Yabasic}}==
<syntaxhighlight lang="yabasic">i = 1
 
repeat
print i
i = i + 1
until i = 0
end</syntaxhighlight>
 
 
=={{header|Z80 Assembly}}==
===16-Bit===
The Amstrad CPC's screen isn't big enough to show it all at once, but here you go. This prints numbers out (in hexadecimal) from <tt>0x0001</tt> to <tt>0xFFFF</tt>.
<syntaxhighlight lang="z80">org &1000
PrintChar equ &BB5A
ld hl,1 ;START AT ONE
main:
push hl
;PRINT HIGH BYTE
ld a,h
call ShowHex
;THEN PRINT LOW BYTE
ld a,l
call ShowHex
 
;NEW LINE
ld a,13
call PrintChar
ld a,10
call PrintChar
 
pop hl
;NEXT HL
inc hl
;COMPARE HL TO ZERO
ld a,h
or l
jr nz,main ;IF NOT ZERO, REPEAT
ret ;RETURN TO BASIC
 
 
ShowHex:
push af
and %11110000
rrca
rrca
rrca
rrca
call PrintHexChar
pop af
and %00001111
;call PrintHexChar
;execution flows into it naturally.
PrintHexChar:
;this converts hexadecimal to ascii.
or a ;Clear Carry Flag
daa
add a,&F0
adc a,&40
jp PrintChar
;ret</syntaxhighlight>
 
===Arbitrarily Large Integers===
This version displays an ever-increasing 64-bit unsigned integer. Unlike the previous version, this one continues forever and underflows to 0 after it reaches <tt>0xFFFFFFFFFFFFFFFF</tt>. This logic can be extended to integers of up to 128 bytes in size (since <code>IX+#</code> uses a signed offset, you'd need some way to alter the pointer to memory if you wanted even larger numbers than that, it's possible but a bit cumbersome. Not that this method wasn't cumbersome to begin with.)
<syntaxhighlight lang="z80">org &1000
PrintChar equ &BB5A
ld ix,NumberRam
 
main:
 
ld a,(ix+7)
call ShowHex
ld a,(ix+6)
call ShowHex
ld a,(ix+5)
call ShowHex
ld a,(ix+4)
call ShowHex
ld a,(ix+3)
call ShowHex
ld a,(ix+2)
call ShowHex
ld a,(ix+1)
call ShowHex
ld a,(ix+0)
call ShowHex
;NEW LINE
ld a,13
call PrintChar
ld a,10
call PrintChar
 
ld a,(ix+0)
add 1 ;we can't just INC (ix+0) since that wouldn't affect the carry flag. So we have to add one to the value.
ld (ix+0),a
 
ld a,(ix+1)
adc 0 ;and carry it forward up to the max number of digits.
ld (ix+1),a
 
ld a,(ix+2)
adc 0
ld (ix+2),a
 
ld a,(ix+3)
adc 0
ld (ix+3),a
 
ld a,(ix+4)
adc 0
ld (ix+4),a
 
ld a,(ix+5)
adc 0
ld (ix+5),a
 
ld a,(ix+6)
adc 0
ld (ix+6),a
 
ld a,(ix+7)
adc 0
ld (ix+7),a
 
jp main
ret ;RETURN TO BASIC
 
 
 
ShowHex:
push af
and %11110000
rrca
rrca
rrca
rrca
call PrintHexChar
pop af
and %00001111
;call PrintHexChar
;execution flows into it naturally.
PrintHexChar:
;this converts hexadecimal to ascii.
or a ;Clear Carry Flag
daa
add a,&F0
adc a,&40
jp PrintChar
;ret
 
NumberRam: ;a 64-bit value, stored little-endian
db 01,00,00,00,00,00,00,00</syntaxhighlight>
 
=={{header|Zig}}==
<syntaxhighlight lang="zig">
const stdout = @import("std").io.getStdOut().writer();
 
pub fn main() !void {
var i: u128 = 1;
 
while (true) : (i += 1) {
try stdout.print("{}, ", .{i});
}
}
</syntaxhighlight>
{{out}}
<pre>
...
324136, 324137, 324138, 324139, 324140, 324141, 324142, 324143, 324144, 324145, 324146, 324147, 324148, 324149, 324150, 324151, 324152, 324153, 324154, 324155, 324156, 324157, 324158, 324159, 324160, 324161, 324162, 324163, 324164, 324165, 324166, 324167, 324168, 324169, 324170, 324171, 324172, 324173, 324174, 324175, 324176, 324177, 324178, 324179, 324180, 324181, 324182, 324183, 324184, 324185, 324186, 324187, 324188, 324189, 324190, 324191,
</pre>
 
=={{header|zkl}}==
<syntaxhighlight lang="zkl">[1..].pump(Console.println) // eager
m:=(1).MAX; [1..m].pump(Console.println) // (1).MAX is 9223372036854775807
[1..].pump(100,Console.println) // lazy</syntaxhighlight>
 
 
[[Category:Iteration]]
22

edits