Honaker primes: Difference between revisions

Content deleted Content added
Thundergnat (talk | contribs)
m better link text
Chkas (talk | contribs)
 
(74 intermediate revisions by 29 users not shown)
Line 1:
{{draft task}}
 
A Honaker prime is a prime whose digital sum is equal to the digital sum of its position in the sequence of primes.
Line 22:
 
 
 
=={{header|11l}}==
{{trans|Python}}
 
<syntaxhighlight lang="11l">
F primes_up_to_limit(Int limit)
[Int] r
I limit >= 2
r.append(2)
 
V isprime = [1B] * ((limit - 1) I/ 2)
V sieveend = Int(sqrt(limit))
L(i) 0 .< isprime.len
I isprime[i]
Int p = i * 2 + 3
r.append(p)
I i <= sieveend
L(j) ((p * p - 3) >> 1 .< isprime.len).step(p)
isprime[j] = 0B
R r
 
F digitsum(num)
‘ Digit sum of an integer (base 10) ’
R sum(String(num).map(c -> Int(c)))
 
F generate_honaker(limit = 5'000'000)
‘ Generate the sequence of Honaker primes with their sequence and primepi values ’
V honaker = enumerate(primes_up_to_limit(limit)).filter((i, p) -> digitsum(p) == digitsum(i + 1)).map((i, p) -> (i + 1, p))
R enumerate(honaker).map((hcount, pp) -> (hcount + 1, pp[0], pp[1]))
 
print(‘First 50 Honaker primes:’)
L(p) generate_honaker()
I p[0] < 51
print(f:‘{String(p):<16}’, end' I p[0] % 5 == 0 {"\n"} E ‘’)
E I p[0] == 10'000
print(f:"\nThe 10,000th Honaker prime is the {commatize(p[1])}th one, which is {commatize(p[2])}.")
L.break
</syntaxhighlight>
 
{{out}}
<pre>
First 50 Honaker primes:
(1, 32, 131) (2, 56, 263) (3, 88, 457) (4, 175, 1039) (5, 176, 1049)
(6, 182, 1091) (7, 212, 1301) (8, 218, 1361) (9, 227, 1433) (10, 248, 1571)
(11, 293, 1913) (12, 295, 1933) (13, 323, 2141) (14, 331, 2221) (15, 338, 2273)
(16, 362, 2441) (17, 377, 2591) (18, 386, 2663) (19, 394, 2707) (20, 397, 2719)
(21, 398, 2729) (22, 409, 2803) (23, 439, 3067) (24, 446, 3137) (25, 457, 3229)
(26, 481, 3433) (27, 499, 3559) (28, 508, 3631) (29, 563, 4091) (30, 571, 4153)
(31, 595, 4357) (32, 599, 4397) (33, 635, 4703) (34, 637, 4723) (35, 655, 4903)
(36, 671, 5009) (37, 728, 5507) (38, 751, 5701) (39, 752, 5711) (40, 755, 5741)
(41, 761, 5801) (42, 767, 5843) (43, 779, 5927) (44, 820, 6301) (45, 821, 6311)
(46, 826, 6343) (47, 827, 6353) (48, 847, 6553) (49, 848, 6563) (50, 857, 6653)
 
The 10,000th Honaker prime is the 286,069th one, which is 4,043,749.
</pre>
 
=={{header|ALGOL 68}}==
After experimenting on TIO.RUN, it seems that with ALGOL 68G, calculating the digit sums the "traditional" way is slightly faster than generating a table of digit sums. In the sample below, the digit sum is calculated by first converting the number to a string - this is faster in ALGOL 68G than using MOD and division. For other implementations of Algol 68, using MOD and division may be faster.
<syntaxhighlight lang="algol68">
BEGIN # find some Honaker primes: primes whose digit-sum equals the #
# digit-sum of the index of the prime in the list of primes #
# e.g.: prime 32 (dsum 5) = 131 (dsum 5) #
INT h count := 0; # number of Honaker primes found so far #
# sieve the primes up to 5 000 000, hopefully enough... #
[ 0 : 5 000 000 ]BOOL prime;
prime[ 0 ] := prime[ 1 ] := FALSE;
prime[ 2 ] := TRUE;
FOR i FROM 3 BY 2 TO UPB prime DO prime[ i ] := TRUE OD;
FOR i FROM 4 BY 2 TO UPB prime DO prime[ i ] := FALSE OD;
FOR i FROM 3 BY 2 TO ENTIER sqrt( UPB prime ) DO
IF prime[ i ] THEN
FOR s FROM i * i BY i + i TO UPB prime DO prime[ s ] := FALSE OD
FI
OD;
# returns the digit sum of n #
PROC dsum = ( INT n )INT:
BEGIN
INT sum := 0;
STRING s = whole( n, 0 );
FOR s pos FROM LWB s TO UPB s DO
sum +:= ABS s[ s pos ] - ABS "0"
OD;
sum
END # digit sum # ;
# attempt to find the Honaker primes #
INT p count := 0;
FOR n FROM LWB prime TO UPB prime DO
IF prime[ n ] THEN
# have the p count'th prime #
p count +:= 1;
IF dsum( n ) = dsum( p count ) THEN
# have a Honaker prime #
IF ( h count +:= 1 ) < 51 THEN
print( ( "(", whole( h count, -2 )
, ": ", whole( p count, -3 )
, " ", whole( n, -4 )
, ") "
)
);
IF h count MOD 5 = 0 THEN print( ( newline ) ) FI
ELIF h count = 10 000 THEN
print( ( newline
, "Honaker prime ", whole( h count, 0 )
, " is prime ", whole( p count, 0 )
, ": ", whole( n, 0 )
, newline
)
)
FI
FI
FI
OD
END
</syntaxhighlight>
{{out}}
<pre>
( 1: 32 131) ( 2: 56 263) ( 3: 88 457) ( 4: 175 1039) ( 5: 176 1049)
( 6: 182 1091) ( 7: 212 1301) ( 8: 218 1361) ( 9: 227 1433) (10: 248 1571)
(11: 293 1913) (12: 295 1933) (13: 323 2141) (14: 331 2221) (15: 338 2273)
(16: 362 2441) (17: 377 2591) (18: 386 2663) (19: 394 2707) (20: 397 2719)
(21: 398 2729) (22: 409 2803) (23: 439 3067) (24: 446 3137) (25: 457 3229)
(26: 481 3433) (27: 499 3559) (28: 508 3631) (29: 563 4091) (30: 571 4153)
(31: 595 4357) (32: 599 4397) (33: 635 4703) (34: 637 4723) (35: 655 4903)
(36: 671 5009) (37: 728 5507) (38: 751 5701) (39: 752 5711) (40: 755 5741)
(41: 761 5801) (42: 767 5843) (43: 779 5927) (44: 820 6301) (45: 821 6311)
(46: 826 6343) (47: 827 6353) (48: 847 6553) (49: 848 6563) (50: 857 6653)
 
Honaker prime 10000 is prime 286069: 4043749
</pre>
 
=={{header|Arturo}}==
 
<syntaxhighlight lang="arturo">honaker?: function [n, pos]->
equal? sum digits n sum digits pos
 
idx: 0
found: 0
 
honakers: []
 
loop 2..∞ 'n [
if prime? n [
idx: idx + 1
 
if honaker? n idx [
found: found + 1
'honakers ++ @[@[found, idx, n]]
]
]
if found = 50 -> break
]
 
loop split.every: 5 honakers 'x ->
print map x 's -> pad as.code s 14</syntaxhighlight>
 
{{out}}
 
<pre> [1 32 131] [2 56 263] [3 88 457] [4 175 1039] [5 176 1049]
[6 182 1091] [7 212 1301] [8 218 1361] [9 227 1433] [10 248 1571]
[11 293 1913] [12 295 1933] [13 323 2141] [14 331 2221] [15 338 2273]
[16 362 2441] [17 377 2591] [18 386 2663] [19 394 2707] [20 397 2719]
[21 398 2729] [22 409 2803] [23 439 3067] [24 446 3137] [25 457 3229]
[26 481 3433] [27 499 3559] [28 508 3631] [29 563 4091] [30 571 4153]
[31 595 4357] [32 599 4397] [33 635 4703] [34 637 4723] [35 655 4903]
[36 671 5009] [37 728 5507] [38 751 5701] [39 752 5711] [40 755 5741]
[41 761 5801] [42 767 5843] [43 779 5927] [44 820 6301] [45 821 6311]
[46 826 6343] [47 827 6353] [48 847 6553] [49 848 6563] [50 857 6653]</pre>
 
=={{header|C}}==
{{trans|Wren}}
<syntaxhighlight lang="c">#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <locale.h>
 
#define LIMIT 5000000
 
typedef struct {
int x;
int y;
} pair;
 
int *primeSieve(int limit, int *length) {
int i, p, *primes;
int j, pc = 0;
limit++;
// True denotes composite, false denotes prime.
bool *c = calloc(limit, sizeof(bool)); // all false by default
c[0] = true;
c[1] = true;
for (i = 4; i < limit; i += 2) c[i] = true;
p = 3; // Start from 3.
while (true) {
int p2 = p * p;
if (p2 >= limit) break;
for (i = p2; i < limit; i += 2 * p) c[i] = true;
while (true) {
p += 2;
if (!c[p]) break;
}
}
for (i = 0; i < limit; ++i) {
if (!c[i]) ++pc;
}
primes = (int *)malloc(pc * sizeof(int));
for (i = 0, j = 0; i < limit; ++i) {
if (!c[i]) primes[j++] = i;
}
free(c);
*length = pc;
return primes;
}
 
int digitSum(int n) {
int sum = 0;
while (n > 0) {
sum += n % 10;
n /= 10;
}
return sum;
}
 
int main() {
int i, count, length, hc = 0;
int *primes = (int *)primeSieve(LIMIT, &length);
pair h[50], h10000;
for (i = 1, count = 0; count < 10000; ++i) {
if (digitSum(i) == digitSum(primes[i-1])) {
++count;
if (count <= 50) {
h[hc++] = (pair){i, primes[i-1]};
} else if (count == 10000) {
h10000.x = i;
h10000.y = primes[i-1];
}
}
}
setlocale(LC_NUMERIC, "");
printf("The first 50 Honaker primes (index, prime):\n");
for (i = 0; i < 50; ++i) {
printf("(%3d, %'5d) ", h[i].x, h[i].y);
if (!((i+1)%5)) printf("\n");
}
printf("\nand the 10,000th: (%'7d, %'9d)\n", h10000.x, h10000.y);
free(primes);
return 0;
}</syntaxhighlight>
 
{{out}}
<pre>
The first 50 Honaker primes (index, prime):
( 32, 131) ( 56, 263) ( 88, 457) (175, 1,039) (176, 1,049)
(182, 1,091) (212, 1,301) (218, 1,361) (227, 1,433) (248, 1,571)
(293, 1,913) (295, 1,933) (323, 2,141) (331, 2,221) (338, 2,273)
(362, 2,441) (377, 2,591) (386, 2,663) (394, 2,707) (397, 2,719)
(398, 2,729) (409, 2,803) (439, 3,067) (446, 3,137) (457, 3,229)
(481, 3,433) (499, 3,559) (508, 3,631) (563, 4,091) (571, 4,153)
(595, 4,357) (599, 4,397) (635, 4,703) (637, 4,723) (655, 4,903)
(671, 5,009) (728, 5,507) (751, 5,701) (752, 5,711) (755, 5,741)
(761, 5,801) (767, 5,843) (779, 5,927) (820, 6,301) (821, 6,311)
(826, 6,343) (827, 6,353) (847, 6,553) (848, 6,563) (857, 6,653)
 
and the 10,000th: (286,069, 4,043,749)
</pre>
 
=={{header|C#}}==
{{trans|Java}}
<syntaxhighlight lang="C#">
using System;
using System.Collections.Generic;
using System.Linq;
 
public class HonakerPrimes
{
private static List<int> primes = new List<int>();
private static int honakerIndex = 0;
private static int primeIndex = 0;
 
public static void Main(string[] args)
{
SievePrimes(5_000_000);
 
Console.WriteLine("The first 50 Honaker primes (honaker index: prime index, prime):");
for (int i = 1; i <= 50; i++)
{
Console.Write($"{NextHonakerPrime()}{(i % 5 == 0 ? "\n" : " ")}");
}
for (int i = 51; i < 10_000; i++)
{
NextHonakerPrime();
}
Console.WriteLine();
Console.WriteLine($"The 10,000th Honaker prime is: {NextHonakerPrime()}");
}
 
private static HonakerPrime NextHonakerPrime()
{
honakerIndex++;
primeIndex++;
while (DigitalSum(primeIndex) != DigitalSum(primes[primeIndex - 1]))
{
primeIndex++;
}
return new HonakerPrime(honakerIndex, primeIndex, primes[primeIndex - 1]);
}
 
private static int DigitalSum(int number)
{
return number.ToString().Select(c => c - '0').Sum();
}
 
private static void SievePrimes(int limit)
{
primes.Add(2);
var halfLimit = (limit + 1) / 2;
bool[] composite = new bool[halfLimit];
for (int i = 1, p = 3; i < halfLimit; p += 2, i++)
{
if (!composite[i])
{
primes.Add(p);
for (int a = i + p; a < halfLimit; a += p)
{
composite[a] = true;
}
}
}
}
 
private class HonakerPrime
{
public int HonakerIndex { get; }
public int PrimeIndex { get; }
public int Prime { get; }
 
public HonakerPrime(int honakerIndex, int primeIndex, int prime)
{
HonakerIndex = honakerIndex;
PrimeIndex = primeIndex;
Prime = prime;
}
 
public override string ToString() => $"({HonakerIndex}: {PrimeIndex}, {Prime})";
}
}
</syntaxhighlight>
{{out}}
<pre>
The first 50 Honaker primes (honaker index: prime index, prime):
(1: 32, 131) (2: 56, 263) (3: 88, 457) (4: 175, 1039) (5: 176, 1049)
(6: 182, 1091) (7: 212, 1301) (8: 218, 1361) (9: 227, 1433) (10: 248, 1571)
(11: 293, 1913) (12: 295, 1933) (13: 323, 2141) (14: 331, 2221) (15: 338, 2273)
(16: 362, 2441) (17: 377, 2591) (18: 386, 2663) (19: 394, 2707) (20: 397, 2719)
(21: 398, 2729) (22: 409, 2803) (23: 439, 3067) (24: 446, 3137) (25: 457, 3229)
(26: 481, 3433) (27: 499, 3559) (28: 508, 3631) (29: 563, 4091) (30: 571, 4153)
(31: 595, 4357) (32: 599, 4397) (33: 635, 4703) (34: 637, 4723) (35: 655, 4903)
(36: 671, 5009) (37: 728, 5507) (38: 751, 5701) (39: 752, 5711) (40: 755, 5741)
(41: 761, 5801) (42: 767, 5843) (43: 779, 5927) (44: 820, 6301) (45: 821, 6311)
(46: 826, 6343) (47: 827, 6353) (48: 847, 6553) (49: 848, 6563) (50: 857, 6653)
 
The 10,000th Honaker prime is: (10000: 286069, 4043749)
 
</pre>
 
=={{header|C++}}==
{{libheader|Primesieve}}
<syntaxhighlight lang="cpp">#include <iomanip>
#include <iostream>
#include <sstream>
#include <utility>
 
#include <primesieve.hpp>
 
uint64_t digit_sum(uint64_t n) {
uint64_t sum = 0;
for (; n > 0; n /= 10)
sum += n % 10;
return sum;
}
 
class honaker_prime_generator {
public:
std::pair<uint64_t, uint64_t> next();
 
private:
primesieve::iterator pi_;
uint64_t index_ = 0;
};
 
std::pair<uint64_t, uint64_t> honaker_prime_generator::next() {
for (;;) {
uint64_t prime = pi_.next_prime();
++index_;
if (digit_sum(index_) == digit_sum(prime))
return std::make_pair(index_, prime);
}
}
 
std::ostream& operator<<(std::ostream& os,
const std::pair<uint64_t, uint64_t>& p) {
std::ostringstream str;
str << '(' << p.first << ", " << p.second << ')';
return os << str.str();
}
 
int main() {
honaker_prime_generator hpg;
std::cout << "First 50 Honaker primes (index, prime):\n";
int i = 1;
for (; i <= 50; ++i)
std::cout << std::setw(11) << hpg.next() << (i % 5 == 0 ? '\n' : ' ');
for (; i < 10000; ++i)
hpg.next();
std::cout << "\nTen thousandth: " << hpg.next() << '\n';
}</syntaxhighlight>
 
{{out}}
<pre>
First 50 Honaker primes (index, prime):
(32, 131) (56, 263) (88, 457) (175, 1039) (176, 1049)
(182, 1091) (212, 1301) (218, 1361) (227, 1433) (248, 1571)
(293, 1913) (295, 1933) (323, 2141) (331, 2221) (338, 2273)
(362, 2441) (377, 2591) (386, 2663) (394, 2707) (397, 2719)
(398, 2729) (409, 2803) (439, 3067) (446, 3137) (457, 3229)
(481, 3433) (499, 3559) (508, 3631) (563, 4091) (571, 4153)
(595, 4357) (599, 4397) (635, 4703) (637, 4723) (655, 4903)
(671, 5009) (728, 5507) (751, 5701) (752, 5711) (755, 5741)
(761, 5801) (767, 5843) (779, 5927) (820, 6301) (821, 6311)
(826, 6343) (827, 6353) (847, 6553) (848, 6563) (857, 6653)
 
Ten thousandth: (286069, 4043749)
</pre>
 
===Without external libraries===
<syntaxhighlight lang="c++">
#include <cstdint>
#include <iomanip>
#include <iostream>
#include <string>
#include <vector>
 
uint32_t honaker_index = 0;
uint32_t prime_index = 0;
std::vector<uint32_t> primes;
 
struct HonakerPrime {
uint32_t honaker_index, prime_index, prime;
 
std::string to_string() {
return "(" + std::to_string(honaker_index) + ": "
+ std::to_string(prime_index) + ", "
+ std::to_string(prime) + ")";
}
};
 
void sieve_primes(const uint32_t& limit) {
primes.emplace_back(2);
const uint32_t half_limit = ( limit + 1 ) / 2;
std::vector<bool> composite(half_limit);
for ( uint32_t i = 1, p = 3; i < half_limit; p += 2, ++i ) {
if ( ! composite[i] ) {
primes.emplace_back(p);
for ( uint32_t a = i + p; a < half_limit; a += p ) {
composite[a] = true;
}
}
}
}
 
uint32_t digital_sum(uint32_t number) {
uint32_t sum = 0;
while ( number > 0 ) {
sum += number % 10;
number /= 10;
}
return sum;
}
 
HonakerPrime nextHonakerPrime() {
honaker_index++;
prime_index++;
while ( digital_sum(prime_index) != digital_sum(primes[prime_index - 1]) ) {
prime_index++;
}
return HonakerPrime(honaker_index, prime_index, primes[prime_index - 1]);
}
 
int main() {
sieve_primes(5'000'000);
 
std::cout << "The first 50 Honaker primes (honaker index: prime index, prime):" << std::endl;
for ( uint32_t i = 1; i <= 50; ++i ) {
std::cout << std::setw(17) << nextHonakerPrime().to_string() << ( i % 5 == 0 ? "\n" : " " );
}
for ( uint32_t i = 51; i < 10'000; ++i ) {
nextHonakerPrime();
}
std::cout << "\n" << "The 10,000th Honaker prime is: " + nextHonakerPrime().to_string() << std::endl;
}
</syntaxhighlight>
{{ out }}
<pre>
The first 50 Honaker primes (honaker index: prime index, prime):
(1: 32, 131) (2: 56, 263) (3: 88, 457) (4: 175, 1039) (5: 176, 1049)
(6: 182, 1091) (7: 212, 1301) (8: 218, 1361) (9: 227, 1433) (10: 248, 1571)
(11: 293, 1913) (12: 295, 1933) (13: 323, 2141) (14: 331, 2221) (15: 338, 2273)
(16: 362, 2441) (17: 377, 2591) (18: 386, 2663) (19: 394, 2707) (20: 397, 2719)
(21: 398, 2729) (22: 409, 2803) (23: 439, 3067) (24: 446, 3137) (25: 457, 3229)
(26: 481, 3433) (27: 499, 3559) (28: 508, 3631) (29: 563, 4091) (30: 571, 4153)
(31: 595, 4357) (32: 599, 4397) (33: 635, 4703) (34: 637, 4723) (35: 655, 4903)
(36: 671, 5009) (37: 728, 5507) (38: 751, 5701) (39: 752, 5711) (40: 755, 5741)
(41: 761, 5801) (42: 767, 5843) (43: 779, 5927) (44: 820, 6301) (45: 821, 6311)
(46: 826, 6343) (47: 827, 6353) (48: 847, 6553) (49: 848, 6563) (50: 857, 6653)
 
The 10,000th Honaker prime is: (10000: 286069, 4043749)
</pre>
 
=={{header|Delphi}}==
{{works with|Delphi|6.0}}
{{libheader|Classes,SysUtils,StdCtrls}}
Modular version of the algorithm, breaks the problem down into simple pieces, which is a standard technique for solving problems. One of the advantages is that the modules can be used in different combination to solve different aspects of the problem. In this case, it is to find the first 50 and then 10,000th Honaker.
 
<syntaxhighlight lang="Delphi">
function IsPrime(N: integer): boolean;
{Optimised prime test - about 40% faster than the naive approach}
var I,Stop: integer;
begin
if (N = 2) or (N=3) then Result:=true
else if (n <= 1) or ((n mod 2) = 0) or ((n mod 3) = 0) then Result:= false
else
begin
I:=5;
Stop:=Trunc(sqrt(N));
Result:=False;
while I<=Stop do
begin
if ((N mod I) = 0) or ((N mod (i + 2)) = 0) then exit;
Inc(I,6);
end;
Result:=True;
end;
end;
 
 
 
function GetNextPrime(var Start: integer): integer;
{Get the next prime number after Start}
{Start is passed by "reference," so the
{original variable is incremented}
begin
repeat Inc(Start)
until IsPrime(Start);
Result:=Start;
end;
 
 
function SumDigits(N: integer): integer;
{Sum the integers in a number}
var T: integer;
begin
Result:=0;
repeat
begin
T:=N mod 10;
N:=N div 10;
Result:=Result+T;
end
until N<1;
end;
 
 
function IsHonaker(I,N: integer): boolean;
{A Honaker prime is one where the sums of digits}
{of the prime and its position are equal}
begin
Result:=SumDigits(I) = SumDigits(N);
end;
 
procedure ShowHonakerPrimes(Memo: TMemo);
{Test Honaker primes}
var I, N,Cnt: integer;
var S: string;
begin
N:=0; Cnt:=0; S:='';
{Test all numbers to see if they are prime}
for I:=1 to High(integer) do
begin
N:=GetNextPrime(N);
{Test the number if it Honaker}
if IsHonaker(I,N) then
begin
{Display if Honaker}
Inc(Cnt);
S:=S+Format('(%2d%5d%5d) ',[Cnt,I,N]);
if (Cnt mod 3)=0 then S:=S+#$0D#$0A;
if Cnt>=50 then break;
end;
end;
Memo.Lines.Add('First 50 Honaker Primes');
Memo.Lines.Add(S);
Memo.Lines.Add('');
 
{Find the 10,000th Honaker}
Memo.Lines.Add('The 10,000th Honaker Primes');
N:=0; Cnt:=0;
for I:=1 to High(integer) do
begin
N:=GetNextPrime(N);
if IsHonaker(I,N) then
begin
Inc(Cnt);
if Cnt=10000 then
begin
Memo.Lines.Add(Format('(%5d %5d %5d) ',[Cnt,I,N]));
break;
end;
end;
end;
end;
 
 
</syntaxhighlight>
{{out}}
<pre>
First 50 Honaker Primes
( 1 32 131) ( 2 56 263) ( 3 88 457)
( 4 175 1039) ( 5 176 1049) ( 6 182 1091)
( 7 212 1301) ( 8 218 1361) ( 9 227 1433)
(10 248 1571) (11 293 1913) (12 295 1933)
(13 323 2141) (14 331 2221) (15 338 2273)
(16 362 2441) (17 377 2591) (18 386 2663)
(19 394 2707) (20 397 2719) (21 398 2729)
(22 409 2803) (23 439 3067) (24 446 3137)
(25 457 3229) (26 481 3433) (27 499 3559)
(28 508 3631) (29 563 4091) (30 571 4153)
(31 595 4357) (32 599 4397) (33 635 4703)
(34 637 4723) (35 655 4903) (36 671 5009)
(37 728 5507) (38 751 5701) (39 752 5711)
(40 755 5741) (41 761 5801) (42 767 5843)
(43 779 5927) (44 820 6301) (45 821 6311)
(46 826 6343) (47 827 6353) (48 847 6553)
(49 848 6563) (50 857 6653)
 
The 10,000th Honaker Primes
(10000 286069 4043749)
</pre>
 
 
=={{header|EasyLang}}==
<syntaxhighlight lang=text>
fastfunc nextprim num .
repeat
i = 2
while i <= sqrt num and num mod i <> 0
i += 1
.
until num mod i <> 0
num += 1
.
return num
.
func digsum n .
while n > 0
sum += n mod 10
n = n div 10
.
return sum
.
proc show . .
i = 1
pri = 2
while count < 50
if digsum i = digsum pri
write "(" & i & " " & pri & ") "
count += 1
.
i += 1
pri = nextprim (pri + 1)
.
.
show
</syntaxhighlight>
 
=={{header|F_Sharp|F#}}==
This task uses [http://www.rosettacode.org/wiki/Extensible_prime_generator#The_functions Extensible Prime Generator (F#)]
<syntaxhighlight lang="fsharp">
// Honaker primes. Nigel Galloway: September 21st., 2022
let rec fG n g=if n<10 then n+g else fG(n/10)(g+n%10)
let Honaker()=primes32()|>Seq.mapi(fun n g->(n+1,g,fG g 0,fG (n+1) 0))|>Seq.choose(fun(i,g,e,l)->if e=l then Some(i,g) else None)
Honaker()|>Seq.chunkBySize 10|>Seq.take 5|>Seq.iter(fun g->g|>Seq.iter(printf "%A "); printfn "")
printfn "%A" (Seq.item 9999 (Honaker()))
</syntaxhighlight>
{{out}}
<pre>
(32, 131) (56, 263) (88, 457) (175, 1039) (176, 1049) (182, 1091) (212, 1301) (218, 1361) (227, 1433) (248, 1571)
(293, 1913) (295, 1933) (323, 2141) (331, 2221) (338, 2273) (362, 2441) (377, 2591) (386, 2663) (394, 2707) (397, 2719)
(398, 2729) (409, 2803) (439, 3067) (446, 3137) (457, 3229) (481, 3433) (499, 3559) (508, 3631) (563, 4091) (571, 4153)
(595, 4357) (599, 4397) (635, 4703) (637, 4723) (655, 4903) (671, 5009) (728, 5507) (751, 5701) (752, 5711) (755, 5741)
(761, 5801) (767, 5843) (779, 5927) (820, 6301) (821, 6311) (826, 6343) (827, 6353) (847, 6553) (848, 6563) (857, 6653)
 
(286069, 4043749)
</pre>
 
=={{header|Factor}}==
{{works with|Factor|0.99 2022-04-03}}
<syntaxhighlight lang=factor>USING: grouping kernel lists lists.lazy math math.primes.lists
prettyprint sequences ;
 
: sum-digits ( n -- sum )
0 swap [ 10 /mod rot + swap ] until-zero ;
 
: honaker ( -- list )
1 lfrom lprimes lzip [ first2 [ sum-digits ] same? ] lfilter ;
 
50 honaker ltake list>array 5 group simple-table.
</syntaxhighlight>
{{out}}
<pre>
{ 32 131 } { 56 263 } { 88 457 } { 175 1039 } { 176 1049 }
{ 182 1091 } { 212 1301 } { 218 1361 } { 227 1433 } { 248 1571 }
{ 293 1913 } { 295 1933 } { 323 2141 } { 331 2221 } { 338 2273 }
{ 362 2441 } { 377 2591 } { 386 2663 } { 394 2707 } { 397 2719 }
{ 398 2729 } { 409 2803 } { 439 3067 } { 446 3137 } { 457 3229 }
{ 481 3433 } { 499 3559 } { 508 3631 } { 563 4091 } { 571 4153 }
{ 595 4357 } { 599 4397 } { 635 4703 } { 637 4723 } { 655 4903 }
{ 671 5009 } { 728 5507 } { 751 5701 } { 752 5711 } { 755 5741 }
{ 761 5801 } { 767 5843 } { 779 5927 } { 820 6301 } { 821 6311 }
{ 826 6343 } { 827 6353 } { 847 6553 } { 848 6563 } { 857 6653 }
</pre>
 
=={{header|Forth}}==
{{works with|Gforth}}
<syntaxhighlight lang="forth">5000000 constant limit
create sieve limit allot
 
: prime? ( n -- ? ) sieve + c@ 0= ;
: notprime! ( n -- ) sieve + 1 swap c! ;
 
: prime_sieve
sieve limit erase
3
begin
dup dup * limit <
while
dup prime? if
limit over dup * do
i notprime!
dup 2* +loop
then
2 +
repeat
drop ;
 
: digit_sum ( u -- u )
dup 10 < if exit then
10 /mod recurse + ;
 
: next_odd_prime ( u -- u )
begin
2 + dup prime?
until ;
 
: next_honaker_prime ( u u -- u u )
begin
swap next_odd_prime swap 1+
2dup digit_sum swap digit_sum =
until ;
 
: print_pair ( u u -- )
." (" 3 .r ." , " 4 .r ." )" ;
 
: main
prime_sieve
." First 50 Honaker primes (index, prime):" cr
3 2 0 \ prime prime-index honaker-index
begin
dup 50 <
while
-rot next_honaker_prime
2dup print_pair rot 1+
dup 5 mod 0= if cr else space then
repeat
begin
dup 10000 <
while
-rot next_honaker_prime rot 1+
repeat
drop
cr ." Ten thousandth: " print_pair ;
 
main cr bye</syntaxhighlight>
 
{{out}}
<pre>
First 50 Honaker primes (index, prime):
( 32, 131) ( 56, 263) ( 88, 457) (175, 1039) (176, 1049)
(182, 1091) (212, 1301) (218, 1361) (227, 1433) (248, 1571)
(293, 1913) (295, 1933) (323, 2141) (331, 2221) (338, 2273)
(362, 2441) (377, 2591) (386, 2663) (394, 2707) (397, 2719)
(398, 2729) (409, 2803) (439, 3067) (446, 3137) (457, 3229)
(481, 3433) (499, 3559) (508, 3631) (563, 4091) (571, 4153)
(595, 4357) (599, 4397) (635, 4703) (637, 4723) (655, 4903)
(671, 5009) (728, 5507) (751, 5701) (752, 5711) (755, 5741)
(761, 5801) (767, 5843) (779, 5927) (820, 6301) (821, 6311)
(826, 6343) (827, 6353) (847, 6553) (848, 6563) (857, 6653)
 
Ten thousandth: (286069, 4043749)
</pre>
 
=={{header|FreeBASIC}}==
<syntaxhighlight lang="freebasic">' version 20-09-2022
' compile with: fbc -s console
 
Function dig_sum(n As UInteger) As UInteger
 
Dim As UInteger sum
 
While n > 0
sum += n Mod 10
n \= 10
Wend
 
Return sum
 
End Function
 
' ------=< MAIN >=------
 
#Define max 5 * 10^6
 
Dim As UInteger x, y, place, rank = 1
Dim Shared As UInteger prime(max)
 
For x = 3 To max Step 2
If prime(x) = 0 Then
For y = x * x To max Step x + x
prime(y) = 1
Next
End If
Next
 
For x = 3 To max Step 2
If prime(x) = 0 Then
rank += 1
If rank Mod 9 = x Mod 9 Then
If dig_sum(rank) = dig_sum(x) Then
place += 1
If place <= 50 Then
Print Using " ##: ### #####"; place ; rank ; x;
If (place Mod 5) = 0 Then Print
End If
If place = 10000 Then
Print
Print " 10000th honaker prime is at ";rank; " and is ";x
End If
End If
End If
End If
Next
 
 
' empty keyboard buffer
While Inkey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End</syntaxhighlight>
{{out}}
<pre> 1: 32 131 2: 56 263 3: 88 457 4: 175 1039 5: 176 1049
6: 182 1091 7: 212 1301 8: 218 1361 9: 227 1433 10: 248 1571
11: 293 1913 12: 295 1933 13: 323 2141 14: 331 2221 15: 338 2273
16: 362 2441 17: 377 2591 18: 386 2663 19: 394 2707 20: 397 2719
21: 398 2729 22: 409 2803 23: 439 3067 24: 446 3137 25: 457 3229
26: 481 3433 27: 499 3559 28: 508 3631 29: 563 4091 30: 571 4153
31: 595 4357 32: 599 4397 33: 635 4703 34: 637 4723 35: 655 4903
36: 671 5009 37: 728 5507 38: 751 5701 39: 752 5711 40: 755 5741
41: 761 5801 42: 767 5843 43: 779 5927 44: 820 6301 45: 821 6311
46: 826 6343 47: 827 6353 48: 847 6553 49: 848 6563 50: 857 6653
 
10000th honaker prime is at 286069 and is 4043749</pre>
 
=={{header|FutureBasic}}==
<syntaxhighlight lang="futurebasic">
local fn dig_sum( n as NSUInteger )
NSUInteger sum = 0
while ( n > 0 )
sum += n mod 10
n /= 10
wend
end fn = sum
 
void local fn CalculaterHonakerPrimes
NSUInteger x, y, rank = 1, place = 0
for x = 3 to _limit step 2
if ( prime(x) == 0 )
for y = x * x to _limit step x + x
prime(y) = 1
next
end if
next
printf @"The first %lu Honaker Primes ranked as \"Index: ([position], [value])\" are:\n", 50
for x = 3 to _limit step 2
if ( prime(x) == 0 )
rank++
if ( (rank mod 9) == ( x mod 9 ) )
if ( fn dig_sum(rank) == fn dig_sum(x) )
place++
if ( place <= 50 )
printf @"%4lu: (%3lu, %4lu) \b", place, rank, x
if ( place mod 5 == 0 ) then print
end if
if ( place == 10000 ) then printf @"\n The 10000th Honaker Prime is:\n %lu: (%4lu, %5lu)", place, rank, x
end if
end if
end if
next
end fn
 
window 1, @"Honakeer Primes", ( 0, 0, 780, 380 )
 
fn CalculaterHonakerPrimes
 
HandleEvents
</syntaxhighlight>
{{output}}
<pre>
The first 50 Honaker Primes ranked as "Index: ([position], [value])" are:
 
1: ( 32, 131) 2: ( 56, 263) 3: ( 88, 457) 4: (175, 1039) 5: (176, 1049)
6: (182, 1091) 7: (212, 1301) 8: (218, 1361) 9: (227, 1433) 10: (248, 1571)
11: (293, 1913) 12: (295, 1933) 13: (323, 2141) 14: (331, 2221) 15: (338, 2273)
16: (362, 2441) 17: (377, 2591) 18: (386, 2663) 19: (394, 2707) 20: (397, 2719)
21: (398, 2729) 22: (409, 2803) 23: (439, 3067) 24: (446, 3137) 25: (457, 3229)
26: (481, 3433) 27: (499, 3559) 28: (508, 3631) 29: (563, 4091) 30: (571, 4153)
31: (595, 4357) 32: (599, 4397) 33: (635, 4703) 34: (637, 4723) 35: (655, 4903)
36: (671, 5009) 37: (728, 5507) 38: (751, 5701) 39: (752, 5711) 40: (755, 5741)
41: (761, 5801) 42: (767, 5843) 43: (779, 5927) 44: (820, 6301) 45: (821, 6311)
46: (826, 6343) 47: (827, 6353) 48: (847, 6553) 49: (848, 6563) 50: (857, 6653)
 
The 10000th Honaker Prime is:
10000: (286069, 4043749)
</pre>
 
 
=={{header|Go}}==
{{trans|Wren}}
{{libheader|Go-rcu}}
<syntaxhighlight lang="go">package main
 
import (
"fmt"
"rcu"
)
 
func main() {
primes := rcu.Primes(5_000_000)
var h [][2]int
var h10000 [2]int
for i, count := 1, 0; count < 10000; i++ {
if rcu.DigitSum(i, 10) == rcu.DigitSum(primes[i-1], 10) {
count++
if count <= 50 {
h = append(h, [2]int{i, primes[i-1]})
} else if count == 10000 {
h10000 = [2]int{i, primes[i-1]}
}
}
}
fmt.Println("The first 50 Honaker primes (index, prime):\n")
for i := 0; i < 50; i++ {
fmt.Printf("(%3d, %5s) ", h[i][0], rcu.Commatize(h[i][1]))
if (i+1)%5 == 0 {
fmt.Println()
}
}
fmt.Printf("\nand the 10,000th: (%7s, %9s)\n", rcu.Commatize(h10000[0]), rcu.Commatize(h10000[1]))
}</syntaxhighlight>
 
{{out}}
<pre>
The first 50 Honaker primes (index, prime):
 
( 32, 131) ( 56, 263) ( 88, 457) (175, 1,039) (176, 1,049)
(182, 1,091) (212, 1,301) (218, 1,361) (227, 1,433) (248, 1,571)
(293, 1,913) (295, 1,933) (323, 2,141) (331, 2,221) (338, 2,273)
(362, 2,441) (377, 2,591) (386, 2,663) (394, 2,707) (397, 2,719)
(398, 2,729) (409, 2,803) (439, 3,067) (446, 3,137) (457, 3,229)
(481, 3,433) (499, 3,559) (508, 3,631) (563, 4,091) (571, 4,153)
(595, 4,357) (599, 4,397) (635, 4,703) (637, 4,723) (655, 4,903)
(671, 5,009) (728, 5,507) (751, 5,701) (752, 5,711) (755, 5,741)
(761, 5,801) (767, 5,843) (779, 5,927) (820, 6,301) (821, 6,311)
(826, 6,343) (827, 6,353) (847, 6,553) (848, 6,563) (857, 6,653)
 
and the 10,000th: (286,069, 4,043,749)
</pre>
 
=={{header|Haskell}}==
<syntaxhighlight lang=Haskell>import Control.Monad (join)
import Data.Bifunctor (bimap)
import Data.List.Split (chunksOf)
import Data.Numbers.Primes (primes)
 
---------------------- HONAKER PRIMES --------------------
 
honakers :: [(Integer, Integer)]
honakers =
filter
(uncurry (==) . both sumDigits)
(zip [1 ..] primes)
 
--------------------------- TEST -------------------------
main :: IO ()
main =
putStrLn "First Fifty:\n"
>> mapM_
(putStrLn . unwords)
( chunksOf
5
(take 50 (show <$> honakers))
)
>> putStrLn "\n10Kth:\n"
>> print (honakers !! pred 10000)
 
------------------------- GENERIC ------------------------
sumDigits :: Integer -> Integer
sumDigits = foldr ((+) . read . pure) 0 . show
 
both :: (a -> b) -> (a, a) -> (b, b)
both = join bimap</syntaxhighlight>
{{Out}}
<pre>First Fifty:
 
(32,131) (56,263) (88,457) (175,1039) (176,1049)
(182,1091) (212,1301) (218,1361) (227,1433) (248,1571)
(293,1913) (295,1933) (323,2141) (331,2221) (338,2273)
(362,2441) (377,2591) (386,2663) (394,2707) (397,2719)
(398,2729) (409,2803) (439,3067) (446,3137) (457,3229)
(481,3433) (499,3559) (508,3631) (563,4091) (571,4153)
(595,4357) (599,4397) (635,4703) (637,4723) (655,4903)
(671,5009) (728,5507) (751,5701) (752,5711) (755,5741)
(761,5801) (767,5843) (779,5927) (820,6301) (821,6311)
(826,6343) (827,6353) (847,6553) (848,6563) (857,6653)
 
10Kth:
 
(286069,4043749)</pre>
 
=={{header|J}}==
Implementation:
<syntaxhighlight lang=J>honk=: >: =&(+/@(10&#.inv))"0 p:</syntaxhighlight>
This tests a sequence of prime indices to determine whether the corresponding prime is a honaker prime. Here, <code>>:</code> adds 1 (since J indices start with 0 and Honaker prime indices start with 1). Also, <code>p:</code> yields the prime for an index, and <code>+/@(10&#.inv)</code> computes a digital sum of a number (but not a sequence, so we use <code>"0</code> to map it onto sequences). So, <code>=&(+/@(10&#.inv))"0</code> identifies members of a pair of sequences (one on the left, the other on the right) whose digital sums match.
 
In other words, these are equivalent:
<syntaxhighlight lang=J> (>: =&(+/@(10&#.inv))"0 p:) 30 31 32
31 32 33 (=&(+/@(10&#.inv))"0) 127 131 137
((+/3 1),(+/3 2),(+/3 3)) = ((+/1 2 7),(+/1 3 1),(+/1 3 7))
((3+1),(3+2),(3+3)) = ((1+2+7),(1+3+1),(1+3+7))
4 5 6 = 10 5 11
0 1 0
</syntaxhighlight>
 
Task example:<syntaxhighlight lang=J> (>: j. p:) 5 10$I.honk i.1e3
32j131 56j263 88j457 175j1039 176j1049 182j1091 212j1301 218j1361 227j1433 248j1571
293j1913 295j1933 323j2141 331j2221 338j2273 362j2441 377j2591 386j2663 394j2707 397j2719
398j2729 409j2803 439j3067 446j3137 457j3229 481j3433 499j3559 508j3631 563j4091 571j4153
595j4357 599j4397 635j4703 637j4723 655j4903 671j5009 728j5507 751j5701 752j5711 755j5741
761j5801 767j5843 779j5927 820j6301 821j6311 826j6343 827j6353 847j6553 848j6563 857j6653</syntaxhighlight>
Here, we test the first thousand primes to see which are prime indices of Honaker primes. Then <code>I.</code>converts the test results back to index form, and <code>5 10$I.</code> organizes those indices in 5 rows of 10 columns (discarding any extra). Finally, we use complex number notation to form pairs of the corresponding honaker index and prime.
 
=={{header|Java}}==
<syntaxhighlight lang="java">
import java.util.ArrayList;
import java.util.List;
 
public final class HonakerPrimes {
 
public static void main(String[] args) {
sievePrimes(5_000_000);
System.out.println("The first 50 Honaker primes (honaker index: prime index, prime):");
for ( int i = 1; i <= 50; i++ ) {
System.out.print(String.format("%17s%s", nextHonakerPrime(), ( i % 5 == 0 ? "\n" : " " ) ));
}
for ( int i = 51; i < 10_000; i++ ) {
nextHonakerPrime();
}
System.out.println();
System.out.println("The 10,000th Honaker prime is: " + nextHonakerPrime());
}
private static HonakerPrime nextHonakerPrime() {
honakerIndex += 1;
primeIndex += 1;
while ( digitalSum(primeIndex) != digitalSum(primes.get(primeIndex - 1)) ) {
primeIndex += 1;
}
return new HonakerPrime(honakerIndex, primeIndex, primes.get(primeIndex - 1));
}
private static int digitalSum(int number) {
return String.valueOf(number).chars().map( i -> i - (int) '0' ).sum();
}
 
private static void sievePrimes(int limit) {
primes.add(2);
final int halfLimit = ( limit + 1 ) / 2;
boolean[] composite = new boolean[halfLimit];
for ( int i = 1, p = 3; i < halfLimit; p += 2, i++ ) {
if ( ! composite[i] ) {
primes.add(p);
for ( int a = i + p; a < halfLimit; a += p ) {
composite[a] = true;
}
}
}
}
private static int honakerIndex = 0;
private static int primeIndex = 0;
private static List<Integer> primes = new ArrayList<Integer>();
private static record HonakerPrime(int honakerIndex, int primeIndex, int prime) {
public String toString() {
return "(" + honakerIndex + ": " + primeIndex + ", " + prime + ")";
}
}
 
}
</syntaxhighlight>
{{ out }}
<pre>
The first 50 Honaker primes (honaker index: prime index, prime):
(1: 32, 131) (2: 56, 263) (3: 88, 457) (4: 175, 1039) (5: 176, 1049)
(6: 182, 1091) (7: 212, 1301) (8: 218, 1361) (9: 227, 1433) (10: 248, 1571)
(11: 293, 1913) (12: 295, 1933) (13: 323, 2141) (14: 331, 2221) (15: 338, 2273)
(16: 362, 2441) (17: 377, 2591) (18: 386, 2663) (19: 394, 2707) (20: 397, 2719)
(21: 398, 2729) (22: 409, 2803) (23: 439, 3067) (24: 446, 3137) (25: 457, 3229)
(26: 481, 3433) (27: 499, 3559) (28: 508, 3631) (29: 563, 4091) (30: 571, 4153)
(31: 595, 4357) (32: 599, 4397) (33: 635, 4703) (34: 637, 4723) (35: 655, 4903)
(36: 671, 5009) (37: 728, 5507) (38: 751, 5701) (39: 752, 5711) (40: 755, 5741)
(41: 761, 5801) (42: 767, 5843) (43: 779, 5927) (44: 820, 6301) (45: 821, 6311)
(46: 826, 6343) (47: 827, 6353) (48: 847, 6553) (49: 848, 6563) (50: 857, 6653)
 
The 10,000th Honaker prime is: (10000: 286069, 4043749)
</pre>
 
=={{header|jq}}==
{{works with|jq}}
'''Adapted from [[#Wren|Wren]]'''
 
As with several other entries, some care must be used in choosing the
size of the prime sieve or basket.
 
'''Generic utilities'''
<syntaxhighlight lang=jq>
def digitSum: tostring | explode | map(.-48) | add;
 
def lpad($len): tostring | ($len - length) as $l | (" " * $l)[:$l] + .;
 
# Input: a positive integer
# Output: an array, $a, of length .+1 such that
# $a[$i] is $i if $i is prime, and false otherwise.
def primeSieve:
# erase(i) sets .[i*j] to false for integral j > 1
def erase($i):
if .[$i] then
reduce (range(2*$i; length; $i)) as $j (.; .[$j] = false)
else .
end;
(. + 1) as $n
| (($n|sqrt) / 2) as $s
| [null, null, range(2; $n)]
| reduce (2, 1 + (2 * range(1; $s))) as $i (.; erase($i)) ;
</syntaxhighlight>
'''The Task'''
<syntaxhighlight lang=jq>
# Output: .h gives details for the first $n Honaker primes, and
# .hmax gives details for the $max-th
def honakers($sieveLength; $n; $max):
($sieveLength|primeSieve|map(select(.))) as $primes
| { i: 1,
count: 0,
h: [],
hmax: null}
| until(.done or .i > $sieveLength;
if (.i|digitSum) == ($primes[.i-1] | digitSum)
then .count += 1
| if .count <= 50
then .h += [[.i, $primes[.i-1]]]
elif .count == $max
then .hmax = [.i, $primes[.i-1]]
| .done = true
else .
end
else .
end
| .i += 1 );
 
5e6 as $enough
| "The first 50 Honaker primes [index, prime]:",
(honakers($enough; 50; 10000)
| (.h | map( "[\(.[0]|lpad(3)), \(.[1]|lpad(4))]") | _nwise(5) | join(" ")),
"\nand the 10,000th:",
.hmax )
</syntaxhighlight>
{{output}}
<pre>
The first 50 Honaker primes [index, prime]:
[ 32, 131] [ 56, 263] [ 88, 457] [175, 1039] [176, 1049]
[182, 1091] [212, 1301] [218, 1361] [227, 1433] [248, 1571]
[293, 1913] [295, 1933] [323, 2141] [331, 2221] [338, 2273]
[362, 2441] [377, 2591] [386, 2663] [394, 2707] [397, 2719]
[398, 2729] [409, 2803] [439, 3067] [446, 3137] [457, 3229]
[481, 3433] [499, 3559] [508, 3631] [563, 4091] [571, 4153]
[595, 4357] [599, 4397] [635, 4703] [637, 4723] [655, 4903]
[671, 5009] [728, 5507] [751, 5701] [752, 5711] [755, 5741]
[761, 5801] [767, 5843] [779, 5927] [820, 6301] [821, 6311]
[826, 6343] [827, 6353] [847, 6553] [848, 6563] [857, 6653]
 
and the 10,000th:
[286069,4043749]
</pre>
 
=={{header|Julia}}==
<syntaxhighlight lang="julia">""" Rosetta code task: rosettacode.org/wiki/Honaker_primes """
 
using Formatting
using Primes
 
""" Get the sequence of Honaker primes as tuples with their primepi values first in tuple"""
honaker(lim) = [(i, p) for (i, p) in enumerate(primes(lim)) if sum(digits(p)) == sum(digits(i))]
 
println("First 50 Honaker primes:")
const a = honaker(5_000_000)
foreach(p -> print(rpad(p[2], 12), p[1] % 5 == 0 ? "\n" : ""), enumerate(a[1:50]))
println("\n$(format(a[10000][2], commas = true)) is the ",
"$(format(a[10000][1], commas = true))th prime and the 10,000th Honaker prime.")
</syntaxhighlight>{{out}}
<pre>
First 50 Honaker primes:
(32, 131) (56, 263) (88, 457) (175, 1039) (176, 1049)
(182, 1091) (212, 1301) (218, 1361) (227, 1433) (248, 1571)
(293, 1913) (295, 1933) (323, 2141) (331, 2221) (338, 2273)
(362, 2441) (377, 2591) (386, 2663) (394, 2707) (397, 2719)
(398, 2729) (409, 2803) (439, 3067) (446, 3137) (457, 3229)
(481, 3433) (499, 3559) (508, 3631) (563, 4091) (571, 4153)
(595, 4357) (599, 4397) (635, 4703) (637, 4723) (655, 4903)
(671, 5009) (728, 5507) (751, 5701) (752, 5711) (755, 5741)
(761, 5801) (767, 5843) (779, 5927) (820, 6301) (821, 6311)
(826, 6343) (827, 6353) (847, 6553) (848, 6563) (857, 6653)
 
4,043,749 is the 286,069th prime and the 10,000th Honaker prime.
</pre>
 
=={{header|Nim}}==
<syntaxhighlight lang="Nim">import std/[bitops, math, strformat, strutils]
 
type Sieve = object
data: seq[byte]
 
func `[]`(sieve: Sieve; idx: Positive): bool =
## Return value of element at index "idx".
let idx = idx shr 1
let iByte = idx shr 3
let iBit = idx and 7
result = sieve.data[iByte].testBit(iBit)
 
func `[]=`(sieve: var Sieve; idx: Positive; val: bool) =
## Set value of element at index "idx".
let idx = idx shr 1
let iByte = idx shr 3
let iBit = idx and 7
if val: sieve.data[iByte].setBit(iBit)
else: sieve.data[iByte].clearBit(iBit)
 
func newSieve(lim: Positive): Sieve =
## Create a sieve with given maximal index.
result.data = newSeq[byte]((lim + 16) shr 4)
 
func initPrimes(lim: Positive): seq[Natural] =
## Initialize the list of primes from 2 to "lim".
var composite = newSieve(lim)
composite[1] = true
for n in countup(3, sqrt(lim.toFloat).int, 2):
if not composite[n]:
for k in countup(n * n, lim, 2 * n):
composite[k] = true
result.add 2
for n in countup(3, lim, 2):
if not composite[n]:
result.add n
 
let primes = initPrimes(5_000_000)
 
func digitalSum(n: Natural): int =
## Return the digital sum of "n".
var n = n
while n != 0:
result += n mod 10
n = n div 10
 
iterator honakerPrimes(primes: seq[Natural]): tuple[pos, val: int] =
## Yield the position and value of Honaker primes from the given list of primes.
for i, n in primes:
if digitalSum(i + 1) == digitalSum(n):
yield (i + 1, n)
 
echo "List of positions and values of first 50 Honeker primes:"
var count = 0
for (pos, val) in honakerPrimes(primes):
inc count
if count <= 50:
stdout.write &"({pos:>3}, {val:>4})"
stdout.write if count mod 5 == 0: '\n' else: ' '
elif count == 10_000:
echo &"\nThe 10_000th Honeker prime number is {insertSep($val)} at position {insertSep($pos)}."
break
</syntaxhighlight>
 
{{out}}
<pre>List of positions and values of first 50 Honeker primes:
( 32, 131) ( 56, 263) ( 88, 457) (175, 1039) (176, 1049)
(182, 1091) (212, 1301) (218, 1361) (227, 1433) (248, 1571)
(293, 1913) (295, 1933) (323, 2141) (331, 2221) (338, 2273)
(362, 2441) (377, 2591) (386, 2663) (394, 2707) (397, 2719)
(398, 2729) (409, 2803) (439, 3067) (446, 3137) (457, 3229)
(481, 3433) (499, 3559) (508, 3631) (563, 4091) (571, 4153)
(595, 4357) (599, 4397) (635, 4703) (637, 4723) (655, 4903)
(671, 5009) (728, 5507) (751, 5701) (752, 5711) (755, 5741)
(761, 5801) (767, 5843) (779, 5927) (820, 6301) (821, 6311)
(826, 6343) (827, 6353) (847, 6553) (848, 6563) (857, 6653)
 
The 10_000th Honeker prime number is 4_043_749 at position 286_069.
</pre>
=={{header|Pascal}}==
==={{header|Free Pascal}}===
uses [[Extensible_prime_generator#Pascal|primsieve]] <br>
checking "numbersaplenty.com/set/Honaker_prime" for 30000101111.
<syntaxhighlight lang="pascal">
{$IFDEF FPC}{$MODE DELPHI}{$OPTIMIZATION ON,ALL}{$ENDIF}
{$IFDEF WINDOWS} {$APPTYPE CONSOLE}{$ENDIF}
uses
primsieve;
function SumOfDecDigits(n:UInt64): Uint32; forward;
const
DgtMod = 10000;
var
{$ALIGN 32}
SumDigits : array[0..DgtMod-1] of byte;
procedure Init;
var
i,
a,b,c,d : NativeUint;
Begin
i := DgtMod-1;
For a := 9 downto 0 do
For b := 9 downto 0 do
For c := 9 downto 0 do
For d := 9 downto 0 do
Begin
SumDigits[i] := a+b+c+d;
dec(i);
end;
end;
 
procedure OutSpecial(idxH,idxP,p,CntDecDgt:Uint64);
Begin
write('(',idxH:9,idxP:11,p:13);
writeln(' Digitsum :',SumOfDecDigits(p):3,' < ',CntDecDgt:3,' Count of digits )');
end;
 
procedure OutHonaker(idxH,idxP,p:Uint64);
begin
writeln('(',idxH:9,idxP:11,p:13,')');
end;
 
function SumOfDecDigits(n:UInt64): Uint32;
var
tmp: Uint64;
digit: Uint32;
Begin
result := 0;
repeat
tmp := n div DgtMod;
digit := n-tmp*DgtMod;
n := tmp;
result +=SumDigits[digit];
until n=0;
end;
 
var
idxP,p,DecDgtLimit : Uint64;
idxH,lmt,SumDgtPrime,CntDecDgt : UInt32;
Begin
init;
 
idxP := 0;
idxH := 0;
CntDecDgt := 1;
DecDgtLimit := 10;
Writeln(' First 50 Honaker primes ');
repeat
p := NextPrime;
inc(idxP);
SumDgtPrime := SumOfDecDigits(idxP);
If SumOfDecDigits(idxP) = SumOfDecDigits(p) then
begin
inc(IdxH);
if idxH<= 50 then
Begin
write('(',idxH:3,idxP:4,p:5,')');
if Idxh mod 5=0 then writeln;
end;
end;
until idxH= 50;
 
lmt := 100;
CntDecDgt := 1;
DecDgtLimit := 10;
while DecDgtLimit < p do
Begin
CntDecDgt += 1;
DecDgtLimit *= 10;
end;
Writeln;
Writeln(' n.th PrimeIdx Prime');
repeat
p := NextPrime;
inc(idxP);
IF p > DecDgtLimit then
Begin
CntDecDgt += 1;
DecDgtLimit *= 10;
end;
SumDgtPrime := SumOfDecDigits(idxP);
If SumOfDecDigits(idxP) = SumOfDecDigits(p) then
begin
inc(IdxH);
while p > DecDgtLimit do
Begin
CntDecDgt += 1;
DecDgtLimit *= 10;
end;
if SumDgtPrime < CntDecDgt then
OutSpecial(idxH,idxP,p,CntDecDgt);
if idxH = lmt then
Begin
OutHonaker(idxH,idxP,p);
lmt *= 10;
end;
end;
until lmt> 100*1000*1000;
end.</syntaxhighlight>
{{out}}
<pre>
First 50 Honaker primes
( 1 32 131)( 2 56 263)( 3 88 457)( 4 175 1039)( 5 176 1049)
( 6 182 1091)( 7 212 1301)( 8 218 1361)( 9 227 1433)( 10 248 1571)
( 11 293 1913)( 12 295 1933)( 13 323 2141)( 14 331 2221)( 15 338 2273)
( 16 362 2441)( 17 377 2591)( 18 386 2663)( 19 394 2707)( 20 397 2719)
( 21 398 2729)( 22 409 2803)( 23 439 3067)( 24 446 3137)( 25 457 3229)
( 26 481 3433)( 27 499 3559)( 28 508 3631)( 29 563 4091)( 30 571 4153)
( 31 595 4357)( 32 599 4397)( 33 635 4703)( 34 637 4723)( 35 655 4903)
( 36 671 5009)( 37 728 5507)( 38 751 5701)( 39 752 5711)( 40 755 5741)
( 41 761 5801)( 42 767 5843)( 43 779 5927)( 44 820 6301)( 45 821 6311)
( 46 826 6343)( 47 827 6353)( 48 847 6553)( 49 848 6563)( 50 857 6653)
 
n.th PrimeIdx Prime
( 100 1855 15913)
( 1000 24706 283303)
( 10000 286069 4043749)
( 100000 3066943 51168613)
( 1000000 32836375 630589303)
( 10000000 354922738 7707009643)
( 36181814 1300010120 30000101111 Digitsum : 8 < 11 Count of digits )
(100000000 3784461563 91565150519)
 
real 1m43.381s user 1m43.253s sys 0m0.000s (4,4 GHz Ryzen 5600 G) </pre>
 
=={{header|Perl}}==
{{libheader|ntheory}}
<syntaxhighlight lang="perl" line>use v5.36;
use ntheory 'nth_prime';
use List::Util <max sum>;
 
sub table ($c, @V) { my $t = $c * (my $w = 2 + max map { length } @V); ( sprintf( ('%'.$w.'s')x@V, @V) ) =~ s/.{1,$t}\K/\n/gr }
sub comma { scalar reverse join ',', unpack '(A3)*', reverse shift }
 
my($n,@honaker);
 
while () {
my $p = nth_prime(++$n);
push @honaker, [$n, $p] if (sum split '', $p) == sum split '', $n;
last if 10_000 == @honaker;
}
 
push @res, "First 50 Honaker primes (index, prime):";
push @res, table 5, map { sprintf "(%3d, %4d)", @$_ } @honaker[0..49];
 
push @res, "Ten thousandth: " . sprintf "(%s, %s)", map { comma $_ } @{$honaker[9999]};
</syntaxhighlight>
{{out}}
<pre>First 50 Honaker primes (index, prime):
( 32, 131) ( 56, 263) ( 88, 457) (175, 1039) (176, 1049)
(182, 1091) (212, 1301) (218, 1361) (227, 1433) (248, 1571)
(293, 1913) (295, 1933) (323, 2141) (331, 2221) (338, 2273)
(362, 2441) (377, 2591) (386, 2663) (394, 2707) (397, 2719)
(398, 2729) (409, 2803) (439, 3067) (446, 3137) (457, 3229)
(481, 3433) (499, 3559) (508, 3631) (563, 4091) (571, 4153)
(595, 4357) (599, 4397) (635, 4703) (637, 4723) (655, 4903)
(671, 5009) (728, 5507) (751, 5701) (752, 5711) (755, 5741)
(761, 5801) (767, 5843) (779, 5927) (820, 6301) (821, 6311)
(826, 6343) (827, 6353) (847, 6553) (848, 6563) (857, 6653)
 
Ten thousandth: (286,069, 4,043,749)</pre>
 
=={{header|Phix}}==
<!--<syntaxhighlight lang="phix">(phixonline)-->
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">digital_sum</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span>
<span style="color: #008080;">while</span> <span style="color: #000000;">i</span> <span style="color: #008080;">do</span>
<span style="color: #000000;">res</span> <span style="color: #0000FF;">+=</span> <span style="color: #7060A8;">remainder</span><span style="color: #0000FF;">(</span><span style="color: #000000;">i</span><span style="color: #0000FF;">,</span><span style="color: #000000;">10</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">i</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">floor</span><span style="color: #0000FF;">(</span><span style="color: #000000;">i</span><span style="color: #0000FF;">/</span><span style="color: #000000;">10</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">while</span>
<span style="color: #008080;">return</span> <span style="color: #000000;">res</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #004080;">sequence</span> <span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{}</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">pdx</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">1</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">p</span>
<span style="color: #008080;">while</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">res</span><span style="color: #0000FF;">)<</span><span style="color: #000000;">10_000</span> <span style="color: #008080;">do</span>
<span style="color: #000000;">p</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">get_prime</span><span style="color: #0000FF;">(</span><span style="color: #000000;">pdx</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">digital_sum</span><span style="color: #0000FF;">(</span><span style="color: #000000;">p</span><span style="color: #0000FF;">)=</span><span style="color: #000000;">digital_sum</span><span style="color: #0000FF;">(</span><span style="color: #000000;">pdx</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">then</span>
<span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">append</span><span style="color: #0000FF;">(</span><span style="color: #000000;">res</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">pdx</span><span style="color: #0000FF;">,</span><span style="color: #000000;">p</span><span style="color: #0000FF;">})</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #000000;">pdx</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">1</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">while</span>
<span style="color: #004080;">string</span> <span style="color: #000000;">r</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">join_by</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">apply</span><span style="color: #0000FF;">(</span><span style="color: #004600;">true</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">sprintf</span><span style="color: #0000FF;">,{{</span><span style="color: #008000;">"(%3d,%4d)"</span><span style="color: #0000FF;">},</span><span style="color: #000000;">res</span><span style="color: #0000FF;">[</span><span style="color: #000000;">1</span><span style="color: #0000FF;">..</span><span style="color: #000000;">50</span><span style="color: #0000FF;">]}),</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">10</span><span style="color: #0000FF;">,</span><span style="color: #008000;">" "</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"First 50 Honaker primes (index, prime):\n%s\n"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">r</span><span style="color: #0000FF;">})</span>
<span style="color: #0000FF;">{</span><span style="color: #000000;">pdx</span><span style="color: #0000FF;">,</span><span style="color: #000000;">p</span><span style="color: #0000FF;">}</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">res</span><span style="color: #0000FF;">[</span><span style="color: #000000;">10000</span><span style="color: #0000FF;">]</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"The %,d%s prime is %,d which is the 10,000th Honaker prime\n"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">pdx</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">ord</span><span style="color: #0000FF;">(</span><span style="color: #000000;">pdx</span><span style="color: #0000FF;">),</span><span style="color: #000000;">p</span><span style="color: #0000FF;">})</span>
<!--</syntaxhighlight>-->
{{out}}
<pre>
First 50 Honaker primes (index, prime):
( 32, 131) ( 56, 263) ( 88, 457) (175,1039) (176,1049) (182,1091) (212,1301) (218,1361) (227,1433) (248,1571)
(293,1913) (295,1933) (323,2141) (331,2221) (338,2273) (362,2441) (377,2591) (386,2663) (394,2707) (397,2719)
(398,2729) (409,2803) (439,3067) (446,3137) (457,3229) (481,3433) (499,3559) (508,3631) (563,4091) (571,4153)
(595,4357) (599,4397) (635,4703) (637,4723) (655,4903) (671,5009) (728,5507) (751,5701) (752,5711) (755,5741)
(761,5801) (767,5843) (779,5927) (820,6301) (821,6311) (826,6343) (827,6353) (847,6553) (848,6563) (857,6653)
 
The 286,069th prime is 4,043,749 which is the 10,000th Honaker prime
</pre>
 
=={{header|Python}}==
<syntaxhighlight lang=Python>''' Rosetta code task: rosettacode.org/wiki/Honaker_primes '''
 
 
from pyprimesieve import primes
 
 
def digitsum(num):
''' Digit sum of an integer (base 10) '''
return sum(int(c) for c in str(num))
 
 
def generate_honaker(limit=5_000_000):
''' Generate the sequence of Honaker primes with their sequence and primepi values '''
honaker = [(i + 1, p) for i, p in enumerate(primes(limit)) if digitsum(p) == digitsum(i + 1)]
for hcount, (ppi, pri) in enumerate(honaker):
yield hcount + 1, ppi, pri
 
 
print('First 50 Honaker primes:')
for p in generate_honaker():
if p[0] < 51:
print(f'{str(p):16}', end='\n' if p[0] % 5 == 0 else '')
elif p[0] == 10_000:
print(f'\nThe 10,000th Honaker prime is the {p[1]:,}th one, which is {p[2]:,}.')
break
</syntaxhighlight>{{out}}
<pre>First 50 Honaker primes:
(1, 32, 131) (2, 56, 263) (3, 88, 457) (4, 175, 1039) (5, 176, 1049)
(6, 182, 1091) (7, 212, 1301) (8, 218, 1361) (9, 227, 1433) (10, 248, 1571)
(11, 293, 1913) (12, 295, 1933) (13, 323, 2141) (14, 331, 2221) (15, 338, 2273)
(16, 362, 2441) (17, 377, 2591) (18, 386, 2663) (19, 394, 2707) (20, 397, 2719)
(21, 398, 2729) (22, 409, 2803) (23, 439, 3067) (24, 446, 3137) (25, 457, 3229)
(26, 481, 3433) (27, 499, 3559) (28, 508, 3631) (29, 563, 4091) (30, 571, 4153)
(31, 595, 4357) (32, 599, 4397) (33, 635, 4703) (34, 637, 4723) (35, 655, 4903)
(36, 671, 5009) (37, 728, 5507) (38, 751, 5701) (39, 752, 5711) (40, 755, 5741)
(41, 761, 5801) (42, 767, 5843) (43, 779, 5927) (44, 820, 6301) (45, 821, 6311)
(46, 826, 6343) (47, 827, 6353) (48, 847, 6553) (49, 848, 6563) (50, 857, 6653)
 
The 10,000th Honaker prime is the 286,069th one, which is 4,043,749.</pre>
 
Or, defining an infinite series of Honaker primes, writing our own primes function,
 
and displaying with flexible column widths, for variable sample sizes:
<syntaxhighlight lang="python">'''Honaker primes'''
 
from itertools import count, islice
from functools import reduce
 
# honakers :: [Int]
def honakers():
'''Infinite stream of Honaker primes,
tupled with their 1-based indices
in the series of prime integers.
'''
def p(ip):
return digitSum(ip[0]) == digitSum(ip[1])
 
return filter(
p, enumerate(primes(), 1)
)
 
 
# digitSum :: Int -> Int
def digitSum(n):
'''Sum of the decimal digits of the given integer.
'''
return reduce(
lambda a, c: a + int(c),
str(n),
0
)
 
# ------------------------- TEST -------------------------
# main :: IO ()
def main():
'''First 50 Honaker primes, and ten thousandth.'''
 
print ("First 50 (prime index, Honaker) pairs:")
print(
table(5)([
str(n) for n in
islice(honakers(), 50)
])
)
 
print("\n10Kth:\n")
print(
next(islice(honakers(), 10000-1, None))
)
 
 
# ----------------------- GENERIC ------------------------
 
# chunksOf :: Int -> [a] -> [[a]]
def chunksOf(n):
'''A series of lists of length n, subdividing the
contents of xs. Where the length of xs is not evenly
divisible, the final list will be shorter than n.
'''
def go(xs):
return (
xs[i:n + i] for i in range(0, len(xs), n)
) if 0 < n else None
return go
 
 
# primes :: [Int]
def primes():
'''An infinite stream of primes.
'''
seen = {}
p = None
yield 2
for q in count(3, 2):
p = seen.pop(q, None)
if p is None:
seen[q ** 2] = q
yield q
else:
seen[
until(
lambda x: x not in seen,
lambda x: x + 2 * p,
q + 2 * p
)
] = p
 
 
# table :: Int -> [String] -> String
def table(n):
'''A list of strings formatted as
right-justified rows of n columns.
'''
def go(xs):
w = len(max(xs, key=len))
return '\n'.join(
' '.join(row) for row in chunksOf(n)([
s.rjust(w, ' ') for s in xs
])
)
return go
 
 
# until :: (a -> Bool) -> (a -> a) -> a -> a
def until(p, f, x):
'''The result of repeatedly applying f until p holds.
The initial seed value is x.
'''
v = x
while not p(v):
v = f(v)
return v
 
 
# MAIN ---
if __name__ == '__main__':
main()
</syntaxhighlight>
{{Out}}
<pre>First 50 (prime index, Honaker) pairs:
(32, 131) (56, 263) (88, 457) (175, 1039) (176, 1049)
(182, 1091) (212, 1301) (218, 1361) (227, 1433) (248, 1571)
(293, 1913) (295, 1933) (323, 2141) (331, 2221) (338, 2273)
(362, 2441) (377, 2591) (386, 2663) (394, 2707) (397, 2719)
(398, 2729) (409, 2803) (439, 3067) (446, 3137) (457, 3229)
(481, 3433) (499, 3559) (508, 3631) (563, 4091) (571, 4153)
(595, 4357) (599, 4397) (635, 4703) (637, 4723) (655, 4903)
(671, 5009) (728, 5507) (751, 5701) (752, 5711) (755, 5741)
(761, 5801) (767, 5843) (779, 5927) (820, 6301) (821, 6311)
(826, 6343) (827, 6353) (847, 6553) (848, 6563) (857, 6653)
 
10Kth:
 
(286069, 4043749)</pre>
 
=={{header|Quackery}}==
 
<code>isprime</code> is defined at [[Primality by trial division#Quackery]].
 
<syntaxhighlight lang="Quackery"> [ 0 swap
[ 10 /mod
rot + swap
dup 0 = until ]
drop ] is digitsum ( n --> n )
 
[ digitsum swap digitsum = ] is ds= ( n n --> b )
 
[ 0 temp put
[] 0
[ 1+
dup isprime if
[ 1 temp tally
dup temp share
ds= if
[ dup dip
[ temp share
swap join
nested join ] ] ]
dip [ 2dup size = ]
swap until ]
drop nip temp release ] is honakers ( n --> [ )
 
50 honakers
witheach
[ echo
i^ 5 mod 4 =
if cr else sp ]
cr cr
10000 honakers -1 peek echo</syntaxhighlight>
 
{{out}}
 
<pre>[ 32 131 ][ 56 263 ][ 88 457 ][ 175 1039 ][ 176 1049 ]
[ 182 1091 ][ 212 1301 ][ 218 1361 ][ 227 1433 ][ 248 1571 ]
[ 293 1913 ][ 295 1933 ][ 323 2141 ][ 331 2221 ][ 338 2273 ]
[ 362 2441 ][ 377 2591 ][ 386 2663 ][ 394 2707 ][ 397 2719 ]
[ 398 2729 ][ 409 2803 ][ 439 3067 ][ 446 3137 ][ 457 3229 ]
[ 481 3433 ][ 499 3559 ][ 508 3631 ][ 563 4091 ][ 571 4153 ]
[ 595 4357 ][ 599 4397 ][ 635 4703 ][ 637 4723 ][ 655 4903 ]
[ 671 5009 ][ 728 5507 ][ 751 5701 ][ 752 5711 ][ 755 5741 ]
[ 761 5801 ][ 767 5843 ][ 779 5927 ][ 820 6301 ][ 821 6311 ]
[ 826 6343 ][ 827 6353 ][ 847 6553 ][ 848 6563 ][ 857 6653 ]
 
[ 286069 4043749 ]</pre>
 
=={{header|Raku}}==
<syntaxhighlight lang="raku" line>my @honaker = lazy (^∞ ).hyper.grep: (&is-prime).kv.grep(: (1 + *).comb.sum == *.comb.sum );
 
say "First 50 Honaker primes (index, prime):\n" ~ @honaker[^50].map(&format).batch(105).join: "\n";
say "Ten\nTen thousandth: " ~ @honaker[9999].&format;
 
sub format ($_) { sprintf "(%3d, %4d)", 1 + .[0], .[1] }</syntaxhighlight>
{{out}}
<pre>First 50 Honaker primes (index, prime):
( 32, 131) ( 56, 263) ( 70, 349) ( 88, 457) (130, 733) (175, 1039) (176, 1049) (182, 1091) (212, 1301) (218, 1361)
(227182, 14331091) (248212, 15711301) (293218, 19131361) (295227, 19331433) (320248, 2129) (323, 2141) (331, 2221) (338, 2273) (350, 2357) (362, 24411571)
(377293, 25911913) (386295, 26631933) (394323, 27072141) (397331, 27192221) (398338, 2729) (409, 2803) (439, 3067) (446, 3137) (457, 3229) (481, 34332273)
(499362, 35592441) (508377, 36312591) (563386, 40912663) (571394, 41532707) (595397, 4357) (599, 4397) (635, 4703) (637, 4723) (655, 4903) (671, 50092719)
(728398, 55072729) (751409, 57012803) (752439, 57113067) (755446, 57413137) (760457, 5791) (761, 5801) (767, 5843) (779, 5927) (821, 6311) (826, 63433229)
(481, 3433) (499, 3559) (508, 3631) (563, 4091) (571, 4153)
Ten thousandth: (266396, 3745229)</pre>
(595, 4357) (599, 4397) (635, 4703) (637, 4723) (655, 4903)
(671, 5009) (728, 5507) (751, 5701) (752, 5711) (755, 5741)
(761, 5801) (767, 5843) (779, 5927) (820, 6301) (821, 6311)
(826, 6343) (827, 6353) (847, 6553) (848, 6563) (857, 6653)
 
Ten thousandth: (286069, 4043749)</pre>
=={{header|RPL}}==
{{works with|HP|49}}
≪ →STR → digits
≪ 0
1 digits SIZE '''FOR''' j
digits j DUP SUB STR→ + '''NEXT'''
≫ ≫ '<span style="color:blue">DIGSUM</span>' STO
≪ 1 { } → max primepos result
≪ 2
1 max '''FOR''' j
'''DO''' NEXTPRIME
'''UNTIL''' 'primepos' INCR <span style="color:blue">DIGSUM</span> OVER <span style="color:blue">DIGSUM</span> == '''END'''
'result' j primepos 4 PICK →V3 STO+
'''NEXT''' result
≫ ≫ '<span style="color:blue">HONAKER</span>' STO
 
50 <span style="color:blue">HONAKER</span>
 
{{out}}
<pre>
1: {[1. 32. 131.] [2. 56. 263.] [3. 88. 457.] [4. 175. 1039.] [5. 176. 1049.] [6. 182. 1091.] [7. 212. 1301.] [8. 218. 1361.] [9. 227. 1433.] [10. 248. 1571.] [11. 293. 1913.] [12. 295. 1933.] [13. 323. 2141.] [14. 331. 2221.] [15. 338. 2273.] [16. 362. 2441.] [17. 377. 2591.] [18. 386. 2663.] [19. 394. 2707.] [20. 397. 2719.] [21. 398. 2729.] [22. 409. 2803.] [23. 439. 3067.] [24. 446. 3137.] [25. 457. 3229.] [26. 481. 3433.] [27. 499. 3559.] [28. 508. 3631.] [29. 563. 4091.] [30. 571. 4153.] [31. 595. 4357.] [32. 599. 4397.] [33. 635. 4703.] [34. 637. 4723.] [35. 655. 4903.] [36. 671. 5009.] [37. 728. 5507.] [38. 751. 5701.] [39. 752. 5711.] [40. 755. 5741.] [41. 761. 5801.] [42. 767. 5843.] [43. 779. 5927.] [44. 820. 6301.] [45. 821. 6311.] [46. 826. 6343.] [47. 827. 6353.] [48. 847. 6553.] [49. 848. 6563.] [50. 857. 6653.]}
</pre>
 
=={{header|Ruby}}==
<syntaxhighlight lang="ruby" line>require 'prime'
 
honakers = Prime.each.with_index(1).lazy.select{|pr, i| pr.digits.sum == i.digits.sum}
ar = honakers.take(10_000).to_a
puts "The first 50 Honaker primes and their position:"
ar.first(50).each_slice(5){|slice| puts "%15s"*slice.size % slice}
 
puts "\nHonaker prime 10000 is %d on position %d." % ar.last</syntaxhighlight>
{{out}}
<pre>The first 50 Honaker primes:
[131, 32] [263, 56] [457, 88] [1039, 175] [1049, 176]
[1091, 182] [1301, 212] [1361, 218] [1433, 227] [1571, 248]
[1913, 293] [1933, 295] [2141, 323] [2221, 331] [2273, 338]
[2441, 362] [2591, 377] [2663, 386] [2707, 394] [2719, 397]
[2729, 398] [2803, 409] [3067, 439] [3137, 446] [3229, 457]
[3433, 481] [3559, 499] [3631, 508] [4091, 563] [4153, 571]
[4357, 595] [4397, 599] [4703, 635] [4723, 637] [4903, 655]
[5009, 671] [5507, 728] [5701, 751] [5711, 752] [5741, 755]
[5801, 761] [5843, 767] [5927, 779] [6301, 820] [6311, 821]
[6343, 826] [6353, 827] [6553, 847] [6563, 848] [6653, 857]
 
Honaker prime 10000 is 4043749 on position 286069.
</pre>
 
=={{header|Rust}}==
<syntaxhighlight lang="rust">
//includes primal = "0.2" in dependencies
 
fn digit_sum( mut number: usize) -> usize {
let mut sum : usize = 0 ;
while number != 0 {
sum += number % 10 ;
number /= 10 ;
}
sum
}
 
fn main() {
let mut count : i32 = 0 ;
let mut pos : i32 = 1 ;
println!("The first 50 Honaker primes:") ;
primal::Primes::all( ).enumerate( ).map( |( i , w )| (i + 1 , w) ).
filter( |(i , w)| digit_sum( *i ) == digit_sum( *w ) ).take( 50 ).
for_each( |(i , w )| {
count += 1 ;
print!("(p:{} ,ind:{} ,val:{}) " , pos , i, w ) ;
pos += 1 ;
if count % 3 == 0 {
println!( ) ;
}
}) ;
println!( ) ;
}</syntaxhighlight>
{{out}}
<pre>
The first 50 Honaker primes:
(p:1 ,ind:32 ,val:131) (p:2 ,ind:56 ,val:263) (p:3 ,ind:88 ,val:457)
(p:4 ,ind:175 ,val:1039) (p:5 ,ind:176 ,val:1049) (p:6 ,ind:182 ,val:1091)
(p:7 ,ind:212 ,val:1301) (p:8 ,ind:218 ,val:1361) (p:9 ,ind:227 ,val:1433)
(p:10 ,ind:248 ,val:1571) (p:11 ,ind:293 ,val:1913) (p:12 ,ind:295 ,val:1933)
(p:13 ,ind:323 ,val:2141) (p:14 ,ind:331 ,val:2221) (p:15 ,ind:338 ,val:2273)
(p:16 ,ind:362 ,val:2441) (p:17 ,ind:377 ,val:2591) (p:18 ,ind:386 ,val:2663)
(p:19 ,ind:394 ,val:2707) (p:20 ,ind:397 ,val:2719) (p:21 ,ind:398 ,val:2729)
(p:22 ,ind:409 ,val:2803) (p:23 ,ind:439 ,val:3067) (p:24 ,ind:446 ,val:3137)
(p:25 ,ind:457 ,val:3229) (p:26 ,ind:481 ,val:3433) (p:27 ,ind:499 ,val:3559)
(p:28 ,ind:508 ,val:3631) (p:29 ,ind:563 ,val:4091) (p:30 ,ind:571 ,val:4153)
(p:31 ,ind:595 ,val:4357) (p:32 ,ind:599 ,val:4397) (p:33 ,ind:635 ,val:4703)
(p:34 ,ind:637 ,val:4723) (p:35 ,ind:655 ,val:4903) (p:36 ,ind:671 ,val:5009)
(p:37 ,ind:728 ,val:5507) (p:38 ,ind:751 ,val:5701) (p:39 ,ind:752 ,val:5711)
(p:40 ,ind:755 ,val:5741) (p:41 ,ind:761 ,val:5801) (p:42 ,ind:767 ,val:5843)
(p:43 ,ind:779 ,val:5927) (p:44 ,ind:820 ,val:6301) (p:45 ,ind:821 ,val:6311)
(p:46 ,ind:826 ,val:6343) (p:47 ,ind:827 ,val:6353) (p:48 ,ind:847 ,val:6553)
(p:49 ,ind:848 ,val:6563) (p:50 ,ind:857 ,val:6653)</pre>
 
 
=={{header|Scala}}==
{{trans|Java}}
<syntaxhighlight lang="Scala">
import scala.collection.mutable.ListBuffer
 
object HonakerPrimes {
def main(args: Array[String]): Unit = {
sievePrimes(5000000)
 
println("The first 50 Honaker primes (honaker index: prime index, prime):")
for (i <- 1 to 50) {
print(f"${nextHonakerPrime()}%17s${if (i % 5 == 0) "\n" else " "}")
}
for (i <- 51 until 10000) {
nextHonakerPrime()
}
println()
println(s"The 10,000th Honaker prime is: ${nextHonakerPrime()}")
}
 
private def nextHonakerPrime(): HonakerPrime = {
honakerIndex += 1
primeIndex += 1
while (digitalSum(primeIndex) != digitalSum(primes(primeIndex - 1))) {
primeIndex += 1
}
HonakerPrime(honakerIndex, primeIndex, primes(primeIndex - 1))
}
 
private def digitalSum(number: Int): Int = {
number.toString.map(_.asDigit).sum
}
 
private def sievePrimes(limit: Int): Unit = {
primes += 2
val halfLimit = (limit + 1) / 2
val composite = Array.fill(halfLimit)(false)
var i = 1
var p = 3
while (i < halfLimit) {
if (!composite(i)) {
primes += p
var a = i + p
while (a < halfLimit) {
composite(a) = true
a += p
}
}
i += 1
p += 2
}
}
 
private var honakerIndex = 0
private var primeIndex = 0
private val primes = ListBuffer[Int]()
 
case class HonakerPrime(honakerIndex: Int, primeIndex: Int, prime: Int) {
override def toString: String = s"($honakerIndex: $primeIndex, $prime)"
}
}
</syntaxhighlight>
{{out}}
<pre>
The first 50 Honaker primes (honaker index: prime index, prime):
(1: 32, 131) (2: 56, 263) (3: 88, 457) (4: 175, 1039) (5: 176, 1049)
(6: 182, 1091) (7: 212, 1301) (8: 218, 1361) (9: 227, 1433) (10: 248, 1571)
(11: 293, 1913) (12: 295, 1933) (13: 323, 2141) (14: 331, 2221) (15: 338, 2273)
(16: 362, 2441) (17: 377, 2591) (18: 386, 2663) (19: 394, 2707) (20: 397, 2719)
(21: 398, 2729) (22: 409, 2803) (23: 439, 3067) (24: 446, 3137) (25: 457, 3229)
(26: 481, 3433) (27: 499, 3559) (28: 508, 3631) (29: 563, 4091) (30: 571, 4153)
(31: 595, 4357) (32: 599, 4397) (33: 635, 4703) (34: 637, 4723) (35: 655, 4903)
(36: 671, 5009) (37: 728, 5507) (38: 751, 5701) (39: 752, 5711) (40: 755, 5741)
(41: 761, 5801) (42: 767, 5843) (43: 779, 5927) (44: 820, 6301) (45: 821, 6311)
(46: 826, 6343) (47: 827, 6353) (48: 847, 6553) (49: 848, 6563) (50: 857, 6653)
 
The 10,000th Honaker prime is: (10000: 286069, 4043749)
 
</pre>
 
 
=={{header|Sidef}}==
<syntaxhighlight lang="ruby">func is_honaker_prime (n) {
n.is_prime && (n.sumdigits == n.prime_count.sumdigits)
}
 
say "The first 50 Honaker primes and their position:"
is_honaker_prime.first(50).each_slice(5, {|*slice|
say ("%15s"*slice.len % slice.map{ [_, .prime_count] }...)
})
 
printf("\nHonaker prime 10000 is %s on position %s.\n",
with (is_honaker_prime.nth(1e4)) {|k| (k, k.prime_count) })</syntaxhighlight>
{{out}}
<pre>The first 50 Honaker primes and their position:
[131, 32] [263, 56] [457, 88] [1039, 175] [1049, 176]
[1091, 182] [1301, 212] [1361, 218] [1433, 227] [1571, 248]
[1913, 293] [1933, 295] [2141, 323] [2221, 331] [2273, 338]
[2441, 362] [2591, 377] [2663, 386] [2707, 394] [2719, 397]
[2729, 398] [2803, 409] [3067, 439] [3137, 446] [3229, 457]
[3433, 481] [3559, 499] [3631, 508] [4091, 563] [4153, 571]
[4357, 595] [4397, 599] [4703, 635] [4723, 637] [4903, 655]
[5009, 671] [5507, 728] [5701, 751] [5711, 752] [5741, 755]
[5801, 761] [5843, 767] [5927, 779] [6301, 820] [6311, 821]
[6343, 826] [6353, 827] [6553, 847] [6563, 848] [6653, 857]
 
Honaker prime 10000 is 4043749 on position 286069.</pre>
 
=={{header|Wren}}==
{{libheader|Wren-math}}
{{libheader|Wren-fmt}}
<syntaxhighlight lang="wren">import "./math" for Int
import "./fmt" for Fmt
 
var primes = Int.primeSieve(5 * 1e6)
var i = 1
var count = 0
var h = []
var h10000
while (true) {
if (Int.digitSum(i) == Int.digitSum(primes[i-1])) {
count = count + 1
if (count <= 50) {
h.add([i, primes[i-1]])
} else if (count == 10000) {
h10000 = [i, primes[i-1]]
break
}
}
i = i + 1
}
System.print("The first 50 Honaker primes (index, prime):")
for (i in 0..49) {
Fmt.write("($3d, $,5d) ", h[i][0], h[i][1])
if ((i + 1) % 5 == 0) System.print()
}
Fmt.print("\nand the 10,000th: ($,7d, $,9d)", h10000[0], h10000[1])</syntaxhighlight>
 
{{out}}
<pre>
The first 50 Honaker primes (index, prime):
( 32, 131) ( 56, 263) ( 88, 457) (175, 1,039) (176, 1,049)
(182, 1,091) (212, 1,301) (218, 1,361) (227, 1,433) (248, 1,571)
(293, 1,913) (295, 1,933) (323, 2,141) (331, 2,221) (338, 2,273)
(362, 2,441) (377, 2,591) (386, 2,663) (394, 2,707) (397, 2,719)
(398, 2,729) (409, 2,803) (439, 3,067) (446, 3,137) (457, 3,229)
(481, 3,433) (499, 3,559) (508, 3,631) (563, 4,091) (571, 4,153)
(595, 4,357) (599, 4,397) (635, 4,703) (637, 4,723) (655, 4,903)
(671, 5,009) (728, 5,507) (751, 5,701) (752, 5,711) (755, 5,741)
(761, 5,801) (767, 5,843) (779, 5,927) (820, 6,301) (821, 6,311)
(826, 6,343) (827, 6,353) (847, 6,553) (848, 6,563) (857, 6,653)
 
and the 10,000th: (286,069, 4,043,749)
</pre>
 
=={{header|XPL0}}==
<syntaxhighlight lang "XPL0">
func IsPrime(N); \Return 'true' if N is prime
int N, I;
[if N <= 2 then return N = 2;
if (N&1) = 0 then \even >2\ return false;
for I:= 3 to sqrt(N) do
[if rem(N/I) = 0 then return false;
I:= I+1;
];
return true;
];
 
func DigSum(N); \Return sum of digits in N
int N, S;
[S:= 0;
while N do
[N:= N/10;
S:= S + rem(0);
];
return S;
];
 
int N, C, H;
[Format(5, 0);
N:= 3; C:= 1; H:= 0;
loop [if IsPrime(N) then
[C:= C+1;
if DigSum(N) = DigSum(C) then
[H:= H+1;
if H<=50 or H=10000 then
[RlOut(0, float(C));
Text(0, ": ");
RlOut(0, float(N));
if rem(H/5) = 0 then CrLf(0) else Text(0, " ");
if H = 10000 then quit;
];
];
];
N:= N+2;
];
]</syntaxhighlight>
{{out}}
<pre>
32: 131 56: 263 88: 457 175: 1039 176: 1049
182: 1091 212: 1301 218: 1361 227: 1433 248: 1571
293: 1913 295: 1933 323: 2141 331: 2221 338: 2273
362: 2441 377: 2591 386: 2663 394: 2707 397: 2719
398: 2729 409: 2803 439: 3067 446: 3137 457: 3229
481: 3433 499: 3559 508: 3631 563: 4091 571: 4153
595: 4357 599: 4397 635: 4703 637: 4723 655: 4903
671: 5009 728: 5507 751: 5701 752: 5711 755: 5741
761: 5801 767: 5843 779: 5927 820: 6301 821: 6311
826: 6343 827: 6353 847: 6553 848: 6563 857: 6653
286069: 4043749
</pre>
 
=={{header|Yabasic}}==
{{trans|FreeBASIC}}
<syntaxhighlight lang="yabasic">// Rosetta Code problem: http://rosettacode.org/wiki/Honaker_primes
// by Jjuanhdez, 09/2022
 
limit = 5 * 10^6
//place = 0
rank = 1
dim prime(limit)
 
for x = 3 to limit step 2
if prime(x) = 0 then
for y = x * x to limit step x + x
prime(y) = 1
next y
end if
next x
 
print "First 50 Honaker primes:"
for x = 3 to limit step 2
if prime(x) = 0 then
rank = rank + 1
if mod(rank, 9) = mod(x, 9) then
if dig_sum(rank) = dig_sum(x) then
place = place + 1
if place <= 50 then
print " ", place using("##"), ": (", rank using("###"), ",", x using("#####"), ")";
if mod(place, 5) = 0 print
end if
if place = 10000 print "\n 10000th honaker prime is at ", rank, " and is ", x
end if
end if
end if
next x
 
sub dig_sum(n)
local sum
 
while n > 0
sum = sum + mod(n, 10)
n = int(n / 10)
end while
 
return sum
end sub
</syntaxhighlight>
{{out}}
<pre>Same as FreeBASIC entry.</pre>