Elementary cellular automaton/Infinite length: Difference between revisions

m
(julia example)
m (→‎{{header|Wren}}: Minor tidy)
 
(18 intermediate revisions by 10 users not shown)
Line 1:
{{draft task}}
 
The purpose of this task is to create a version of an [[Elementary cellular automaton]] whose number of cells is only limited by the memory size of the computer.
Line 14:
 
More complex methods can be imagined, provided it is possible to somehow encode the infinite sections. But for this task we will stick to this simple version.
 
=={{header|11l}}==
{{trans|Nim}}
 
<syntaxhighlight lang="11l">F step(cells, rule)
V result = ‘’
L(i) 0 .< cells.len - 2
V bin = 0
V b = 2
L(n) i .< i + 3
bin += Int(cells[n] == ‘*’) << b
b >>= 1
V a = I (rule [&] (1 << bin)) != 0 {‘*’} E ‘.’
result ‘’= a
R result
 
F addNoCells(&cells)
V left = I cells[0] == ‘*’ {‘.’} E ‘*’
V right = I cells.last == ‘*’ {‘.’} E ‘*’
cells = left‘’cells‘’right
cells = left‘’cells‘’right
 
F evolve(limit, rule)
print(‘Rule #’rule)
V cells = ‘*’
L 0 .< limit
addNoCells(&cells)
V width = 40 + (cells.len >> 1)
print(cells.rjust(width))
cells = step(cells, rule)
 
evolve(35, 90)</syntaxhighlight>
 
{{out}}
<pre>
Rule #90
..*..
..*.*..
..*...*..
..*.*.*.*..
..*.......*..
..*.*.....*.*..
..*...*...*...*..
..*.*.*.*.*.*.*.*..
..*...............*..
..*.*.............*.*..
..*...*...........*...*..
..*.*.*.*.........*.*.*.*..
..*.......*.......*.......*..
..*.*.....*.*.....*.*.....*.*..
..*...*...*...*...*...*...*...*..
..*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*..
..*...............................*..
..*.*.............................*.*..
..*...*...........................*...*..
..*.*.*.*.........................*.*.*.*..
..*.......*.......................*.......*..
..*.*.....*.*.....................*.*.....*.*..
..*...*...*...*...................*...*...*...*..
..*.*.*.*.*.*.*.*.................*.*.*.*.*.*.*.*..
..*...............*...............*...............*..
..*.*.............*.*.............*.*.............*.*..
..*...*...........*...*...........*...*...........*...*..
..*.*.*.*.........*.*.*.*.........*.*.*.*.........*.*.*.*..
..*.......*.......*.......*.......*.......*.......*.......*..
..*.*.....*.*.....*.*.....*.*.....*.*.....*.*.....*.*.....*.*..
..*...*...*...*...*...*...*...*...*...*...*...*...*...*...*...*..
..*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*..
..*...............................................................*..
..*.*.............................................................*.*..
..*...*...........................................................*...*..
</pre>
 
=={{header|C++}}==
<langsyntaxhighlight lang="cpp">
#include <iostream>
#include <iomanip>
Line 58 ⟶ 130:
return 0;
}
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 91 ⟶ 163:
=={{header|D}}==
{{trans|Python}}
<langsyntaxhighlight lang="d">import std.stdio, std.array, std.range, std.typecons, std.string, std.conv,
std.algorithm;
alias R = replicate;
Line 115 ⟶ 187:
}
}
}</langsyntaxhighlight>
The output is the same as the Python entry.
 
Line 121 ⟶ 193:
{{works with|Elixir|1.3}}
{{trans|Ruby}}
<langsyntaxhighlight lang="elixir">
defmodule Elementary_cellular_automaton do
def infinite(cell, rule, times) do
Line 152 ⟶ 224:
IO.puts "\nRule : #{rule}"
Elementary_cellular_automaton.infinite("1", rule, 25)
end)</langsyntaxhighlight>
 
{{out}}
Line 213 ⟶ 285:
=={{header|Go}}==
{{trans|C++}}
<langsyntaxhighlight lang="go">package main
 
import (
Line 274 ⟶ 346:
fmt.Println()
}
}</langsyntaxhighlight>
 
{{out}}
Line 340 ⟶ 412:
First we provide the datatype, the viewer and constructor:
 
<langsyntaxhighlight Haskelllang="haskell">{-# LANGUAGE DeriveFunctor #-}
 
import Control.Comonad
Line 352 ⟶ 424:
fromList [] = fromList [0]
fromList (x:xs) = let zeros = Inf.repeat 0
in Cells zeros x (xs +++ zeros)</langsyntaxhighlight>
 
In order to run the CA on the domain we make it an instance of <code>Comonad</code> class. Running the CA turns to be just an iterative comonadic ''extension'' of the rule:
 
<langsyntaxhighlight Haskelllang="haskell">instance Comonad Cells where
extract (Cells _ x _) = x
duplicate x = Cells (rewind left x) x (rewind right x)
Line 365 ⟶ 437:
 
runCA rule = iterate (=>> step)
where step (Cells (l ::: _) x (r ::: _)) = rule l x r</langsyntaxhighlight>
 
Following is the rule definition and I/O routine:
 
<langsyntaxhighlight Haskelllang="haskell">rule n l x r = n `div` (2^(4*l + 2*x + r)) `mod` 2
 
displayCA n w rule init = mapM_ putStrLn $ take n result
where result = fmap display . view w <$> runCA rule init
display 0 = ' '
display _ = '*'</langsyntaxhighlight>
 
{{Out}}
Line 422 ⟶ 494:
Implementation:
 
<langsyntaxhighlight Jlang="j">ext9=: (9#1-{.!.1),],9#1-{:!.1
trim=: |.@(}.~ ] i. 1-{.)^:2
next=: trim@(((8$2) #: [) {~ 2 #. 1 - [: |: |.~"1 0&_1 0 1@]) ext9</langsyntaxhighlight>
 
In other words, a wrapped version of the [[Elementary_cellular_automaton#J|original implementation]].
Line 430 ⟶ 502:
example use:
 
<langsyntaxhighlight Jlang="j"> ' *'{~90 next^:(i.9) 1
*
* *
Line 439 ⟶ 511:
* * * *
* * * * * * * *
* *</langsyntaxhighlight>
 
Looks like a [[Sierpinski_triangle|Sierpinski triangle]]
 
=={{header|Java}}==
<syntaxhighlight lang="java">
public final class ElementaryCellularAutomatonInfiniteLength {
 
public static void main(String[] aArgs) {
evolve(35, 90);
System.out.println();
}
private static void evolve(int aLimit, int aRule) {
System.out.println(" Rule# " + aRule);
StringBuilder cells = new StringBuilder(Character.toString(STAR));
for ( int i = 0; i < aLimit; i++ ) {
addCells(cells);
final int width = 40 - ( cells.length() >> 1 );
System.out.println(" ".repeat(width) + cells);
cells = nextStep(cells, aRule);
}
}
private static void addCells(StringBuilder aCells) {
final char left = ( aCells.charAt(0) == STAR ) ? DOT : STAR;
final char right = ( aCells.charAt(aCells.length() - 1 ) == STAR ) ? DOT : STAR;
for ( int i = 0; i < 2; i++ ) {
aCells.insert(0, left);
aCells.append(right);
}
}
private static StringBuilder nextStep(StringBuilder aCells, int aRule) {
StringBuilder nextCells = new StringBuilder();
for ( int i = 0; i < aCells.length() - 2; i++ ) {
int binary = 0;
int shift = 2;
for ( int j = i; j < i + 3; j++ ) {
binary += ( ( aCells.charAt(j) == STAR ) ? 1 : 0 ) << shift;
shift >>= 1;
}
final char symbol = ( ( aRule & ( 1 << binary ) ) == 0 ) ? DOT : STAR;
nextCells.append(symbol);
}
return nextCells;
}
private static final char DOT = '.';
private static final char STAR = '*';
 
}
</syntaxhighlight>
{{ out }}
<pre>
Rule# 90
..*..
..*.*..
..*...*..
..*.*.*.*..
..*.......*..
..*.*.....*.*..
..*...*...*...*..
..*.*.*.*.*.*.*.*..
..*...............*..
..*.*.............*.*..
..*...*...........*...*..
..*.*.*.*.........*.*.*.*..
..*.......*.......*.......*..
..*.*.....*.*.....*.*.....*.*..
..*...*...*...*...*...*...*...*..
..*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*..
..*...............................*..
..*.*.............................*.*..
..*...*...........................*...*..
..*.*.*.*.........................*.*.*.*..
..*.......*.......................*.......*..
..*.*.....*.*.....................*.*.....*.*..
..*...*...*...*...................*...*...*...*..
..*.*.*.*.*.*.*.*.................*.*.*.*.*.*.*.*..
..*...............*...............*...............*..
..*.*.............*.*.............*.*.............*.*..
..*...*...........*...*...........*...*...........*...*..
..*.*.*.*.........*.*.*.*.........*.*.*.*.........*.*.*.*..
..*.......*.......*.......*.......*.......*.......*.......*..
..*.*.....*.*.....*.*.....*.*.....*.*.....*.*.....*.*.....*.*..
..*...*...*...*...*...*...*...*...*...*...*...*...*...*...*...*..
..*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*..
..*...............................................................*..
..*.*.............................................................*.*..
..*...*...........................................................*...*..
</pre>
 
=={{header|jq}}==
'''Adapted from [[#Python|Python]]'''
{{works with|jq}}
'''Works with gojq, the Go implementation of jq'''
 
'''Preliminaries'''
<syntaxhighlight lang="jq">
def lpad($len; $fill): tostring | ($len - length) as $l | ($fill * $l)[:$l] + .;
 
def lpad($len): lpad($len; " ");
 
# Like *ix `tr` but it is as though $to is padded with blanks
def tr($from;$to):
explode as $s
| ($from | explode) as $f
| ($to | explode) as $t
| reduce range(0;length) as $i ([];
($f | index($s[$i])) as $ix
| if $ix then . + [$t[$ix] // " "]
else . + [$s[$i]]
end )
| implode;
 
# Input: a non-negative integer
# Output: the corresponding stream of bits (0s and 1s),
# least significant digit first, with a final 0
def stream:
recurse(if . > 0 then ./2|floor else empty end) | . % 2 ;
 
# input: an array, e.g. as produced by [7|stream]
# output: the corresponding binary string
def to_b: reverse | map(tostring) | join("") | sub("^0";"");</syntaxhighlight>
'''The Cellular Automaton'''
<syntaxhighlight lang="jq"># Output: an unbounded stream of the form [count, row]
# giving the rows produced by the eca defined by
# $cells (a string) and $rule (an integer)
def eca_infinite($cells; $rule):
 
def notcell: tr("01";"10") ;
 
def rule2hash($rule):
[$rule | stream] as $r
| reduce range(0;8) as $i ({};
. + { ($i|[stream]|to_b|lpad(3;"0")): ($r[$i] // 0)});
 
rule2hash($rule) as $neighbours2next
| [0, $cells],
foreach range(1; infinite) as $i ({c: $cells};
.c = (.c[0:1]|notcell)*2 + .c + (.c[-1:]|notcell)*2 # Extend and pad the ends
| .c = ([range(1; .c|length - 1) as $i | $neighbours2next[.c[$i-1:$i+2] ]] | join(""));
[$i, .c] ) ;
</syntaxhighlight>
'''The Task'''
<syntaxhighlight lang="jq"># $lines specifies the number of lines to display for each eca
def main($lines):
(90, 30) as $rule
| "\nRule: \($rule)",
(limit($lines; eca_infinite("1"; $rule)
| .[0] as $line
| ($line|lpad(3)) + " " * ($lines - $line) + (.[1] | tr("01"; ".#") )));
 
main(25)</syntaxhighlight>
{{out}}
As for [[#Python|Python]].
=={{header|Julia}}==
{{trans|Python}}
<syntaxhighlight lang="julia">function ecainfinite(cells, rule, n)
<lang julia>notcell(cell) = (cell == '1') ? '0' : '1'
notcell(cell) = (cell == '1') ? '0' : '1'
 
rulebits = reverse(string(rule, base = 2, pad = 8))
function ecainfinite(cells, rule, n)
neighbors2next = Dict(string(n - 1, base=2, pad=3) => rulebits[n] for n in 1:8)
celllength = length(cells)
rulebits = string(rule, base = 2, pad = 8)
neighbors2next = Dict(string(n -1, base=2, pad=3) => rulebits[n] for n in 1:8)
ret = String[]
for i in 1:n
push!(ret, cells)
cells = notcell(cells[1:1])^2 * cells * notcell(cells[end])^2 # Extend/pad ends
cells = join([neighbors2next[cells[i:i+2]] for i in 1:length(cells)-2], "")
end
Line 462 ⟶ 685:
function testinfcells(lines::Integer)
for rule in [90, 30]
println("\nRule: $rule ($(string(rule, base = 2, pad = 8)))")
s = ecainfinite("1", rule, lines)
for i in 1:lines
Line 471 ⟶ 694:
 
testinfcells(25)
</langsyntaxhighlight>{{out}}
<pre>
Rule: 90 (01011010)
1: #
2: .#.#
3: #.##..#
4: .#.#.#.#
5: #.....##..#
6: #.##...##..#.#
7: #.###.##.#...##...#
8: .#.#.#.#.#.#.#.#
9: #.............##..#
10: .#.#...........##..#.#
11: #.##..#.........###..##...#
12: #.#.#.##.......##..#.#.#.#
13: #.....##..#.....##..#.....##..#
14: .#.#...#..#.##...#..#.##...##..#.#
15: #.###.##.#...###...###.##..#.##..#...##...#
16: .#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#
17: #.............................##..#
18: .#.#...........................##..#.#
19: #.##..#.........................###..##...#
20: #.#.#.##.......................##..#.#.#.#
21: #.....##..#.....................##..#.....##..#
22: .#.#...##..#.#...................#..#.##...##..#.#
23: #.###..##...#.##..#.................###..###.##..#...##...#
24: #.#.#.#.#.#.#.##...............##..#.#.#.#.#.#.#.#
25: #.............##..#.............##..#.............##..#
 
Rule: 30 (00011110)
1: #
2: .###
3: ####..#
4: ##.....####
5: ##..#...###
6: ..##...####.###
7: ##.##.#....###..#
8: ..###.##..##..######
9: ##..#.##..###..#.##..#
10: ..##.##..##.##..##...###
11: ##.#####.#..##..#.####.##..#
12: .##.###..#..##.#.###...#.####
13: ##.#.##...###..##..##.#...###
14: ..##.####..##..#####.###..##.###
15: ##.###.#..##..#.###....#..###..###..#
16: .##.####..##.##..#.###...##..###.#..###
17: ##.#.##...####..####.##....#.##.#.##....#
18: ..##.#####..###.##.###....##..##.#.#....###
19: ##.###.#...##.#.###...##...#.#.###.####..##..#
20: .##.####..##.#..###.##.##..###...#.#.....###.####
21: ##.#.##...###.#.####.....####.#.##...#.#...#...###
22: ..##.#####.##..###...#...##.####...#.#..#.#.###.###
23: ##.###.#....#.###..#.###.##..#..####..##...#.#...#..####
24: ##..####..##..#......###.#...#..##.###...#..#...##..######
25: ##.#.##...###..####....##.###.##...#.####.#.#...#.#...#.###
</pre>
 
=={{header|Kotlin}}==
{{trans|C++}}
<langsyntaxhighlight lang="scala">// version 1.1.51
 
fun evolve(l: Int, rule: Int) {
Line 570 ⟶ 793:
evolve(35, 90)
println()
}</langsyntaxhighlight>
 
{{out}}
Line 611 ⟶ 834:
..*...*...........................................................*...*..
</pre>
 
=={{header|Mathematica}} / {{header|Wolfram Language}}==
An infinite background is built-in the language:
<syntaxhighlight lang="mathematica">CellularAutomaton[18, {{1}, 0}, 15] // ArrayPlot
CellularAutomaton[30, {{1}, 0}, 15] // ArrayPlot</syntaxhighlight>
 
=={{header|Nim}}==
{{trans|Kotlin}}
<syntaxhighlight lang="nim">import strutils
 
 
func step(cells: string; rule: int): string =
for i in 0..(cells.len - 3):
var bin = 0
var b = 2
for n in i..(i + 2):
inc bin, ord(cells[n] == '*') shl b
b = b shr 1
let a = if (rule and 1 shl bin) != 0: '*' else: '.'
result.add(a)
 
 
func addNoCells(cells: var string) =
let left = if cells[0] == '*': "." else: "*"
let right = if cells[^1] == '*': "." else: "*"
cells.insert(left)
cells.add(right)
cells.insert(left)
cells.add(right)
 
 
proc evolve(limit, rule: int) =
echo "Rule #", rule
var cells = "*"
for _ in 0..<limit:
cells.addNoCells()
let width = 40 + cells.len shr 1
echo cells.align(width)
cells = cells.step(rule)
 
 
evolve(35, 90)</syntaxhighlight>
 
{{out}}
<pre>Rule #90
..*..
..*.*..
..*...*..
..*.*.*.*..
..*.......*..
..*.*.....*.*..
..*...*...*...*..
..*.*.*.*.*.*.*.*..
..*...............*..
..*.*.............*.*..
..*...*...........*...*..
..*.*.*.*.........*.*.*.*..
..*.......*.......*.......*..
..*.*.....*.*.....*.*.....*.*..
..*...*...*...*...*...*...*...*..
..*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*..
..*...............................*..
..*.*.............................*.*..
..*...*...........................*...*..
..*.*.*.*.........................*.*.*.*..
..*.......*.......................*.......*..
..*.*.....*.*.....................*.*.....*.*..
..*...*...*...*...................*...*...*...*..
..*.*.*.*.*.*.*.*.................*.*.*.*.*.*.*.*..
..*...............*...............*...............*..
..*.*.............*.*.............*.*.............*.*..
..*...*...........*...*...........*...*...........*...*..
..*.*.*.*.........*.*.*.*.........*.*.*.*.........*.*.*.*..
..*.......*.......*.......*.......*.......*.......*.......*..
..*.*.....*.*.....*.*.....*.*.....*.*.....*.*.....*.*.....*.*..
..*...*...*...*...*...*...*...*...*...*...*...*...*...*...*...*..
..*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*..
..*...............................................................*..
..*.*.............................................................*.*..
..*...*...........................................................*...*..</pre>
 
=={{header|Perl}}==
The edges of a pattern is implicitly repeating. The code will try to lineup output by padding up to 40 spaces to the left, but since the cells keep expanding, that has to end somewhere.
<langsyntaxhighlight lang="perl">sub evolve {
my ($rule, $pattern) = @_;
my $offset = 0;
Line 635 ⟶ 938:
}
 
evolve(90, "010");</langsyntaxhighlight>
{{out}}
<pre>
Line 652 ⟶ 955:
-13| ..#.......#.......#.......#..
---(infinite more lines snipped)---
</pre>
 
=={{header|Perl 6}}==
This version, while it is ''capable'' of working with infinite length cellular automata, makes the assumption that any cells which have not been explicitly examined are in a 'null' state, neither '0' or '1'. Further it makes the assumption that a null cell, on being examined, initially contains nothing (░). Otherwise it would take infinite time to calculate every row and would be exceptionally boring to watch.
 
Based heavily on the code from the [[One-dimensional_cellular_automata#Perl_6|One-dimensional cellular automata]] task. Example uses rule 90 (Sierpinski triangle).
 
<lang perl6>class Automaton {
has $.rule;
has @.cells;
has @.code = $!rule.fmt('%08b').flip.comb».Int;
 
method gist { @!cells.map({+$_ ?? '▲' !! '░'}).join }
 
method succ {
self.new: :$!rule, :@!code, :cells(
' ',
|@!code[
4 «*« @!cells.rotate(-1)
»+« 2 «*« @!cells
»+« @!cells.rotate(1)
],
' '
)
}
}
 
my Automaton $a .= new: :rule(90), :cells(flat '010'.comb);
 
# display the first 20 rows
say $a++ for ^20;
 
# then calculate the other infinite number of rows, (may take a while)
$a++ for ^Inf;</lang>
{{out}}
<pre>░▲░
░▲░▲░
░▲░░░▲░
░▲░▲░▲░▲░
░▲░░░░░░░▲░
░▲░▲░░░░░▲░▲░
░▲░░░▲░░░▲░░░▲░
░▲░▲░▲░▲░▲░▲░▲░▲░
░▲░░░░░░░░░░░░░░░▲░
░▲░▲░░░░░░░░░░░░░▲░▲░
░▲░░░▲░░░░░░░░░░░▲░░░▲░
░▲░▲░▲░▲░░░░░░░░░▲░▲░▲░▲░
░▲░░░░░░░▲░░░░░░░▲░░░░░░░▲░
░▲░▲░░░░░▲░▲░░░░░▲░▲░░░░░▲░▲░
░▲░░░▲░░░▲░░░▲░░░▲░░░▲░░░▲░░░▲░
░▲░▲░▲░▲░▲░▲░▲░▲░▲░▲░▲░▲░▲░▲░▲░▲░
░▲░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░▲░
░▲░▲░░░░░░░░░░░░░░░░░░░░░░░░░░░░░▲░▲░
░▲░░░▲░░░░░░░░░░░░░░░░░░░░░░░░░░░▲░░░▲░
░▲░▲░▲░▲░░░░░░░░░░░░░░░░░░░░░░░░░▲░▲░▲░▲░
^C
</pre>
 
=={{header|Phix}}==
Uses 0-expansion either side
<!--<syntaxhighlight lang="phix">(phixonline)-->
<lang Phix>string s = ".#.",
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
t=s, r = "........"
<span style="color: #004080;">string</span> <span style="color: #000000;">s</span> <span style="color: #0000FF;">=</span> <span style="color: #008000;">".#."</span><span style="color: #0000FF;">,</span>
integer rule = 18, k, l = length(s), w = 0
<span style="color: #000000;">t</span><span style="color: #0000FF;">=</span><span style="color: #000000;">s</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">r</span> <span style="color: #0000FF;">=</span> <span style="color: #008000;">"........"</span>
for i=1 to 8 do
<span style="color: #004080;">integer</span> <span style="color: #000000;">rule</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">18</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">k</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">l</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">),</span> <span style="color: #000000;">w</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span>
r[i] = iff(mod(rule,2)?'#':'.')
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #000000;">8</span> <span style="color: #008080;">do</span>
rule = floor(rule/2)
<span style="color: #000000;">r</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #008080;">iff</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">mod</span><span style="color: #0000FF;">(</span><span style="color: #000000;">rule</span><span style="color: #0000FF;">,</span><span style="color: #000000;">2</span><span style="color: #0000FF;">)?</span><span style="color: #008000;">'#'</span><span style="color: #0000FF;">:</span><span style="color: #008000;">'.'</span><span style="color: #0000FF;">)</span>
end for
<span style="color: #000000;">rule</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">floor</span><span style="color: #0000FF;">(</span><span style="color: #000000;">rule</span><span style="color: #0000FF;">/</span><span style="color: #000000;">2</span><span style="color: #0000FF;">)</span>
for i=0 to 25 do
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
?repeat(' ',floor((55-length(s))/2))&s
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">0</span> <span style="color: #008080;">to</span> <span style="color: #000000;">25</span> <span style="color: #008080;">do</span>
for j=1 to l do
<span style="color: #0000FF;">?</span><span style="color: #7060A8;">repeat</span><span style="color: #0000FF;">(</span><span style="color: #008000;">' '</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">floor</span><span style="color: #0000FF;">((</span><span style="color: #000000;">55</span><span style="color: #0000FF;">-</span><span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">))/</span><span style="color: #000000;">2</span><span style="color: #0000FF;">))&</span><span style="color: #000000;">s</span>
k = (s[iff(j=1?l:j-1)]='#')*4
<span style="color: #008080;">for</span> <span style="color: #000000;">j</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #000000;">l</span> <span style="color: #008080;">do</span>
+ (s[ j ]='#')*2
<span style="color: #000000;">k</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">[</span><span style="color: #008080;">iff</span><span style="color: #0000FF;">(</span><span style="color: #000000;">j</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span><span style="color: #0000FF;">?</span><span style="color: #000000;">l</span><span style="color: #0000FF;">:</span><span style="color: #000000;">j</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)]=</span><span style="color: #008000;">'#'</span><span style="color: #0000FF;">)*</span><span style="color: #000000;">4</span>
+ (s[iff(j=l?1:j+1)]='#')+1
<span style="color: #0000FF;">+</span> <span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">[</span> <span style="color: #000000;">j</span> <span style="color: #0000FF;">]=</span><span style="color: #008000;">'#'</span><span style="color: #0000FF;">)*</span><span style="color: #000000;">2</span>
t[j] = r[k]
<span style="color: #0000FF;">+</span> <span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">[</span><span style="color: #008080;">iff</span><span style="color: #0000FF;">(</span><span style="color: #000000;">j</span><span style="color: #0000FF;">=</span><span style="color: #000000;">l</span><span style="color: #0000FF;">?</span><span style="color: #000000;">1</span><span style="color: #0000FF;">:</span><span style="color: #000000;">j</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)]=</span><span style="color: #008000;">'#'</span><span style="color: #0000FF;">)+</span><span style="color: #000000;">1</span>
end for
<span style="color: #000000;">t</span><span style="color: #0000FF;">[</span><span style="color: #000000;">j</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">r</span><span style="color: #0000FF;">[</span><span style="color: #000000;">k</span><span style="color: #0000FF;">]</span>
if t[1]='#' then t = '.'&t end if
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
if t[$]='#' then t = t&'.' end if
<span style="color: #008080;">if</span> <span style="color: #000000;">t</span><span style="color: #0000FF;">[</span><span style="color: #000000;">1</span><span style="color: #0000FF;">]=</span><span style="color: #008000;">'#'</span> <span style="color: #008080;">then</span> <span style="color: #000000;">t</span> <span style="color: #0000FF;">=</span> <span style="color: #008000;">'.'</span><span style="color: #0000FF;">&</span><span style="color: #000000;">t</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
l = length(t)
<span style="color: #008080;">if</span> <span style="color: #000000;">t</span><span style="color: #0000FF;">[$]=</span><span style="color: #008000;">'#'</span> <span style="color: #008080;">then</span> <span style="color: #000000;">t</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">t</span><span style="color: #0000FF;">&</span><span style="color: #008000;">'.'</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
s = t
<span style="color: #000000;">l</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">t</span><span style="color: #0000FF;">)</span>
end for</lang>
<span style="color: #000000;">s</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">t</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<!--</syntaxhighlight>-->
{{out}}
<pre>
Line 765 ⟶ 1,015:
Infinite generator but only print 25 lines of each rule.
 
<langsyntaxhighlight lang="python">def _notcell(c):
return '0' if c == '1' else '1'
 
Line 785 ⟶ 1,035:
print('\nRule: %i' % rule)
for i, c in zip(range(lines), eca_infinite('1', rule)):
print('%2i: %s%s' % (i, ' '*(lines - i), c.replace('0', '.').replace('1', '#')))</langsyntaxhighlight>
 
{{out}}
Line 846 ⟶ 1,096:
Uses solution to [[Elementary cellular automaton]] saved in file "Elementary_cellular_automata.rkt"
 
<langsyntaxhighlight lang="racket">#lang racket
; below is the code from the parent task
(require "Elementary_cellular_automata.rkt")
Line 878 ⟶ 1,128:
(show-automaton v #:step step #:push-right o)
(newline)
(ng/90/infinite v o)))</langsyntaxhighlight>
 
{{out}}
Line 924 ⟶ 1,174:
#fx(536879104 0 33554944)
0</pre>
 
=={{header|Raku}}==
(formerly Perl 6)
This version, while it is ''capable'' of working with infinite length cellular automata, makes the assumption that any cells which have not been explicitly examined are in a 'null' state, neither '0' or '1'. Further it makes the assumption that a null cell, on being examined, initially contains nothing (░). Otherwise it would take infinite time to calculate every row and would be exceptionally boring to watch.
 
Based heavily on the code from the [[One-dimensional_cellular_automata#Raku|One-dimensional cellular automata]] task. Example uses rule 90 (Sierpinski triangle).
 
<syntaxhighlight lang="raku" line>class Automaton {
has $.rule;
has @.cells;
has @.code = $!rule.fmt('%08b').flip.comb».Int;
 
method gist { @!cells.map({+$_ ?? '▲' !! '░'}).join }
 
method succ {
self.new: :$!rule, :@!code, :cells(
' ',
|@!code[
4 «*« @!cells.rotate(-1)
»+« 2 «*« @!cells
»+« @!cells.rotate(1)
],
' '
)
}
}
 
my Automaton $a .= new: :rule(90), :cells(flat '010'.comb);
 
# display the first 20 rows
say $a++ for ^20;
 
# then calculate the other infinite number of rows, (may take a while)
$a++ for ^Inf;</syntaxhighlight>
{{out}}
<pre>░▲░
░▲░▲░
░▲░░░▲░
░▲░▲░▲░▲░
░▲░░░░░░░▲░
░▲░▲░░░░░▲░▲░
░▲░░░▲░░░▲░░░▲░
░▲░▲░▲░▲░▲░▲░▲░▲░
░▲░░░░░░░░░░░░░░░▲░
░▲░▲░░░░░░░░░░░░░▲░▲░
░▲░░░▲░░░░░░░░░░░▲░░░▲░
░▲░▲░▲░▲░░░░░░░░░▲░▲░▲░▲░
░▲░░░░░░░▲░░░░░░░▲░░░░░░░▲░
░▲░▲░░░░░▲░▲░░░░░▲░▲░░░░░▲░▲░
░▲░░░▲░░░▲░░░▲░░░▲░░░▲░░░▲░░░▲░
░▲░▲░▲░▲░▲░▲░▲░▲░▲░▲░▲░▲░▲░▲░▲░▲░
░▲░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░▲░
░▲░▲░░░░░░░░░░░░░░░░░░░░░░░░░░░░░▲░▲░
░▲░░░▲░░░░░░░░░░░░░░░░░░░░░░░░░░░▲░░░▲░
░▲░▲░▲░▲░░░░░░░░░░░░░░░░░░░░░░░░░▲░▲░▲░▲░
^C
</pre>
 
=={{header|Ruby}}==
{{trans|Python}}
<langsyntaxhighlight lang="ruby">def notcell(c)
c.tr('01','10')
end
Line 951 ⟶ 1,258:
end
end
end</langsyntaxhighlight>
The output is the same as the Python entry.
 
=={{header|Sidef}}==
{{trans|Perl}}
<langsyntaxhighlight lang="ruby">func evolve(rule, bin) {
var offset = 0
var (l='', r='')
Line 969 ⟶ 1,276:
}
 
evolve(90, "010")</langsyntaxhighlight>
{{out}}
<pre>
Line 997 ⟶ 1,304:
=={{header|Tcl}}==
{{works with|Tcl|8.6}}
<langsyntaxhighlight lang="tcl">package require Tcl 8.6
 
oo::class create InfiniteElementaryAutomaton {
Line 1,052 ⟶ 1,359:
$rule run 25
$rule destroy
}</langsyntaxhighlight>
{{out}}
<pre>
Line 1,109 ⟶ 1,416:
….##..#...###..####...##.#####...#.#####.#..#.....#.…
.##.####.##..###...#.##..#....#.##.#.....#####...###.
</pre>
 
=={{header|Wren}}==
{{trans|Kotlin}}
{{libheader|Wren-fmt}}
<syntaxhighlight lang="wren">import "./fmt" for Fmt
 
var addNoCells = Fn.new { |s|
var l = (s[0] == "*") ? "." : "*"
var r = (s[-1] == "*") ? "." : "*"
for (i in 0..1) {
s.insert(0, l)
s.add(r)
}
}
 
var step = Fn.new { |cells, rule|
var newCells = []
for (i in 0...cells.count - 2) {
var bin = 0
var b = 2
for (n in i...i + 3) {
bin = bin + (((cells[n] == "*") ? 1 : 0) << b)
b = b >> 1
}
var a = ((rule & (1 << bin)) != 0) ? "*" : "."
newCells.add(a)
}
return newCells
}
 
var evolve = Fn.new { |l, rule|
System.print(" Rule #%(rule):")
var cells = ["*"]
for (x in 0...l) {
addNoCells.call(cells)
var width = 40 + (cells.count >> 1)
Fmt.print("$*s", width, cells.join())
cells = step.call(cells, rule)
}
}
 
evolve.call(35, 90)
System.print()</syntaxhighlight>
 
{{out}}
<pre>
Rule #90:
..*..
..*.*..
..*...*..
..*.*.*.*..
..*.......*..
..*.*.....*.*..
..*...*...*...*..
..*.*.*.*.*.*.*.*..
..*...............*..
..*.*.............*.*..
..*...*...........*...*..
..*.*.*.*.........*.*.*.*..
..*.......*.......*.......*..
..*.*.....*.*.....*.*.....*.*..
..*...*...*...*...*...*...*...*..
..*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*..
..*...............................*..
..*.*.............................*.*..
..*...*...........................*...*..
..*.*.*.*.........................*.*.*.*..
..*.......*.......................*.......*..
..*.*.....*.*.....................*.*.....*.*..
..*...*...*...*...................*...*...*...*..
..*.*.*.*.*.*.*.*.................*.*.*.*.*.*.*.*..
..*...............*...............*...............*..
..*.*.............*.*.............*.*.............*.*..
..*...*...........*...*...........*...*...........*...*..
..*.*.*.*.........*.*.*.*.........*.*.*.*.........*.*.*.*..
..*.......*.......*.......*.......*.......*.......*.......*..
..*.*.....*.*.....*.*.....*.*.....*.*.....*.*.....*.*.....*.*..
..*...*...*...*...*...*...*...*...*...*...*...*...*...*...*...*..
..*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*..
..*...............................................................*..
..*.*.............................................................*.*..
..*...*...........................................................*...*..
</pre>
 
=={{header|zkl}}==
{{trans|D}}
<langsyntaxhighlight lang="zkl">nLines,flipCell := 25, fcn(c){ (c=="1") and "0" or "1" };
foreach rule in (T(90,30)){
println("\nRule: ", rule);
Line 1,125 ⟶ 1,515:
C=[1..C.len()-2].pump(String,'wrap(n){ neighs2next[C[n-1,3]] });
}
}</langsyntaxhighlight>
{{out}}
<pre>
9,479

edits