Imaginary base numbers: Difference between revisions

Added FreeBASIC
(Added FreeBASIC)
 
(32 intermediate revisions by 13 users not shown)
Line 311:
</table>
 
=={{header|C++11l}}==
{{trans|C#Python}}
<lang cpp>#include <algorithm>
#include <complex>
#include <iomanip>
#include <iostream>
 
<syntaxhighlight lang="11l">F inv(c)
std::complex<double> inv(const std::complex<double>& c) {
doubleV denom = c.real() * c.real() + c.imag() * c.imag();
R return std::complex<double>Complex(c.real() / denom, -c.imag() / denom);
}
 
classT QuaterImaginary {
:twoI = Complex(0, 2)
public:
:invTwoI = inv(.:twoI)
QuaterImaginary(const std::string& s) : b2i(s) {
static std::string base("0123.");
 
String if (b2i.empty()
 
|| std::any_of(s.cbegin(), s.cend(), [](char c) { return base.find(c) == std::string::npos; })
F (str)
|| std::count(s.cbegin(), s.cend(), '.') > 1) {
I !re:‘[0123.]+’.match(str) | str.count(‘.’) > 1
throw std::runtime_error("Invalid base 2i number");
assert(0B, ‘Invalid base 2i number’)
.b2i = str
 
F toComplex()
V pointPos = .b2i.findi(‘.’)
V posLen = I (pointPos < 0) {.b2i.len} E pointPos
V sum = Complex(0, 0)
V prod = Complex(1, 0)
L(j) 0 .< posLen
V k = Int(.b2i[posLen - 1 - j])
I k > 0
sum += prod * k
prod *= .:twoI
I pointPos != -1
prod = .:invTwoI
L(j) posLen + 1 .< .b2i.len
V k = Int(.b2i[j])
I k > 0
sum += prod * k
prod *= .:invTwoI
R sum
 
F String()
R String(.b2i)
 
F toQuaterImaginary(c)
I c.real == 0.0 & c.imag == 0.0
R QuaterImaginary(‘0’)
 
V re = Int(c.real)
V im = Int(c.imag)
V fi = -1
V ss = ‘’
L re != 0
(re, V rem) = divmod(re, -4)
I rem < 0
rem += 4
re++
ss ‘’= String(rem)‘0’
I im != 0
V f = c.imag / 2
im = Int(ceil(f))
f = -4 * (f - im)
V index = 1
L im != 0
(im, V rem) = divmod(im, -4)
I rem < 0
rem += 4
im++
I index < ss.len
assert(0B)
E
ss ‘’= ‘0’String(rem)
index = index + 2
fi = Int(f)
ss = reversed(ss)
I fi != -1
ss ‘’= ‘.’String(fi)
ss = ss.ltrim(‘0’)
I ss[0] == ‘.’
ss = ‘0’ss
R QuaterImaginary(ss)
 
L(i) 1..16
V c1 = Complex(i, 0)
V qi = toQuaterImaginary(c1)
V c2 = qi.toComplex()
print(‘#8 -> #8 -> #8 ’.format(c1, qi, c2), end' ‘ ’)
 
c1 = -c1
qi = toQuaterImaginary(c1)
c2 = qi.toComplex()
print(‘#8 -> #8 -> #8’.format(c1, qi, c2))
print()
 
L(i) 1..16
V c1 = Complex(0, i)
V qi = toQuaterImaginary(c1)
V c2 = qi.toComplex()
print(‘#8 -> #8 -> #8 ’.format(c1, qi, c2), end' ‘ ’)
 
c1 = -c1
qi = toQuaterImaginary(c1)
c2 = qi.toComplex()
print(‘#8 -> #8 -> #8’.format(c1, qi, c2))
 
print(‘done’)</syntaxhighlight>
 
{{out}}
<pre>
1 -> 1 -> 1 -1 -> 103 -> -1
2 -> 2 -> 2 -2 -> 102 -> -2
3 -> 3 -> 3 -3 -> 101 -> -3
4 -> 10300 -> 4 -4 -> 100 -> -4
5 -> 10301 -> 5 -5 -> 203 -> -5
6 -> 10302 -> 6 -6 -> 202 -> -6
7 -> 10303 -> 7 -7 -> 201 -> -7
8 -> 10200 -> 8 -8 -> 200 -> -8
9 -> 10201 -> 9 -9 -> 303 -> -9
10 -> 10202 -> 10 -10 -> 302 -> -10
11 -> 10203 -> 11 -11 -> 301 -> -11
12 -> 10100 -> 12 -12 -> 300 -> -12
13 -> 10101 -> 13 -13 -> 1030003 -> -13
14 -> 10102 -> 14 -14 -> 1030002 -> -14
15 -> 10103 -> 15 -15 -> 1030001 -> -15
16 -> 10000 -> 16 -16 -> 1030000 -> -16
 
1i -> 10.2 -> 1i -1i -> 0.2 -> -1i
2i -> 10.0 -> 2i -2i -> 1030.0 -> -2i
3i -> 20.2 -> 3i -3i -> 1030.2 -> -3i
4i -> 20.0 -> 4i -4i -> 1020.0 -> -4i
5i -> 30.2 -> 5i -5i -> 1020.2 -> -5i
6i -> 30.0 -> 6i -6i -> 1010.0 -> -6i
7i -> 103000.2 -> 7i -7i -> 1010.2 -> -7i
8i -> 103000.0 -> 8i -8i -> 1000.0 -> -8i
9i -> 103010.2 -> 9i -9i -> 1000.2 -> -9i
10i -> 103010.0 -> 10i -10i -> 2030.0 -> -10i
11i -> 103020.2 -> 11i -11i -> 2030.2 -> -11i
12i -> 103020.0 -> 12i -12i -> 2020.0 -> -12i
13i -> 103030.2 -> 13i -13i -> 2020.2 -> -13i
14i -> 103030.0 -> 14i -14i -> 2010.0 -> -14i
15i -> 102000.2 -> 15i -15i -> 2010.2 -> -15i
16i -> 102000.0 -> 16i -16i -> 2000.0 -> -16i
done
</pre>
 
=={{header|C}}==
{{trans|C++}}
<syntaxhighlight lang="c">#include <math.h>
#include <stdio.h>
#include <string.h>
 
int find(char *s, char c) {
for (char *i = s; *i != 0; i++) {
if (*i == c) {
return i - s;
}
}
return -1;
}
 
void reverse(char *b, char *e) {
QuaterImaginary& operator=(const QuaterImaginary& q) {
for (e--; b < b2ie; =b++, q.b2i;e--) {
returnchar t = *thisb;
*b = *e;
*e = t;
}
}
 
//////////////////////////////////////////////////////
std::complex<double> toComplex() const {
 
int pointPos = b2i.find('.');
struct Complex {
int posLen = (pointPos != std::string::npos) ? pointPos : b2i.length();
std::complex<double> sum(0.0rel, 0.0)img;
};
std::complex<double> prod(1.0, 0.0);
 
for (int j = 0; j < posLen; j++) {
void printComplex(struct Complex c) {
double k = (b2i[posLen - 1 - j] - '0');
printf("(%3.0f + %3.0fi)", c.rel, c.img);
if (k > 0.0) {
}
sum += prod * k;
 
}
struct Complex makeComplex(double rel, double img) {
prod *= twoI;
struct Complex c = { rel, img };
return c;
if (pointPos != -1) {
}
prod = invTwoI;
 
for (size_t j = posLen + 1; j < b2i.length(); j++) {
struct Complex addComplex(struct Complex a, struct Complex b) {
double k = (b2i[j] - '0');
struct Complex c = { a.rel + b.rel, a.img + if (k > 0b.0)img {};
return c;
sum += prod * k;
}
 
struct Complex mulComplex(struct Complex a, struct Complex b) {
struct Complex c = { a.rel * b.rel - a.img * b.img, a.rel * b.img - a.img * b.rel };
return c;
}
 
struct Complex mulComplexD(struct Complex a, double b) {
struct Complex c = { a.rel * b, a.img * b };
return c;
}
 
struct Complex negComplex(struct Complex a) {
return mulComplexD(a, -1.0);
}
 
struct Complex divComplex(struct Complex a, struct Complex b) {
double re = a.rel * b.rel + a.img * b.img;
double im = a.img * b.rel - a.rel * b.img;
double d = b.rel * b.rel + b.img * b.img;
struct Complex c = { re / d, im / d };
return c;
}
 
struct Complex inv(struct Complex c) {
double d = c.rel * c.rel + c.img * c.img;
struct Complex i = { c.rel / d, -c.img / d };
return i;
}
 
const struct Complex TWO_I = { 0.0, 2.0 };
const struct Complex INV_TWO_I = { 0.0, -0.5 };
 
//////////////////////////////////////////////////////
 
struct QuaterImaginary {
char *b2i;
int valid;
};
 
struct QuaterImaginary makeQuaterImaginary(char *s) {
struct QuaterImaginary qi = { s, 0 }; // assume invalid until tested
size_t i, valid = 1, cnt = 0;
 
if (*s != 0) {
for (i = 0; s[i] != 0; i++) {
if (s[i] < '0' || '3' < s[i]) {
if (s[i] == '.') {
cnt++;
} else {
valid = 0;
break;
}
prod *= invTwoI;
}
}
if (valid && cnt > 1) {
valid = 0;
}
}
 
qi.valid = return sumvalid;
return qi;
}
 
void printQuaterImaginary(struct QuaterImaginary qi) {
if (qi.valid) {
printf("%8s", qi.b2i);
} else {
printf(" ERROR ");
}
}
 
//////////////////////////////////////////////////////
friend std::ostream& operator<<(std::ostream&, const QuaterImaginary&);
 
struct Complex qi2c(struct QuaterImaginary qi) {
private:
size_t len = strlen(qi.b2i);
const std::complex<double> twoI{ 0.0, 2.0 };
int pointPos = find(qi.b2i, '.');
const std::complex<double> invTwoI = inv(twoI);
size_t posLen = (pointPos > 0) ? pointPos : len;
struct Complex sum = makeComplex(0.0, 0.0);
struct Complex prod = makeComplex(1.0, 0.0);
size_t j;
 
for (j = 0; j < posLen; j++) {
std::string b2i;
double k = qi.b2i[posLen - 1 - j] - '0';
};
if (k > 0.0) {
 
sum = addComplex(sum, mulComplexD(prod, k));
std::ostream& operator<<(std::ostream& os, const QuaterImaginary& q) {
return os << q.b2i; }
prod = mulComplex(prod, TWO_I);
}
if (pointPos != -1) {
prod = INV_TWO_I;
for (j = posLen + 1; j < len; j++) {
double k = qi.b2i[j] - '0';
if (k > 0.0) {
sum = addComplex(sum, mulComplexD(prod, k));
}
prod = mulComplex(prod, INV_TWO_I);
}
}
return sum;
}
 
// only works properly if 'the real' and 'imag'imaginary areparts bothare integral
struct QuaterImaginary toQuaterImaginaryc2qi(conststruct std::complex<double>&Complex c, char *out) {
char *p = out;
if (c.real() == 0.0 && c.imag() == 0.0) return QuaterImaginary("0");
int re, im, fi;
 
int re*p = (int)c.real()0;
intif im(c.rel == (int)0.0 && c.imag(img == 0.0); {
return makeQuaterImaginary("0");
int fi = -1;
}
std::stringstream ss;
 
re = (int)c.rel;
im = (int)c.img;
fi = -1;
while (re != 0) {
int rem = re % -4;
re /= -4;
if (rem < 0) {
rem += 4 + rem;
re++;
}
ss*p++ <<= rem <<+ '0';
*p++ = '0';
*p = 0;
}
if (im != 0) {
size_t index = 1;
double f = (std::complex<double>(0.0, c.imag()) / std::complex<double>(0.0, 2.0)).real();
struct Complex fc = divComplex((struct Complex) { 0.0, c.img }, (struct Complex) { 0.0, 2.0 });
double f = fc.rel;
im = (int)ceil(f);
f = -4.0 * (f - im);
size_t index = 1;
while (im != 0) {
int rem = im % -4;
im /= -4;
if (rem < 0) {
rem += 4 + rem;
im++;
}
if (index < ss.str().length(p - out)) {
ss.str()out[index] = (char)(rem + 48)'0';
} else {
ss*p++ <<= '0 << rem';
*p++ = rem + '0';
*p = 0;
}
index += 2;
Line 418 ⟶ 644:
}
 
autoreverse(out, r = ss.str(p);
if (fi != -1) {
std::reverse(r.begin(), r.end());
ss *p++ = '.str("")';
ss.clear() *p++ = fi + '0';
ss << r *p = 0;
}
if (fi != -1) ss << '.' << fi;
while (out[0] == '0' && out[1] != '.') {
r = ss.str();
size_t i;
r.erase(r.begin(), std::find_if(r.begin(), r.end(), [](char c) { return c != '0'; }));
if for (r[0]i == '.')r0; out[i] != "0"; i++) r;{
out[i] = out[i + 1];
return QuaterImaginary(r);
}
}
if (*out == '.') {
reverse(out, p);
*p++ = '0';
*p = 0;
reverse(out, p);
}
return makeQuaterImaginary(out);
}
 
//////////////////////////////////////////////////////
 
int main() {
usingchar namespace stdbuffer[16];
int i;
 
for (i = 1; i <= 16; i++) {
struct Complex c1 = { i, 0.0 };
struct QuaterImaginary qi = c2qi(c1, buffer);
struct Complex c2 = qi2c(qi);
printComplex(c1);
printf(" -> ");
printQuaterImaginary(qi);
printf(" -> ");
printComplex(c2);
 
for (int i = 1;printf(" i <= 16; i++") {;
 
complex<double> c1(i, 0);
QuaterImaginary qic1 = toQuaterImaginarynegComplex(c1);
complex<double> c2qi = qi.toComplexc2qi(c1, buffer);
c2 = qi2c(qi);
cout << setw(8) << c1 << " -> " << setw(8) << qi << " -> " << setw(8) << c2 << " ";
printComplex(c1 = -c1);
qiprintf(" =-> toQuaterImaginary(c1");
c2 = qi.toComplexprintQuaterImaginary(qi);
printf(" -> ");
cout << setw(8) << c1 << " -> " << setw(8) << qi << " -> " << setw(8) << c2 << endl;
printComplex(c2);
 
printf("\n");
}
cout << endl;
 
printf("\n");
for (int i = 1; i <= 16; i++) {
 
complex<double> c1(0, i);
for (i = 1; i <= 16; i++) {
QuaterImaginary qi = toQuaterImaginary(c1);
complex<double>struct c2Complex c1 = qi{ 0.toComplex()0, i };
struct QuaterImaginary qi = c2qi(c1, buffer);
cout << setw(8) << c1 << " -> " << setw(8) << qi << " -> " << setw(8) << c2 << " ";
c1struct Complex c2 = -c1qi2c(qi);
qi = toQuaterImaginaryprintComplex(c1);
c2printf(" =-> qi.toComplex(");
printQuaterImaginary(qi);
cout << setw(8) << c1 << " -> " << setw(8) << qi << " -> " << setw(8) << c2 << endl;
printf(" -> ");
printComplex(c2);
 
printf(" ");
 
c1 = negComplex(c1);
qi = c2qi(c1, buffer);
c2 = qi2c(qi);
printComplex(c1);
printf(" -> ");
printQuaterImaginary(qi);
printf(" -> ");
printComplex(c2);
 
printf("\n");
}
 
return 0;
}</langsyntaxhighlight>
{{out}}
<pre>( (1,0 + 0i) -> 1 -> ( (1,0) + 0i) ( -1, + -00i) -> 103 -> ( -1,0 + 0i)
( (2,0 + 0i) -> 2 -> ( (2,0) + 0i) ( -2, + -00i) -> 102 -> ( -2,0 + 0i)
( (3,0 + 0i) -> 3 -> ( (3,0) + 0i) ( -3, + -00i) -> 101 -> ( -3,0 + 0i)
( (4,0 + 0i) -> 10300 -> ( (4,0) + 0i) ( -4, + -00i) -> 100 -> ( -4,0 + 0i)
( (5,0 + 0i) -> 10301 -> ( (5,0) + 0i) ( -5, + -00i) -> 203 -> ( -5,0 + 0i)
( (6,0 + 0i) -> 10302 -> ( (6,0) + 0i) ( -6, + -00i) -> 202 -> ( -6,0 + 0i)
( (7,0 + 0i) -> 10303 -> ( (7,0) + 0i) ( -7, + -00i) -> 201 -> ( -7,0 + 0i)
( (8,0 + 0i) -> 10200 -> ( (8,0) + 0i) ( -8, + -00i) -> 200 -> ( -8,0 + 0i)
( (9,0 + 0i) -> 10201 -> ( (9,0) + 0i) ( -9, + -00i) -> 303 -> ( -9,0 + 0i)
( 10,0 + 0i) -> 10202 -> ( 10,0 + 0i) (-10, + -00i) -> 302 -> (-10,0 + 0i)
( 11,0 + 0i) -> 10203 -> ( 11,0 + 0i) (-11, + -00i) -> 301 -> (-11,0 + 0i)
( 12,0 + 0i) -> 10100 -> ( 12,0 + 0i) (-12, + -00i) -> 300 -> (-12,0 + 0i)
( 13,0 + 0i) -> 10101 -> ( 13,0 + 0i) (-13, + -00i) -> 1030003 -> (-13,0 + 0i)
( 14,0 + 0i) -> 10102 -> ( 14,0 + 0i) (-14, + -00i) -> 1030002 -> (-14,0 + 0i)
( 15,0 + 0i) -> 10103 -> ( 15,0 + 0i) (-15, + -00i) -> 1030001 -> (-15,0 + 0i)
( 16,0 + 0i) -> 10000 -> ( 16,0 + 0i) (-16, + -00i) -> 1030000 -> (-16,0 + 0i)
 
( (0,1 + 1i) -> 10.2 -> ( (0,1) + 1i) ( -0, + -11i) -> 0.2 -> ( (0, + -11i)
( (0,2 + 2i) -> 10.0 -> ( (0,2) + 2i) ( -0, + -22i) -> 1030.0 -> ( (0, + -22i)
( (0,3 + 3i) -> 20.2 -> ( (0,3) + 3i) ( -0, + -33i) -> 1030.2 -> ( (0, + -33i)
( (0,4 + 4i) -> 20.0 -> ( (0,4) + 4i) ( -0, + -44i) -> 1020.0 -> ( (0, + -44i)
( (0,5 + 5i) -> 30.2 -> ( (0,5) + 5i) ( -0, + -55i) -> 1020.2 -> ( (0, + -55i)
( (0,6 + 6i) -> 30.0 -> ( (0,6) + 6i) ( -0, + -66i) -> 1010.0 -> ( (0, + -66i)
( (0,7 + 7i) -> 103000.2 -> ( (0,7) + 7i) ( -0, + -77i) -> 1010.2 -> ( (0, + -77i)
( (0,8 + 8i) -> 103000.0 -> ( (0,8) + 8i) ( -0, + -88i) -> 1000.0 -> ( (0, + -88i)
( (0,9 + 9i) -> 103010.2 -> ( (0,9) + 9i) ( -0, + -99i) -> 1000.2 -> ( (0, + -99i)
( (0,10 + 10i) -> 103010.0 -> ( (0,10 + 10i) ( -0, + -1010i) -> 2030.0 -> ( 0, + -1010i)
( (0,11 + 11i) -> 103020.2 -> ( (0,11 + 11i) ( -0, + -1111i) -> 2030.2 -> ( 0, + -1111i)
( (0,12 + 12i) -> 103020.0 -> ( (0,12 + 12i) ( -0, + -1212i) -> 2020.0 -> ( 0, + -1212i)
( (0,13 + 13i) -> 103030.2 -> ( (0,13 + 13i) ( -0, + -1313i) -> 2020.2 -> ( 0, + -1313i)
( (0,14 + 14i) -> 103030.0 -> ( (0,14 + 14i) ( -0, + -1414i) -> 2010.0 -> ( 0, + -1414i)
( (0,15 + 15i) -> 102000.2 -> ( (0,15 + 15i) ( -0, + -1515i) -> 2010.2 -> ( 0, + -1515i)
( (0,16 + 16i) -> 102000.0 -> ( (0,16 + 16i) ( -0, + -1616i) -> 2000.0 -> ( 0, + -1616i)</pre>
 
=={{header|C#|C sharp|C#}}==
<langsyntaxhighlight lang="csharp">using System;
using System.Linq;
using System.Text;
Line 670 ⟶ 935:
}
}
}</langsyntaxhighlight>
{{out}}
<pre> 1 -> 1 -> 1 -1 -> 103 -> -1
Line 705 ⟶ 970:
15i -> 102000.2 -> 15i -15i -> 2010.2 -> -15i
16i -> 102000.0 -> 16i -16i -> 2000.0 -> -16i</pre>
 
=={{header|C++}}==
{{trans|C#}}
<syntaxhighlight lang="cpp">#include <algorithm>
#include <complex>
#include <iomanip>
#include <iostream>
 
std::complex<double> inv(const std::complex<double>& c) {
double denom = c.real() * c.real() + c.imag() * c.imag();
return std::complex<double>(c.real() / denom, -c.imag() / denom);
}
 
class QuaterImaginary {
public:
QuaterImaginary(const std::string& s) : b2i(s) {
static std::string base("0123.");
 
if (b2i.empty()
|| std::any_of(s.cbegin(), s.cend(), [](char c) { return base.find(c) == std::string::npos; })
|| std::count(s.cbegin(), s.cend(), '.') > 1) {
throw std::runtime_error("Invalid base 2i number");
}
}
 
QuaterImaginary& operator=(const QuaterImaginary& q) {
b2i = q.b2i;
return *this;
}
 
std::complex<double> toComplex() const {
int pointPos = b2i.find('.');
int posLen = (pointPos != std::string::npos) ? pointPos : b2i.length();
std::complex<double> sum(0.0, 0.0);
std::complex<double> prod(1.0, 0.0);
for (int j = 0; j < posLen; j++) {
double k = (b2i[posLen - 1 - j] - '0');
if (k > 0.0) {
sum += prod * k;
}
prod *= twoI;
}
if (pointPos != -1) {
prod = invTwoI;
for (size_t j = posLen + 1; j < b2i.length(); j++) {
double k = (b2i[j] - '0');
if (k > 0.0) {
sum += prod * k;
}
prod *= invTwoI;
}
}
 
return sum;
}
 
friend std::ostream& operator<<(std::ostream&, const QuaterImaginary&);
 
private:
const std::complex<double> twoI{ 0.0, 2.0 };
const std::complex<double> invTwoI = inv(twoI);
 
std::string b2i;
};
 
std::ostream& operator<<(std::ostream& os, const QuaterImaginary& q) {
return os << q.b2i;
}
 
// only works properly if 'real' and 'imag' are both integral
QuaterImaginary toQuaterImaginary(const std::complex<double>& c) {
if (c.real() == 0.0 && c.imag() == 0.0) return QuaterImaginary("0");
 
int re = (int)c.real();
int im = (int)c.imag();
int fi = -1;
std::stringstream ss;
while (re != 0) {
int rem = re % -4;
re /= -4;
if (rem < 0) {
rem = 4 + rem;
re++;
}
ss << rem << 0;
}
if (im != 0) {
double f = (std::complex<double>(0.0, c.imag()) / std::complex<double>(0.0, 2.0)).real();
im = (int)ceil(f);
f = -4.0 * (f - im);
size_t index = 1;
while (im != 0) {
int rem = im % -4;
im /= -4;
if (rem < 0) {
rem = 4 + rem;
im++;
}
if (index < ss.str().length()) {
ss.str()[index] = (char)(rem + 48);
} else {
ss << 0 << rem;
}
index += 2;
}
fi = (int)f;
}
 
auto r = ss.str();
std::reverse(r.begin(), r.end());
ss.str("");
ss.clear();
ss << r;
if (fi != -1) ss << '.' << fi;
r = ss.str();
r.erase(r.begin(), std::find_if(r.begin(), r.end(), [](char c) { return c != '0'; }));
if (r[0] == '.')r = "0" + r;
return QuaterImaginary(r);
}
 
int main() {
using namespace std;
 
for (int i = 1; i <= 16; i++) {
complex<double> c1(i, 0);
QuaterImaginary qi = toQuaterImaginary(c1);
complex<double> c2 = qi.toComplex();
cout << setw(8) << c1 << " -> " << setw(8) << qi << " -> " << setw(8) << c2 << " ";
c1 = -c1;
qi = toQuaterImaginary(c1);
c2 = qi.toComplex();
cout << setw(8) << c1 << " -> " << setw(8) << qi << " -> " << setw(8) << c2 << endl;
}
cout << endl;
 
for (int i = 1; i <= 16; i++) {
complex<double> c1(0, i);
QuaterImaginary qi = toQuaterImaginary(c1);
complex<double> c2 = qi.toComplex();
cout << setw(8) << c1 << " -> " << setw(8) << qi << " -> " << setw(8) << c2 << " ";
c1 = -c1;
qi = toQuaterImaginary(c1);
c2 = qi.toComplex();
cout << setw(8) << c1 << " -> " << setw(8) << qi << " -> " << setw(8) << c2 << endl;
}
 
return 0;
}</syntaxhighlight>
{{out}}
<pre> (1,0) -> 1 -> (1,0) (-1,-0) -> 103 -> (-1,0)
(2,0) -> 2 -> (2,0) (-2,-0) -> 102 -> (-2,0)
(3,0) -> 3 -> (3,0) (-3,-0) -> 101 -> (-3,0)
(4,0) -> 10300 -> (4,0) (-4,-0) -> 100 -> (-4,0)
(5,0) -> 10301 -> (5,0) (-5,-0) -> 203 -> (-5,0)
(6,0) -> 10302 -> (6,0) (-6,-0) -> 202 -> (-6,0)
(7,0) -> 10303 -> (7,0) (-7,-0) -> 201 -> (-7,0)
(8,0) -> 10200 -> (8,0) (-8,-0) -> 200 -> (-8,0)
(9,0) -> 10201 -> (9,0) (-9,-0) -> 303 -> (-9,0)
(10,0) -> 10202 -> (10,0) (-10,-0) -> 302 -> (-10,0)
(11,0) -> 10203 -> (11,0) (-11,-0) -> 301 -> (-11,0)
(12,0) -> 10100 -> (12,0) (-12,-0) -> 300 -> (-12,0)
(13,0) -> 10101 -> (13,0) (-13,-0) -> 1030003 -> (-13,0)
(14,0) -> 10102 -> (14,0) (-14,-0) -> 1030002 -> (-14,0)
(15,0) -> 10103 -> (15,0) (-15,-0) -> 1030001 -> (-15,0)
(16,0) -> 10000 -> (16,0) (-16,-0) -> 1030000 -> (-16,0)
 
(0,1) -> 10.2 -> (0,1) (-0,-1) -> 0.2 -> (0,-1)
(0,2) -> 10.0 -> (0,2) (-0,-2) -> 1030.0 -> (0,-2)
(0,3) -> 20.2 -> (0,3) (-0,-3) -> 1030.2 -> (0,-3)
(0,4) -> 20.0 -> (0,4) (-0,-4) -> 1020.0 -> (0,-4)
(0,5) -> 30.2 -> (0,5) (-0,-5) -> 1020.2 -> (0,-5)
(0,6) -> 30.0 -> (0,6) (-0,-6) -> 1010.0 -> (0,-6)
(0,7) -> 103000.2 -> (0,7) (-0,-7) -> 1010.2 -> (0,-7)
(0,8) -> 103000.0 -> (0,8) (-0,-8) -> 1000.0 -> (0,-8)
(0,9) -> 103010.2 -> (0,9) (-0,-9) -> 1000.2 -> (0,-9)
(0,10) -> 103010.0 -> (0,10) (-0,-10) -> 2030.0 -> (0,-10)
(0,11) -> 103020.2 -> (0,11) (-0,-11) -> 2030.2 -> (0,-11)
(0,12) -> 103020.0 -> (0,12) (-0,-12) -> 2020.0 -> (0,-12)
(0,13) -> 103030.2 -> (0,13) (-0,-13) -> 2020.2 -> (0,-13)
(0,14) -> 103030.0 -> (0,14) (-0,-14) -> 2010.0 -> (0,-14)
(0,15) -> 102000.2 -> (0,15) (-0,-15) -> 2010.2 -> (0,-15)
(0,16) -> 102000.0 -> (0,16) (-0,-16) -> 2000.0 -> (0,-16)</pre>
 
=={{header|D}}==
{{trans|Kotlin}}
<langsyntaxhighlight Dlang="d">import std.algorithm;
import std.array;
import std.complex;
Line 860 ⟶ 1,307:
writefln("%4si -> %8s -> %4si", c1.im, qi, c2.im);
}
}</langsyntaxhighlight>
{{out}}
<pre> 1 -> 1 -> 1 -1 -> 103 -> -1
Line 895 ⟶ 1,342:
15i -> 102000.2 -> 15i -15i -> 2010.2 -> -15i
16i -> 102000.0 -> 16i -16i -> 2000.0 -> -16i</pre>
 
=={{header|FreeBASIC}}==
{{trans|Modula-2}}
<syntaxhighlight lang="vbnet">#define ceil(x) (-((-x*2.0-0.5) Shr 1))
 
Type Complex
real As Double
imag As Double
End Type
 
Type QuaterImaginary
b2i As String
End Type
 
Dim Shared As Complex c1, c2
 
Function StrReverse(Byval txt As String) As String
Dim result As String
For i As Integer = Len(txt) To 1 Step -1
result &= Mid(txt, i, 1)
Next i
Return result
End Function
 
Function ToChar(n As Integer) As String
Return Chr(n + Asc("0"))
End Function
 
Function ComplexMul(lhs As Complex, rhs As Complex) As Complex
Dim As Complex result
result.real = rhs.real * lhs.real - rhs.imag * lhs.imag
result.imag = rhs.real * lhs.imag + rhs.imag * lhs.real
Return result
End Function
 
Function ComplexMulR(lhs As Complex, rhs As Double) As Complex
Dim As Complex result
result.real = lhs.real * rhs
result.imag = lhs.imag * rhs
Return result
End Function
 
Function ComplexInv(c As Complex) As Complex
Dim As Double denom
Dim As Complex result
denom = c.real * c.real + c.imag * c.imag
result.real = c.real / denom
result.imag = -c.imag / denom
Return result
End Function
 
Function ComplexDiv(lhs As Complex, rhs As Complex) As Complex
Return ComplexMul(lhs, ComplexInv(rhs))
End Function
 
Function ComplexNeg(c As Complex) As Complex
Dim As Complex result
result.real = -c.real
result.imag = -c.imag
Return result
End Function
 
Function ComplexSum(lhs As Complex, rhs As Complex) As Complex
Dim As Complex result
result.real = lhs.real + rhs.real
result.imag = lhs.imag + rhs.imag
Return result
End Function
 
Function ToQuaterImaginary(c As Complex) As QuaterImaginary
Dim As Integer re, im, fi, rem_, index
Dim As Double f
Dim As Complex t
Dim As QuaterImaginary result
Dim As String sb
re = Int(c.real)
im = Int(c.imag)
fi = -1
While re <> 0
rem_ = (re Mod -4)
re = re \ (-4)
If rem_ < 0 Then
rem_ = 4 + rem_
re += 1
End If
sb &= ToChar(rem_) & "0"
Wend
If im <> 0 Then
t = ComplexDiv(Type<Complex>(0.0, c.imag), Type<Complex>(0.0, 2.0))
f = t.real
im = Ceil(f)
f = -4.0 * (f - Cdbl(im))
index = 1
While im <> 0
rem_ = im Mod -4
im \= -4
If rem_ < 0 Then
rem_ = 4 + rem_
im += 1
End If
If index < Len(sb) Then
Mid(sb, index + 1, 1) = ToChar(rem_)
Else
sb &= "0" & ToChar(rem_)
End If
index += 2
Wend
fi = Int(f)
End If
sb = StrReverse(sb)
If fi <> -1 Then sb &= "." & ToChar(fi)
sb = Ltrim(sb, "0")
If Left(sb, 1) = "." Then sb = "0" & sb
result.b2i = sb
Return result
End Function
 
Function ToComplex(qi As QuaterImaginary) As Complex
Dim As Integer j, pointPos, posLen, b2iLen
Dim As Double k
Dim As Complex sum, prod
pointPos = Instr(qi.b2i, ".")
posLen = Iif(pointPos = 0, Len(qi.b2i), pointPos - 1)
sum.real = 0.0
sum.imag = 0.0
prod.real = 1.0
prod.imag = 0.0
For j = 0 To posLen - 1
k = Val(Mid(qi.b2i, posLen - j, 1))
If k > 0.0 Then sum = ComplexSum(sum, ComplexMulR(prod, k))
prod = ComplexMul(prod, Type<Complex>(0.0, 2.0))
Next
If pointPos <> 0 Then
prod = ComplexInv(Type<Complex>(0.0, 2.0))
b2iLen = Len(qi.b2i)
For j = posLen + 1 To b2iLen - 1
k = Val(Mid(qi.b2i, j + 1, 1))
If k > 0.0 Then sum = ComplexSum(sum, ComplexMulR(prod, k))
prod = ComplexMul(prod, ComplexInv(Type<Complex>(0.0, 2.0)))
Next
End If
Return sum
End Function
 
Dim As QuaterImaginary qi
Dim As Integer i
For i = 1 To 16
c1.real = Cdbl(i)
c1.imag = 0.0
qi = ToQuaterImaginary(c1)
c2 = ToComplex(qi)
Print c1.real; "i -> "; qi.b2i; " -> "; c2.real; "i";
c1 = ComplexNeg(c1)
qi = ToQuaterImaginary(c1)
c2 = ToComplex(qi)
Print c1.real; "i -> "; qi.b2i; " -> "; c2.real; "i"
Next
Print
For i = 1 To 16
c1.real = 0.0
c1.imag = Cdbl(i)
qi = ToQuaterImaginary(c1)
c2 = ToComplex(qi)
Print c1.imag; "i -> "; qi.b2i; " -> "; c2.imag; "i";
c1 = ComplexNeg(c1)
qi = ToQuaterImaginary(c1)
c2 = ToComplex(qi)
Print c1.imag; "i -> "; qi.b2i; " -> "; c2.imag; "i"
Next
 
Sleep</syntaxhighlight>
{{out}}
<pre>Same as Modula-2 entry.</pre>
 
=={{header|Go}}==
{{trans|Kotlin}}
... though a bit shorter as Go has support for complex numbers built into the language.
<langsyntaxhighlight lang="go">package main
 
import (
Line 1,045 ⟶ 1,665:
fmt.Printf("%3.0fi -> %8s -> %3.0fi\n", imag(c1), qi, imag(c2))
}
}</langsyntaxhighlight>
 
{{out}}
Line 1,083 ⟶ 1,703:
16i -> 102000.0 -> 16i -16i -> 2000.0 -> -16i
</pre>
 
=={{header|Haskell}}==
<syntaxhighlight lang="haskell">import Data.Char (chr, digitToInt, intToDigit, isDigit, ord)
import Data.Complex (Complex (..), imagPart, realPart)
import Data.List (delete, elemIndex)
import Data.Maybe (fromMaybe)
 
base :: Complex Float
base = 0 :+ 2
 
quotRemPositive :: Int -> Int -> (Int, Int)
quotRemPositive a b
| r < 0 = (1 + q, floor (realPart (-base ^^ 2)) + r)
| otherwise = (q, r)
where
(q, r) = quotRem a b
 
digitToIntQI :: Char -> Int
digitToIntQI c
| isDigit c = digitToInt c
| otherwise = ord c - ord 'a' + 10
 
shiftRight :: String -> String
shiftRight n
| l == '0' = h
| otherwise = h <> ('.' : [l])
where
(l, h) = (last n, init n)
 
intToDigitQI :: Int -> Char
intToDigitQI i
| i `elem` [0 .. 9] = intToDigit i
| otherwise = chr (i - 10 + ord 'a')
 
fromQItoComplex :: String -> Complex Float -> Complex Float
fromQItoComplex num b =
let dot = fromMaybe (length num) (elemIndex '.' num)
in fst $
foldl
( \(a, indx) x ->
( a + fromIntegral (digitToIntQI x)
* (b ^^ (dot - indx)),
indx + 1
)
)
(0, 1)
(delete '.' num)
 
euclidEr :: Int -> Int -> [Int] -> [Int]
euclidEr a b l
| a == 0 = l
| otherwise =
let (q, r) = quotRemPositive a b
in euclidEr q b (0 : r : l)
 
fromIntToQI :: Int -> [Int]
fromIntToQI 0 = [0]
fromIntToQI x =
tail
( euclidEr
x
(floor $ realPart (base ^^ 2))
[]
)
 
getCuid :: Complex Int -> Int
getCuid c = imagPart c * floor (imagPart (-base))
 
qizip :: Complex Int -> [Int]
qizip c =
let (r, i) =
( fromIntToQI (realPart c) <> [0],
fromIntToQI (getCuid c)
)
in let m = min (length r) (length i)
in take (length r - m) r
<> take (length i - m) i
<> reverse
( zipWith
(+)
(take m (reverse r))
(take m (reverse i))
)
 
fromComplexToQI :: Complex Int -> String
fromComplexToQI = shiftRight . fmap intToDigitQI . qizip
 
main :: IO ()
main =
putStrLn (fromComplexToQI (35 :+ 23))
>> print (fromQItoComplex "10.2" base)</syntaxhighlight>
{{out}}
<pre>121003.2
0.0 :+ 1.0</pre>
With base = 8i (you may choose any base):
<pre>3z.8
0.0 :+ 7.75</pre>
 
=={{header|J}}==
 
Implementation:
 
<syntaxhighlight lang="j">
ibdec=: {{
0j2 ibdec y
:
digits=. 0,".,~&'36b'@> tolower y -.'. '
(x #. digits) % x^#(}.~ 1+i.&'.')y-.' '
}}"1
 
ibenc=: {{
0j2 ibenc y
:
if.0=y do.,'0' return.end.
sq=.*:x assert. 17 > sq
step=. }.,~(1,|sq) +^:(0>{:@]) (0,sq) #: {.
seq=. step^:(0~:{.)^:_"0
're im0'=.+.y
'im imf'=.(sign,1)*(0,|x)#:im0*sign=.*im0
frac=. ,hfd (imf*|x)-.0 if.#frac do.frac=.'.',frac end.
frac,~(}.~0 i.~_1}.'0'=]) }:,hfd|:0 1|."0 1 seq re,im
}}"0
</syntaxhighlight>
 
This ibdec can decode numbers from complex bases up to 0j6, but this ibenc can only represent digits in complex bases up to 0j4.
 
Examples:
 
<syntaxhighlight lang="j">
(ibenc i:16),.' ',.ibenc j.i:16
1030000 2000
1030001 2010.2
1030002 2010
1030003 2020.2
300 2020
301 2030.2
302 2030
303 1000.2
200 1000
201 1010.2
202 1010
203 1020.2
100 1020
101 1030.2
102 1030
103 0.2
0 0
1 0.2
2 10
3 10.2
10300 20
10301 20.2
10302 30
10303 30.2
10200 103000
10201 103000.2
10202 103010
10203 103010.2
10100 103020
10101 103020.2
10102 103030
10103 103030.2
10000 102000
(ibdec ibenc i:16),:ibdec ibenc j.i:16
_16 _15 _14 _13 _12 _11 _10 _9 _8 _7 _6 _5 _4 _3 _2 _1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0j_16 0j_15 0j_14 0j_13 0j_12 0j_11 0j_10 0j_9 0j_8 0j_7 0j_6 0j_5 0j_4 0j_3 0j_2 0j_1 0 0j_1 0j2 0j1 0j4 0j3 0j6 0j5 0j8 0j7 0j10 0j9 0j12 0j11 0j14 0j13 0j16
0j4 ibenc 42
10e0a
0j4 ibdec 0j4 ibenc 42
42
</syntaxhighlight>
 
=={{header|Java}}==
{{trans|Kotlin}}
<langsyntaxhighlight Javalang="java">public class ImaginaryBaseNumber {
private static class Complex {
private Double real, imag;
Line 1,263 ⟶ 2,054:
}
}
}</langsyntaxhighlight>
{{out}}
<pre> 1 -> 1 -> 1 -1 -> 103 -> -1
Line 1,301 ⟶ 2,092:
=={{header|Julia}}==
{{trans|C#}}
<langsyntaxhighlight lang="julia">import Base.show, Base.parse, Base.+, Base.-, Base.*, Base./, Base.^
 
function inbase4(charvec::Vector)
Line 1,448 ⟶ 2,239:
end
end
 
QuaterImaginary(c::Complex) = parse(QuaterImaginary, c)
Complex(q::QuaterImaginary) = parse(Complex, q)
 
+(q1::QuaterImaginary, q2::QuaterImaginary) = QuaterImaginary(Complex(q1) + Complex(q2))
+(q1::Complex, q2::QuaterImaginary) = q1 + Complex(q2)
+(q1::QuaterImaginary, q2::Complex) = Complex(q1) + q2
-(q1::QuaterImaginary, q2::QuaterImaginary) = QuaterImaginary(Complex(q1) - Complex(q2))
-(q1::Complex, q2::QuaterImaginary) = q1 - Complex(q2)
-(q1::QuaterImaginary, q2::Complex) = Complex(q1) - q2
*(q1::QuaterImaginary, q2::QuaterImaginary) = QuaterImaginary(Complex(q1) * Complex(q2))
*(q1::Complex, q2::QuaterImaginary) = q1 * Complex(q2)
*(q1::QuaterImaginary, q2::Complex) = Complex(q1) * q2
/(q1::QuaterImaginary, q2::QuaterImaginary) = QuaterImaginary(Complex(q1) / Complex(q2))
/(q1::Complex, q2::QuaterImaginary) = q1 / Complex(q2)
/(q1::QuaterImaginary, q2::Complex) = Complex(q1) / q2
^(q1::QuaterImaginary, q2::QuaterImaginary) = QuaterImaginary(Complex(q1) ^ Complex(q2))
^(q1::Complex, q2::QuaterImaginary) = q1 ^ Complex(q2)
^(q1::QuaterImaginary, q2::Complex) = Complex(q1) ^ q2
 
testquim()
</langsyntaxhighlight>{{output}}<pre>
1 -> 1 -> 1 -1 -> 103 -> -1
2 -> 2 -> 2 -2 -> 102 -> -2
Line 1,490 ⟶ 2,300:
 
As the JDK lacks a complex number class, I've included a very basic one in the program.
<langsyntaxhighlight lang="scala">// version 1.2.10
 
import kotlin.math.ceil
Line 1,635 ⟶ 2,445:
println(fmt.format(c1, qi, c2))
}
}</langsyntaxhighlight>
 
{{out}}
Line 1,676 ⟶ 2,486:
=={{header|Modula-2}}==
{{trans|C#}}
<langsyntaxhighlight lang="modula2">MODULE ImaginaryBase;
FROM FormatString IMPORT FormatString;
FROM RealMath IMPORT round;
Line 2,012 ⟶ 2,822:
 
ReadChar
END ImaginaryBase.</langsyntaxhighlight>
{{out}}
<pre>1 -> 1 -> 1 -1 -> 103 -> -1
Line 2,048 ⟶ 2,858:
16i -> 102000.0 -> 16i -16i -> 2000.0 -> -16i</pre>
 
=={{header|Perl 6Nim}}==
{{trans|Kotlin}}
This is a fairly faithful translation of the Kotlin program except that we had not to define a Complex type as Nim provides the module “complex” in its standard library. We had only to define a function “toString” for the “Complex[float]” type, function to use in place of “$” in order to get a more pleasant output.
<syntaxhighlight lang="nim">import algorithm, complex, math, strformat, strutils
 
const
TwoI = complex(0.0, 2.0)
InvTwoI = inv(TwoI)
 
type QuaterImaginery = object
b2i: string
 
# Conversions between digit character and digit value.
template digitChar(n: range[0..9]): range['0'..'9'] = chr(n + ord('0'))
template digitValue(c: range['0'..'9']): range[0..9] = ord(c) - ord('0')
 
 
####################################################################################################
# Quater imaginary functions.
 
func initQuaterImaginary(s: string): QuaterImaginery =
## Create a Quater imaginary number.
if s.len == 0 or not s.allCharsInSet({'0'..'3', '.'}) or s.count('.') > 1:
raise newException(ValueError, "invalid base 2i number.")
result = QuaterImaginery(b2i: s)
 
#---------------------------------------------------------------------------------------------------
 
func toComplex(q: QuaterImaginery): Complex[float] =
## Convert a Quater imaginary number to a complex.
 
let pointPos = q.b2i.find('.')
let posLen = if pointPos != -1: pointPos else: q.b2i.len
var prod = complex(1.0)
 
for j in 0..<posLen:
let k = float(q.b2i[posLen - 1 - j].digitValue)
if k > 0: result += prod * k
prod *= TwoI
 
if pointPos != -1:
prod = InvTwoI
for j in (posLen + 1)..q.b2i.high:
let k = float(q.b2i[j].digitValue)
if k > 0: result += prod * k
prod *= InvTwoI
 
#---------------------------------------------------------------------------------------------------
 
func `$`(q: QuaterImaginery): string =
## Convert a Quater imaginary number to a string.
q.b2i
 
 
####################################################################################################
# Supplementary functions for complex numbers.
 
func toQuaterImaginary(c: Complex): QuaterImaginery =
## Convert a complex number to a Quater imaginary number.
 
if c.re == 0 and c.im == 0: return initQuaterImaginary("0")
 
var re = c.re.toInt
var im = c.im.toInt
var fi = -1
 
while re != 0:
var rem = re mod -4
re = re div -4
if rem < 0:
inc rem, 4
inc re
result.b2i.add rem.digitChar
result.b2i.add '0'
 
if im != 0:
var f = (complex(0.0, c.im) / TwoI).re
im = f.ceil.toInt
f = -4 * (f - im.toFloat)
var index = 1
while im != 0:
var rem = im mod -4
im = im div -4
if rem < 0:
inc rem, 4
inc im
if index < result.b2i.len:
result.b2i[index] = rem.digitChar
else:
result.b2i.add '0'
result.b2i.add rem.digitChar
inc index, 2
fi = f.toInt
 
result.b2i.reverse()
if fi != -1: result.b2i.add "." & $fi
result.b2i = result.b2i.strip(leading = true, trailing = false, {'0'})
if result.b2i.startsWith('.'): result.b2i = '0' & result.b2i
 
#---------------------------------------------------------------------------------------------------
 
func toString(c: Complex[float]): string =
## Convert a complex number to a string.
## This function is used in place of `$`.
 
let real = if c.re.classify == fcNegZero: 0.0 else: c.re
let imag = if c.im.classify == fcNegZero: 0.0 else: c.im
result = if imag >= 0: fmt"{real} + {imag}i" else: fmt"{real} - {-imag}i"
result = result.replace(".0 ", " ").replace(".0i", "i").replace(" + 0i", "")
if result.startsWith("0 + "): result = result[4..^1]
if result.startsWith("0 - "): result = '-' & result[4..^1]
 
 
#———————————————————————————————————————————————————————————————————————————————————————————————————
 
when isMainModule:
 
for i in 1..16:
var c1 = complex(i.toFloat)
var qi = c1.toQuaterImaginary
var c2 = qi.toComplex
stdout.write fmt"{c1.toString:>4s} → {qi:>8s} → {c2.toString:>4s} "
c1 = -c1
qi = c1.toQuaterImaginary
c2 = qi.toComplex
echo fmt"{c1.toString:>4s} → {qi:>8s} → {c2.toString:>4s}"
 
echo ""
 
for i in 1..16:
var c1 = complex(0.0, i.toFloat)
var qi = c1.toQuaterImaginary
var c2 = qi.toComplex
stdout.write fmt"{c1.toString:>4s} → {qi:>8s} → {c2.toString:>4s} "
c1 = -c1
qi = c1.toQuaterImaginary
c2 = qi.toComplex
echo fmt"{c1.toString:>4s} → {qi:>8s} → {c2.toString:>4s}"</syntaxhighlight>
 
{{out}}
<pre> 1 → 1 → 1 -1 → 103 → -1
2 → 2 → 2 -2 → 102 → -2
3 → 3 → 3 -3 → 101 → -3
4 → 10300 → 4 -4 → 100 → -4
5 → 10301 → 5 -5 → 203 → -5
6 → 10302 → 6 -6 → 202 → -6
7 → 10303 → 7 -7 → 201 → -7
8 → 10200 → 8 -8 → 200 → -8
9 → 10201 → 9 -9 → 303 → -9
10 → 10202 → 10 -10 → 302 → -10
11 → 10203 → 11 -11 → 301 → -11
12 → 10100 → 12 -12 → 300 → -12
13 → 10101 → 13 -13 → 1030003 → -13
14 → 10102 → 14 -14 → 1030002 → -14
15 → 10103 → 15 -15 → 1030001 → -15
16 → 10000 → 16 -16 → 1030000 → -16
 
1i → 10.2 → 1i -1i → 0.2 → -1i
2i → 10.0 → 2i -2i → 1030.0 → -2i
3i → 20.2 → 3i -3i → 1030.2 → -3i
4i → 20.0 → 4i -4i → 1020.0 → -4i
5i → 30.2 → 5i -5i → 1020.2 → -5i
6i → 30.0 → 6i -6i → 1010.0 → -6i
7i → 103000.2 → 7i -7i → 1010.2 → -7i
8i → 103000.0 → 8i -8i → 1000.0 → -8i
9i → 103010.2 → 9i -9i → 1000.2 → -9i
10i → 103010.0 → 10i -10i → 2030.0 → -10i
11i → 103020.2 → 11i -11i → 2030.2 → -11i
12i → 103020.0 → 12i -12i → 2020.0 → -12i
13i → 103030.2 → 13i -13i → 2020.2 → -13i
14i → 103030.0 → 14i -14i → 2010.0 → -14i
15i → 102000.2 → 15i -15i → 2010.2 → -15i
16i → 102000.0 → 16i -16i → 2000.0 → -16i</pre>
 
=={{header|Perl}}==
{{trans|Raku}}
{{libheader|ntheory}}
<syntaxhighlight lang="perl">use strict;
use warnings;
use feature 'say';
 
use Math::Complex;
use List::AllUtils qw(sum mesh);
use ntheory qw<todigitstring fromdigits>;
 
sub zip {
my($a,$b) = @_;
my($la, $lb) = (length $a, length $b);
my $l = '0' x abs $la - $lb;
$a .= $l if $la < $lb;
$b .= $l if $lb < $la;
(join('', mesh(@{[split('',$a),]}, @{[split('',$b),]})) =~ s/0+$//r) or 0;
}
 
sub base_i {
my($num,$radix,$precision) = @_;
die unless $radix > -37 and $radix < -1;
return '0' unless $num;
my $value = $num;
my $result = '';
my $place = 0;
my $upper_bound = 1 / (-$radix + 1);
my $lower_bound = $radix * $upper_bound;
 
$value = $num / $radix ** ++$place until $lower_bound <= $value and $value < $upper_bound;
 
while (($value or $place > 0) and $place > $precision) {
my $digit = int $radix * $value - $lower_bound;
$value = $radix * $value - $digit;
$result .= '.' unless $place or not index($result, '.');
$result .= $digit == -$radix ? todigitstring($digit-1, -$radix) . '0' : (todigitstring($digit, -$radix) or '0');
$place--;
}
$result
}
 
sub base_c {
my($num, $radix, $precision) = @_;
die "Base $radix out of range" unless
(-6 <= $radix->Im or $radix->Im <= -2) or (2 <= $radix->Im or $radix->Im <= 6);
my ($re,$im);
defined $num->Im ? ($re, $im) = ($num->Re, $num->Im) : $re = $num;
my ($re_wh, $re_fr) = split /\./, base_i( $re, -1 * int($radix->Im**2), $precision);
my ($im_wh, $im_fr) = split /\./, base_i( ($im/($radix->Im)), -1 * int($radix->Im**2), $precision);
$_ //= '' for $re_fr, $im_fr;
 
my $whole = reverse zip scalar reverse($re_wh), scalar reverse($im_wh);
my $fraction = zip $im_fr, $re_fr;
$fraction eq 0 ? "$whole" : "$whole.$fraction"
}
 
sub parse_base {
my($str, $radix) = @_;
return -1 * parse_base( substr($str,1), $radix) if substr($str,0,1) eq '-';
my($whole, $frac) = split /\./, $str;
my $fraction = 0;
my $k = 0;
$fraction = sum map { (fromdigits($_, int $radix->Im**2) || 0) * $radix ** -($k++ +1) } split '', $frac
if $frac;
$k = 0;
$fraction + sum map { (fromdigits($_, int $radix->Im**2) || 0) * $radix ** $k++ } reverse split '', $whole;
}
 
for (
[ 0*i, 2*i], [1+0*i, 2*i], [5+0*i, 2*i], [ -13+0*i, 2*i],
[ 9*i, 2*i], [ -3*i, 2*i], [7.75-7.5*i, 2*i], [0.25+0*i, 2*i],
[5+5*i, 2*i], [5+5*i, 3*i], [5+5*i, 4*i], [5+5*i, 5*i], [5+5*i, 6*i],
[5+5*i, -2*i], [5+5*i, -3*i], [5+5*i, -4*i], [5+5*i, -5*i], [5+5*i, -6*i]
) {
my($v,$r) = @$_;
my $ibase = base_c($v, $r, -6);
my $rt = cplx parse_base($ibase, $r);
$rt->display_format('format' => '%.2f');
printf "base(%3s): %10s => %9s => %13s\n", $r, $v, $ibase, $rt;
}
 
say '';
say 'base( 6i): 31432.6219135802-2898.5266203704*i => ' .
base_c(31432.6219135802-2898.5266203704*i, 0+6*i, -3);</syntaxhighlight>
{{out}}
<pre>base( 2i): 0 => 0 => 0
base( 2i): 1 => 1 => 1.00
base( 2i): 5 => 10301 => 5.00-0.00i
base( 2i): -13 => 1030003 => -13.00+0.00i
base( 2i): 9i => 103010.2 => 0.00+9.00i
base( 2i): -3i => 1030.2 => -0.00-3.00i
base( 2i): 7.75-7.5i => 11210.31 => 7.75-7.50i
base( 2i): 0.25 => 1.03 => 0.25-0.00i
base( 2i): 5+5i => 10331.2 => 5.00+5.00i
base( 3i): 5+5i => 25.3 => 5.00+5.00i
base( 4i): 5+5i => 25.c => 5.00+5.00i
base( 5i): 5+5i => 15 => 5.00+5.00i
base( 6i): 5+5i => 15.6 => 5.00+5.00i
base(-2i): 5+5i => 11321.2 => 5.00+5.00i
base(-3i): 5+5i => 1085.6 => 5.00+5.00i
base(-4i): 5+5i => 10f5.4 => 5.00+5.00i
base(-5i): 5+5i => 10o5 => 5.00+5.00i
base(-6i): 5+5i => 5.u => 5.00+5.00i
 
base( 6i): 31432.6219135802-2898.5266203704*i => perl5.4ever</pre>
 
=={{header|Phix}}==
{{trans|Sidef}}
<!--<syntaxhighlight lang="phix">(phixonline)-->
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #008080;">include</span> <span style="color: #004080;">complex</span><span style="color: #0000FF;">.</span><span style="color: #000000;">e</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">base2</span><span style="color: #0000FF;">(</span><span style="color: #004080;">atom</span> <span style="color: #000000;">num</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">integer</span> <span style="color: #000000;">radix</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">precision</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">-</span><span style="color: #000000;">8</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">radix</span><span style="color: #0000FF;"><-</span><span style="color: #000000;">36</span> <span style="color: #008080;">or</span> <span style="color: #000000;">radix</span><span style="color: #0000FF;">>-</span><span style="color: #000000;">2</span> <span style="color: #008080;">then</span> <span style="color: #008080;">throw</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"radix out of range (-2..-36)"</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #004080;">sequence</span> <span style="color: #000000;">result</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">num</span><span style="color: #0000FF;">=</span><span style="color: #000000;">0</span> <span style="color: #008080;">then</span>
<span style="color: #000000;">result</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{</span><span style="color: #008000;">"0"</span><span style="color: #0000FF;">,</span><span style="color: #008000;">""</span><span style="color: #0000FF;">}</span>
<span style="color: #008080;">else</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">place</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span>
<span style="color: #000000;">result</span> <span style="color: #0000FF;">=</span> <span style="color: #008000;">""</span>
<span style="color: #004080;">atom</span> <span style="color: #000000;">v</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">num</span>
<span style="color: #004080;">atom</span> <span style="color: #000000;">upper_bound</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">1</span><span style="color: #0000FF;">/(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">-</span><span style="color: #000000;">radix</span><span style="color: #0000FF;">),</span>
<span style="color: #000000;">lower_bound</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">radix</span><span style="color: #0000FF;">*</span><span style="color: #000000;">upper_bound</span>
<span style="color: #008080;">while</span> <span style="color: #008080;">not</span><span style="color: #0000FF;">(</span><span style="color: #000000;">lower_bound</span> <span style="color: #0000FF;"><=</span> <span style="color: #000000;">v</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">or</span> <span style="color: #008080;">not</span><span style="color: #0000FF;">(</span><span style="color: #000000;">v</span> <span style="color: #0000FF;"><</span> <span style="color: #000000;">upper_bound</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span>
<span style="color: #000000;">place</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">1</span>
<span style="color: #000000;">v</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">num</span><span style="color: #0000FF;">/</span><span style="color: #7060A8;">power</span><span style="color: #0000FF;">(</span><span style="color: #000000;">radix</span><span style="color: #0000FF;">,</span><span style="color: #000000;">place</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">while</span>
<span style="color: #008080;">while</span> <span style="color: #0000FF;">(</span><span style="color: #000000;">v</span> <span style="color: #008080;">or</span> <span style="color: #000000;">place</span> <span style="color: #0000FF;">></span> <span style="color: #000000;">0</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">and</span> <span style="color: #0000FF;">(</span><span style="color: #000000;">place</span> <span style="color: #0000FF;">></span> <span style="color: #000000;">precision</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">digit</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">floor</span><span style="color: #0000FF;">(</span><span style="color: #000000;">radix</span><span style="color: #0000FF;">*</span><span style="color: #000000;">v</span> <span style="color: #0000FF;">-</span> <span style="color: #000000;">lower_bound</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">v</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">(</span><span style="color: #000000;">radix</span><span style="color: #0000FF;">*</span><span style="color: #000000;">v</span> <span style="color: #0000FF;">-</span> <span style="color: #000000;">digit</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">place</span><span style="color: #0000FF;">=</span><span style="color: #000000;">0</span> <span style="color: #008080;">and</span> <span style="color: #008080;">not</span> <span style="color: #7060A8;">find</span><span style="color: #0000FF;">(</span><span style="color: #008000;">'.'</span><span style="color: #0000FF;">,</span><span style="color: #000000;">result</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">then</span> <span style="color: #000000;">result</span> <span style="color: #0000FF;">&=</span> <span style="color: #008000;">'.'</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #000000;">result</span> <span style="color: #0000FF;">&=</span> <span style="color: #000000;">digit</span><span style="color: #0000FF;">+</span><span style="color: #008080;">iff</span><span style="color: #0000FF;">(</span><span style="color: #000000;">digit</span><span style="color: #0000FF;">></span><span style="color: #000000;">9</span><span style="color: #0000FF;">?</span><span style="color: #008000;">'a'</span><span style="color: #0000FF;">-</span><span style="color: #000000;">10</span><span style="color: #0000FF;">:</span><span style="color: #008000;">'0'</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">place</span> <span style="color: #0000FF;">-=</span> <span style="color: #000000;">1</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">while</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">dot</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">find</span><span style="color: #0000FF;">(</span><span style="color: #008000;">'.'</span><span style="color: #0000FF;">,</span><span style="color: #000000;">result</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">dot</span> <span style="color: #008080;">then</span>
<span style="color: #000000;">result</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">trim_tail</span><span style="color: #0000FF;">(</span><span style="color: #000000;">result</span><span style="color: #0000FF;">,</span><span style="color: #008000;">'0'</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">result</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">result</span><span style="color: #0000FF;">[</span><span style="color: #000000;">1</span><span style="color: #0000FF;">..</span><span style="color: #000000;">dot</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">],</span><span style="color: #000000;">result</span><span style="color: #0000FF;">[</span><span style="color: #000000;">dot</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">..$]}</span>
<span style="color: #008080;">else</span>
<span style="color: #000000;">result</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">result</span><span style="color: #0000FF;">,</span><span style="color: #008000;">""</span><span style="color: #0000FF;">}</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">return</span> <span style="color: #000000;">result</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">zip</span><span style="color: #0000FF;">(</span><span style="color: #004080;">string</span> <span style="color: #000000;">a</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">string</span> <span style="color: #000000;">b</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">ld</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">a</span><span style="color: #0000FF;">)-</span><span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">b</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">ld</span><span style="color: #0000FF;">!=</span><span style="color: #000000;">0</span> <span style="color: #008080;">then</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">ld</span><span style="color: #0000FF;">></span><span style="color: #000000;">0</span> <span style="color: #008080;">then</span>
<span style="color: #000000;">b</span> <span style="color: #0000FF;">&=</span> <span style="color: #7060A8;">repeat</span><span style="color: #0000FF;">(</span><span style="color: #008000;">'0'</span><span style="color: #0000FF;">,</span><span style="color: #000000;">ld</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">else</span>
<span style="color: #000000;">a</span> <span style="color: #0000FF;">&=</span> <span style="color: #7060A8;">repeat</span><span style="color: #0000FF;">(</span><span style="color: #008000;">'0'</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">abs</span><span style="color: #0000FF;">(</span><span style="color: #000000;">ld</span><span style="color: #0000FF;">))</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #004080;">string</span> <span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #008000;">""</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">a</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span>
<span style="color: #000000;">res</span> <span style="color: #0000FF;">&=</span> <span style="color: #000000;">a</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]&</span><span style="color: #000000;">b</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">trim_tail</span><span style="color: #0000FF;">(</span><span style="color: #000000;">res</span><span style="color: #0000FF;">,</span><span style="color: #008000;">'0'</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">res</span><span style="color: #0000FF;">=</span><span style="color: #008000;">""</span> <span style="color: #008080;">then</span> <span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #008000;">"0"</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">return</span> <span style="color: #000000;">res</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">base</span><span style="color: #0000FF;">(</span><span style="color: #000000;">complexn</span> <span style="color: #000000;">num</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">integer</span> <span style="color: #000000;">radix</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">precision</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">-</span><span style="color: #000000;">8</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">absrad</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">abs</span><span style="color: #0000FF;">(</span><span style="color: #000000;">radix</span><span style="color: #0000FF;">),</span>
<span style="color: #000000;">radix2</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">-</span><span style="color: #7060A8;">power</span><span style="color: #0000FF;">(</span><span style="color: #000000;">radix</span><span style="color: #0000FF;">,</span><span style="color: #000000;">2</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">absrad</span><span style="color: #0000FF;"><</span><span style="color: #000000;">2</span> <span style="color: #008080;">or</span> <span style="color: #000000;">absrad</span><span style="color: #0000FF;">></span><span style="color: #000000;">6</span> <span style="color: #008080;">then</span> <span style="color: #008080;">throw</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"base radix out of range"</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #004080;">atom</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">re</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">im</span><span style="color: #0000FF;">}</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{</span><span style="color: #7060A8;">complex_real</span><span style="color: #0000FF;">(</span><span style="color: #000000;">num</span><span style="color: #0000FF;">),</span> <span style="color: #7060A8;">complex_imag</span><span style="color: #0000FF;">(</span><span style="color: #000000;">num</span><span style="color: #0000FF;">)}</span>
<span style="color: #004080;">string</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">re_wh</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">re_fr</span><span style="color: #0000FF;">}</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">base2</span><span style="color: #0000FF;">(</span><span style="color: #000000;">re</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">radix2</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">precision</span><span style="color: #0000FF;">),</span>
<span style="color: #0000FF;">{</span><span style="color: #000000;">im_wh</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">im_fr</span><span style="color: #0000FF;">}</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">base2</span><span style="color: #0000FF;">(</span><span style="color: #000000;">im</span><span style="color: #0000FF;">/</span><span style="color: #000000;">radix</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">radix2</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">precision</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">string</span> <span style="color: #000000;">whole</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">reverse</span><span style="color: #0000FF;">(</span><span style="color: #000000;">zip</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">reverse</span><span style="color: #0000FF;">(</span><span style="color: #000000;">re_wh</span><span style="color: #0000FF;">),</span> <span style="color: #7060A8;">reverse</span><span style="color: #0000FF;">(</span><span style="color: #000000;">im_wh</span><span style="color: #0000FF;">))),</span>
<span style="color: #000000;">fraction</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">zip</span><span style="color: #0000FF;">(</span><span style="color: #000000;">im_fr</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">re_fr</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">fraction</span><span style="color: #0000FF;">!=</span><span style="color: #008000;">"0"</span> <span style="color: #008080;">then</span> <span style="color: #000000;">whole</span> <span style="color: #0000FF;">&=</span> <span style="color: #008000;">'.'</span><span style="color: #0000FF;">&</span><span style="color: #000000;">fraction</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">return</span> <span style="color: #000000;">whole</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">parse_base</span><span style="color: #0000FF;">(</span><span style="color: #004080;">string</span> <span style="color: #000000;">str</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">integer</span> <span style="color: #000000;">radix</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">complexn</span> <span style="color: #000000;">fraction</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">dot</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">find</span><span style="color: #0000FF;">(</span><span style="color: #008000;">'.'</span><span style="color: #0000FF;">,</span><span style="color: #000000;">str</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">dot</span> <span style="color: #008080;">then</span>
<span style="color: #004080;">string</span> <span style="color: #000000;">fr</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">str</span><span style="color: #0000FF;">[</span><span style="color: #000000;">dot</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">..$]</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">fr</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">c</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">fr</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]</span>
<span style="color: #000000;">c</span> <span style="color: #0000FF;">-=</span> <span style="color: #008080;">iff</span><span style="color: #0000FF;">(</span><span style="color: #000000;">c</span><span style="color: #0000FF;">>=</span><span style="color: #008000;">'a'</span><span style="color: #0000FF;">?</span><span style="color: #008000;">'a'</span><span style="color: #0000FF;">-</span><span style="color: #000000;">10</span><span style="color: #0000FF;">:</span><span style="color: #008000;">'0'</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">fraction</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">complex_add</span><span style="color: #0000FF;">(</span><span style="color: #000000;">fraction</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">complex_mul</span><span style="color: #0000FF;">(</span><span style="color: #000000;">c</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">complex_power</span><span style="color: #0000FF;">({</span><span style="color: #000000;">0</span><span style="color: #0000FF;">,</span><span style="color: #000000;">radix</span><span style="color: #0000FF;">},-</span><span style="color: #000000;">i</span><span style="color: #0000FF;">)))</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #000000;">str</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">str</span><span style="color: #0000FF;">[</span><span style="color: #000000;">1</span><span style="color: #0000FF;">..</span><span style="color: #000000;">dot</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">]</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #000000;">str</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">reverse</span><span style="color: #0000FF;">(</span><span style="color: #000000;">str</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">str</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">c</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">str</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]</span>
<span style="color: #000000;">c</span> <span style="color: #0000FF;">-=</span> <span style="color: #008080;">iff</span><span style="color: #0000FF;">(</span><span style="color: #000000;">c</span><span style="color: #0000FF;">>=</span><span style="color: #008000;">'a'</span><span style="color: #0000FF;">?</span><span style="color: #008000;">'a'</span><span style="color: #0000FF;">-</span><span style="color: #000000;">10</span><span style="color: #0000FF;">:</span><span style="color: #008000;">'0'</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">fraction</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">complex_add</span><span style="color: #0000FF;">(</span><span style="color: #000000;">fraction</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">complex_mul</span><span style="color: #0000FF;">(</span><span style="color: #000000;">c</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">complex_power</span><span style="color: #0000FF;">({</span><span style="color: #000000;">0</span><span style="color: #0000FF;">,</span><span style="color: #000000;">radix</span><span style="color: #0000FF;">},(</span><span style="color: #000000;">i</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">))))</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #008080;">return</span> <span style="color: #000000;">fraction</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #008080;">constant</span> <span style="color: #000000;">tests</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{{</span><span style="color: #000000;">0</span><span style="color: #0000FF;">,</span><span style="color: #000000;">2</span><span style="color: #0000FF;">},{</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">2</span><span style="color: #0000FF;">},{</span><span style="color: #000000;">5</span><span style="color: #0000FF;">,</span><span style="color: #000000;">2</span><span style="color: #0000FF;">},{-</span><span style="color: #000000;">13</span><span style="color: #0000FF;">,</span><span style="color: #000000;">2</span><span style="color: #0000FF;">},{{</span><span style="color: #000000;">0</span><span style="color: #0000FF;">,</span><span style="color: #000000;">9</span><span style="color: #0000FF;">},</span><span style="color: #000000;">2</span><span style="color: #0000FF;">},{{</span><span style="color: #000000;">0</span><span style="color: #0000FF;">,-</span><span style="color: #000000;">3</span><span style="color: #0000FF;">},</span><span style="color: #000000;">2</span><span style="color: #0000FF;">},{{</span><span style="color: #000000;">7.75</span><span style="color: #0000FF;">,-</span><span style="color: #000000;">7.5</span><span style="color: #0000FF;">},</span> <span style="color: #000000;">2</span><span style="color: #0000FF;">},{.</span><span style="color: #000000;">25</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">2</span><span style="color: #0000FF;">},</span> <span style="color: #000080;font-style:italic;">-- base 2i tests</span>
<span style="color: #0000FF;">{{</span><span style="color: #000000;">5</span><span style="color: #0000FF;">,</span><span style="color: #000000;">5</span><span style="color: #0000FF;">},</span> <span style="color: #000000;">2</span><span style="color: #0000FF;">},{{</span><span style="color: #000000;">5</span><span style="color: #0000FF;">,</span><span style="color: #000000;">5</span><span style="color: #0000FF;">},</span> <span style="color: #000000;">3</span><span style="color: #0000FF;">},{{</span><span style="color: #000000;">5</span><span style="color: #0000FF;">,</span><span style="color: #000000;">5</span><span style="color: #0000FF;">},</span> <span style="color: #000000;">4</span><span style="color: #0000FF;">},{{</span><span style="color: #000000;">5</span><span style="color: #0000FF;">,</span><span style="color: #000000;">5</span><span style="color: #0000FF;">},</span> <span style="color: #000000;">5</span><span style="color: #0000FF;">},{{</span><span style="color: #000000;">5</span><span style="color: #0000FF;">,</span><span style="color: #000000;">5</span><span style="color: #0000FF;">},</span> <span style="color: #000000;">6</span><span style="color: #0000FF;">},</span> <span style="color: #000080;font-style:italic;">-- same value, positive imaginary bases</span>
<span style="color: #0000FF;">{{</span><span style="color: #000000;">5</span><span style="color: #0000FF;">,</span><span style="color: #000000;">5</span><span style="color: #0000FF;">},-</span><span style="color: #000000;">2</span><span style="color: #0000FF;">},{{</span><span style="color: #000000;">5</span><span style="color: #0000FF;">,</span><span style="color: #000000;">5</span><span style="color: #0000FF;">},-</span><span style="color: #000000;">3</span><span style="color: #0000FF;">},{{</span><span style="color: #000000;">5</span><span style="color: #0000FF;">,</span><span style="color: #000000;">5</span><span style="color: #0000FF;">},-</span><span style="color: #000000;">4</span><span style="color: #0000FF;">},{{</span><span style="color: #000000;">5</span><span style="color: #0000FF;">,</span><span style="color: #000000;">5</span><span style="color: #0000FF;">},-</span><span style="color: #000000;">5</span><span style="color: #0000FF;">},{{</span><span style="color: #000000;">5</span><span style="color: #0000FF;">,</span><span style="color: #000000;">5</span><span style="color: #0000FF;">},-</span><span style="color: #000000;">6</span><span style="color: #0000FF;">},</span> <span style="color: #000080;font-style:italic;">-- same value, negative imaginary bases</span>
<span style="color: #0000FF;">{{</span><span style="color: #000000;">227.65625</span><span style="color: #0000FF;">,</span><span style="color: #000000;">10.859375</span><span style="color: #0000FF;">},</span><span style="color: #000000;">4</span><span style="color: #0000FF;">},</span> <span style="color: #000080;font-style:italic;">-- larger test value</span>
<span style="color: #0000FF;">{{-</span><span style="color: #000000;">579.8225308641975744</span><span style="color: #0000FF;">,-</span><span style="color: #000000;">5296.406378600824</span><span style="color: #0000FF;">},</span><span style="color: #000000;">6</span><span style="color: #0000FF;">}}</span> <span style="color: #000080;font-style:italic;">-- phix.rules
-- matches output of Sidef and Raku:</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">t</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">tests</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span>
<span style="color: #0000FF;">{</span><span style="color: #000000;">complexn</span> <span style="color: #000000;">v</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">integer</span> <span style="color: #000000;">r</span><span style="color: #0000FF;">}</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">tests</span><span style="color: #0000FF;">[</span><span style="color: #000000;">t</span><span style="color: #0000FF;">]</span>
<span style="color: #004080;">string</span> <span style="color: #000000;">ibase</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">base</span><span style="color: #0000FF;">(</span><span style="color: #000000;">v</span><span style="color: #0000FF;">,</span><span style="color: #000000;">r</span><span style="color: #0000FF;">),</span>
<span style="color: #000000;">strv</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">complex_sprint</span><span style="color: #0000FF;">(</span><span style="color: #000000;">v</span><span style="color: #0000FF;">),</span>
<span style="color: #000000;">strb</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">complex_sprint</span><span style="color: #0000FF;">(</span><span style="color: #000000;">parse_base</span><span style="color: #0000FF;">(</span><span style="color: #000000;">ibase</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">r</span><span style="color: #0000FF;">))</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"base(%20s, %2di) = %-10s : parse_base(%12s, %2di) = %s\n"</span><span style="color: #0000FF;">,</span>
<span style="color: #0000FF;">{</span><span style="color: #000000;">strv</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">r</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">ibase</span><span style="color: #0000FF;">,</span> <span style="color: #008000;">'"'</span><span style="color: #0000FF;">&</span><span style="color: #000000;">ibase</span><span style="color: #0000FF;">&</span><span style="color: #008000;">'"'</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">r</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">strb</span><span style="color: #0000FF;">})</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #000080;font-style:italic;">-- matches output of Kotlin, Java, Go, D, and C#:</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">ri</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #000000;">2</span> <span style="color: #008080;">do</span> <span style="color: #000080;font-style:italic;">-- real then imag</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #000000;">16</span> <span style="color: #008080;">do</span>
<span style="color: #000000;">complexn</span> <span style="color: #000000;">c</span> <span style="color: #0000FF;">=</span> <span style="color: #008080;">iff</span><span style="color: #0000FF;">(</span><span style="color: #000000;">ri</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span><span style="color: #0000FF;">?</span><span style="color: #000000;">i</span><span style="color: #0000FF;">:{</span><span style="color: #000000;">0</span><span style="color: #0000FF;">,</span><span style="color: #000000;">i</span><span style="color: #0000FF;">}),</span>
<span style="color: #000000;">nc</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">complex_neg</span><span style="color: #0000FF;">(</span><span style="color: #000000;">c</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">string</span> <span style="color: #000000;">sc</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">complex_sprint</span><span style="color: #0000FF;">(</span><span style="color: #000000;">c</span><span style="color: #0000FF;">),</span>
<span style="color: #000000;">snc</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">complex_sprint</span><span style="color: #0000FF;">(</span><span style="color: #000000;">nc</span><span style="color: #0000FF;">),</span>
<span style="color: #000000;">ib</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">base</span><span style="color: #0000FF;">(</span><span style="color: #000000;">c</span><span style="color: #0000FF;">,</span><span style="color: #000000;">2</span><span style="color: #0000FF;">),</span>
<span style="color: #000000;">inb</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">base</span><span style="color: #0000FF;">(</span><span style="color: #000000;">nc</span><span style="color: #0000FF;">,</span><span style="color: #000000;">2</span><span style="color: #0000FF;">),</span>
<span style="color: #000000;">rc</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">complex_sprint</span><span style="color: #0000FF;">(</span><span style="color: #000000;">parse_base</span><span style="color: #0000FF;">(</span><span style="color: #000000;">ib</span><span style="color: #0000FF;">,</span><span style="color: #000000;">2</span><span style="color: #0000FF;">)),</span>
<span style="color: #000000;">rnc</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">complex_sprint</span><span style="color: #0000FF;">(</span><span style="color: #000000;">parse_base</span><span style="color: #0000FF;">(</span><span style="color: #000000;">inb</span><span style="color: #0000FF;">,</span><span style="color: #000000;">2</span><span style="color: #0000FF;">))</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"%4s -&gt; %8s -&gt; %4s %4s -&gt; %8s -&gt; %4s\n"</span><span style="color: #0000FF;">,</span>
<span style="color: #0000FF;">{</span><span style="color: #000000;">sc</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">ib</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">rc</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">snc</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">inb</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">rnc</span> <span style="color: #0000FF;">})</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #7060A8;">puts</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"\n"</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<!--</syntaxhighlight>-->
{{out}}
Matches the output of Sidef and Raku, except for the final line:
<pre>
base( -579.823-5296.41i, 6i) = phix.rules : parse_base("phix.rules", 6i) = -579.823-5296.41i
</pre>
Also matches the output of Kotlin, Java, Go, D, and C#, except the even entries in the second half, eg:
<pre>
2i -> 10 -> 2i -2i -> 1030 -> -2i
</pre>
instead of
<pre>
2i -> 10.0 -> 2i -2i -> 1030.0 -> -2i
</pre>
ie the unnecessary trailing ".0" are trimmed. (see talk page)
 
=={{header|Python}}==
{{trans|C++}}
<syntaxhighlight lang="python">import math
import re
 
def inv(c):
denom = c.real * c.real + c.imag * c.imag
return complex(c.real / denom, -c.imag / denom)
 
class QuaterImaginary:
twoI = complex(0, 2)
invTwoI = inv(twoI)
 
def __init__(self, str):
if not re.match("^[0123.]+$", str) or str.count('.') > 1:
raise Exception('Invalid base 2i number')
self.b2i = str
 
def toComplex(self):
pointPos = self.b2i.find('.')
posLen = len(self.b2i) if (pointPos < 0) else pointPos
sum = complex(0, 0)
prod = complex(1, 0)
for j in xrange(0, posLen):
k = int(self.b2i[posLen - 1 - j])
if k > 0:
sum += prod * k
prod *= QuaterImaginary.twoI
if pointPos != -1:
prod = QuaterImaginary.invTwoI
for j in xrange(posLen + 1, len(self.b2i)):
k = int(self.b2i[j])
if k > 0:
sum += prod * k
prod *= QuaterImaginary.invTwoI
return sum
 
def __str__(self):
return str(self.b2i)
 
def toQuaterImaginary(c):
if c.real == 0.0 and c.imag == 0.0:
return QuaterImaginary("0")
 
re = int(c.real)
im = int(c.imag)
fi = -1
ss = ""
while re != 0:
re, rem = divmod(re, -4)
if rem < 0:
rem += 4
re += 1
ss += str(rem) + '0'
if im != 0:
f = c.imag / 2
im = int(math.ceil(f))
f = -4 * (f - im)
index = 1
while im != 0:
im, rem = divmod(im, -4)
if rem < 0:
rem += 4
im += 1
if index < len(ss):
ss[index] = str(rem)
else:
ss += '0' + str(rem)
index = index + 2
fi = int(f)
ss = ss[::-1]
if fi != -1:
ss += '.' + str(fi)
ss = ss.lstrip('0')
if ss[0] == '.':
ss = '0' + ss
return QuaterImaginary(ss)
 
for i in xrange(1,17):
c1 = complex(i, 0)
qi = toQuaterImaginary(c1)
c2 = qi.toComplex()
print "{0:8} -> {1:>8} -> {2:8} ".format(c1, qi, c2),
 
c1 = -c1
qi = toQuaterImaginary(c1)
c2 = qi.toComplex()
print "{0:8} -> {1:>8} -> {2:8}".format(c1, qi, c2)
print
 
for i in xrange(1,17):
c1 = complex(0, i)
qi = toQuaterImaginary(c1)
c2 = qi.toComplex()
print "{0:8} -> {1:>8} -> {2:8} ".format(c1, qi, c2),
 
c1 = -c1
qi = toQuaterImaginary(c1)
c2 = qi.toComplex()
print "{0:8} -> {1:>8} -> {2:8}".format(c1, qi, c2)
 
print "done"
</syntaxhighlight>
{{out}}
<pre> (1+0j) -> 1 -> (1+0j) (-1-0j) -> 103 -> (-1+0j)
(2+0j) -> 2 -> (2+0j) (-2-0j) -> 102 -> (-2+0j)
(3+0j) -> 3 -> (3+0j) (-3-0j) -> 101 -> (-3+0j)
(4+0j) -> 10300 -> (4+0j) (-4-0j) -> 100 -> (-4+0j)
(5+0j) -> 10301 -> (5+0j) (-5-0j) -> 203 -> (-5+0j)
(6+0j) -> 10302 -> (6+0j) (-6-0j) -> 202 -> (-6+0j)
(7+0j) -> 10303 -> (7+0j) (-7-0j) -> 201 -> (-7+0j)
(8+0j) -> 10200 -> (8+0j) (-8-0j) -> 200 -> (-8+0j)
(9+0j) -> 10201 -> (9+0j) (-9-0j) -> 303 -> (-9+0j)
(10+0j) -> 10202 -> (10+0j) (-10-0j) -> 302 -> (-10+0j)
(11+0j) -> 10203 -> (11+0j) (-11-0j) -> 301 -> (-11+0j)
(12+0j) -> 10100 -> (12+0j) (-12-0j) -> 300 -> (-12+0j)
(13+0j) -> 10101 -> (13+0j) (-13-0j) -> 1030003 -> (-13+0j)
(14+0j) -> 10102 -> (14+0j) (-14-0j) -> 1030002 -> (-14+0j)
(15+0j) -> 10103 -> (15+0j) (-15-0j) -> 1030001 -> (-15+0j)
(16+0j) -> 10000 -> (16+0j) (-16-0j) -> 1030000 -> (-16+0j)
 
1j -> 10.2 -> 1j (-0-1j) -> 0.2 -> -1j
2j -> 10.0 -> 2j (-0-2j) -> 1030.0 -> -2j
3j -> 20.2 -> 3j (-0-3j) -> 1030.2 -> -3j
4j -> 20.0 -> 4j (-0-4j) -> 1020.0 -> -4j
5j -> 30.2 -> 5j (-0-5j) -> 1020.2 -> -5j
6j -> 30.0 -> 6j (-0-6j) -> 1010.0 -> -6j
7j -> 103000.2 -> 7j (-0-7j) -> 1010.2 -> -7j
8j -> 103000.0 -> 8j (-0-8j) -> 1000.0 -> -8j
9j -> 103010.2 -> 9j (-0-9j) -> 1000.2 -> -9j
10j -> 103010.0 -> 10j (-0-10j) -> 2030.0 -> -10j
11j -> 103020.2 -> 11j (-0-11j) -> 2030.2 -> -11j
12j -> 103020.0 -> 12j (-0-12j) -> 2020.0 -> -12j
13j -> 103030.2 -> 13j (-0-13j) -> 2020.2 -> -13j
14j -> 103030.0 -> 14j (-0-14j) -> 2010.0 -> -14j
15j -> 102000.2 -> 15j (-0-15j) -> 2010.2 -> -15j
16j -> 102000.0 -> 16j (-0-16j) -> 2000.0 -> -16j
done</pre>
 
=={{header|Raku}}==
(formerly Perl 6)
=== Explicit ===
{{works with|Rakudo|2017.01}}
These are generalized imaginary-base conversion routines. They only work for imaginary bases, not complex. (Any real portion of the radix must be zero.) Theoretically they could be made to work for any imaginary base; in practice, they are limited to integer bases from -6i to -2i and 2i to 6i. Bases -1i and 1i exist but require special handling and are not supported. Bases larger than 6i (or -6i) require digits outside of base 36 to express them, so aren't as standardized, are implementation dependent and are not supported. Note that imaginary number coefficients are stored as floating point numbers in Perl 6Raku so some rounding error may creep in during calculations. The precision these conversion routines use is configurable; we are using 6 <strike>decimal</strike>, um... radicimal(?) places of precision here.
 
Implements minimum, extra kudos and stretch goals.
 
<syntaxhighlight lang="raku" perl6line>multi sub base ( Real $num, Int $radix where -37 < * < -1, :$precision = -15 ) {
return '0' unless $num;
my $value = $num;
Line 2,109 ⟶ 3,488:
printf "%33s.&base\(%2si\) = %-11s : %13s.&parse-base\(%2si\) = %s\n",
$v, $r.im, $ibase, "'$ibase'", $r.im, $ibase.&parse-base($r).round(1e-10).narrow;
}</langsyntaxhighlight>
{{out}}
<pre> 0.&base( 2i) = 0 : '0'.&parse-base( 2i) = 0
Line 2,132 ⟶ 3,511:
31433.3487654321-2902.4480452675i.&base( 6i) = PERL6.ROCKS : 'PERL6.ROCKS'.&parse-base( 6i) = 31433.3487654321-2902.4480452675i</pre>
 
=={{header|Phix}}= Module ===
{{works with|Rakudo|2020.02}}
{{trans|Sidef}}
<lang Phix>include complex.e
 
Using the module [https://modules.raku.org/search/?q=Base%3A%3AAny Base::Any] from the Raku ecosystem.
function base2(atom num, integer radix, precision = -8)
if radix<-36 or radix>-2 then throw("radix out of range (-2..-36)") end if
sequence result
if num=0 then
result = {"0",""}
else
integer place = 0
result = ""
atom v = num
atom upper_bound = 1/(1-radix),
lower_bound = radix*upper_bound
while not(lower_bound <= v) or not(v < upper_bound) do
place += 1
v = num/power(radix,place)
end while
while (v or place > 0) and (place > precision) do
integer digit = floor(radix*v - lower_bound)
v = (radix*v - digit)
if place=0 and not find('.',result) then result &= '.' end if
result &= digit+iff(digit>9?'a'-10:'0')
place -= 1
end while
integer dot = find('.',result)
if dot then
result = trim_tail(result,'0')
result = {result[1..dot-1],result[dot+1..$]}
else
result = {result,""}
end if
end if
return result
end function
 
Does everything the explicit version does but also handles a '''much''' larger range of imaginary bases.
function zip(string a, string b)
integer ld = length(a)-length(b)
if ld!=0 then
if ld>0 then
b &= repeat('0',ld)
else
a &= repeat('0',abs(ld))
end if
end if
string res = ""
for i=1 to length(a) do
res &= a[i]&b[i]
end for
res = trim_tail(res,'0')
if res="" then res = "0" end if
return res
end function
 
Doing pretty much the same tests as the explicit version.
function base(complexn num, integer radix, precision = -8)
integer absrad = abs(radix),
radix2 = -power(radix,2)
if absrad<2 or absrad>6 then throw("base radix out of range") end if
atom {re, im} = {complex_real(num), complex_imag(num)}
string {re_wh, re_fr} = base2(re, radix2, precision),
{im_wh, im_fr} = base2(im/radix, radix2, precision)
string whole = reverse(zip(reverse(re_wh), reverse(im_wh))),
fraction = zip(im_fr, re_fr)
if fraction!="0" then whole &= '.'&fraction end if
return whole
end function
function parse_base(string str, integer radix)
 
<syntaxhighlight lang="raku" line>use Base::Any;
complexn fraction = 0
 
# TESTING
integer dot = find('.',str)
for 0, 2i, 1, 2i, 5, 2i, -13, 2i, 9i, 2i, -3i, 2i, 7.75-7.5i, 2i, .25, 2i, # base 2i tests
if dot then
5+5i, 2i, 5+5i, 3i, 5+5i, 4i, 5+5i, 5i, 5+5i, 6i, # same value, positive imaginary bases
string fr = str[dot+1..$]
5+5i, -2i, 5+5i, -3i, 5+5i, -4i, 5+5i, -5i, 5+5i, -6i, # same value, negative imaginary bases
for i=1 to length(fr) do
227.65625+10.859375i, 4i, # larger test value
integer c = fr[i]
31433.3487654321-2902.4480452675i, 6i, # heh
c -= iff(c>='a'?'a'-10:'0')
-3544.29+26541.468i, -10i
fraction = complex_add(fraction,complex_mul(c,complex_power({0,radix},-i)))
-> $v, $r end for{
my $ibase = $v.&to-base($r, :precision(-6));
str = str[1..dot-1]
printf "%33s.&to-base\(%3si\) = %-11s : %13s.&from-base\(%3si\) = %s\n",
end if
$v, $r.im, $ibase, "'$ibase'", $r.im, $ibase.&from-base($r).round(1e-10).narrow;
}</syntaxhighlight>
{{out}}
<pre> 0.&to-base( 2i) = 0 : '0'.&from-base( 2i) = 0
1.&to-base( 2i) = 1 : '1'.&from-base( 2i) = 1
5.&to-base( 2i) = 10301 : '10301'.&from-base( 2i) = 5
-13.&to-base( 2i) = 1030003 : '1030003'.&from-base( 2i) = -13
0+9i.&to-base( 2i) = 103010.2 : '103010.2'.&from-base( 2i) = 0+9i
-0-3i.&to-base( 2i) = 1030.2 : '1030.2'.&from-base( 2i) = 0-3i
7.75-7.5i.&to-base( 2i) = 11210.31 : '11210.31'.&from-base( 2i) = 7.75-7.5i
0.25.&to-base( 2i) = 1.03 : '1.03'.&from-base( 2i) = 0.25
5+5i.&to-base( 2i) = 10331.2 : '10331.2'.&from-base( 2i) = 5+5i
5+5i.&to-base( 3i) = 25.3 : '25.3'.&from-base( 3i) = 5+5i
5+5i.&to-base( 4i) = 25.C : '25.C'.&from-base( 4i) = 5+5i
5+5i.&to-base( 5i) = 15 : '15'.&from-base( 5i) = 5+5i
5+5i.&to-base( 6i) = 15.6 : '15.6'.&from-base( 6i) = 5+5i
5+5i.&to-base( -2i) = 11321.2 : '11321.2'.&from-base( -2i) = 5+5i
5+5i.&to-base( -3i) = 1085.6 : '1085.6'.&from-base( -3i) = 5+5i
5+5i.&to-base( -4i) = 10F5.4 : '10F5.4'.&from-base( -4i) = 5+5i
5+5i.&to-base( -5i) = 10O5 : '10O5'.&from-base( -5i) = 5+5i
5+5i.&to-base( -6i) = 5.U : '5.U'.&from-base( -6i) = 5+5i
227.65625+10.859375i.&to-base( 4i) = 10234.5678 : '10234.5678'.&from-base( 4i) = 227.65625+10.859375i
31433.3487654321-2902.4480452675i.&to-base( 6i) = PERL6.ROCKS : 'PERL6.ROCKS'.&from-base( 6i) = 31433.3487654321-2902.4480452675i
-3544.29+26541.468i.&to-base(-10i) = Raku.FTW : 'Raku.FTW'.&from-base(-10i) = -3544.29+26541.468i</pre>
=={{header|Ruby}}==
{{works with|Ruby|2.3}}
'''The Functions'''
<syntaxhighlight lang="ruby"># Convert a quarter-imaginary base value (as a string) into a base 10 Gaussian integer.
 
def base2i_decode(qi)
str = reverse(str)
return 0 if qi == '0'
for i=1 to length(str) do
md = qi.match(/^(?<int>[0-3]+)(?:\.(?<frc>[0-3]+))?$/)
integer c = str[i]
raise 'ill-formed quarter-imaginary base value' if !md
c -= iff(c>='a'?'a'-10:'0')
ls_pow = md[:frc] ? -(md[:frc].length) : 0
fraction = complex_add(fraction,complex_mul(c,complex_power({0,radix},(i-1))))
value = end for0
(md[:int] + (md[:frc] ? md[:frc] : '')).reverse.each_char.with_index do |dig, inx|
value += dig.to_i * (2i)**(inx + ls_pow)
end
return value
end
 
# Convert a base 10 Gaussian integer into a quarter-imaginary base value (as a string).
return fraction
end function
constant tests = {{0,2},{1,2},{5,2},{-13,2},{{0,9},2},{{0,-3},2},{{7.75,-7.5}, 2},{.25, 2}, -- base 2i tests
{{5,5}, 2},{{5,5}, 3},{{5,5}, 4},{{5,5}, 5},{{5,5}, 6}, -- same value, positive imaginary bases
{{5,5},-2},{{5,5},-3},{{5,5},-4},{{5,5},-5},{{5,5},-6}, -- same value, negative imaginary bases
{{227.65625,10.859375},4}, -- larger test value
{{-579.8225308641975744,-5296.406378600824},6}} -- phix.rules
 
def base2i_encode(gi)
-- matches output of Sidef and Perl6:
odd = gi.imag.to_i.odd?
for t=1 to length(tests) do
frac = (gi.imag.to_i != 0)
{complexn v, integer r} = tests[t]
real = gi.real.to_i
string ibase = base(v,r),
imag = (gi.imag.to_i + 1) / 2
strv = complex_sprint(v),
value = ''
strb = complex_sprint(parse_base(ibase, r))
phase_real = true
printf(1,"base(%20s, %2di) = %-10s : parse_base(%12s, %2di) = %s\n",
while (real != 0) || (imag != 0)
{strv, r, ibase, '"'&ibase&'"', r, strb})
if phase_real
end for
real, rem = real.divmod(4)
real = -real
else
imag, rem = imag.divmod(4)
imag = -imag
end
value.prepend(rem.to_s)
phase_real = !phase_real
end
value = '0' if value == ''
value.concat(odd ? '.2' : '.0') if frac
return value
end</syntaxhighlight>
'''The Task'''
<syntaxhighlight lang="ruby"># Extend class Integer with a string conveter.
 
class Integer
-- matches output of Kotlin, Java, Go, D, and C#:
def as_str()
for ri=1 to 2 do -- real then imag
forreturn i=1 to 16 doto_s()
end
complexn c = iff(ri=1?i:{0,i}),
end
nc = complex_neg(c)
 
string sc = complex_sprint(c),
# Extend class Complex with a string conveter (works only with Gaussian integers).
snc = complex_sprint(nc),
 
ib = base(c,2),
class Complex
inb = base(nc,2),
def as_str()
rc = complex_sprint(parse_base(ib,2)),
return '0' if self == 0
rnc = complex_sprint(parse_base(inb,2))
return real.to_i.to_s if imag == 0
printf(1,"%4s -> %8s -> %4s %4s -> %8s -> %4s\n",
return imag.to_i.to_s + 'i' if real == 0
{sc, ib, rc, snc, inb, rnc })
return real.to_i.to_s + '+' + imag.to_i.to_s + 'i' if imag >= 0
end for
return real.to_i.to_s + '-' + (-(imag.to_i)).to_s + 'i'
puts(1,"\n")
end
end for</lang>
end
 
# Emit various tables of conversions.
 
1.step(16) do |gi|
puts(" %4s -> %8s -> %4s %4s -> %8s -> %4s" %
[gi.as_str, base2i_encode(gi), base2i_decode(base2i_encode(gi)).as_str,
(-gi).as_str, base2i_encode(-gi), base2i_decode(base2i_encode(-gi)).as_str])
end
puts
1.step(16) do |gi|
gi *= 0+1i
puts(" %4s -> %8s -> %4s %4s -> %8s -> %4s" %
[gi.as_str, base2i_encode(gi), base2i_decode(base2i_encode(gi)).as_str,
(-gi).as_str, base2i_encode(-gi), base2i_decode(base2i_encode(-gi)).as_str])
end
puts
0.step(3) do |m|
0.step(3) do |l|
0.step(3) do |h|
qi = (100 * h + 10 * m + l).to_s
gi = base2i_decode(qi)
md = base2i_encode(gi).match(/^(?<num>[0-3]+)(?:\.0)?$/)
print(" %4s -> %6s -> %4s" % [qi, gi.as_str, md[:num]])
end
puts
end
end</syntaxhighlight>
{{out}}
Conversions given in the task.
Matches the output of Sidef and Perl6, except for the final line:
<pre> 1 -> 1 -> 1 -1 -> 103 -> -1
<pre>
2 -> 2 -> 2 -2 -> 102 -> -2
base( -579.823-5296.41i, 6i) = phix.rules : parse_base("phix.rules", 6i) = -579.823-5296.41i
3 -> 3 -> 3 -3 -> 101 -> -3
</pre>
4 -> 10300 -> 4 -4 -> 100 -> -4
Also matches the output of Kotlin, Java, Go, D, and C#, except the even entries in the second half, eg:
5 -> 10301 -> 5 -5 -> 203 -> -5
<pre>
2i 6 -> 1010302 -> 2i 6 -2i6 -> 1030 202 -> -2i6
7 -> 10303 -> 7 -7 -> 201 -> -7
</pre>
8 -> 10200 -> 8 -8 -> 200 -> -8
instead of
9 -> 10201 -> 9 -9 -> 303 -> -9
<pre>
2i 10 -> 10.010202 -> 2i10 -2i10 -> 1030.0 302 -> -2i10
11 -> 10203 -> 11 -11 -> 301 -> -11
</pre>
12 -> 10100 -> 12 -12 -> 300 -> -12
ie the unnecessary trailing ".0" are trimmed. (see talk page)
13 -> 10101 -> 13 -13 -> 1030003 -> -13
14 -> 10102 -> 14 -14 -> 1030002 -> -14
15 -> 10103 -> 15 -15 -> 1030001 -> -15
16 -> 10000 -> 16 -16 -> 1030000 -> -16
 
1i -> 10.2 -> 1i -1i -> 0.2 -> -1i
2i -> 10.0 -> 2i -2i -> 1030.0 -> -2i
3i -> 20.2 -> 3i -3i -> 1030.2 -> -3i
4i -> 20.0 -> 4i -4i -> 1020.0 -> -4i
5i -> 30.2 -> 5i -5i -> 1020.2 -> -5i
6i -> 30.0 -> 6i -6i -> 1010.0 -> -6i
7i -> 103000.2 -> 7i -7i -> 1010.2 -> -7i
8i -> 103000.0 -> 8i -8i -> 1000.0 -> -8i
9i -> 103010.2 -> 9i -9i -> 1000.2 -> -9i
10i -> 103010.0 -> 10i -10i -> 2030.0 -> -10i
11i -> 103020.2 -> 11i -11i -> 2030.2 -> -11i
12i -> 103020.0 -> 12i -12i -> 2020.0 -> -12i
13i -> 103030.2 -> 13i -13i -> 2020.2 -> -13i
14i -> 103030.0 -> 14i -14i -> 2010.0 -> -14i
15i -> 102000.2 -> 15i -15i -> 2010.2 -> -15i
16i -> 102000.0 -> 16i -16i -> 2000.0 -> -16i</pre>
{{out}}
From the OEIS Wiki [http://oeis.org/wiki/Quater-imaginary_base].
<pre> 0 -> 0 -> 0 100 -> -4 -> 100 200 -> -8 -> 200 300 -> -12 -> 300
1 -> 1 -> 1 101 -> -3 -> 101 201 -> -7 -> 201 301 -> -11 -> 301
2 -> 2 -> 2 102 -> -2 -> 102 202 -> -6 -> 202 302 -> -10 -> 302
3 -> 3 -> 3 103 -> -1 -> 103 203 -> -5 -> 203 303 -> -9 -> 303
10 -> 2i -> 10 110 -> -4+2i -> 110 210 -> -8+2i -> 210 310 -> -12+2i -> 310
11 -> 1+2i -> 11 111 -> -3+2i -> 111 211 -> -7+2i -> 211 311 -> -11+2i -> 311
12 -> 2+2i -> 12 112 -> -2+2i -> 112 212 -> -6+2i -> 212 312 -> -10+2i -> 312
13 -> 3+2i -> 13 113 -> -1+2i -> 113 213 -> -5+2i -> 213 313 -> -9+2i -> 313
20 -> 4i -> 20 120 -> -4+4i -> 120 220 -> -8+4i -> 220 320 -> -12+4i -> 320
21 -> 1+4i -> 21 121 -> -3+4i -> 121 221 -> -7+4i -> 221 321 -> -11+4i -> 321
22 -> 2+4i -> 22 122 -> -2+4i -> 122 222 -> -6+4i -> 222 322 -> -10+4i -> 322
23 -> 3+4i -> 23 123 -> -1+4i -> 123 223 -> -5+4i -> 223 323 -> -9+4i -> 323
30 -> 6i -> 30 130 -> -4+6i -> 130 230 -> -8+6i -> 230 330 -> -12+6i -> 330
31 -> 1+6i -> 31 131 -> -3+6i -> 131 231 -> -7+6i -> 231 331 -> -11+6i -> 331
32 -> 2+6i -> 32 132 -> -2+6i -> 132 232 -> -6+6i -> 232 332 -> -10+6i -> 332
33 -> 3+6i -> 33 133 -> -1+6i -> 133 233 -> -5+6i -> 233 333 -> -9+6i -> 333</pre>
 
=={{header|Sidef}}==
{{trans|Perl 6Raku}}
<langsyntaxhighlight lang="ruby">func base (Number num, Number radix { _ ~~ (-36 .. -2) }, precision = -15) -> String {
num || return '0'
 
Line 2,348 ⟶ 3,770:
printf("base(%20s, %2si) = %-10s : parse_base(%12s, %2si) = %s\n",
v, r.im, ibase, "'#{ibase}'", r.im, parse_base(ibase, r).round(-8))
})</langsyntaxhighlight>
{{out}}
<pre>
Line 2,370 ⟶ 3,792:
base( 5+5i, -6i) = 5.u : parse_base( '5.u', -6i) = 5+5i
base(227.65625+10.859375i, 4i) = 10234.5678 : parse_base('10234.5678', 4i) = 227.65625+10.859375i
</pre>
 
=={{header|Visual Basic .NET}}==
{{trans|C#}}
<syntaxhighlight lang="vbnet">Imports System.Text
 
Module Module1
 
Class Complex : Implements IFormattable
Private ReadOnly real As Double
Private ReadOnly imag As Double
 
Public Sub New(r As Double, i As Double)
real = r
imag = i
End Sub
 
Public Sub New(r As Integer, i As Integer)
real = r
imag = i
End Sub
 
Public Function Inv() As Complex
Dim denom = real * real + imag * imag
Return New Complex(real / denom, -imag / denom)
End Function
 
Public Shared Operator -(self As Complex) As Complex
Return New Complex(-self.real, -self.imag)
End Operator
 
Public Shared Operator +(lhs As Complex, rhs As Complex) As Complex
Return New Complex(lhs.real + rhs.real, lhs.imag + rhs.imag)
End Operator
 
Public Shared Operator -(lhs As Complex, rhs As Complex) As Complex
Return New Complex(lhs.real - rhs.real, lhs.imag - rhs.imag)
End Operator
 
Public Shared Operator *(lhs As Complex, rhs As Complex) As Complex
Return New Complex(lhs.real * rhs.real - lhs.imag * rhs.imag, lhs.real * rhs.imag + lhs.imag * rhs.real)
End Operator
 
Public Shared Operator /(lhs As Complex, rhs As Complex) As Complex
Return lhs * rhs.Inv
End Operator
 
Public Shared Operator *(lhs As Complex, rhs As Double) As Complex
Return New Complex(lhs.real * rhs, lhs.imag * rhs)
End Operator
 
Public Function ToQuaterImaginary() As QuaterImaginary
If real = 0.0 AndAlso imag = 0.0 Then
Return New QuaterImaginary("0")
End If
Dim re = CType(real, Integer)
Dim im = CType(imag, Integer)
Dim fi = -1
Dim sb As New StringBuilder
While re <> 0
Dim rm = re Mod -4
re \= -4
If rm < 0 Then
rm += 4
re += 1
End If
sb.Append(rm)
sb.Append(0)
End While
If im <> 0 Then
Dim f = (New Complex(0.0, imag) / New Complex(0.0, 2.0)).real
im = Math.Ceiling(f)
f = -4.0 * (f - im)
Dim index = 1
While im <> 0
Dim rm = im Mod -4
im \= -4
If rm < 0 Then
rm += 4
im += 1
End If
If index < sb.Length Then
sb(index) = Chr(rm + 48)
Else
sb.Append(0)
sb.Append(rm)
End If
index += 2
End While
fi = f
End If
Dim reverse As New String(sb.ToString().Reverse().ToArray())
sb.Length = 0
sb.Append(reverse)
If fi <> -1 Then
sb.AppendFormat(".{0}", fi)
End If
Dim s = sb.ToString().TrimStart("0")
If s(0) = "." Then
s = "0" + s
End If
Return New QuaterImaginary(s)
End Function
 
Public Overloads Function ToString() As String
Dim r2 = If(real = -0.0, 0.0, real) 'get rid of negative zero
Dim i2 = If(imag = -0.0, 0.0, imag) 'ditto
If i2 = 0.0 Then
Return String.Format("{0}", r2)
End If
If r2 = 0.0 Then
Return String.Format("{0}i", i2)
End If
If i2 > 0.0 Then
Return String.Format("{0} + {1}i", r2, i2)
End If
Return String.Format("{0} - {1}i", r2, -i2)
End Function
 
Public Overloads Function ToString(format As String, formatProvider As IFormatProvider) As String Implements IFormattable.ToString
Return ToString()
End Function
End Class
 
Class QuaterImaginary
Private Shared ReadOnly twoI = New Complex(0.0, 2.0)
Private Shared ReadOnly invTwoI = twoI.Inv()
 
Private ReadOnly b2i As String
 
Public Sub New(b2i As String)
If b2i = "" OrElse Not b2i.All(Function(c) "0123.".IndexOf(c) > -1) OrElse b2i.Count(Function(c) c = ".") > 1 Then
Throw New Exception("Invalid Base 2i number")
End If
Me.b2i = b2i
End Sub
 
Public Function ToComplex() As Complex
Dim pointPos = b2i.IndexOf(".")
Dim posLen = If(pointPos <> -1, pointPos, b2i.Length)
Dim sum = New Complex(0.0, 0.0)
Dim prod = New Complex(1.0, 0.0)
For j = 0 To posLen - 1
Dim k = Asc(b2i(posLen - 1 - j)) - Asc("0")
If k > 0.0 Then
sum += prod * k
End If
prod *= twoI
Next
If pointPos <> -1 Then
prod = invTwoI
For j = posLen + 1 To b2i.Length - 1
Dim k = Asc(b2i(j)) - Asc("0")
If k > 0.0 Then
sum += prod * k
End If
prod *= invTwoI
Next
End If
Return sum
End Function
 
Public Overrides Function ToString() As String
Return b2i
End Function
End Class
 
Sub Main()
For i = 1 To 16
Dim c1 As New Complex(i, 0)
Dim qi = c1.ToQuaterImaginary()
Dim c2 = qi.ToComplex()
Console.Write("{0,4} -> {1,8} -> {2,4} ", c1, qi, c2)
c1 = -c1
qi = c1.ToQuaterImaginary()
c2 = qi.ToComplex()
Console.WriteLine("{0,4} -> {1,8} -> {2,4}", c1, qi, c2)
Next
Console.WriteLine()
For i = 1 To 16
Dim c1 As New Complex(0, i)
Dim qi = c1.ToQuaterImaginary()
Dim c2 = qi.ToComplex()
Console.Write("{0,4} -> {1,8} -> {2,4} ", c1, qi, c2)
c1 = -c1
qi = c1.ToQuaterImaginary()
c2 = qi.ToComplex()
Console.WriteLine("{0,4} -> {1,8} -> {2,4}", c1, qi, c2)
Next
End Sub
 
End Module</syntaxhighlight>
{{out}}
<pre> 1 -> 1 -> 1 -1 -> 103 -> -1
2 -> 2 -> 2 -2 -> 102 -> -2
3 -> 3 -> 3 -3 -> 101 -> -3
4 -> 10300 -> 4 -4 -> 100 -> -4
5 -> 10301 -> 5 -5 -> 203 -> -5
6 -> 10302 -> 6 -6 -> 202 -> -6
7 -> 10303 -> 7 -7 -> 201 -> -7
8 -> 10200 -> 8 -8 -> 200 -> -8
9 -> 10201 -> 9 -9 -> 303 -> -9
10 -> 10202 -> 10 -10 -> 302 -> -10
11 -> 10203 -> 11 -11 -> 301 -> -11
12 -> 10100 -> 12 -12 -> 300 -> -12
13 -> 10101 -> 13 -13 -> 1030003 -> -13
14 -> 10102 -> 14 -14 -> 1030002 -> -14
15 -> 10103 -> 15 -15 -> 1030001 -> -15
16 -> 10000 -> 16 -16 -> 1030000 -> -16
 
1i -> 10.2 -> 1i -1i -> 0.2 -> -1i
2i -> 10.0 -> 2i -2i -> 1030.0 -> -2i
3i -> 20.2 -> 3i -3i -> 1030.2 -> -3i
4i -> 20.0 -> 4i -4i -> 1020.0 -> -4i
5i -> 30.2 -> 5i -5i -> 1020.2 -> -5i
6i -> 30.0 -> 6i -6i -> 1010.0 -> -6i
7i -> 103000.2 -> 7i -7i -> 1010.2 -> -7i
8i -> 103000.0 -> 8i -8i -> 1000.0 -> -8i
9i -> 103010.2 -> 9i -9i -> 1000.2 -> -9i
10i -> 103010.0 -> 10i -10i -> 2030.0 -> -10i
11i -> 103020.2 -> 11i -11i -> 2030.2 -> -11i
12i -> 103020.0 -> 12i -12i -> 2020.0 -> -12i
13i -> 103030.2 -> 13i -13i -> 2020.2 -> -13i
14i -> 103030.0 -> 14i -14i -> 2010.0 -> -14i
15i -> 102000.2 -> 15i -15i -> 2010.2 -> -15i
16i -> 102000.0 -> 16i -16i -> 2000.0 -> -16i</pre>
 
=={{header|Wren}}==
{{trans|Go}}
{{libheader|Wren-complex}}
{{libheader|Wren-fmt}}
<syntaxhighlight lang="wren">import "./complex" for Complex
import "./fmt" for Fmt
 
class QuaterImaginary {
construct new(b2i) {
if (b2i.type != String || b2i == "" || !b2i.all { |d| "0123.".contains(d) } ||
b2i.count { |d| d == "." } > 1) Fiber.abort("Invalid Base 2i number.")
_b2i = b2i
}
 
// only works properly if 'c.real' and 'c.imag' are both integral
static fromComplex(c) {
if (c.real == 0 && c.imag == 0) return QuaterImaginary.new("0")
var re = c.real.truncate
var im = c.imag.truncate
var fi = -1
var sb = ""
while (re != 0) {
var rem = re % (-4)
re = (re/(-4)).truncate
if (rem < 0) {
rem = 4 + rem
re = re + 1
}
if (rem == -0) rem = 0 // get rid of minus zero
sb = sb + rem.toString + "0"
}
if (im != 0) {
var f = (Complex.new(0, c.imag) / Complex.imagTwo).real
im = f.ceil
f = -4 * (f - im)
var index = 1
while (im != 0) {
var rem = im % (-4)
im = (im/(-4)).truncate
if (rem < 0) {
rem = 4 + rem
im = im + 1
}
if (index < sb.count) {
var sbl = sb.toList
sbl[index] = String.fromByte(rem + 48)
sb = sbl.join()
} else {
if (rem == -0) rem = 0 // get rid of minus zero
sb = sb + "0" + rem.toString
}
index = index + 2
}
fi = f.truncate
}
if (sb.count > 0) sb = sb[-1..0]
if (fi != -1) {
if (fi == -0) fi = 0 // get rid of minus zero
sb = sb + ".%(fi)"
}
sb = sb.trimStart("0")
if (sb.startsWith(".")) sb = "0" + sb
return QuaterImaginary.new(sb)
}
 
toComplex {
var pointPos = _b2i.indexOf(".")
var posLen = (pointPos != -1) ? pointPos : _b2i.count
var sum = Complex.zero
var prod = Complex.one
for (j in 0...posLen) {
var k = _b2i.bytes[posLen-1-j] - 48
if (k > 0) sum = sum + prod * k
prod = prod * Complex.imagTwo
}
if (pointPos != -1) {
prod = Complex.imagTwo.inverse
var j = posLen + 1
while (j < _b2i.count) {
var k = _b2i.bytes[j] - 48
if (k > 0) sum = sum + prod * k
prod = prod / Complex.imagTwo
j = j + 1
}
}
return sum
}
 
toString { _b2i }
}
 
var imagOnly = Fn.new { |c| c.imag.toString + "i" }
 
var fmt = "$4s -> $8s -> $4s"
Complex.showAsReal = true
for (i in 1..16) {
var c1 = Complex.new(i, 0)
var qi = QuaterImaginary.fromComplex(c1)
var c2 = qi.toComplex
Fmt.write("%(fmt) ", c1, qi, c2)
c1 = -c1
qi = QuaterImaginary.fromComplex(c1)
c2 = qi.toComplex
Fmt.print(fmt, c1, qi, c2)
}
System.print()
for (i in 1..16) {
var c1 = Complex.new(0, i)
var qi = QuaterImaginary.fromComplex(c1)
var c2 = qi.toComplex
Fmt.write("%(fmt) ", imagOnly.call(c1), qi, imagOnly.call(c2))
c1 = -c1
qi = QuaterImaginary.fromComplex(c1)
c2 = qi.toComplex
Fmt.print(fmt, imagOnly.call(c1), qi, imagOnly.call(c2))
}</syntaxhighlight>
 
{{out}}
<pre>
1 -> 1 -> 1 -1 -> 103 -> -1
2 -> 2 -> 2 -2 -> 102 -> -2
3 -> 3 -> 3 -3 -> 101 -> -3
4 -> 10300 -> 4 -4 -> 100 -> -4
5 -> 10301 -> 5 -5 -> 203 -> -5
6 -> 10302 -> 6 -6 -> 202 -> -6
7 -> 10303 -> 7 -7 -> 201 -> -7
8 -> 10200 -> 8 -8 -> 200 -> -8
9 -> 10201 -> 9 -9 -> 303 -> -9
10 -> 10202 -> 10 -10 -> 302 -> -10
11 -> 10203 -> 11 -11 -> 301 -> -11
12 -> 10100 -> 12 -12 -> 300 -> -12
13 -> 10101 -> 13 -13 -> 1030003 -> -13
14 -> 10102 -> 14 -14 -> 1030002 -> -14
15 -> 10103 -> 15 -15 -> 1030001 -> -15
16 -> 10000 -> 16 -16 -> 1030000 -> -16
 
1i -> 10.2 -> 1i -1i -> 0.2 -> -1i
2i -> 10.0 -> 2i -2i -> 1030.0 -> -2i
3i -> 20.2 -> 3i -3i -> 1030.2 -> -3i
4i -> 20.0 -> 4i -4i -> 1020.0 -> -4i
5i -> 30.2 -> 5i -5i -> 1020.2 -> -5i
6i -> 30.0 -> 6i -6i -> 1010.0 -> -6i
7i -> 103000.2 -> 7i -7i -> 1010.2 -> -7i
8i -> 103000.0 -> 8i -8i -> 1000.0 -> -8i
9i -> 103010.2 -> 9i -9i -> 1000.2 -> -9i
10i -> 103010.0 -> 10i -10i -> 2030.0 -> -10i
11i -> 103020.2 -> 11i -11i -> 2030.2 -> -11i
12i -> 103020.0 -> 12i -12i -> 2020.0 -> -12i
13i -> 103030.2 -> 13i -13i -> 2020.2 -> -13i
14i -> 103030.0 -> 14i -14i -> 2010.0 -> -14i
15i -> 102000.2 -> 15i -15i -> 2010.2 -> -15i
16i -> 102000.0 -> 16i -16i -> 2000.0 -> -16i
</pre>
2,122

edits