Elementary cellular automaton/Random number generator: Difference between revisions

Added FreeBASIC
m (minor rephrasing)
(Added FreeBASIC)
 
(77 intermediate revisions by 29 users not shown)
Line 1:
{{draft task}}
[[wp:Rule 30|Rule 30]] is considered to be chaotic enough to generate good pseudo-random numbers. As a matter of fact, for a long time rule 30 iswas used by the [[wp:Mathematica|Mathematica]] software for its default random number generator.
 
Steven Wolfram's recommendation for random number generation from rule 30 consists in extracting successive bits in a fixed position in the array of cells, as the automaton changes state.
 
The purpose of this task is to demonstrate this. With the code written in the [[Elementary cellular automaton|parent task]], which you don't need to re-write here, show the ten first bytes that emerge from this recommendation. To be precise, you will start with a state of all cells but one equal to zero, and you'll follow the evolution of the cellsparticular cell whose state was initially one. Then you'll regroup those bits by packets of eight, reconstituting bytes with athe first bit being the [[wp:most significant little-endianbit|most encodingsignificant]].
 
You can pick which ever length you want for the initial array but it should be visible in the code so that your output can be reproduced with an other language.
Line 10:
For extra-credits, you will make this algorithm run as fast as possible in your language, for instance with an extensive use of bitwise logic.
 
;Reference:
=={{header|Perl 6}}==
* [http://www.cs.indiana.edu/~dgerman/2005midwestNKSconference/dgelbm.pdf Cellular automata: Is Rule 30 random]? (PDF).
A very easy to write, yet terribly slow version.
 
<lang Perl 6>my Automaton $a .= new: :rule(30), :cells( 1, 0 xx 40 );
 
=={{header|11l}}==
say :2[$a++.cells[0] xx 8] xx 10;
{{trans|Nim}}
</lang>
 
<syntaxhighlight lang="11l">V n = 64
 
F pow2(x)
R UInt64(1) << x
 
F evolve(UInt64 =state; rule)
L 10
V b = UInt64(0)
L(q) (7 .. 0).step(-1)
V st = state
b [|]= (st [&] 1) << q
state = 0
L(i) 0 .< :n
V t = ((st >> (i - 1)) [|] (st << (:n + 1 - i))) [&] 7
I (rule [&] pow2(t)) != 0
state [|]= pow2(i)
print(‘ ’b, end' ‘’)
print()
 
evolve(1, 30)</syntaxhighlight>
 
{{out}}
<pre>
220 197 147 174 117 97 149 171 100 151
</pre>
 
=={{header|C}}==
64-bits array size, cyclic borders.
<syntaxhighlight lang="c">#include <stdio.h>
#include <limits.h>
 
typedef unsigned long long ull;
#define N (sizeof(ull) * CHAR_BIT)
#define B(x) (1ULL << (x))
 
void evolve(ull state, int rule)
{
int i, p, q, b;
 
for (p = 0; p < 10; p++) {
for (b = 0, q = 8; q--; ) {
ull st = state;
b |= (st&1) << q;
 
for (state = i = 0; i < N; i++)
if (rule & B(7 & (st>>(i-1) | st<<(N+1-i))))
state |= B(i);
}
printf(" %d", b);
}
putchar('\n');
return;
}
 
int main(void)
{
evolve(1, 30);
return 0;
}</syntaxhighlight>
{{out}}
<pre> 220 197 147 174 117 97 149 171 100 151</pre>
 
=={{header|C++}}==
We'll re-write the code of the parent task here.
<syntaxhighlight lang="cpp">#include <bitset>
#include <stdio.h>
 
#define SIZE 80
#define RULE 30
#define RULE_TEST(x) (RULE & 1 << (7 & (x)))
 
void evolve(std::bitset<SIZE> &s) {
int i;
std::bitset<SIZE> t(0);
t[SIZE-1] = RULE_TEST( s[0] << 2 | s[SIZE-1] << 1 | s[SIZE-2] );
t[ 0] = RULE_TEST( s[1] << 2 | s[ 0] << 1 | s[SIZE-1] );
for (i = 1; i < SIZE-1; i++)
t[i] = RULE_TEST( s[i+1] << 2 | s[i] << 1 | s[i-1] );
for (i = 0; i < SIZE; i++) s[i] = t[i];
}
void show(std::bitset<SIZE> s) {
int i;
for (i = SIZE; i--; ) printf("%c", s[i] ? '#' : ' ');
printf("|\n");
}
unsigned char byte(std::bitset<SIZE> &s) {
unsigned char b = 0;
int i;
for (i=8; i--; ) {
b |= s[0] << i;
evolve(s);
}
return b;
}
 
int main() {
int i;
std::bitset<SIZE> state(1);
for (i=10; i--; )
printf("%u%c", byte(state), i ? ' ' : '\n');
return 0;
}</syntaxhighlight>
{{out}}
<pre>220 197 147 174 117 97 149 171 240 241</pre>
 
=={{header|D}}==
{{trans|C}}
Adapted from the C version, with improvements and bug fixes. Optimized for performance as requested in the task description. This is a lazy range.
<syntaxhighlight lang="d">import std.stdio, std.range, std.typecons;
 
struct CellularRNG {
private uint current;
private immutable uint rule;
private ulong state;
 
this(in ulong state_, in uint rule_) pure nothrow @safe @nogc {
this.state = state_;
this.rule = rule_;
popFront;
}
 
public enum bool empty = false;
@property uint front() pure nothrow @safe @nogc { return current; }
 
void popFront() pure nothrow @safe @nogc {
enum uint nBit = 8;
enum uint NU = ulong.sizeof * nBit;
current = 0;
 
foreach_reverse (immutable i; 0 .. nBit) {
immutable state2 = state;
current |= (state2 & 1) << i;
 
state = 0;
/*static*/ foreach (immutable j; staticIota!(0, NU)) {
// To avoid undefined behavior with out-of-range shifts.
static if (j > 0)
immutable aux1 = state2 >> (j - 1);
else
immutable aux1 = state2 >> 63;
 
static if (j == 0)
immutable aux2 = state2 << 1;
else static if (j == 1)
immutable aux2 = state2 << 63;
else
immutable aux2 = state2 << (NU + 1 - j);
 
immutable aux = 7 & (aux1 | aux2);
if (rule & (1UL << aux))
state |= 1UL << j;
}
}
}
}
 
void main() {
CellularRNG(1, 30).take(10).writeln;
CellularRNG(1, 30).drop(2_000_000).front.writeln;
}</syntaxhighlight>
{{out}}
<pre>[220, 197, 147, 174, 117, 97, 149, 171, 100, 151]
44</pre>
Run-time: less than two seconds with the ldc2 compiler.
 
=={{header|FreeBASIC}}==
{{trans|Go}}
<syntaxhighlight lang="vbnet">Const n As Uinteger = 64
 
#define pow2(x) Culng(1) Shl x
 
Sub Evolve(state As Integer, rule As Integer)
Dim As Integer i, p, q
Dim As Ulongint b, st, t1, t2, t3
For p = 0 To 9
b = 0
For q = 7 To 0 Step -1
st = state
b Or= (st And 1) Shl q
state = 0
For i = 0 To n - 1
t1 = Iif(i > 0, st Shr (i - 1), st Shr 63)
Select Case i
Case 0: t2 = st Shl 1
Case 1: t2 = st Shl 63
Case Else: t2 = st Shl (n + 1 - i)
End Select
t3 = 7 And (t1 Or t2)
If (rule And pow2(t3)) <> 0 Then state Or= pow2(i)
Next i
Next q
Print Using "####"; b;
Next p
Print
End Sub
 
Evolve(1, 30)
 
Sleep</syntaxhighlight>
{{out}}
<pre> 220 197 147 174 117 97 149 171 100 151</pre>
 
=={{header|F_Sharp|F#}}==
This task uses [[Elementary cellular automaton#The_Function]]
<syntaxhighlight lang="fsharp">
// Generate random numbers using Rule 30. Nigel Galloway: August 1st., 2019
eca 30 [|yield 1; yield! Array.zeroCreate 99|]|>Seq.chunkBySize 8|>Seq.map(fun n->n|>Array.mapi(fun n g->g.[0]<<<(7-n))|>Array.sum)|>Seq.take 10|>Seq.iter(printf "%d "); printfn ""
</syntaxhighlight>
{{out}}
<pre>
220 197 147 174 117 97 149 171 240 241
</pre>
 
=={{header|Go}}==
{{trans|C}}
<syntaxhighlight lang="go">package main
 
import "fmt"
 
const n = 64
 
func pow2(x uint) uint64 {
return uint64(1) << x
}
 
func evolve(state uint64, rule int) {
for p := 0; p < 10; p++ {
b := uint64(0)
for q := 7; q >= 0; q-- {
st := state
b |= (st & 1) << uint(q)
state = 0
for i := uint(0); i < n; i++ {
var t1, t2, t3 uint64
if i > 0 {
t1 = st >> (i - 1)
} else {
t1 = st >> 63
}
if i == 0 {
t2 = st << 1
} else if i == 1 {
t2 = st << 63
 
} else {
t2 = st << (n + 1 - i)
}
t3 = 7 & (t1 | t2)
if (uint64(rule) & pow2(uint(t3))) != 0 {
state |= pow2(i)
}
}
}
fmt.Printf("%d ", b)
}
fmt.Println()
}
 
func main() {
evolve(1, 30)
}</syntaxhighlight>
 
{{out}}
<pre>
220 197 147 174 117 97 149 171 100 151
</pre>
 
=={{header|Haskell}}==
 
Assume the comonadic solution given at [[Elementary cellular automaton#Haskell]] is packed in a module <code>CellularAutomata</code>
 
<syntaxhighlight lang="haskell">import CellularAutomata (fromList, rule, runCA)
import Control.Comonad
import Data.List (unfoldr)
 
rnd = fromBits <$> unfoldr (pure . splitAt 8) bits
where
size = 80
bits =
extract
<$> runCA
(rule 30)
(fromList (1 : replicate size 0))
 
fromBits = foldl ((+) . (2 *)) 0</syntaxhighlight>
 
{{Out}}
<pre>λ> take 10 rnd
[220,197,147,174,117,97,149,171,240,241]</pre>
 
Using the rule 30 CA it is possible to determine the <code>RandomGen</code> instance which could be utilized by the <code>Random</code> class:
 
<syntaxhighlight lang="haskell">import System.Random
 
instance RandomGen (Cycle Int) where
next c =
let x = c =>> step (rule 30)
in (fromBits (view x), x)
split = (,) <*> (fromList . reverse . view)</syntaxhighlight>
 
<pre>λ> let r30 = fromList [1,0,1,0,1,0,1,0,1,0,1,0,1] :: Cycle Int
 
λ> take 15 $ randoms r30
[7509,4949,2517,2229,2365,2067,6753,5662,5609,7576,2885,3017,2912,5081,2356]
 
λ> take 30 $ randomRs ('A','J') r30
"DHJHHFJHBDDFCBHACHDEHDHFBAEJFE"</pre>
 
We can compare it with standard generator on a small integer range, using simple bin counter:
 
<pre>λ> let bins lst = [ (n, length (filter (==n) lst)) | n <- nub lst]
 
λ> bins . take 10000 . randomRs ('A','J') $ r30
[('D',1098),('H',1097),('J',1093),('F',850),('B',848),('C',1014),('A',1012),('E',1011),('G',1253),('I',724)]
 
λ> bins . take 10000 . randomRs ('A','J') <$> getStdGen
[('G',975),('B',1035),('F',970),('J',1034),('I',956),('H',984),('C',1009),('E',1023),('A',1009),('D',1005)]</pre>
 
=={{header|J}}==
ca is a cellular automata class. The rng class inherits ca and extends it with bit and byte verbs to sample the ca.
<syntaxhighlight lang="j">
coclass'ca'
DOC =: 'locale creation: (RULE ; INITIAL_STATE) conew ''ca'''
create =: 3 :'''RULE STATE'' =: y'
next =: 3 :'STATE =: RULE (((8$2) #: [) {~ [: #. [: -. [: |: |.~"1 0&_1 0 1@]) STATE'
coclass'base'
 
coclass'rng'
coinsert'ca'
bit =: 3 :'([ next) ({. STATE)'
byte =: [: #. [: , [: bit"0 (i.8)"_
coclass'base'
</syntaxhighlight>
Having installed these into a j session we create and use the mathematica prng.
<pre>
m =: (30 ; 64 {. 1) conew 'rng'
byte__m"0 i.10
220 197 147 174 117 97 149 171 100 151
</pre>
 
=={{header|Java}}==
<syntaxhighlight lang="java">
public class ElementaryCellularAutomatonRandomNumberGenerator {
 
public static void main(String[] aArgs) {
final int seed = 989898989;
evolve(seed, 30);
}
private static void evolve(int aState, int aRule) {
long state = aState;
for ( int i = 0; i <= 9; i++ ) {
int b = 0;
for ( int q = 7; q >= 0; q-- ) {
long stateCopy = state;
b |= ( stateCopy & 1 ) << q;
state = 0;
for ( int j = 0; j < BIT_COUNT; j++ ) {
long t = ( stateCopy >>> ( j - 1 ) ) | ( stateCopy << ( BIT_COUNT + 1 - j ) ) & 7;
if ( ( aRule & ( 1L << t ) ) != 0 ) {
state |= 1 << j;
}
}
}
System.out.print(" " + b);
}
System.out.println();
}
private static final int BIT_COUNT = 64;
 
}
</syntaxhighlight>
{{ out }}
<pre>
231 223 191 126 253 251 247 239 223 191
</pre>
 
=={{header|jq}}==
'''Works with jq and gojq, the C and Go implementations of jq'''
 
The following also works with jaq, the Rust implementation of jq, provided
the "include" directive is replaced with the set of definitions from
the parent task, and that a suitable alternative to 100*"0" is
presented.
 
<syntaxhighlight lang=jq>
include "elementary-cellular-automaton" {search : "."};
 
# If using jq, the def of _nwise can be omitted.
def _nwise($n):
def n: if length <= $n then . else .[0:$n] , (.[$n:] | n) end;
n;
 
# Input: an array of bits represented by 0s, 1s, "0"s, or "1"s
# Output: the corresponding decimal on the assumption that the leading bits are least significant,
# e.g. [0,1] => 2
def binary2number:
reduce (.[]|tonumber) as $x ({p:1}; .n += .p * $x | .p *= 2) | .n;
("1" + 100 * "0" ) | [automaton(30; 80) | .[0:1]] | [_nwise(8) | reverse | binary2number]
</syntaxhighlight>
{{output}}
<pre>
[220,197,147,174,117,97,149,171,240,241]
</pre>
 
=={{header|Julia}}==
{{trans|C, Go}}
<syntaxhighlight lang="julia">function evolve(state, rule, N=64)
B(x) = UInt64(1) << x
for p in 0:9
b = UInt64(0)
for q in 7:-1:0
st = UInt64(state)
b |= (st & 1) << q
state = UInt64(0)
for i in 0:N-1
t1 = (i > 0) ? st >> (i - 1) : st >> (N - 1)
t2 = (i == 0) ? st << 1 : (i == 1) ? st << (N - 1) : st << (N + 1 - i)
if UInt64(rule) & B(7 & (t1 | t2)) != 0
state |= B(i)
end
end
end
print("$b ")
end
println()
end
 
evolve(1, 30)
</syntaxhighlight>{{out}}
<pre>
220 197 147 174 117 97 149 171 100 151
</pre>
 
=={{header|Kotlin}}==
{{trans|C}}
<syntaxhighlight lang="scala">// version 1.1.51
 
const val N = 64
 
fun pow2(x: Int) = 1L shl x
 
fun evolve(state: Long, rule: Int) {
var state2 = state
for (p in 0..9) {
var b = 0
for (q in 7 downTo 0) {
val st = state2
b = (b.toLong() or ((st and 1L) shl q)).toInt()
state2 = 0L
for (i in 0 until N) {
val t = ((st ushr (i - 1)) or (st shl (N + 1 - i)) and 7L).toInt()
if ((rule.toLong() and pow2(t)) != 0L) state2 = state2 or pow2(i)
}
}
print(" $b")
}
println()
}
 
fun main(args: Array<String>) {
evolve(1, 30)
}</syntaxhighlight>
 
{{out}}
<pre>
220 197 147 174 117 97 149 171 100 151
</pre>
 
=={{header|Mathematica}} / {{header|Wolfram Language}}==
<syntaxhighlight lang="mathematica">FromDigits[#, 2] & /@ Partition[Flatten[CellularAutomaton[30, {{1}, 0}, {200, 0}]], 8]</syntaxhighlight>
{{out}}
<pre>{220, 197, 147, 174, 117, 97, 149, 171, 240, 241, 92, 18, 199, 27, 104, 8, 251, 167, 29, 112, 100, 103, 159, 129, 253}</pre>
 
=={{header|Nim}}==
{{trans|Kotlin}}
<syntaxhighlight lang="nim">const N = 64
 
template pow2(x: uint): uint = 1u shl x
 
proc evolve(state: uint; rule: Positive) =
var state = state
for _ in 1..10:
var b = 0u
for q in countdown(7, 0):
let st = state
b = b or (st and 1) shl q
state = 0
for i in 0u..<N:
let t = (st shr (i - 1) or st shl (N + 1 - i)) and 7
if (rule.uint and pow2(t)) != 0: state = state or pow2(i)
stdout.write ' ', b
echo ""
 
evolve(1, 30)</syntaxhighlight>
 
{{out}}
<pre> 220 197 147 174 117 97 149 171 100 151</pre>
 
=={{header|Pascal}}==
{{Works with|Free Pascal}}
Using ROR and ROL is as fast as assembler and more portable.<BR>[https://tio.run/##7VZdb@pGEH33r5iHSEAvYJsQ0kBTifBxawmwC6a9bVVFjr3AKmZtrZdwaZS/Xjq7iwPckOThvvQhSHx45szMmbPD7qZBFgZxZZaG263HkzkPljBexeTcahmmuRAibZomYdU1vacpiWhQTfjclE/miHwVtxMRCHIrI26PQpaBWKwTHkfVdRLPMGs1TJamzlxdiGVsPJ45/W6vD32v82QAPJ4Nk4hAl8Tpgj49nrUnw6Hb7YEz8nsDDXA93xk6f7Z9xx2BOyq3B@gwTenqILQ9cD6PIOVJeG0/YfreYNLTgW3P8//wetBxRxN30FPOUdfpPxmrjGQImWyyqaBx1jLChGUCLcvg6zhZsSiDa6j9YFuWpT5a6OLajq9rsNFiPAQczbo3LQg0YUqZaNTRO1uxUNCEwWciOt701qdL0oSdV2xSgrF@J11hNk7ChEcGHLx@oegqH5kGiUQ3oYv6Rq29izB80lwQIBAh07aMOzKnDI1BtpQ0u/6kI6OG7m86BXiCw18I9asq9d/lXvvLKwBFBwFdCVAFAdZULHTFKFFsOMlWMda/1l0WMcibliBbxHBeg0@6gZahwg25XiRacQIOo@JQxBZlMWVk38ChE5PbL1OcGMk8iRaGr1gZR4Q8lBlC96uUl0A/SOJHPNDuYYiyu@NfpSRFmcguSZdMpF2Db11HIyExRQV2x7JOCb7gD8kl7@N5UmQbOvZmg62OAkEfiMOE/H816pUbx4cwYIDDi3PKNij4nGaC8OydLnGsNy5T0@loy807fe@X0tqHgxYfwDSnjCcxCjyHgEWgtJYPL9cB7jawQMxRzqL@@Ul/laQwUj1oj7q61HsCv7EseUevSf5B5IPIB5H/LZHj0/S9nXN/AkxSQiJBMpHv@L5d9i3c8ZzRbgukTTjYUPMNcM2pIDErFp4TwCzhkMn6Gf2HQDKDQrlRLxfgjoqsUNL73@8BX8IqlTguQCSwDu6JNOCJh4A@pqBqu9zdH9RHxcaTcs0QbeVH5qm7lCRvyeCDi4Os@uKc3BXSlZ4vLq9U2Z8rLaXOiQK5Fsfw0qGrEG7CmGSQEg7SiQIXykXfrgirZD5TaFrN2mHYy@Xyg@w@XymqbkVkTviJZfEXBASCQSv/tga2XIndNW3Xukr0TUfN@ilyeWk1CL6aJNjxzNMU4KceXkvHP0s2nATRLrqK5zNec1MakwjkQU2F8cY8Nepqlox63XgpJ16Try4MI@/bgFrNAvvqEuw6vi/rYNuXAOr5Cp9tOWJgX9hGzs04JHNe@y4ydu3H6kXju9hst/@GsziYZ9uKe76tTB7@Aw Try it online!] counting CPU-Cycles 32 vs 31 on Ryzen Zen1 per Byte -> 100Mb/s
<syntaxhighlight lang="pascal">Program Rule30;
//http://en.wikipedia.org/wiki/Next_State_Rule_30;
//http://mathworld.wolfram.com/Rule30.html
{$IFDEF FPC}
{$Mode Delphi}{$ASMMODE INTEL}
{$OPTIMIZATION ON,ALL}
// {$CODEALIGN proc=1}
{$ELSE}
{$APPTYPE CONSOLE}
{$ENDIF}
uses
SysUtils;
const
maxRounds = 2*1000*1000;
rounds = 10;
 
var
Rule30_State : Uint64;
 
function GetCPU_Time: int64;
type
TCpu = record
HiCpu,
LoCpu : Dword;
end;
var
Cput : TCpu;
begin
asm
RDTSC;
MOV Dword Ptr [CpuT.LoCpu],EAX
MOV Dword Ptr [CpuT.HiCpu],EDX
end;
with Cput do
result := int64(HiCPU) shl 32 + LoCpu;
end;
 
procedure InitRule30_State;inline;
begin
Rule30_State:= 1;
end;
 
procedure Next_State_Rule_30;inline;
var
run, prev,next: Uint64;
begin
run := Rule30_State;
Prev := RORQword(run,1);
next := ROLQword(run,1);
Rule30_State := (next OR run) XOR prev;
end;
 
function NextRule30Byte:NativeInt;
//64-BIT can use many registers
//32-Bit still fast
var
run, prev,next: Uint64;
myOne : UInt64;
Begin
run := Rule30_State;
result := 0;
myOne := 1;
//Unrolling and inlining Next_State_Rule_30 by hand
result := (result+result) OR (run AND myOne);
next := ROLQword(run,1);
Prev := RORQword(run,1);
run := (next OR run) XOR prev;
 
result := (result+result) OR (run AND myOne);
next := ROLQword(run,1);
Prev := RORQword(run,1);
run := (next OR run) XOR prev;
 
result := (result+result) OR (run AND myOne);
next := ROLQword(run,1);
Prev := RORQword(run,1);
run := (next OR run) XOR prev;
 
result := (result+result) OR (run AND myOne);
next := ROLQword(run,1);
Prev := RORQword(run,1);
run := (next OR run) XOR prev;
 
result := (result+result) OR (run AND myOne);
next := ROLQword(run,1);
Prev := RORQword(run,1);
run := (next OR run) XOR prev;
 
result := (result+result) OR (run AND myOne);
next := ROLQword(run,1);
Prev := RORQword(run,1);
run := (next OR run) XOR prev;
 
result := (result+result) OR (run AND myOne);
next := ROLQword(run,1);
Prev := RORQword(run,1);
run := (next OR run) XOR prev;
 
result := (result+result) OR (run AND myOne);
next := ROLQword(run,1);
Prev := RORQword(run,1);
Rule30_State := (next OR run) XOR prev;
end;
 
procedure Speedtest;
var
T1,T0 : INt64;
i: NativeInt;
Begin
writeln('Speedtest for statesize of ',64,' bits');
//Warm up start to wake up CPU takes some time
For i := 100*1000*1000-1 downto 0 do
Next_State_Rule_30;
 
T0 := GetCPU_Time;
InitRule30_State;
For i := maxRounds-1 downto 0 do
NextRule30Byte;
T1 := GetCPU_Time;
writeln(NextRule30Byte);
writeln('cycles per Byte : ',(T1-t0)/maxRounds:0:2);
writeln;
end;
 
procedure Task;
var
i: integer;
Begin
writeln('The task ');
InitRule30_State;
For i := 1 to rounds do
write(NextRule30Byte:4);
writeln;
end;
 
Begin
SpeedTest;
Task;
write(' <ENTER> ');readln;
end.</syntaxhighlight>
{{out}}
<pre>//compiled 64-Bit
Speedtest for statesize of 64 bits
44
cycles per Byte : 30.95
 
The task
220 197 147 174 117 97 149 171 100 151
<ENTER>
 
//compiled 32-Bit
Speedtest for statesize of 64 bits
44
cycles per Byte : 128.56
 
The task
220 197 147 174 117 97 149 171 100 151
<ENTER></pre>
 
=={{header|Perl}}==
{{trans|Raku}}
<syntaxhighlight lang="perl">package Automaton {
sub new {
my $class = shift;
my $rule = [ reverse split //, sprintf "%08b", shift ];
return bless { rule => $rule, cells => [ @_ ] }, $class;
}
sub next {
my $this = shift;
my @previous = @{$this->{cells}};
$this->{cells} = [
@{$this->{rule}}[
map {
4*$previous[($_ - 1) % @previous]
+ 2*$previous[$_]
+ $previous[($_ + 1) % @previous]
} 0 .. @previous - 1
]
];
return $this;
}
use overload
q{""} => sub {
my $this = shift;
join '', map { $_ ? '#' : ' ' } @{$this->{cells}}
};
}
 
my $a = Automaton->new(30, 1, map 0, 1 .. 100);
 
for my $n (1 .. 10) {
my $sum = 0;
for my $b (1 .. 8) {
$sum = $sum * 2 + $a->{cells}[0];
$a->next;
}
print $sum, $n == 10 ? "\n" : " ";
}</syntaxhighlight>
{{out}}
<pre>220 197 147 174 117 97 149 171 240 241</pre>
 
=={{header|Phix}}==
Making the minimum possible changes to [[Elementary_cellular_automaton#Phix]], output matches C, D, Go, J, Kotlin, Racket, and zkl,
and with the changes marked [2] C++, Haskell, Perl, Python, Ruby, Scheme, and Sidef, but completely different to Rust and Tcl.
No attempt to optimise.
<!--<syntaxhighlight lang="phix">(phixonline)-->
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #000080;font-style:italic;">--string s = ".........#.........", --(original)</span>
<span style="color: #004080;">string</span> <span style="color: #000000;">s</span> <span style="color: #0000FF;">=</span> <span style="color: #008000;">"...............................#"</span><span style="color: #0000FF;">&</span>
<span style="color: #008000;">"................................"</span><span style="color: #0000FF;">,</span>
<span style="color: #000080;font-style:italic;">--string s = "#"&repeat('.',100), -- [2]</span>
<span style="color: #000000;">t</span><span style="color: #0000FF;">=</span><span style="color: #000000;">s</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">r</span> <span style="color: #0000FF;">=</span> <span style="color: #008000;">"........"</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">rule</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">30</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">k</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">l</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">),</span> <span style="color: #000000;">w</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #000000;">8</span> <span style="color: #008080;">do</span>
<span style="color: #000000;">r</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #008080;">iff</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">mod</span><span style="color: #0000FF;">(</span><span style="color: #000000;">rule</span><span style="color: #0000FF;">,</span><span style="color: #000000;">2</span><span style="color: #0000FF;">)?</span><span style="color: #008000;">'#'</span><span style="color: #0000FF;">:</span><span style="color: #008000;">'.'</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">rule</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">floor</span><span style="color: #0000FF;">(</span><span style="color: #000000;">rule</span><span style="color: #0000FF;">/</span><span style="color: #000000;">2</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #004080;">sequence</span> <span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{}</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">0</span> <span style="color: #008080;">to</span> <span style="color: #000000;">80</span> <span style="color: #008080;">do</span>
<span style="color: #000000;">w</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">w</span><span style="color: #0000FF;">*</span><span style="color: #000000;">2</span> <span style="color: #0000FF;">+</span> <span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">[</span><span style="color: #000000;">32</span><span style="color: #0000FF;">]=</span><span style="color: #008000;">'#'</span><span style="color: #0000FF;">)</span>
<span style="color: #000080;font-style:italic;">-- w = w*2 + (s[1]='#') -- [2]</span>
<span style="color: #008080;">if</span> <span style="color: #7060A8;">mod</span><span style="color: #0000FF;">(</span><span style="color: #000000;">i</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">8</span><span style="color: #0000FF;">)=</span><span style="color: #000000;">0</span> <span style="color: #008080;">then</span> <span style="color: #000000;">res</span><span style="color: #0000FF;">&=</span><span style="color: #000000;">w</span> <span style="color: #000000;">w</span><span style="color: #0000FF;">=</span><span style="color: #000000;">0</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">j</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #000000;">l</span> <span style="color: #008080;">do</span>
<span style="color: #000000;">k</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">[</span><span style="color: #008080;">iff</span><span style="color: #0000FF;">(</span><span style="color: #000000;">j</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span><span style="color: #0000FF;">?</span><span style="color: #000000;">l</span><span style="color: #0000FF;">:</span><span style="color: #000000;">j</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)]=</span><span style="color: #008000;">'#'</span><span style="color: #0000FF;">)*</span><span style="color: #000000;">4</span>
<span style="color: #0000FF;">+</span> <span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">[</span> <span style="color: #000000;">j</span> <span style="color: #0000FF;">]=</span><span style="color: #008000;">'#'</span><span style="color: #0000FF;">)*</span><span style="color: #000000;">2</span>
<span style="color: #0000FF;">+</span> <span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">[</span><span style="color: #008080;">iff</span><span style="color: #0000FF;">(</span><span style="color: #000000;">j</span><span style="color: #0000FF;">=</span><span style="color: #000000;">l</span><span style="color: #0000FF;">?</span><span style="color: #000000;">1</span><span style="color: #0000FF;">:</span><span style="color: #000000;">j</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)]=</span><span style="color: #008000;">'#'</span><span style="color: #0000FF;">)+</span><span style="color: #000000;">1</span>
<span style="color: #000000;">t</span><span style="color: #0000FF;">[</span><span style="color: #000000;">j</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">r</span><span style="color: #0000FF;">[</span><span style="color: #000000;">k</span><span style="color: #0000FF;">]</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #000000;">s</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">t</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #7060A8;">pp</span><span style="color: #0000FF;">(</span><span style="color: #000000;">res</span><span style="color: #0000FF;">)</span>
<!--</syntaxhighlight>-->
{{out}}
<pre>
{220,197,147,174,117,97,149,171,100,151}
</pre>
{{out}}
with the changes marked [2]
<pre>
{220,197,147,174,117,97,149,171,240,241}
</pre>
 
=={{header|Python}}==
===Python: With zero padded ends===
<syntaxhighlight lang="python">from elementary_cellular_automaton import eca, eca_wrap
 
def rule30bytes(lencells=100):
cells = '1' + '0' * (lencells - 1)
gen = eca(cells, 30)
while True:
yield int(''.join(next(gen)[0] for i in range(8)), 2)
 
if __name__ == '__main__':
print([b for i,b in zip(range(10), rule30bytes())])</syntaxhighlight>
 
{{out}}
<pre>[255, 255, 255, 255, 255, 255, 255, 255, 255, 255]</pre>
!
 
===Python: With wrapping of end cells===
<syntaxhighlight lang="python">def rule30bytes(lencells=100):
cells = '1' + '0' * (lencells - 1)
gen = eca_wrap(cells, 30)
while True:
yield int(''.join(next(gen)[0] for i in range(8)), 2))</syntaxhighlight>
 
{{out}}
<pre>[220, 197, 147, 174, 117, 97, 149, 171, 240, 241]</pre>
 
=={{header|Racket}}==
 
Implementation of [[Elementary cellular automaton]] is saved in "Elementary_cellular_automata.rkt"
 
<syntaxhighlight lang="racket">#lang racket
;; below is the code from the parent task
(require "Elementary_cellular_automata.rkt")
(require racket/fixnum)
 
;; This is the RNG automaton
(define (CA30-random-generator
#:rule [rule 30] ; rule 30 is random, maybe you're interested in using others
;; width of the CA... this is implemented as a number of words plus,
;; maybe, another word containing the spare bits
#:bits [bits 256])
(define-values [full-words more-bits]
(quotient/remainder bits usable-bits/fixnum))
(define wrap-rule
(and (positive? more-bits) (wrap-rule-truncate-left-word more-bits)))
(define next-gen (CA-next-generation 30 #:wrap-rule wrap-rule))
(define v (make-fxvector (+ full-words (if more-bits 1 0))))
(fxvector-set! v 0 1) ; this bit will always have significance
 
(define (next-word)
(define-values [v+ o] (next-gen v 0))
(begin0 (fxvector-ref v 0) (set! v v+)))
 
(lambda (bits)
(for/fold ([acc 0]) ([_ (in-range bits)])
;; the CA is fixnum, but this function returns integers of arbitrary width
(bitwise-ior (arithmetic-shift acc 1) (bitwise-and (next-word) 1)))))
 
(module+ main
;; To match the other examples on this page, the automaton is 30+30+4 bits long
;; (i.e. 64 bits)
(define C30-rand-64 (CA30-random-generator #:bits 64))
;; this should be the list from "C"
(for/list ([i 10]) (C30-rand-64 8))
 
; we also do big numbers...
(number->string (C30-rand-64 256) 16)
(number->string (C30-rand-64 256) 16)
(number->string (C30-rand-64 256) 16)
(number->string (C30-rand-64 256) 16))</syntaxhighlight>
 
{{out}}
 
<pre>(220 197 147 174 117 97 149 171 100 151)
"ecd9fbcdcc34604d833950deb58447124b98706e74ccc74d9337cb4e53f38c5e"
"9c8b6471a4bc2cb3508f10b6635e4eb959ad8bbe484480695e8ddb5795f956a"
"6d85153a987dad6f013bc6159a41bf95b9d9b14af87733e17c702a3dc9052172"
"fc6fd302f5ea8f2fba6f476cfe9d090dc877dbd558e5afba49044d05b14d258"</pre>
 
=={{header|Raku}}==
(formerly Perl 6)
<syntaxhighlight lang="raku" line>class Automaton {
has $.rule;
has @.cells handles <AT-POS>;
has @.code = $!rule.fmt('%08b').flip.comb».Int;
method gist { "|{ @!cells.map({+$_ ?? '#' !! ' '}).join }|" }
method succ {
self.new: :$!rule, :@!code, :cells(
@!code[
4 «*« @!cells.rotate(-1)
»+« 2 «*« @!cells
»+« @!cells.rotate(1)
]
)
}
}
 
my Automaton $a .= new: :rule(30), :cells( flat 1, 0 xx 100 );
 
say :2[$a++[0] xx 8] xx 10;</syntaxhighlight>
{{out}}
<pre>220 197 147 174 117 97 149 171 240 241</pre>
 
=={{header|Ruby}}==
<syntaxhighlight lang="ruby">size = 100
eca = ElemCellAutomat.new("1"+"0"*(size-1), 30)
eca.take(80).map{|line| line[0]}.each_slice(8){|bin| p bin.join.to_i(2)}</syntaxhighlight>
{{out}}
<pre>
220
197
147
174
117
97
149
171
240
241
</pre>
 
=={{header|Rust}}==
<syntaxhighlight lang="rust">
//Assuming the code from the Elementary cellular automaton task is in the namespace.
fn main() {
struct WolfGen(ElementaryCA);
impl WolfGen {
fn new() -> WolfGen {
let (_, ca) = ElementaryCA::new(30);
WolfGen(ca)
}
fn next(&mut self) -> u8 {
let mut out = 0;
for i in 0..8 {
out |= ((1 & self.0.next())<<i)as u8;
}
out
}
}
let mut gen = WolfGen::new();
for _ in 0..10 {
print!("{} ", gen.next());
}
}
</syntaxhighlight>
{{out}}
<pre>
157 209 228 58 87 195 212 106 147 244
</pre>
 
=={{header|Scheme}}==
<syntaxhighlight lang="scheme">
; uses SRFI-1 library http://srfi.schemers.org/srfi-1/srfi-1.html
 
(define (random-r30 n)
(let ((r30 (vector 0 1 1 1 1 0 0 0)))
(fold
(lambda (x y ls)
(if (= x 1)
(cons (* x y) ls)
(cons (+ (car ls) (* x y)) (cdr ls))))
'()
(circular-list 1 2 4 8 16 32 64 128)
(unfold-right
(lambda (x) (zero? (car x)))
cadr
(lambda (x) (cons (- (car x) 1)
(evolve (cdr x) r30)))
(cons (* 8 n) (cons 1 (make-list 79 0))))))) ; list
 
(random-r30 10)
</syntaxhighlight>
 
{{out}}
 
<pre>
(220 197 147 174 117 97 149 171 240 241)
</pre>
 
=={{header|Sidef}}==
<syntaxhighlight lang="ruby">var auto = Automaton(30, [1] + 100.of(0));
 
10.times {
var sum = 0;
8.times {
sum = (2*sum + auto.cells[0]);
auto.next;
};
say sum;
};</syntaxhighlight>
{{out}}
<pre>
220
197
147
174
117
97
149
171
240
241
</pre>
 
=={{header|Tcl}}==
{{works with|Tcl|8.6}}
<syntaxhighlight lang="tcl">oo::class create RandomGenerator {
superclass ElementaryAutomaton
variable s
constructor {stateLength} {
next 30
set s [split 1[string repeat 0 $stateLength] ""]
}
 
method rand {} {
set bits {}
while {[llength $bits] < 8} {
lappend bits [lindex $s 0]
set s [my evolve $s]
}
return [scan [join $bits ""] %b]
}
}</syntaxhighlight>
Demonstrating:
<syntaxhighlight lang="tcl">set rng [RandomGenerator new 31]
for {set r {}} {[llength $r]<10} {} {
lappend r [$rng rand]
}
puts [join $r ,]</syntaxhighlight>
{{out}}
220,197,147,174,241,126,135,130,143,234
Note that as the number of state bits is increased (the parameter to the constructor), the sequence tends to a limit of <math>220,</math> <math>197,</math> <math>147,</math> <math>174,</math> <math>117,</math> <math>97,</math> <math>149,</math> <math>171,</math> <math>240,</math> <math>241,</math> <math>\ldots</math> and that deviations from this are due to interactions between the state modification “wavefront” as the automaton wraps round.
 
=={{header|Wren}}==
{{trans|Go}}
{{libheader|Wren-big}}
As Wren cannot deal accurately with 64-bit unsigned integers and bit-wise operations thereon, we need to use BigInt here.
<syntaxhighlight lang="wren">import "./big" for BigInt
 
var n = 64
 
var pow2 = Fn.new { |x| BigInt.one << x }
 
var evolve = Fn.new { |state, rule|
for (p in 0..9) {
var b = BigInt.zero
for (q in 7..0) {
var st = state.copy()
b = b | ((st & 1) << q)
state = BigInt.zero
for (i in 0...n) {
var t1 = (i > 0) ? st >> (i-1) : st >> 63
var t2 = (i == 0) ? st << 1 : (i == 1) ? st << 63 : st << (n+1-i)
var t3 = (t1 | t2) & 7
if ((pow2.call(t3) & rule) != BigInt.zero) state = state | pow2.call(i)
}
}
System.write(" %(b)")
}
System.print()
}
 
evolve.call(BigInt.one, 30)</syntaxhighlight>
 
{{out}}
<pre>
220 197 147 174 117 97 149 171 100 151
</pre>
 
=={{header|zkl}}==
No attempts at extra credit and not fast.
<syntaxhighlight lang="zkl">fcn rule(n){ n=n.toString(2); "00000000"[n.len() - 8,*] + n }
fcn applyRule(rule,cells){
cells=String(cells[-1],cells,cells[0]); // wrap edges
(cells.len() - 2).pump(String,'wrap(n){ rule[7 - cells[n,3].toInt(2)] })
}
fcn rand30{
var r30=rule(30), cells="0"*63 + 1; // 64 bits (8 bytes), arbitrary
n:=0;
do(8){
n=n*2 + cells[-1]; // append bit 0
cells=applyRule(r30,cells); // next state
}
n
}</syntaxhighlight>
Note that "var" in a function is "static" in C, ie function local variables, initialized once.
<syntaxhighlight lang="zkl">do(10){ rand30().print(","); }</syntaxhighlight>
{{out}}
<pre>220 ,197 ,147 ,174 ,117 39 39 136 93 11,97,149,171,100,151,</pre>
2,158

edits