Continued fraction: Difference between revisions

m
(Added felix language example)
 
(115 intermediate revisions by 50 users not shown)
Line 17:
:<math>\pi = 3 + \cfrac{1}{6 + \cfrac{9}{6 + \cfrac{25}{6 + \ddots}}}</math>
 
 
;See also<nowiki>:</nowiki>
;See also:
* [[Continued fraction/Arithmetic]] for tasks that do arithmetic over continued fractions.
:* &nbsp; [[Continued fraction/Arithmetic]] for tasks that do arithmetic over continued fractions.
<br><br>
 
=={{header|11l}}==
<syntaxhighlight lang="11l">F calc(f_a, f_b, =n = 1000)
V r = 0.0
L n > 0
r = f_b(n) / (f_a(n) + r)
n--
R f_a(0) + r
 
print(calc(n -> I n > 0 {2} E 1, n -> 1))
print(calc(n -> I n > 0 {n} E 2, n -> I n > 1 {n - 1} E 1))
print(calc(n -> I n > 0 {6} E 3, n -> (2 * n - 1) ^ 2))</syntaxhighlight>
 
=={{header|Action!}}==
{{libheader|Action! Tool Kit}}
<syntaxhighlight lang="action!">INCLUDE "D2:REAL.ACT" ;from the Action! Tool Kit
 
DEFINE PTR="CARD"
DEFINE JSR="$20"
DEFINE RTS="$60"
 
PROC CoeffA=*(INT n REAL POINTER res)
[JSR $00 $00 ;JSR to address set by SetCoeffA
RTS]
 
PROC CoeffB=*(INT n REAL POINTER res)
[JSR $00 $00 ;JSR to address set by SetCoeffB
RTS]
 
PROC SetCoeffA(PTR p)
PTR addr
 
addr=CoeffA+1 ;location of address of JSR
PokeC(addr,p)
RETURN
 
PROC SetCoeffB(PTR p)
PTR addr
 
addr=CoeffB+1 ;location of address of JSR
PokeC(addr,p)
RETURN
 
PROC Calc(PTR funA,funB INT count REAL POINTER res)
INT i
REAL a,b,tmp
 
SetCoeffA(funA)
SetCoeffB(funB)
 
IntToReal(0,res)
i=count
WHILE i>0
DO
CoeffA(i,a)
CoeffB(i,b)
RealAdd(a,res,tmp)
RealDiv(b,tmp,res)
i==-1
OD
CoeffA(0,a)
RealAdd(a,res,tmp)
RealAssign(tmp,res)
RETURN
 
PROC sqrtA(INT n REAL POINTER res)
IF n>0 THEN
IntToReal(2,res)
ELSE
IntToReal(1,res)
FI
RETURN
 
PROC sqrtB(INT n REAL POINTER res)
IntToReal(1,res)
RETURN
 
PROC napierA(INT n REAL POINTER res)
IF n>0 THEN
IntToReal(n,res)
ELSE
IntToReal(2,res)
FI
RETURN
 
PROC napierB(INT n REAL POINTER res)
IF n>1 THEN
IntToReal(n-1,res)
ELSE
IntToReal(1,res)
FI
RETURN
 
PROC piA(INT n REAL POINTER res)
IF n>0 THEN
IntToReal(6,res)
ELSE
IntToReal(3,res)
FI
RETURN
 
PROC piB(INT n REAL POINTER res)
REAL tmp
 
IntToReal(2*n-1,tmp)
RealMult(tmp,tmp,res)
RETURN
 
PROC Main()
REAL res
 
Put(125) PutE() ;clear the screen
 
Calc(sqrtA,sqrtB,50,res)
Print(" Sqrt2=") PrintRE(res)
 
Calc(napierA,napierB,50,res)
Print("Napier=") PrintRE(res)
 
Calc(piA,piB,500,res)
Print(" Pi=") PrintRE(res)
RETURN</syntaxhighlight>
{{out}}
[https://gitlab.com/amarok8bit/action-rosetta-code/-/raw/master/images/Continued_fraction.png Screenshot from Atari 8-bit computer]
<pre>
Sqrt2=1.41421356
Napier=2.71828182
Pi=3.14159265
</pre>
 
=={{header|Ada}}==
Line 24 ⟶ 155:
 
Generic function for estimating continued fractions:
<langsyntaxhighlight Adalang="ada">generic
type Scalar is digits <>;
 
with function A (N : in Natural) return Natural;
with function B (N : in Positive) return Natural;
function Continued_Fraction (Steps : in Natural) return Scalar;</langsyntaxhighlight>
 
<langsyntaxhighlight Adalang="ada">function Continued_Fraction (Steps : in Natural) return Scalar is
function A (N : in Natural) return Scalar is (Scalar (Natural'(A (N))));
function B (N : in Positive) return Scalar is (Scalar (Natural'(B (N))));
Line 41 ⟶ 172:
end loop;
return A (0) + Fraction;
end Continued_Fraction;</langsyntaxhighlight>
Test program using the function above to estimate the square root of 2, Napiers constant and pi:
<langsyntaxhighlight Adalang="ada">with Ada.Text_IO;
 
with Continued_Fraction;
Line 77 ⟶ 208:
Put (Napiers_Constant.Estimate (200), Exp => 0); New_Line;
Put (Pi.Estimate (10000), Exp => 0); New_Line;
end Test_Continued_Fractions;</langsyntaxhighlight>
===Using only Ada 95 features===
This example is exactly the same as the preceding one, but implemented using only Ada 95 features.
<langsyntaxhighlight Adalang="ada">generic
type Scalar is digits <>;
 
with function A (N : in Natural) return Natural;
with function B (N : in Positive) return Natural;
function Continued_Fraction_Ada95 (Steps : in Natural) return Scalar;</langsyntaxhighlight>
 
<langsyntaxhighlight Adalang="ada">function Continued_Fraction_Ada95 (Steps : in Natural) return Scalar is
function A (N : in Natural) return Scalar is
begin
Line 104 ⟶ 235:
end loop;
return A (0) + Fraction;
end Continued_Fraction_Ada95;</langsyntaxhighlight>
<langsyntaxhighlight Adalang="ada">with Ada.Text_IO;
 
with Continued_Fraction_Ada95;
Line 191 ⟶ 322:
Put (Napiers_Constant.Estimate (200), Exp => 0); New_Line;
Put (Pi.Estimate (10000), Exp => 0); New_Line;
end Test_Continued_Fractions_Ada95;</langsyntaxhighlight>
{{out}}
<pre> 1.41421356237310
2.71828182845905
3.14159265358954</pre>
 
=={{header|ALGOL 68}}==
{{works with|Algol 68 Genie|2.8}}
<syntaxhighlight lang="algol68">
PROC cf = (INT steps, PROC (INT) INT a, PROC (INT) INT b) REAL:
BEGIN
REAL result;
result := 0;
FOR n FROM steps BY -1 TO 1 DO
result := b(n) / (a(n) + result)
OD;
a(0) + result
END;
 
PROC asqr2 = (INT n) INT: (n = 0 | 1 | 2);
PROC bsqr2 = (INT n) INT: 1;
 
PROC anap = (INT n) INT: (n = 0 | 2 | n);
PROC bnap = (INT n) INT: (n = 1 | 1 | n - 1);
 
PROC api = (INT n) INT: (n = 0 | 3 | 6);
PROC bpi = (INT n) INT: (n = 1 | 1 | (2 * n - 1) ** 2);
 
INT precision = 10000;
 
print (("Precision: ", precision, newline));
print (("Sqr(2): ", cf(precision, asqr2, bsqr2), newline));
print (("Napier: ", cf(precision, anap, bnap), newline));
print (("Pi: ", cf(precision, api, bpi)))
</syntaxhighlight>
{{out}}
<pre>
Precision: +10000
Sqr(2): +1.41421356237310e +0
Napier: +2.71828182845905e +0
Pi: +3.14159265358954e +0
</pre>
 
=={{header|Arturo}}==
{{trans|Nim}}
<syntaxhighlight lang="rebol">calc: function [f, n][
[a, b, temp]: 0.0
 
loop n..1 'i [
[a, b]: call f @[i]
temp: b // a + temp
]
[a, b]: call f @[0]
return a + temp
]
 
sqrt2: function [n][
(n > 0)? -> [2.0, 1.0] -> [1.0, 1.0]
]
 
napier: function [n][
a: (n > 0)? -> to :floating n -> 2.0
b: (n > 1)? -> to :floating n-1 -> 1.0
@[a, b]
]
 
Pi: function [n][
a: (n > 0)? -> 6.0 -> 3.0
b: ((2 * to :floating n)-1) ^ 2
@[a, b]
]
 
print calc 'sqrt2 20
print calc 'napier 15
print calc 'Pi 10000</syntaxhighlight>
 
{{out}}
 
<pre>1.414213562373095
2.718281828459046
3.141592653589544</pre>
 
=={{header|ATS}}==
A fairly direct translation of the [[#C|C version]] without using advanced features of the type system:
<langsyntaxhighlight ATSlang="ats">#include
"share/atspre_staload.hats"
//
Line 268 ⟶ 475:
println! ("napier = ", calc(napier, 100));
println! (" pi = ", calc( pi , 100));
) (* end of [main0] *)</langsyntaxhighlight>
 
=={{header|AutoHotkey}}==
<langsyntaxhighlight AutoHotkeylang="autohotkey">sqrt2_a(n) ; function definition is as simple as that
{
return n?2.0:1.0
Line 281 ⟶ 488:
}
 
navier_anapier_a(n)
{
return n?n:2.0
}
 
navier_bnapier_b(n)
{
return n>1.0?n-1.0:1.0
Line 317 ⟶ 524:
}
 
Msgbox, % "sqrt 2 = " . calc("sqrt2", 1000) . "`ne = " . calc("naviernapier", 1000) . "`npi = " . calc("pi", 1000)</langsyntaxhighlight>
Output with Autohotkey v1 (currently 1.1.16.05):
<langsyntaxhighlight AutoHotkeylang="autohotkey">sqrt 2 = 1.414214
e = 2.718282
pi = 3.141593</langsyntaxhighlight>
Output with Autohotkey v2 (currently alpha 56):
<langsyntaxhighlight AutoHotkeylang="autohotkey">sqrt 2 = 1.4142135623730951
e = 2.7182818284590455
pi = 3.1415926533405418</langsyntaxhighlight>
Note the far superiour accuracy of v2.
 
=={{header|Axiom}}==
Axiom provides a ContinuedFraction domain:
<langsyntaxhighlight Axiomlang="axiom">get(obj) == convergents(obj).1000 -- utility to extract the 1000th value
get continuedFraction(1, repeating [1], repeating [2]) :: Float
get continuedFraction(2, cons(1,[i for i in 1..]), [i for i in 1..]) :: Float
get continuedFraction(3, [i^2 for i in 1.. by 2], repeating [6]) :: Float</langsyntaxhighlight>
Output:<langsyntaxhighlight Axiomlang="axiom"> (1) 1.4142135623 730950488
Type: Float
 
Line 340 ⟶ 548:
 
(3) 3.1415926538 39792926
Type: Float</langsyntaxhighlight>
The value for <math>\pi</math> has an accuracy to only 9 decimal places after 1000 iterations, with an accuracy to 12 decimal places after 10000 iterations.
 
We could re-implement this, with the same output:
<langsyntaxhighlight Axiomlang="axiom">cf(initial, a, b, n) ==
n=1 => initial
temp := 0
Line 352 ⟶ 560:
cf(1, repeating [1], repeating [2], 1000) :: Float
cf(2, cons(1,[i for i in 1..]), [i for i in 1..], 1000) :: Float
cf(3, [i^2 for i in 1.. by 2], repeating [6], 1000) :: Float</langsyntaxhighlight>
 
=={{header|BBC BASIC}}==
{{works with|BBC BASIC for Windows}}
<langsyntaxhighlight lang="bbcbasic"> *FLOAT64
@% = &1001010
Line 371 ⟶ 579:
expr$ += STR$(EVAL(a$)) + "+" + STR$(EVAL(b$)) + "/("
UNTIL LEN(expr$) > (65500 - N)
= a0 + b1 / EVAL (expr$ + "1" + STRING$(N, ")"))</langsyntaxhighlight>
{{out}}
<pre>
Line 381 ⟶ 589:
=={{header|C}}==
{{works with|ANSI C}}
<langsyntaxhighlight lang="c">/* calculate approximations for continued fractions */
#include <stdio.h>
 
Line 451 ⟶ 659:
 
return 0;
}</langsyntaxhighlight>
{{out}}
<pre> 1.414213562
2.718281828
3.141592653</pre>
 
=={{header|C sharp|C#}}==
{{trans|Java}}
<syntaxhighlight lang="csharp">using System;
using System.Collections.Generic;
 
namespace ContinuedFraction {
class Program {
static double Calc(Func<int, int[]> f, int n) {
double temp = 0.0;
for (int ni = n; ni >= 1; ni--) {
int[] p = f(ni);
temp = p[1] / (p[0] + temp);
}
return f(0)[0] + temp;
}
 
static void Main(string[] args) {
List<Func<int, int[]>> fList = new List<Func<int, int[]>>();
fList.Add(n => new int[] { n > 0 ? 2 : 1, 1 });
fList.Add(n => new int[] { n > 0 ? n : 2, n > 1 ? (n - 1) : 1 });
fList.Add(n => new int[] { n > 0 ? 6 : 3, (int) Math.Pow(2 * n - 1, 2) });
 
foreach (var f in fList) {
Console.WriteLine(Calc(f, 200));
}
}
}
}</syntaxhighlight>
{{out}}
<pre>1.4142135623731
2.71828182845905
3.14159262280485</pre>
 
=={{header|C++}}==
<langsyntaxhighlight lang="cpp">#include <iomanip>
#include <iostream>
#include <tuple>
Line 499 ⟶ 740:
<< calc(pi, 10000) << '\n'
<< std::setprecision(old_prec); // reset precision
}</langsyntaxhighlight>
{{out}}
<pre>
Line 506 ⟶ 747:
3.14159265358954
</pre>
 
=={{header|Chapel}}==
 
Functions don't take other functions as arguments, so I wrapped them in a dummy record each.
<syntaxhighlight lang="chapel">proc calc(f, n) {
var r = 0.0;
 
for k in 1..n by -1 {
var v = f.pair(k);
r = v(2) / (v(1) + r);
}
 
return f.pair(0)(1) + r;
}
 
record Sqrt2 {
proc pair(n) {
return (if n == 0 then 1 else 2,
1);
}
}
 
record Napier {
proc pair(n) {
return (if n == 0 then 2 else n,
if n == 1 then 1 else n - 1);
}
}
record Pi {
proc pair(n) {
return (if n == 0 then 3 else 6,
(2*n - 1)**2);
}
}
 
config const n = 200;
writeln(calc(new Sqrt2(), n));
writeln(calc(new Napier(), n));
writeln(calc(new Pi(), n));</syntaxhighlight>
 
=={{header|Clojure}}==
<syntaxhighlight lang="clojure">
(defn cfrac
[a b n]
(letfn [(cfrac-iter [[x k]] [(+ (a k) (/ (b (inc k)) x)) (dec k)])]
(ffirst (take 1 (drop (inc n) (iterate cfrac-iter [1 n]))))))
 
(def sq2 (cfrac #(if (zero? %) 1.0 2.0) (constantly 1.0) 100))
(def e (cfrac #(if (zero? %) 2.0 %) #(if (= 1 %) 1.0 (double (dec %))) 100))
(def pi (cfrac #(if (zero? %) 3.0 6.0) #(let [x (- (* 2.0 %) 1.0)] (* x x)) 900000))
</syntaxhighlight>
{{out}}
<pre>
user=> sq2 e pi
1.4142135623730951
2.7182818284590455
3.141592653589793
</pre>
 
=={{header|COBOL}}==
{{works with|GnuCOBOL}}
 
<syntaxhighlight lang="cobol"> identification division.
program-id. show-continued-fractions.
 
environment division.
configuration section.
repository.
function continued-fractions
function all intrinsic.
 
procedure division.
fractions-main.
 
display "Square root 2 approximately : "
continued-fractions("sqrt-2-alpha", "sqrt-2-beta", 100)
display "Napier constant approximately : "
continued-fractions("napier-alpha", "napier-beta", 40)
display "Pi approximately : "
continued-fractions("pi-alpha", "pi-beta", 10000)
 
goback.
end program show-continued-fractions.
 
*> **************************************************************
identification division.
function-id. continued-fractions.
data division.
working-storage section.
01 alpha-function usage program-pointer.
01 beta-function usage program-pointer.
01 alpha usage float-long.
01 beta usage float-long.
01 running usage float-long.
01 i usage binary-long.
 
linkage section.
01 alpha-name pic x any length.
01 beta-name pic x any length.
01 iterations pic 9 any length.
01 approximation usage float-long.
 
procedure division using
alpha-name beta-name iterations
returning approximation.
 
set alpha-function to entry alpha-name
if alpha-function = null then
display "error: no " alpha-name " function" upon syserr
goback
end-if
set beta-function to entry beta-name
if beta-function = null then
display "error: no " beta-name " function" upon syserr
goback
end-if
 
move 0 to alpha beta running
perform varying i from iterations by -1 until i = 0
call alpha-function using i returning alpha
call beta-function using i returning beta
compute running = beta / (alpha + running)
end-perform
call alpha-function using 0 returning alpha
compute approximation = alpha + running
 
goback.
end function continued-fractions.
 
*> ******************************
identification division.
program-id. sqrt-2-alpha.
 
data division.
working-storage section.
01 result usage float-long.
 
linkage section.
01 iteration usage binary-long unsigned.
 
procedure division using iteration returning result.
if iteration equal 0 then
move 1.0 to result
else
move 2.0 to result
end-if
 
goback.
end program sqrt-2-alpha.
 
*> ******************************
identification division.
program-id. sqrt-2-beta.
 
data division.
working-storage section.
01 result usage float-long.
 
linkage section.
01 iteration usage binary-long unsigned.
 
procedure division using iteration returning result.
move 1.0 to result
 
goback.
end program sqrt-2-beta.
 
*> ******************************
identification division.
program-id. napier-alpha.
 
data division.
working-storage section.
01 result usage float-long.
 
linkage section.
01 iteration usage binary-long unsigned.
 
procedure division using iteration returning result.
if iteration equal 0 then
move 2.0 to result
else
move iteration to result
end-if
 
goback.
end program napier-alpha.
 
*> ******************************
identification division.
program-id. napier-beta.
 
data division.
working-storage section.
01 result usage float-long.
 
linkage section.
01 iteration usage binary-long unsigned.
 
procedure division using iteration returning result.
if iteration = 1 then
move 1.0 to result
else
compute result = iteration - 1.0
end-if
 
goback.
end program napier-beta.
 
*> ******************************
identification division.
program-id. pi-alpha.
 
data division.
working-storage section.
01 result usage float-long.
 
linkage section.
01 iteration usage binary-long unsigned.
 
procedure division using iteration returning result.
if iteration equal 0 then
move 3.0 to result
else
move 6.0 to result
end-if
 
goback.
end program pi-alpha.
 
*> ******************************
identification division.
program-id. pi-beta.
 
data division.
working-storage section.
01 result usage float-long.
 
linkage section.
01 iteration usage binary-long unsigned.
 
procedure division using iteration returning result.
compute result = (2 * iteration - 1) ** 2
 
goback.
end program pi-beta.
</syntaxhighlight>
 
{{out}}
<pre>prompt$ cobc -xj continued-fractions.cob
Square root 2 approximately : 1.414213562373095
Napier constant approximately : 2.718281828459045
Pi approximately : 3.141592653589543</pre>
 
=={{header|CoffeeScript}}==
<langsyntaxhighlight lang="coffeescript"># Compute a continuous fraction of the form
# a0 + b1 / (a1 + b2 / (a2 + b3 / ...
continuous_fraction = (f) ->
Line 542 ⟶ 1,037:
x = 2*n - 1
x * x
p Math.PI, continuous_fraction(fpi)</langsyntaxhighlight>
{{out}}
<pre>
Line 559 ⟶ 1,054:
=={{header|Common Lisp}}==
{{trans|C++}}
<langsyntaxhighlight lang="lisp">(defun estimate-continued-fraction (generator n)
(let ((temp 0))
(loop for n1 from n downto 1
Line 582 ⟶ 1,077:
(* (1- (* 2 n))
(1- (* 2 n))))) 10000)
'double-float))</langsyntaxhighlight>
{{out}}
<pre>sqrt(2) = 1.4142135623730947d0
napier's = 2.7182818284590464d0
pi = 3.141592653589543d0</pre>
 
=={{header|Chapel}}==
 
Functions don't take other functions as arguments, so I wrapped them in a dummy record each.
<lang chapel>proc calc(f, n) {
var r = 0.0;
 
for k in 1..n by -1 {
var v = f.pair(k);
r = v(2) / (v(1) + r);
}
 
return f.pair(0)(1) + r;
}
 
record Sqrt2 {
proc pair(n) {
return (if n == 0 then 1 else 2,
1);
}
}
 
record Napier {
proc pair(n) {
return (if n == 0 then 2 else n,
if n == 1 then 1 else n - 1);
}
}
record Pi {
proc pair(n) {
return (if n == 0 then 3 else 6,
(2*n - 1)**2);
}
}
 
config const n = 200;
writeln(calc(new Sqrt2(), n));
writeln(calc(new Napier(), n));
writeln(calc(new Pi(), n));</lang>
 
=={{header|D}}==
<langsyntaxhighlight lang="d">import std.stdio, std.functional, std.traits;
 
FP calc(FP, F)(in F fun, in int n) pure nothrow if (isCallable!F) {
Line 658 ⟶ 1,114:
calc!real(&fNapier, 200).print;
calc!real(&fPi, 200).print;
}</langsyntaxhighlight>
{{out}}
<pre>1.4142135623730950487
2.7182818284590452354
3.1415926228048469486</pre>
 
=={{header|dc}}==
 
<syntaxhighlight lang="dc">[20k 0 200 si [li lbx r li lax + / li 1 - dsi 0<:]ds:x 0 lax +]sf
 
[[2q]s2[0<2 1]sa[R1]sb]sr # sqrt(2)
[[R2q]s2[d 0=2]sa[R1q]s1[d 1=1 1-]sb]se # e
[[3q]s3[0=3 6]sa[2*1-d*]sb]sp # pi
 
c lex lfx p
lrx lfx p
lpx lfx p</syntaxhighlight>
{{out}}
<pre>3.14159262280484694855
1.41421356237309504880
2.71828182845904523536</pre>
 
20 decimal places and 200 iterations.
 
=={{header|EasyLang}}==
<syntaxhighlight lang="easylang">
numfmt 8 0
func calc_sqrt .
n = 100
sum = n
while n >= 1
a = 1
if n > 1
a = 2
.
b = 1
sum = a + b / sum
n -= 1
.
return sum
.
func calc_e .
n = 100
sum = n
while n >= 1
a = 2
if n > 1
a = n - 1
.
b = 1
if n > 1
b = n - 1
.
sum = a + b / sum
n -= 1
.
return sum
.
func calc_pi .
n = 100
sum = n
while n >= 1
a = 3
if n > 1
a = 6
.
b = 2 * n - 1
b *= b
sum = a + b / sum
n -= 1
.
return sum
.
print calc_sqrt
print calc_e
print calc_pi
</syntaxhighlight>
 
=={{header|Elixir}}==
<syntaxhighlight lang="elixir">
defmodule CFrac do
def compute([a | _], []), do: a
def compute([a | as], [b | bs]), do: a + b/compute(as, bs)
 
def sqrt2 do
a = [1 | Stream.cycle([2]) |> Enum.take(1000)]
b = Stream.cycle([1]) |> Enum.take(1000)
IO.puts compute(a, b)
end
 
def exp1 do
a = [2 | Stream.iterate(1, &(&1 + 1)) |> Enum.take(1000)]
b = [1 | Stream.iterate(1, &(&1 + 1)) |> Enum.take(999)]
IO.puts compute(a, b)
end
 
def pi do
a = [3 | Stream.cycle([6]) |> Enum.take(1000)]
b = 1..1000 |> Enum.map(fn k -> (2*k - 1)**2 end)
IO.puts compute(a, b)
end
end
</syntaxhighlight>
 
{{out}}
<pre>
>elixir -e CFrac.sqrt2()
1.4142135623730951
 
>elixir -e CFrac.exp1()
2.7182818284590455
 
>elixir -e CFrac.pi()
3.141592653340542
</pre>
 
=={{header|Erlang}}==
<langsyntaxhighlight lang="erlang">
-module(continued).
-compile([export_all]).
Line 709 ⟶ 1,275:
test_nappier (N) ->
continued_fraction(fun nappier_a/1,fun nappier_b/1,N).
</syntaxhighlight>
</lang>
 
{{out}}
<langsyntaxhighlight lang="erlang">
29> continued:test_pi(1000).
3.141592653340542
Line 719 ⟶ 1,285:
31> continued:test_nappier(1000).
2.7182818284590455
</syntaxhighlight>
</lang>
 
=={{header|F_Sharp|F#}}==
===The Functions===
<syntaxhighlight lang="fsharp">
// I provide four functions:-
// cf2S general purpose continued fraction to sequence of float approximations
// cN2S Normal continued fractions (a-series always 1)
// cfSqRt uses cf2S to calculate sqrt of float
// π takes a sequence of b values returning the next until the list is exhausted after which it injects infinity
// Nigel Galloway: December 19th., 2018
let cf2S α β=let n0,g1,n1,g2=β(),α(),β(),β()
seq{let (Π:decimal)=g1/n1 in yield n0+Π; yield! Seq.unfold(fun(n,g,Π)->let a,b=α(),β() in let Π=Π*g/n in Some(n0+Π,(b+a/n,b+a/g,Π)))(g2+α()/n1,g2,Π)}
let cN2S = cf2S (fun()->1M)
let cfSqRt n=(cf2S (fun()->n-1M) (let mutable n=false in fun()->if n then 2M else (n<-true; 1M)))
let π n=let mutable π=n in (fun ()->match π with h::t->π<-t; h |_->9999999999999999999999999999M)
</syntaxhighlight>
===The Tasks===
<syntaxhighlight lang="fsharp">
cfSqRt 2M |> Seq.take 10 |> Seq.pairwise |> Seq.iter(fun(n,g)->printfn "%1.14f < √2 < %1.14f" (min n g) (max n g))
</syntaxhighlight>
{{out}}
<pre>
1.40000000000000 < √2 < 1.50000000000000
1.40000000000000 < √2 < 1.41666666666667
1.41379310344828 < √2 < 1.41666666666667
1.41379310344828 < √2 < 1.41428571428571
1.41420118343195 < √2 < 1.41428571428571
1.41420118343195 < √2 < 1.41421568627451
1.41421319796954 < √2 < 1.41421568627451
1.41421319796954 < √2 < 1.41421362489487
1.41421355164605 < √2 < 1.41421362489487
</pre>
<syntaxhighlight lang="fsharp">
cfSqRt 0.25M |> Seq.take 30 |> Seq.iter (printfn "%1.14f")
</syntaxhighlight>
{{out}}
<pre>
0.62500000000000
0.53846153846154
0.51250000000000
0.50413223140496
0.50137362637363
0.50045745654163
0.50015243902439
0.50005080784473
0.50001693537461
0.50000564506114
0.50000188167996
0.50000062722587
0.50000020907520
0.50000006969172
0.50000002323057
0.50000000774352
0.50000000258117
0.50000000086039
0.50000000028680
0.50000000009560
0.50000000003187
0.50000000001062
0.50000000000354
0.50000000000118
0.50000000000039
0.50000000000013
0.50000000000004
0.50000000000001
0.50000000000000
0.50000000000000
</pre>
<syntaxhighlight lang="fsharp">
let aπ()=let mutable n=0M in (fun ()->n<-n+1M;let b=n+n-1M in b*b)
let bπ()=let mutable n=true in (fun ()->match n with true->n<-false;3M |_->6M)
cf2S (aπ()) (bπ()) |> Seq.take 10 |> Seq.pairwise |> Seq.iter(fun(n,g)->printfn "%1.14f < π < %1.14f" (min n g) (max n g))
</syntaxhighlight>
{{out}}
<pre>
3.13333333333333 < π < 3.16666666666667
3.13333333333333 < π < 3.14523809523810
3.13968253968254 < π < 3.14523809523810
3.13968253968254 < π < 3.14271284271284
3.14088134088134 < π < 3.14271284271284
3.14088134088134 < π < 3.14207181707182
3.14125482360776 < π < 3.14207181707182
3.14125482360776 < π < 3.14183961892940
3.14140671849650 < π < 3.14183961892940
</pre>
<syntaxhighlight lang="fsharp">
let pi = π [3M;7M;15M;1M;292M;1M;1M;1M;2M;1M;3M;1M;14M;2M;1M;1M;2M;2M;2M;2M]
cN2S pi |> Seq.take 10 |> Seq.pairwise |> Seq.iter(fun(n,g)->printfn "%1.14f < π < %1.14f" (min n g) (max n g))
</syntaxhighlight>
{{out}}
<pre>
3.14150943396226 < π < 3.14285714285714
3.14150943396226 < π < 3.14159292035398
3.14159265301190 < π < 3.14159292035398
3.14159265301190 < π < 3.14159265392142
3.14159265346744 < π < 3.14159265392142
3.14159265346744 < π < 3.14159265361894
3.14159265358108 < π < 3.14159265361894
3.14159265358108 < π < 3.14159265359140
3.14159265358939 < π < 3.14159265359140
</pre>
<syntaxhighlight lang="fsharp">
let ae()=let mutable n=0.5M in (fun ()->match n with 0.5M->n<-0M; 1M |_->n<-n+1M; n)
let be()=let mutable n=0.5M in (fun ()->match n with 0.5M->n<-0M; 2M |_->n<-n+1M; n)
cf2S (ae()) (be()) |> Seq.take 10 |> Seq.pairwise |> Seq.iter(fun(n,g)->printfn "%1.14f < e < %1.14f" (min n g) (max n g))
</syntaxhighlight>
{{out}}
<pre>
2.66666666666667 < e < 3.00000000000000
2.66666666666667 < e < 2.72727272727273
2.71698113207547 < e < 2.72727272727273
2.71698113207547 < e < 2.71844660194175
2.71826333176026 < e < 2.71844660194175
2.71826333176026 < e < 2.71828369389345
2.71828165766640 < e < 2.71828369389345
2.71828165766640 < e < 2.71828184277783
2.71828182735187 < e < 2.71828184277783
</pre>
===Apéry's constant===
See [https://tpiezas.wordpress.com/2012/05/04/continued-fractions-for-zeta2-and-zeta3/ Continued fractions for Zeta(2) and Zeta(3)] section II. Zeta(3)
<syntaxhighlight lang="fsharp">
let aπ()=let mutable n=0 in (fun ()->n<-n+1;-decimal(pown n 6))
let bπ()=let mutable n=0M in (fun ()->n<-n+1M; (2M*n-1M)*(17M*n*n-17M*n+5M))
cf2S (aπ()) (bπ()) |>Seq.map(fun n->6M/n) |> Seq.take 10 |> Seq.pairwise |> Seq.iter(fun(n,g)->printfn "%1.20f < p < %- 1.20f" (min n g) (max n g));;
</syntaxhighlight>
{{out}}
<pre>
1.20205479452054794521 < p < 1.20205690119184928874
1.20205690119184928874 < p < 1.20205690315781676650
1.20205690315781676650 < p < 1.20205690315959270361
1.20205690315959270361 < p < 1.20205690315959428400
1.20205690315959428400 < p < 1.20205690315959428540
1.20205690315959428540 < p < 1.20205690315959428540
1.20205690315959428540 < p < 1.20205690315959428540
1.20205690315959428540 < p < 1.20205690315959428540
1.20205690315959428540 < p < 1.20205690315959428540
</pre>
 
=={{header|Factor}}==
''cfrac-estimate'' uses [[Arithmetic/Rational|rational arithmetic]] and never truncates the intermediate result. When ''terms'' is large, ''cfrac-estimate'' runs slow because numerator and denominator grow big.
<langsyntaxhighlight lang="factor">USING: arrays combinators io kernel locals math math.functions
math.ranges prettyprint sequences ;
IN: rosetta.cfrac
Line 785 ⟶ 1,488:
PRIVATE>
 
MAIN: main</langsyntaxhighlight>
{{out}}
<pre> Square root of 2: 1.414213562373095048801688724209
Line 792 ⟶ 1,495:
 
=={{header|Felix}}==
<langsyntaxhighlight lang="felix">fun pi (n:int) : (double*double) =>
let a = match n with | 0 => 3.0 | _ => 6.0 endmatch in
let b = pow(2.0 * n.double - 1.0, 2.0) in
Line 818 ⟶ 1,521:
println$ cf_iter 200 sqrt_2; // => 1.41421
println$ cf_iter 200 napier; // => 2.71818
println$ cf_iter 1000 pi; // => 3.14159</langsyntaxhighlight>
 
=={{header|Forth}}==
{{trans|D}}
<langsyntaxhighlight lang="forth">: fsqrt2 1 s>f 0> if 2 s>f else fdup then ;
: fnapier dup dup 1 > if 1- else drop 1 then s>f dup 1 < if drop 2 then s>f ;
: fpi dup 2* 1- dup * s>f 0> if 6 else 3 then s>f ;
Line 830 ⟶ 1,533:
do i over execute frot f+ f/ -1 +loop
0 swap execute fnip f+ \ calcucate for 0
;</langsyntaxhighlight>
{{out}}
<pre>
Line 842 ⟶ 1,545:
 
=={{header|Fortran}}==
<langsyntaxhighlight Fortranlang="fortran">module continued_fractions
implicit none
Line 940 ⟶ 1,643:
end function
 
end program examples</langsyntaxhighlight>
{{out}}
<pre>
Line 947 ⟶ 1,650:
3.1415926535895435
</pre>
 
=={{header|FreeBASIC}}==
<syntaxhighlight lang="freebasic">#define MAX 70000
 
function sqrt2_a( n as uinteger ) as uinteger
return iif(n,2,1)
end function
 
function sqrt2_b( n as uinteger ) as uinteger
return 1
end function
 
function napi_a( n as uinteger ) as uinteger
return iif(n,n,2)
end function
 
function napi_b( n as uinteger ) as uinteger
return iif(n>1,n-1,1)
end function
 
function pi_a( n as uinteger ) as uinteger
return iif(n,6,3)
end function
 
function pi_b( n as uinteger ) as uinteger
return (2*n-1)^2
end function
 
function calc_contfrac( an as function (as uinteger) as uinteger, bn as function (as uinteger) as uinteger, byval iter as uinteger ) as double
dim as double r
dim as integer i
for i = iter to 1 step -1
r = bn(i)/(an(i)+r)
next i
return an(0)+r
end function
 
print calc_contfrac( @sqrt2_a, @sqrt2_b, MAX )
print calc_contfrac( @napi_a, @napi_b, MAX )
print calc_contfrac( @pi_a, @pi_b, MAX )</syntaxhighlight>
 
=={{header|Fōrmulæ}}==
 
{{FormulaeEntry|page=https://formulae.org/?script=examples/Continued_fraction}}
 
'''Solution'''
 
The following function definition creates a continued fraction:
 
[[File:Fōrmulæ - Continued fraction 01.png]]
 
The function accepts the following parameters:
 
{| class="wikitable" style="margin:auto"
|-
! Parameter !! Description
|-
| a₀ || Value for a₀
|-
| λa || Lambda expression to define aᵢ
|-
| λb || Lambda expression to define bᵢ
|-
| depth || Depth to calculate the continued fraction
|}
 
Since Fōrmulæ arithmetic simplifies numeric results as they are generated, the result is not a continued fraction by default.
 
If we want to create the structure, we can introduce the parameters as string or text expressions (or lambda expressions that produce them). Because string or text expressions are not reduced when they are operands of additions and divisions, the structure is preserved, such as follows:
 
[[File:Fōrmulæ - Continued fraction 02.png]]
 
[[File:Fōrmulæ - Continued fraction 03.png]]
 
'''Case 1.''' <math>\sqrt 2</math>
 
In this case
 
* a₀ is 1
* λa is n ↦ 2
* λb is n ↦ 1
 
Let us show the results as a table, for several levels of depth (1 to 10).
 
The columns are:
 
* The depth
* The "textual" call, in order to generate the structure
* The normal (numeric) call. Since arithmetic operations are exact by default, it is usually a rational number.
* The value of the normal (numeric) call, forced to be shown as a decimal number, by using the Math.Numeric expression (the N(x) expression)
 
[[File:Fōrmulæ - Continued fraction 04.png]]
 
[[File:Fōrmulæ - Continued fraction 05.png]]
 
'''Case 2.''' <math>e</math>
 
In this case
 
* a₀ is 2
* λa is n ↦ n
* λb is n ↦ 1 if n = 1, n - 1 elsewhere
 
[[File:Fōrmulæ - Continued fraction 06.png]]
 
[[File:Fōrmulæ - Continued fraction 07.png]]
 
'''Case 3.''' <math>\pi</math>
 
In this case
 
* a₀ is 3
* λa is n ↦ 6
* λb is n ↦ 2(n - 1)²
 
[[File:Fōrmulæ - Continued fraction 08.png]]
 
[[File:Fōrmulæ - Continued fraction 09.png]]
 
=={{header|Go}}==
<langsyntaxhighlight lang="go">package main
 
import "fmt"
Line 1,001 ⟶ 1,822:
fmt.Println("nap: ", cfNap(20).real())
fmt.Println("pi: ", cfPi(20).real())
}</langsyntaxhighlight>
{{out}}
<pre>
Line 1,008 ⟶ 1,829:
pi: 3.141623806667839
</pre>
 
=={{header|Groovy}}==
{{trans|Java}}
<syntaxhighlight lang="groovy">import java.util.function.Function
 
import static java.lang.Math.pow
 
class Test {
static double calc(Function<Integer, Integer[]> f, int n) {
double temp = 0
 
for (int ni = n; ni >= 1; ni--) {
Integer[] p = f.apply(ni)
temp = p[1] / (double) (p[0] + temp)
}
return f.apply(0)[0] + temp
}
 
static void main(String[] args) {
List<Function<Integer, Integer[]>> fList = new ArrayList<>()
fList.add({ n -> [n > 0 ? 2 : 1, 1] })
fList.add({ n -> [n > 0 ? n : 2, n > 1 ? (n - 1) : 1] })
fList.add({ n -> [n > 0 ? 6 : 3, (int) pow(2 * n - 1, 2)] })
 
for (Function<Integer, Integer[]> f : fList)
System.out.println(calc(f, 200))
}
}</syntaxhighlight>
{{out}}
<pre>1.4142135623730951
2.7182818284590455
3.141592622804847</pre>
 
=={{header|Haskell}}==
<langsyntaxhighlight lang="haskell">import Data.List (unfoldr)
import Data.Char (intToDigit)
 
-- continued fraction represented as a (possibly infinite) list of pairs
sqrt2, napier, myPi :: [(Integer, Integer)]
sqrt2 = zip (1 : [2,2 ..]) [1,1 ..]
 
napier = zip (2 : [1..]) (1 : [1..])
myPinapier = zip (32 : [6,61 ..]) (map1 (^2): [1,3 ..])
 
myPi = zip (3 : [6,6 ..]) ((^ 2) <$> [1,3 ..])
 
-- approximate a continued fraction after certain number of iterations
approxCF
approxCF :: (Integral a, Fractional b) => Int -> [(a, a)] -> b
:: (Integral a, Fractional b)
approxCF t =
=> Int -> [(a, a)] -> b
foldr (\(a,b) z -> fromIntegral a + fromIntegral b / z) 1 . take t
approxCF t = foldr (\(a, b) z -> fromIntegral a + fromIntegral b / z) 1 . take t
 
-- infinite decimal representation of a real number
decString :: RealFrac a => a -> String
:: RealFrac a
decString frac = show i ++ '.' : decString' f where
=> a -> String
(i,f) = properFraction frac
decString frac = show i ++ '.' : decString_ f
decString' = map intToDigit . unfoldr (Just . properFraction . (10*))
where
(i, f) = properFraction frac
decString_ = map intToDigit . unfoldr (Just . properFraction . (10 *))
 
main :: IO ()
main =
main = mapM_ (putStrLn . take 200 . decString .
mapM_
(approxCF 950 :: [(Integer, Integer)] -> Rational))
(putStrLn .
[sqrt2, napier, myPi]</lang>
take 200 . decString . (approxCF 950 :: [(Integer, Integer)] -> Rational))
[sqrt2, napier, myPi]</syntaxhighlight>
{{out}}
<pre>
Line 1,040 ⟶ 1,901:
3.141592653297590947683406834261190738869139611505752231394089152890909495973464508817163306557131591579057202097715021166512662872910519439747609829479577279606075707015622200744006783543589980682386
</pre>
<langsyntaxhighlight lang="haskell">import Data.Ratio ((%), denominator, numerator)
import Data.Bool (bool)
 
-- ignoring the task-given pi sequence: sucky convergence
-- pie = zip (3:repeat 6) (map (^2) [1,3..])
pie = zip (0 : [1,3 ..]) (4 : map (^ 2) [1 ..])
 
sqrt2 = zip (1 : repeat 2) (repeat 1)
 
pie napier = zip (02 : [1,3 ..]) (41 :map (^2) [1 ..])
sqrt2 = zip (1:repeat 2) (repeat 1)
napier = zip (2:[1..]) (1:[1..])
 
-- truncate after n terms
cf2rat n = foldr (\(a, b) f -> (a % 1) + ((b % 1) / f)) (1 % 1) . take n
 
-- truncate after error is at most 1/p
cf2rat_p p s = f $ map ((\i -> (cf2rat i s, cf2rat (1 + i) s)) $ map. (2 ^)) [0 ..]
where
where f ((x,y):ys) = if abs (x-y) < (1/fromIntegral p) then x else f ys
f ((x, y):ys)
| abs (x - y) < (1 / fromIntegral p) = x
| otherwise = f ys
 
-- returns a decimal string of n digits after the dot; all digits should
-- be correct (doesn't mean it's the best approximation! the decimal
-- string is simply truncated to given digits: pi=3.141 instead of 3.142)
cf2dec n = (ratstr n) . cf2rat_p (10 ^ n) where
where
ratstr l a = (show t) ++ '.':fracstr l n d where
ratstr l a = show t ++ '.' : fracstr l n d
d = denominator a
where
(t, n) = quotRem (numerator a) d
d = denominator a
fracstr 0 _ _ = []
fracstr l n d = (show t)++ fracstr (l-1) n1 d where (t,n1 n) = quotRem (10numerator * na) d
fracstr 0 _ _ = []
fracstr l n d = show t ++ fracstr (l - 1) n1 d
where
(t, n1) = quotRem (10 * n) d
 
main =:: doIO ()
main = mapM_ putStrLn [cf2dec 200 sqrt2, cf2dec 200 napier, cf2dec 200 pie]</syntaxhighlight>
putStrLn $ cf2dec 200 sqrt2
 
putStrLn $ cf2dec 200 napier
=={{header|Icon}}==
putStrLn $ cf2dec 200 pie</lang>
<syntaxhighlight lang="icon">
$define EVAL_DEPTH 100
 
# A generalized continued fraction, represented by two functions. Each
# function maps from an index to a floating-point value.
record continued_fraction (a, b)
 
procedure main ()
writes (" sqrt 2.0 = ")
write (evaluate_continued_fraction (continued_fraction (sqrt2_a, sqrt2_b),
EVAL_DEPTH))
writes (" e = ")
write (evaluate_continued_fraction (continued_fraction (e_a, e_b),
EVAL_DEPTH))
writes (" pi = ")
write (evaluate_continued_fraction (continued_fraction (pi_a, pi_b),
EVAL_DEPTH))
end
 
procedure evaluate_continued_fraction (frac, depth)
local i, retval
retval := frac.a (depth)
every i := depth to 1 by -1 do {
retval := frac.a (i - 1) + (frac.b (i) / retval)
}
return retval
end
 
procedure sqrt2_a (i)
return (if i = 0 then 1.0 else 2.0)
end
 
procedure sqrt2_b (i)
return 1.0
end
 
procedure e_a (i)
return (if i = 0 then 2.0 else real (i))
end
 
procedure e_b (i)
return (if i = 1 then 1.0 else real (i - 1))
end
 
procedure pi_a (i)
return (if i = 0 then 3.0 else 6.0)
end
 
procedure pi_b (i)
return real (((2 * i) - 1)^2)
end
</syntaxhighlight>
 
{{out}}
<pre>$ icon continued-fraction-task.icn
sqrt 2.0 = 1.414213562
e = 2.718281828
pi = 3.141592411
</pre>
 
=={{header|J}}==
<langsyntaxhighlight Jlang="j"> cfrac=: +`% / NB. Evaluate a list as a continued fraction
 
sqrt2=: cfrac 1 1,200$2 1x
Line 1,085 ⟶ 2,014:
1.4142135623730950488016887242096980785696718753769480731766797379907324784621205551109457595775322165
3.1415924109
2.7182818284590452353602874713526624977572470936999595749669676277240766303535475945713821785251664274</langsyntaxhighlight>
 
Note that there are two kinds of continued fractions. The kind here where we alternate between '''a''' and '''b''' values, but in some other tasks '''b''' is always 1 (and not included in the list we use to represent the continued fraction). The other kind is evaluated in J using <code>(+%)/</code> instead of <code>+`%/</code>.
 
=={{header|Java}}==
{{trans|D}}
{{works with|Java|8}}
<syntaxhighlight lang="java">import static java.lang.Math.pow;
import java.util.*;
import java.util.function.Function;
 
public class Test {
static double calc(Function<Integer, Integer[]> f, int n) {
double temp = 0;
 
for (int ni = n; ni >= 1; ni--) {
Integer[] p = f.apply(ni);
temp = p[1] / (double) (p[0] + temp);
}
return f.apply(0)[0] + temp;
}
 
public static void main(String[] args) {
List<Function<Integer, Integer[]>> fList = new ArrayList<>();
fList.add(n -> new Integer[]{n > 0 ? 2 : 1, 1});
fList.add(n -> new Integer[]{n > 0 ? n : 2, n > 1 ? (n - 1) : 1});
fList.add(n -> new Integer[]{n > 0 ? 6 : 3, (int) pow(2 * n - 1, 2)});
 
for (Function<Integer, Integer[]> f : fList)
System.out.println(calc(f, 200));
}
}</syntaxhighlight>
<pre>1.4142135623730951
2.7182818284590455
3.141592622804847</pre>
 
=={{header|jq}}==
Line 1,105 ⟶ 2,068:
computes the continued fraction until the difference in approximations is less than or equal to delta,
which may be 0, as previously noted.
<syntaxhighlight lang="jq">
<lang jq>
# "first" is the first triple, e.g. [1,a,b];
# e.g. [1,a,b]; "count" specifies the number of terms to use.
def continued_fraction( first; next; count ):
# input: [i, a, b]]
def cf:
if .[0] == count then 0
Line 1,131 ⟶ 2,094:
end;
[2,null] | cf;
</syntaxhighlight>
</lang>
'''Examples''':
 
The convergence for pi is slow so we select delta = 1e-12 in that case.
<langsyntaxhighlight lang="jq">"Value : Direct : Continued Fraction",
"2|sqrt : \(2|sqrt) : \(continued_fraction_delta( [1,1,1]; [.[0]+1, 2, 1]; 0))",
"1|exp : \(1|exp) : \(2 + (1 / (continued_fraction_delta( [1,1,1]; [.[0]+1, .[1]+1, .[2]+1]; 0))))",
"pi : \(1|atan * 4) : \(continued_fraction_delta( [1,3,1]; .[0]+1 | [., 6, ((2*. - 1) | (.*.))]; 1e-12)) (1e-12)"
</syntaxhighlight>
</lang>
{{Out}}
<langsyntaxhighlight lang="sh">$ jq -M -n -r -f Continued_fraction.jq
Value : Direct : Continued Fraction
2|sqrt : 1.4142135623730951 : 1.4142135623730951
1|exp : 2.718281828459045 : 2.7182818284590455
pi : 3.141592653589793 : 3.1415926535892935 (1e-12)</langsyntaxhighlight>
 
=={{header|MathematicaJulia}}==
{{works with|Julia|1.8.5}}
<lang Mathematica>sqrt2=Function[n,{1,Transpose@{Array[2&,n],Array[1&,n]}}];
High performant lazy evaluation on demand with Julias iterators.
<syntaxhighlight lang="julia">
using .Iterators: countfrom, flatten, repeated, zip
using .MathConstants: ℯ
using Printf
 
function cf(a₀, a, b = repeated(1))
m = BigInt[a₀ 1; 1 0]
for (aᵢ, bᵢ) ∈ zip(a, b)
m *= [aᵢ 1; bᵢ 0]
isapprox(m[1]/m[2], m[3]/m[4]; atol = 1e-12) && break
end
m[1]/m[2]
end
 
out((k, v)) = @printf "%2s: %.12f ≈ %.12f\n" k v eval(k)
 
foreach(out, (
:(√2) => cf(1, repeated(2)),
:ℯ => cf(2, countfrom(), flatten((1, countfrom()))),
:π => cf(3, repeated(6), (k^2 for k ∈ countfrom(1, 2)))))
</syntaxhighlight>
{{out}}
<pre>√2: 1.414213562373 ≈ 1.414213562373
ℯ: 2.718281828459 ≈ 2.718281828459
π: 3.141592653590 ≈ 3.141592653590</pre>
 
=={{header|Klong}}==
<syntaxhighlight lang="k">
cf::{[f g i];f::x;g::y;i::z;
f(0)+z{i::i-1;g(i+1)%f(i+1)+x}:*0}
cf({:[0=x;1;2]};{x;1};1000)
cf({:[0=x;2;x]};{:[x>1;x-1;x]};1000)
cf({:[0=x;3;6]};{((2*x)-1)^2};1000)
</syntaxhighlight>
{{out}}
<pre>
:triad
1.41421356237309504
2.71828182845904523
3.14159265334054205
</pre>
 
=={{header|Kotlin}}==
{{trans|D}}
<syntaxhighlight lang="scala">// version 1.1.2
 
typealias Func = (Int) -> IntArray
 
fun calc(f: Func, n: Int): Double {
var temp = 0.0
for (i in n downTo 1) {
val p = f(i)
temp = p[1] / (p[0] + temp)
}
return f(0)[0] + temp
}
 
fun main(args: Array<String>) {
val pList = listOf<Pair<String, Func>>(
"sqrt(2)" to { n -> intArrayOf(if (n > 0) 2 else 1, 1) },
"e " to { n -> intArrayOf(if (n > 0) n else 2, if (n > 1) n - 1 else 1) },
"pi " to { n -> intArrayOf(if (n > 0) 6 else 3, (2 * n - 1) * (2 * n - 1)) }
)
for (pair in pList) println("${pair.first} = ${calc(pair.second, 200)}")
}</syntaxhighlight>
 
{{out}}
<pre>
sqrt(2) = 1.4142135623730951
e = 2.7182818284590455
pi = 3.141592622804847
</pre>
 
=={{header|Lambdatalk}}==
 
<syntaxhighlight lang="scheme">
 
{def gcf
{def gcf.rec
{lambda {:f :n :r}
{if {< :n 1}
then {+ {car {:f 0}} :r}
else {gcf.rec :f
{- :n 1}
{let { {:r :r}
{:ab {:f :n}}
} {/ {cdr :ab}
{+ {car :ab} :r}} }}}}}
{lambda {:f :n}
{gcf.rec :f :n 0}}}
 
{def phi
{lambda {:n}
{cons 1 1}}}
 
{gcf phi 50}
-> 1.618033988749895
 
{def sqrt2
{lambda {:n}
{cons {if {> :n 0} then 2 else 1} 1}}}
 
{gcf sqrt2 25}
-> 1.4142135623730951
 
{def napier
{lambda {:n}
{cons {if {> :n 0} then :n else 2} {if {> :n 1} then {- :n 1} else 1} }}}
 
{gcf napier 20}
-> 2.7182818284590455
 
{def fpi
{lambda {:n}
{cons {if {> :n 0} then 6 else 3} {pow {- {* 2 :n} 1} 2} }}}
 
{gcf fpi 500}
-> 3.1415926 516017554
// only 8 exact decimals for 500 iterations
// A very very slow convergence.
// Here is a quicker version without any obvious pattern
 
{def pi
{lambda {:n}
{cons {A.get :n {A.new 3 7 15 1 292 1 1 1 2 1 3 1 14 2 1 1}} 1}}}
 
{gcf pi 15}
-> 3.1415926 53589793
 
// Much quicker, 15 exact decimals after 15 iterations
</syntaxhighlight>
 
 
=={{header|Lua}}==
{{trans|C}}
<syntaxhighlight lang="lua">function calc(fa, fb, expansions)
local a = 0.0
local b = 0.0
local r = 0.0
local i = expansions
while i > 0 do
a = fa(i)
b = fb(i)
r = b / (a + r)
i = i - 1
end
a = fa(0)
return a + r
end
 
function sqrt2a(n)
if n ~= 0 then
return 2.0
else
return 1.0
end
end
 
function sqrt2b(n)
return 1.0
end
 
function napiera(n)
if n ~= 0 then
return n
else
return 2.0
end
end
 
function napierb(n)
if n > 1.0 then
return n - 1.0
else
return 1.0
end
end
 
function pia(n)
if n ~= 0 then
return 6.0
else
return 3.0
end
end
 
function pib(n)
local c = 2.0 * n - 1.0
return c * c
end
 
function main()
local sqrt2 = calc(sqrt2a, sqrt2b, 1000)
local napier = calc(napiera, napierb, 1000)
local pi = calc(pia, pib, 1000)
print(sqrt2)
print(napier)
print(pi)
end
 
main()</syntaxhighlight>
{{out}}
<pre>1.4142135623731
2.718281828459
3.1415926533405</pre>
 
=={{header|Maple}}==
<syntaxhighlight lang="maple">
contfrac:=n->evalf(Value(NumberTheory:-ContinuedFraction(n)));
contfrac(2^(0.5));
contfrac(Pi);
contfrac(exp(1));
</syntaxhighlight>
 
=={{header|Mathematica}} / {{header|Wolfram Language}}==
<syntaxhighlight lang="mathematica">sqrt2=Function[n,{1,Transpose@{Array[2&,n],Array[1&,n]}}];
napier=Function[n,{2,Transpose@{Range[n],Prepend[Range[n-1],1]}}];
pi=Function[n,{3,Transpose@{Array[6&,n],Array[(2#-1)^2&,n]}}];
approx=Function[l,
N[Divide@@First@Fold[{{#2.#[[;;,1]],#2.#[[;;,2]]},#[[1]]}&,{{l[[2,1,1]]l[[1]]+l[[2,1,2]],l[[2,1,1]]},{l[[1]],1}},l[[2,2;;]]],10]];
r2=approx/@{sqrt2@#,napier@#,pi@#}&@10000;r2//TableForm</langsyntaxhighlight>
{{out}}
<pre>
Line 1,162 ⟶ 2,342:
 
=={{header|Maxima}}==
<langsyntaxhighlight lang="maxima">cfeval(x) := block([a, b, n, z], a: x[1], b: x[2], n: length(a), z: 0,
for i from n step -1 thru 2 do z: b[i]/(a[i] + z), a[1] + z)$
 
Line 1,184 ⟶ 2,364:
fpprec: 20$
x: cfeval(cf_pi(10000))$
bfloat(x - %pi); /* 2.4999999900104930006b-13 */</langsyntaxhighlight>
 
=={{header|NetRexx}}==
<langsyntaxhighlight lang="netrexx">/* REXX ***************************************************************
* Derived from REXX ... Derived from PL/I with a little "massage"
* SQRT2= 1.41421356237309505 <- PL/I Result
Line 1,239 ⟶ 2,419:
end
Get_Coeffs(form,0)
return (a + temp)</langsyntaxhighlight>
Who could help me make a,b,sqrt2,napier,pi global (public) variables?
This would simplify the solution:-)
Line 1,250 ⟶ 2,430:
 
See [[#REXX|Rexx]] for a better computation
 
=={{header|Nim}}==
<syntaxhighlight lang="nim">proc calc(f: proc(n: int): tuple[a, b: float], n: int): float =
var a, b, temp = 0.0
for i in countdown(n, 1):
(a, b) = f(i)
temp = b / (a + temp)
(a, b) = f(0)
a + temp
 
proc sqrt2(n: int): tuple[a, b: float] =
if n > 0:
(2.0, 1.0)
else:
(1.0, 1.0)
 
proc napier(n: int): tuple[a, b: float] =
let a = if n > 0: float(n) else: 2.0
let b = if n > 1: float(n - 1) else: 1.0
(a, b)
 
proc pi(n: int): tuple[a, b: float] =
let a = if n > 0: 6.0 else: 3.0
let b = (2 * float(n) - 1) * (2 * float(n) - 1)
(a, b)
 
echo calc(sqrt2, 20)
echo calc(napier, 15)
echo calc(pi, 10000)</syntaxhighlight>
{{out}}
<pre>1.414213562373095
2.718281828459046
3.141592653589544</pre>
 
=={{header|OCaml}}==
<langsyntaxhighlight lang="ocaml">let pi = 3, fun n -> ((2*n-1)*(2*n-1), 6)
and nap = 2, fun n -> (max 1 (n-1), n)
and root2 = 1, fun n -> (1, 2) in
Line 1,265 ⟶ 2,478:
Printf.printf "sqrt(2)\t= %.15f\n" (eval root2 1000);
Printf.printf "e\t= %.15f\n" (eval nap 1000);
Printf.printf "pi\t= %.15f\n" (eval pi 1000);</langsyntaxhighlight>
Output (inaccurate due to too few terms):
<pre>sqrt(2) = 1.414213562373095
Line 1,273 ⟶ 2,486:
=={{header|PARI/GP}}==
Partial solution for simple continued fractions.
<langsyntaxhighlight lang="parigp">back(v)=my(t=contfracpnqn(v));t[1,1]/t[2,1]*1.
back(vector(100,i,2-(i==1)))</langsyntaxhighlight>
 
Output:
<pre>%1 = 1.4142135623730950488016887242096980786</pre>
 
=={{header|Pascal}}==
This console application is written in Delphi, which allows the results to be displayed to 17 correct decimal places (Free Pascal seems to allow only 16). As in the jq solution, we aim to work forwards and stop as soon the desired precision has been reached, rather than guess a suitable number of terms and work backwards. In this program, the continued fraction is converted to an infinite sum, each term after the first being the difference between consecutive convergents. The convergence for pi is very slow (as others have noted) so as well as the c.f. in the task description an alternative is given from the Wikipedia article "Continued fraction".
<syntaxhighlight lang="pascal">
program ContFrac_console;
 
{$APPTYPE CONSOLE}
 
uses
SysUtils;
 
type TCoeffFunction = function( n : integer) : extended;
 
// Calculate continued fraction as a sum, working forwards.
// Stop on reaching a term with absolute value less than epsilon,
// or on reaching the maximum number of terms.
procedure CalcContFrac( a, b : TCoeffFunction;
epsilon : extended;
maxNrTerms : integer = 1000); // optional, with default
var
n : integer;
sum, term, u, v : extended;
whyStopped : string;
begin
sum := a(0);
term := b(1)/a(1);
v := a(1);
n := 1;
repeat
sum := sum + term;
inc(n);
u := v;
v := a(n) + b(n)/u;
term := -term * b(n)/(u*v);
until (Abs(term) < epsilon) or (n >= maxNrTerms);
if n >= maxNrTerms then whyStopped := 'too many terms'
else whyStopped := 'converged';
WriteLn( SysUtils.Format( '%21.17f after %d terms (%s)',
[sum, n, whyStopped]));
end;
 
//---------------- a and b for sqrt(2) ----------------
function a_sqrt2( n : integer) : extended;
begin
if n = 0 then result := 1
else result := 2;
end;
function b_sqrt2( n : integer) : extended;
begin
result := 1;
end;
 
//---------------- a snd b for e ----------------
function a_e( n : integer) : extended;
begin
if n = 0 then result := 2
else result := n;
end;
function b_e( n : integer) : extended;
begin
if n = 1 then result := 1
else result := n - 1;
end;
 
//-------- Rosetta Code a and b for pi --------
function a_pi( n : integer) : extended;
begin
if n = 0 then result := 3
else result := 6;
end;
function b_pi( n : integer) : extended;
var
temp : extended;
begin
temp := 2*n - 1;
result := temp*temp;
end;
 
//-------- More efficient a and b for pi --------
function a_pi_alt( n : integer) : extended;
begin
if n = 0 then result := 0
else result := 2*n - 1;
end;
function b_pi_alt( n : integer) : extended;
var
temp : extended;
begin
if n = 1 then
result := 4
else begin
temp := n - 1;
result := temp*temp;
end;
end;
 
//---------------- Main routine ----------------
// Unlike Free Pascal, Delphi does not require
// an @ sign before the function names.
begin
WriteLn( 'sqrt(2)');
CalcContFrac( a_sqrt2, b_sqrt2, 1E-20);
WriteLn( 'e');
CalcContFrac( a_e, b_e, 1E-20);
WriteLn( 'pi');
CalcContFrac( a_pi, b_pi, 1E-20);
WriteLn( 'pi (alternative formula)');
CalcContFrac( a_pi_alt, b_pi_alt, 1E-20);
end.
</syntaxhighlight>
{{out}}
<pre>
sqrt(2)
1.41421356237309505 after 27 terms (converged)
e
2.71828182845904524 after 20 terms (converged)
pi
3.14159265383979293 after 1000 terms (too many terms)
pi (alternative formula)
3.14159265358979324 after 29 terms (converged)
</pre>
 
=={{header|Perl}}==
We'll useUse closures to implement the infinite lists of coeffficients.
 
<syntaxhighlight lang="perl">use strict;
<lang perl>sub continued_fraction {
use warnings;
my ($a, $b, $n) = (@_[0,1], $_[2] // 100);
no warnings 'recursion';
use experimental 'signatures';
 
sub continued_fraction ($a, $b, $n = 100) {
$a->() + ($n && $b->() / continued_fraction($a, $b, $n-1));
$a->() + ($n and $b->() / continued_fraction($a, $b, $n-1));
}
 
printf "√2 ≈ %.9f\n", continued_fraction do { my $n; sub { $n++ ? 2 : 1 } }, sub { 1 };
printf "e ≈ %.9f\n", continued_fraction do { my $n; sub { $n++ ||or 2 } }, do { my $n; sub { $n++ ||or 1 } };
printf "π ≈ %.9f\n", continued_fraction do { my $n; sub { $n++ ? 6 : 3 } }, do { my $n; sub { (2*$n++ + 1)**2 } }, 1_0001000;
printf "π/2 ≈ %.9f\n", continued_fraction do { my $n; sub { 1/($n++ ||or 1) } }, sub { 1 }, 1_0001000;</langsyntaxhighlight>
{{out}}
<pre>√2 ≈ 1.414213562
Line 1,298 ⟶ 2,635:
π/2 ≈ 1.570717797</pre>
 
=={{header|Perl 6Phix}}==
<!--<syntaxhighlight lang="phix">(phixonline)-->
<lang perl6>sub continued-fraction(:@a, :@b, Int :$n = 100)
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
{
<span style="color: #008080;">constant</span> <span style="color: #000000;">precision</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">10000</span>
my $x = @a[$n - 1];
$x = @a[$_ - 1] + @b[$_] / $x for reverse 1 ..^ $n;
<span style="color: #008080;">function</span> <span style="color: #000000;">continued_fraction</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">f</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">steps</span><span style="color: #0000FF;">=</span><span style="color: #000000;">precision</span><span style="color: #0000FF;">)</span>
$x;
<span style="color: #004080;">atom</span> <span style="color: #000000;">a</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">b</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span>
}
<span style="color: #008080;">for</span> <span style="color: #000000;">n</span><span style="color: #0000FF;">=</span><span style="color: #000000;">steps</span> <span style="color: #008080;">to</span> <span style="color: #000000;">1</span> <span style="color: #008080;">by</span> <span style="color: #0000FF;">-</span><span style="color: #000000;">1</span> <span style="color: #008080;">do</span>
<span style="color: #0000FF;">{</span><span style="color: #000000;">a</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">b</span><span style="color: #0000FF;">}</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">f</span><span style="color: #0000FF;">(</span><span style="color: #000000;">n</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">res</span> <span style="color: #0000FF;">:=</span> <span style="color: #000000;">b</span> <span style="color: #0000FF;">/</span> <span style="color: #0000FF;">(</span><span style="color: #000000;">a</span> <span style="color: #0000FF;">+</span> <span style="color: #000000;">res</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #0000FF;">{</span><span style="color: #000000;">a</span><span style="color: #0000FF;">}</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">f</span><span style="color: #0000FF;">(</span><span style="color: #000000;">0</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">return</span> <span style="color: #000000;">a</span> <span style="color: #0000FF;">+</span> <span style="color: #000000;">res</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">sqr2</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">n</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">return</span> <span style="color: #0000FF;">{</span><span style="color: #008080;">iff</span><span style="color: #0000FF;">(</span><span style="color: #000000;">n</span><span style="color: #0000FF;">=</span><span style="color: #000000;">0</span><span style="color: #0000FF;">?</span><span style="color: #000000;">1</span><span style="color: #0000FF;">:</span><span style="color: #000000;">2</span><span style="color: #0000FF;">),</span><span style="color: #000000;">1</span><span style="color: #0000FF;">}</span> <span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">nap</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">n</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">return</span> <span style="color: #0000FF;">{</span><span style="color: #008080;">iff</span><span style="color: #0000FF;">(</span><span style="color: #000000;">n</span><span style="color: #0000FF;">=</span><span style="color: #000000;">0</span><span style="color: #0000FF;">?</span><span style="color: #000000;">2</span><span style="color: #0000FF;">:</span><span style="color: #000000;">n</span><span style="color: #0000FF;">),</span><span style="color: #008080;">iff</span><span style="color: #0000FF;">(</span><span style="color: #000000;">n</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span><span style="color: #0000FF;">?</span><span style="color: #000000;">1</span><span style="color: #0000FF;">:</span><span style="color: #000000;">n</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)}</span> <span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">pi</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">n</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">return</span> <span style="color: #0000FF;">{</span><span style="color: #008080;">iff</span><span style="color: #0000FF;">(</span><span style="color: #000000;">n</span><span style="color: #0000FF;">=</span><span style="color: #000000;">0</span><span style="color: #0000FF;">?</span><span style="color: #000000;">3</span><span style="color: #0000FF;">:</span><span style="color: #000000;">6</span><span style="color: #0000FF;">),</span><span style="color: #7060A8;">power</span><span style="color: #0000FF;">(</span><span style="color: #000000;">2</span><span style="color: #0000FF;">*</span><span style="color: #000000;">n</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">2</span><span style="color: #0000FF;">)}</span> <span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"Precision: %d\n"</span><span style="color: #0000FF;">,</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">precision</span><span style="color: #0000FF;">})</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"Sqr(2): %.10g\n"</span><span style="color: #0000FF;">,</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">continued_fraction</span><span style="color: #0000FF;">(</span><span style="color: #000000;">sqr2</span><span style="color: #0000FF;">)})</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"Napier: %.10g\n"</span><span style="color: #0000FF;">,</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">continued_fraction</span><span style="color: #0000FF;">(</span><span style="color: #000000;">nap</span><span style="color: #0000FF;">)})</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"Pi: %.10g\n"</span><span style="color: #0000FF;">,</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">continued_fraction</span><span style="color: #0000FF;">(</span><span style="color: #000000;">pi</span><span style="color: #0000FF;">)})</span>
<!--</syntaxhighlight>-->
{{Out}}
<pre>
Precision: 10000
Sqr(2): 1.414213562
Napier: 2.718281828
Pi: 3.141592654
</pre>
 
=={{header|Picat}}==
printf "√2 ≈ %.9f\n", continued-fraction(:a(1, 2 xx *), :b(*, 1 xx *));
For Pi a test is added with a higher precision (200 -> 2000) to get a better result.
printf "e ≈ %.9f\n", continued-fraction(:a(2, 1 .. *), :b(*, 1, 1 .. *));
printf "π ≈ %.9f\n", continued-fraction(:a(3, 6 xx *), :b(*, [\+] 1, (8, 16 ... *)), :n(1000));</lang>
{{out}}
<pre>√2 ≈ 1.414213562
e ≈ 2.718281828
π ≈ 3.141592654</pre>
A more original and a bit more abstract method would consist in viewing a continued fraction on rank n as a function of a variable x:
:<math>\mathrm{CF}_3(x) = a_0 + \cfrac{b_1}{a_1 + \cfrac{b_2}{a_2 + \cfrac{b_3}{a_3 + x}}}</math>
Or, more consistently:
:<math>\mathrm{CF}_3(x) = a_0 + \cfrac{b_0}{a_1 + \cfrac{b_1}{a_2 + \cfrac{b_2}{a_3 + \cfrac{b_3}{x}}}}</math>
Viewed as such, <math>\mathrm{CF}_n(x)</math> could be written recursively:
:<math>\mathrm{CF}_n(x) = \mathrm{CF}_{n-1}(a_n + \frac{b_n}{x})</math>
Or in other words:
:<math>\mathrm{CF}_n= \mathrm{CF}_{n-1}\circ f_n = \mathrm{CF}_{n-2}\circ f_{n-1}\circ f_n=\ldots=f_0\circ f_1 \ldots \circ f_n</math>
where <math>f_n(x) = a_n + \frac{b_n}{x}</math>
 
===Recursion===
Perl6 allows us to define a custom composition operator. We can then use it with the triangular reduction metaoperator, and map each resulting function with an infinite value for x (any value would do actually, but infinite make it consistent with this particular task).
{{trans|Prolog}}
<lang Perl 6>sub infix:<⚬>(&f, &g) { -> $x { &f(&g($x)) } }
<syntaxhighlight lang="picat">go =>
sub continued-fraction(@a, @b, $x = Inf) {
 
map { .($x) },
% square root 2
[\⚬] map { @a[$_] + @b[$_] / * }, 0 .. *
continued_fraction(200, sqrt_2_ab, V1),
}
printf("sqrt(2) = %w (diff: %0.15f)\n", V1, V1-sqrt(2)),
 
% napier
continued_fraction(200, napier_ab, V2),
printf("e = %w (diff: %0.15f)\n", V2, V2-math.e),
 
% pi
continued_fraction(200, pi_ab, V3),
printf("pi = %w (diff: %0.15f)\n", V3, V3-math.pi),
% get a better precision
continued_fraction(20000, pi_ab, V3b),
printf("pi = %w (diff: %0.15f)\n", V3b, V3b-math.pi),
nl.
 
continued_fraction(N, Compute_ab, V) ?=>
continued_fraction(N, Compute_ab, 0, V).
continued_fraction(0, Compute_ab, Temp, V) ?=>
printf "√2 ≈ %.9f\n", continued-fraction((1, 2 xx *), (1 xx *))[10];
call(Compute_ab, 0, A, _),
printf "e ≈ %.9f\n", continued-fraction((2, 1 .. *), (1, 1 .. *))[10];
V = A + Temp.
printf "π ≈ %.9f\n", continued-fraction((3, 6 xx *), ((1, 3, 5 ... *) X** 2))[100];</lang>
continued_fraction(N, Compute_ab, Tmp, V) =>
call(Compute_ab, N, A, B),
Tmp1 = B / (A + Tmp),
N1 = N - 1,
continued_fraction(N1, Compute_ab, Tmp1, V).
 
% definitions for square root of 2
The main advantage is that the definition of the function does not need to know for which rank n it is computed. This is arguably closer to the mathematical definition.
sqrt_2_ab(0, 1, 1).
sqrt_2_ab(_, 2, 1).
% definitions for napier
napier_ab(0, 2, _).
napier_ab(1, 1, 1).
napier_ab(N, N, V) :-
V is N - 1.
% definitions for pi
pi_ab(0, 3, _).
pi_ab(N, 6, V) :-
V is (2 * N - 1)*(2 * N - 1).</syntaxhighlight>
 
{{out}}
<pre>
sqrt(2) = 1.414213562373095 (diff: 0.000000000000000)
e = 2.718281828459046 (diff: 0.000000000000000)
pi = 3.141592622804847 (diff: -0.000000030784946)
pi = 3.141592653589762 (diff: -0.000000000000031)
</pre>
 
===Iterative===
{{trans|Python}}
(from Python's Fast Iterative version)
<syntaxhighlight lang="picat">continued_fraction_it(Fun, N) = Ret =>
Temp = 0.0,
foreach(I in N..-1..1)
[A,B] = apply(Fun,I),
Temp := B / (A + Temp)
end,
F = apply(Fun,0),
Ret = F[1] + Temp.
 
fsqrt2(N) = [cond(N > 0, 2, 1),1].
fnapier(N) = [cond(N > 0, N,2), cond(N>1,N-1,1)].
fpi(N) = [cond(N>0,6,3), (2*N-1) ** 2].</syntaxhighlight>
 
Which has exactly the same output as the recursive version.
 
=={{header|PicoLisp}}==
<syntaxhighlight lang="picolisp">(scl 49)
(de fsqrt2 (N A)
(default A 1)
(cond
((> A (inc N)) 2)
(T
(+
(if (=1 A) 1.0 2.0)
(*/ `(* 1.0 1.0) (fsqrt2 N (inc A))) ) ) ) )
(de pi (N A)
(default A 1)
(cond
((> A (inc N)) 6.0)
(T
(+
(if (=1 A) 3.0 6.0)
(*/
(* (** (dec (* 2 A)) 2) 1.0)
1.0
(pi N (inc A)) ) ) ) ) )
(de napier (N A)
(default A 0)
(cond
((> A N) (* A 1.0))
(T
(+
(if (=0 A) 2.0 (* A 1.0))
(*/
(if (> 1 A) 1.0 (* A 1.0))
1.0
(napier N (inc A)) ) ) ) ) )
(prinl (format (fsqrt2 200) *Scl))
(prinl (format (napier 200) *Scl))
(prinl (format (pi 200) *Scl))</syntaxhighlight>
{{out}}
<pre>
1.4142135623730950488016887242096980785696718753770
2.7182818284590452353602874713526624977572470937000
3.1415926839198062649342019294083175420335002640134
</pre>
 
=={{header|PL/I}}==
<langsyntaxhighlight PLIlang="pli">/* Version for SQRT(2) */
test: proc options (main);
declare n fixed;
Line 1,350 ⟶ 2,802:
put (1 + 1/denom(2));
 
end test;</langsyntaxhighlight>
{{out}}
<pre> 1.41421356237309505E+0000 </pre>
Version for NAPIER:
<langsyntaxhighlight PLIlang="pli">test: proc options (main);
declare n fixed;
 
Line 1,366 ⟶ 2,818:
put (2 + 1/denom(0));
 
end test;</langsyntaxhighlight>
<pre> 2.71828182845904524E+0000 </pre>
Version for SQRT2, NAPIER, PI
<langsyntaxhighlight PLIlang="pli">/* Derived from continued fraction in Wiki Ada program */
 
continued_fractions: /* 6 Sept. 2012 */
Line 1,412 ⟶ 2,864:
put skip edit ('PI=', calc(pi, 99999)) (a(10), f(20,17));
 
end continued_fractions;</langsyntaxhighlight>
{{out}}
<pre>
Line 1,421 ⟶ 2,873:
 
=={{header|Prolog}}==
<langsyntaxhighlight Prologlang="prolog">continued_fraction :-
% square root 2
continued_fraction(200, sqrt_2_ab, V1),
Line 1,463 ⟶ 2,915:
pi_ab(0, 3, _).
pi_ab(N, 6, V) :-
V is (2 * N - 1)*(2 * N - 1).</langsyntaxhighlight>
{{out}}
<pre> ?- continued_fraction.
Line 1,474 ⟶ 2,926:
=={{header|Python}}==
{{works with|Python|2.6+ and 3.x}}
<langsyntaxhighlight lang="python">from fractions import Fraction
import itertools
try: zip = itertools.izip
Line 1,540 ⟶ 2,992:
cf = CF(Pi_a(), Pi_b(), 950)
print(pRes(cf, 10))
#3.1415926532</langsyntaxhighlight>
===Fast iterative version===
{{trans|D}}
<langsyntaxhighlight lang="python">from decimal import Decimal, getcontext
 
def calc(fun, n):
Line 1,566 ⟶ 3,018:
print calc(fsqrt2, 200)
print calc(fnapier, 200)
print calc(fpi, 200)</langsyntaxhighlight>
{{out}}
<pre>1.4142135623730950488016887242096980785696718753770
2.7182818284590452353602874713526624977572470937000
3.1415926839198062649342019294083175420335002640134</pre>
 
=={{header|Quackery}}==
 
<syntaxhighlight lang="quackery"> [ $ "bigrat.qky" loadfile ] now!
 
[ 1 min
[ table
[ 1 1 ]
[ 2 1 ] ] do ] is sqrt2 ( n --> n/d )
[ dup 2 min
[ table
[ drop 2 1 ]
[ 1 ]
[ dup 1 - ] ] do ] is napier ( n --> n/d )
 
[ dup 1 min
[ table
[ drop 3 1 ]
[ 2 * 1 - dup *
6 swap ] ] do ] is pi ( n --> n/d )
 
[ ]'[ temp put
0 1
rot times
[ i 1+
temp share do
v+ 1/v ]
0 temp take do v+ ] is cf ( n --> n/d )
 
1000 cf sqrt2 10 point$ echo$ cr
1000 cf napier 10 point$ echo$ cr
1000 cf pi 10 point$ echo$ cr</syntaxhighlight>
 
{{out}}
 
<pre>1.4142135624
2.7136688544
3.1413776152</pre>
 
=={{header|Racket}}==
===Using Doubles===
This version uses standard double precision floating point numbers:
<langsyntaxhighlight lang="racket">
#lang racket
(define (calc cf n)
Line 1,592 ⟶ 3,083:
(calc cf-napier 200)
(calc cf-pi 200)
</syntaxhighlight>
</lang>
Output:
<langsyntaxhighlight lang="racket">
1.4142135623730951
2.7182818284590455
3.1415926839198063
</syntaxhighlight>
</lang>
 
===Version - Using Doubles===
This versions uses big floats (arbitrary precision floating point):
<langsyntaxhighlight lang="racket">
#lang racket
(require math)
Line 1,622 ⟶ 3,113:
(calc cf-napier 200)
(calc cf-pi 200)
</syntaxhighlight>
</lang>
Output:
<langsyntaxhighlight lang="racket">
(bf #e1.4142135623730950488016887242096980785696718753769480731766797379907324784621070388503875343276415727350138462309122970249248360558507372126441214970999358960036439214262599769155193770031712304888324413327207659690547583107739957489062466508437105234564161085482146113860092820802430986649987683947729823677905101453725898480737256099166805538057375451207262441039818826744940289448489312217214883459060818483750848688583833366310472320771259749181255428309841375829513581694269249380272698662595131575038315461736928338289219865139248048189188905788104310928762952913687232022557677738108337499350045588767581063729)
(bf #e2.71828182845904523536028747135266249775724709369995957496696762772407663035354759457138217852516642742746639193200305992181741359662904357290033429526059563073813232862794349076323382988075319525101901157383418793070215408914993488416750924476146066808226480016847741185374234544243710753907774499206955170276183860626133138458300075204493382656029760673711320070932870912744374704723624212700454495421842219077173525899689811474120614457405772696521446961165559468253835854362096088934714907384964847142748311021268578658461064714894910680584249490719358138073078291397044213736982988247857479512745588762993966446075)
(bf #e3.14159268391980626493420192940831754203350026401337226640663040854412059241988978103217808449508253393479795573626200366332733859609651462659489470805432281782785922056335606047700127154963266242144951481397480765182268219697420028007903565511884267297358842935537138583640066772149177226656227031792115896439889412205871076985598822285367358003457939603015797225018209619662200081521930463480571130673429337524564941105654923909951299948539893933654293161126559643573974163405197696633200469475250152247413175932572922175467223988860975105100904322239324381097207835036465269418118204894206705789759765527734394105147)
</syntaxhighlight>
</lang>
 
=={{header|Raku}}==
(formerly Perl 6)
{{Works with|rakudo|2015-10-31}}
<syntaxhighlight lang="raku" line>sub continued-fraction(:@a, :@b, Int :$n = 100)
{
my $x = @a[$n - 1];
$x = @a[$_ - 1] + @b[$_] / $x for reverse 1 ..^ $n;
$x;
}
 
printf "√2 ≈%.9f\n", continued-fraction(:a(1, |(2 xx *)), :b(Nil, |(1 xx *)));
printf "e ≈%.9f\n", continued-fraction(:a(2, |(1 .. *)), :b(Nil, 1, |(1 .. *)));
printf "π ≈%.9f\n", continued-fraction(:a(3, |(6 xx *)), :b(Nil, |((1, 3, 5 ... *) X** 2)));</syntaxhighlight>
{{out}}
<pre>√2 ≈ 1.414213562
e ≈ 2.718281828
π ≈ 3.141592654</pre>
 
A more original and a bit more abstract method would consist in viewing a continued fraction on rank n as a function of a variable x:
:<math>\mathrm{CF}_3(x) = a_0 + \cfrac{b_1}{a_1 + \cfrac{b_2}{a_2 + \cfrac{b_3}{a_3 + x}}}</math>
Or, more consistently:
:<math>\mathrm{CF}_3(x) = a_0 + \cfrac{b_0}{a_1 + \cfrac{b_1}{a_2 + \cfrac{b_2}{a_3 + \cfrac{b_3}{x}}}}</math>
Viewed as such, <math>\mathrm{CF}_n(x)</math> could be written recursively:
:<math>\mathrm{CF}_n(x) = \mathrm{CF}_{n-1}(a_n + \frac{b_n}{x})</math>
Or in other words:
:<math>\mathrm{CF}_n= \mathrm{CF}_{n-1}\circ f_n = \mathrm{CF}_{n-2}\circ f_{n-1}\circ f_n=\ldots=f_0\circ f_1 \ldots \circ f_n</math>
where <math>f_n(x) = a_n + \frac{b_n}{x}</math>
 
Raku has a builtin composition operator. We can use it with the triangular reduction metaoperator, and evaluate each resulting function at infinity (any value would do actually, but infinite makes it consistent with this particular task).
<syntaxhighlight lang="raku" line>sub continued-fraction(@a, @b) {
map { .(Inf) }, [\o] map { @a[$_] + @b[$_] / * }, ^Inf
}
printf "√2 ≈ %.9f\n", continued-fraction((1, |(2 xx *)), (1 xx *))[10];
printf "e ≈ %.9f\n", continued-fraction((2, |(1 .. *)), (1, |(1 .. *)))[10];
printf "π ≈ %.9f\n", continued-fraction((3, |(6 xx *)), ((1, 3, 5 ... *) X** 2))[100];</syntaxhighlight>
{{out}}
<pre>√2 ≈ 1.414213552
e ≈ 2.718281827
π ≈ 3.141592411</pre>
 
=={{header|REXX}}==
===Versionversion 1===
The &nbsp; '''CFcf''' &nbsp; subroutine &nbsp; (for continued'''C'''ontinued fractions'''F'''ractions) &nbsp; isn't limited to positive integers.
<br>Any form of REXX numbers (negative, exponentiated, decimal fractions) can be used;.
[note<br>Note the use of negative fractions for the &nbsp; <big>'''ß'''</big> &nbsp; terms when computing <big>'''<b></b>{{overline| &nbsp; ½] &nbsp;}}'''</big>.
 
There isn't any practical limit onfor the precisiondecimal digits that can be used, although 100k digits would be a bit unwieldlyunwieldy to display.
 
A generalized &nbsp; <big>'''<b></b>{{overline| &nbsp;}}'''</big> &nbsp; function was added to calculate a few low integers &nbsp; (and also ½&nbsp; <big><sup>'''1'''</sup></big>/<big><sub>'''2'''</sub></big>).
In addition, '''½π''' was calculated (as described in the ''talk'' page under ''Gold Credit'').
 
<!--
More code is used for nicely formatting the output than the continued fraction calculation.
In addition, &nbsp; <big><sup>'''1'''</sup></big>/<big><sub>'''2'''</sub> π</big> &nbsp; was calculated (as described in the ''talk'' page under ''Gold Credit'').
<lang rexx>/*REXX program calculates and displays values of some specific continued*/
-->
/*───────────── fractions (along with their α and ß terms). */
/*───────────── Continued fractions: also known as anthyphairetic ratio.*/
T=500 /*use 500 terms for calculations.*/
showDig=100; numeric digits 2*showDig /*use 100 digits for the display.*/
a=; @=; b= /*omitted ß terms are assumed = 1*/
/*══════════════════════════════════════════════════════════════════════*/
a=1 rep(2); call tell '√2'
/*══════════════════════════════════════════════════════════════════════*/
a=1 rep(1 2); call tell '√3' /*also: 2∙sin(π/3) */
/*══════════════════════════════════════ ___ ════════════════════════*/
/*generalized √ N */
do N=2 to 11; a=1 rep(2); b=rep(N-1); call tell 'gen √'N; end
N=1/2; a=1 rep(2); b=rep(N-1); call tell 'gen √½'
/*══════════════════════════════════════════════════════════════════════*/
do j=1 for T; a=a j; end; b=1 a; a=2 a; call tell 'e'
/*══════════════════════════════════════════════════════════════════════*/
do j=1 for T by 2; a=a j; b=b j+1; end; call tell '1÷[√e-1]'
/*══════════════════════════════════════════════════════════════════════*/
do j=1 for T; a=a j; end; b=a; a=0 a; call tell '1÷[e-1]'
/*══════════════════════════════════════════════════════════════════════*/
a=1 rep(1); call tell 'φ, phi'
/*══════════════════════════════════════════════════════════════════════*/
a=1; do j=1 for T by 2; a=a j 1; end; call tell 'tan(1)'
/*══════════════════════════════════════════════════════════════════════*/
a=1; do j=1 for T; a=a 2*j+1; end; call tell 'coth(1)'
/*══════════════════════════════════════════════════════════════════════*/
a=2; do j=1 for T; a=a 4*j+2; end; call tell 'coth(½)' /*also: [e+1] ÷ [e-1] */
/*══════════════════════════════════════════════════════════════════════*/
T=10000
a=1 rep(2)
do j=1 for T by 2; b=b j**2; end; call tell '4÷π'
/*══════════════════════════════════════════════════════════════════════*/
T=10000
a=1; do j=1 for T; a=a 1/j; @=@ '1/'j; end; call tell '½π, ½pi'
/*══════════════════════════════════════════════════════════════════════*/
T=10000
a=0 1 rep(2)
do j=1 for T by 2; b=b j**2; end; b=4 b; call tell 'π, pi'
/*══════════════════════════════════════════════════════════════════════*/
T=10000
a=0; do j=1 for T; a=a j*2-1; b=b j**2; end; b=4 b; call tell 'π, pi'
/*══════════════════════════════════════════════════════════════════════*/
T=100000
a=3 rep(6)
do j=1 for T by 2; b=b j**2; end; call tell 'π, pi'
exit /*stick a fork in it, we're done.*/
 
More code is used for nicely formatting the output than the continued fraction calculation.
/*────────────────────────────────CF subroutine─────────────────────────*/
<syntaxhighlight lang="rexx">/*REXX program calculates and displays values of various continued fractions. */
cf: procedure; parse arg C x,y; !=0; numeric digits digits()+5
parse arg terms digs .
do k=words(x) to 1 by -1; a=word(x,k); b=word(word(y,k) 1,1)
if terms=='' | terms=="," then terms=500
d=a+!; if d=0 then call divZero /*in case divisor is bogus.*/
if digs=='' | digs=="," then digs=100
!=b/d /*here's a binary mosh pit.*/
numeric digits digs /*use 100 decimal digits for display.*/
end /*k*/
b.=1 /*omitted ß terms are assumed to be 1.*/
return !+C
/*══════════════════════════════════════════════════════════════════════════════════════*/
/*────────────────────────────────DIVZERO subroutine────────────────────*/
a.=2; call tell '√2', cf(1)
divZero: say; say '***error!***'; say 'division by zero.'; say; exit 13
/*══════════════════════════════════════════════════════════════════════════════════════*/
/*────────────────────────────────GETT subroutine───────────────────────*/
a.=1; do N=2 by 2 to terms; a.N=2; end; call tell '√3', cf(1) /*also: 2∙sin(π/3) */
getT: parse arg stuff,width,ma,mb,_
/*══════════════════════════════════════════════════════════════════════════════════════*/
do m=1; mm=m+ma; mn=max(1,m-mb); w=word(stuff,m)
a.=2 /* ___ */
w=right(w,max(length(word(As,mm)),length(word(Bs,mn)),length(w)))
do N=2 to 17 /*generalized if length(_ w)>width then leave /*stopN getting terms?*/
b.=N-1; _=_ w NN=right(N, 2); call tell 'gen /*whole, don't chop.NN, */cf(1)
end /*m*/ /*done building termsN*/
/*══════════════════════════════════════════════════════════════════════════════════════*/
return strip(_) /*strip leading blank*/
a.=2; b.=-1/2; call tell 'gen √ ½', cf(1)
/*────────────────────────────────REP subroutine────────────────────────*/
/*══════════════════════════════════════════════════════════════════════════════════════*/
rep: parse arg rep; return space(copies(' 'rep, T%words(rep)))
do j=1 for terms; a.j=j; if j>1 then b.j=a.p; p=j; end; call tell 'e', cf(2)
/*────────────────────────────────RF subroutine─────────────────────────*/
/*══════════════════════════════════════════════════════════════════════════════════════*/
rf: parse arg xxx,z
a.=1; call tell 'φ, phi', cf(1)
do m=1 for T; w=word(xxx,m) ; if w=='1/1' | w=1 then w=1
/*══════════════════════════════════════════════════════════════════════════════════════*/
if w=='1/2' | w=1/2 then w='½'; if w=-.5 then w='-½'
a.=1; do j=1 for terms; if w=='1j/4' | w=1/42 then wa.j='¼'j; if w=-.25 end; call thentell w='tan(1)', cf(1)
/*══════════════════════════════════════════════════════════════════════════════════════*/
z=z w
do j=1 for terms; a.j=2*j+1; end; call tell 'coth(1)', cf(1)
end
/*══════════════════════════════════════════════════════════════════════════════════════*/
return z /*done re-formatting.*/
do j=1 for terms; a.j=4*j+2; end; call tell 'coth(½)', cf(2) /*also: [e+1]÷[e-1] */
/*────────────────────────────────TELL subroutine───────────────────────*/
/*══════════════════════════════════════════════════════════════════════════════════════*/
tell: parse arg ?; v=cf(a,b); numeric digits showdig; As=rf(@ a); Bs=rf(b)
say right(?,8) '=' left(v/1,showdig) ' α terms= ' getT(As,72 ,0,1)100000
a.=6; do j=1 for terms; b.j=(2*j-1)**2; end; call tell 'π, pi', cf(3)
if b\=='' then say right('',8+2+showdig+1) ' ß terms= ' getT(Bs,72-2,1,0)
exit /*stick a fork in it, we're all done. */
a=; @=; b=; return</lang>
/*──────────────────────────────────────────────────────────────────────────────────────*/
cf: procedure expose a. b. terms; parse arg C; !=0; numeric digits 9+digits()
do k=terms by -1 for terms; d=a.k+!; !=b.k/d
end /*k*/
return !+C
/*──────────────────────────────────────────────────────────────────────────────────────*/
tell: parse arg ?,v; $=left(format(v)/1,1+digits()); w=50 /*50 bytes of terms*/
aT=; do k=1; _=space(aT a.k); if length(_)>w then leave; aT=_; end /*k*/
bT=; do k=1; _=space(bT b.k); if length(_)>w then leave; bT=_; end /*k*/
say right(?,8) "=" $ ' α terms='aT ...
if b.1\==1 then say right("",12+digits()) ' ß terms='bT ...
a=; b.=1; return /*only 50 bytes of α & ß terms ↑ are displayed. */</syntaxhighlight>
'''output'''
<pre>
√2 = 1.41421356237309504880168872420969807856967187537694807317667973799073247846210703885038753432764157414213562373095048801688724209698078569671875376948073176679737990732478462107038850387534327641573 α terms= 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2...
√3 = 1.73205080756887729352744634150587236694280525381038062805580697945193301690880003708114618675724857732050807568877293527446341505872366942805253810380628055806979451933016908800037081146186757248576 α terms= 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1...
gen √2√ 2 = 1.41421356237309504880168872420969807856967187537694807317667973799073247846210703885038753432764157414213562373095048801688724209698078569671875376948073176679737990732478462107038850387534327641573 α terms= 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2...
gen √ 3 = 1.732050807568877293527446341505872366942805253810380628055806979451933016908800037081146186757248576 α terms=2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
ß terms= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
gen √3 = 1.73205080756887729352744634150587236694280525381038062805580697945193301690880003708114618675724857 α terms= 1 2 2 2 2 2 2 2 2 2 2 ß terms=2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
gen 4 = 2 ßα terms= 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2...
gen √4 = 2 α terms= 1 2 2 2 2 2ß 2 2 2 2 2terms=3 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 2...
gen √ 5 = 2.236067977499789696409173668731276235440618359611525724270897245410520925637804899414414408378782275 α terms=2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
ß terms= 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
ß terms=4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ...
gen √5 = 2.23606797749978969640917366873127623544061835961152572427089724541052092563780489941441440837878227 α terms= 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
gen √ 6 = 2.449489742783178098197284074705891391965947480656670128432692567250960377457315026539859433104640235 α terms=2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
ß terms= 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
ß terms=5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 ...
gen √6 = 2.44948974278317809819728407470589139196594748065667012843269256725096037745731502653985943310464023 α terms= 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
gen √ 7 = 2.645751311064590590501615753639260425710259183082450180368334459201068823230283627760392886474543611 α terms=2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
ß terms= 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
ß terms=6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 ...
gen √7 = 2.64575131106459059050161575363926042571025918308245018036833445920106882323028362776039288647454361 α terms= 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
gen √ 8 = 2.828427124746190097603377448419396157139343750753896146353359475981464956924214077700775068655283145 α terms=2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
ß terms= 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
ß terms=7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 ...
gen √8 = 2.82842712474619009760337744841939615713934375075389614635335947598146495692421407770077506865528314 α terms= 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
gen 9 = 3 ßα terms=2 2 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 7...
gen √9 = 3 α terms= 1 2 2 2 2 2ß 2 2 2 2 2terms=8 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 2...
gen √10 = 3.162277660168379331998893544432718533719555139325216826857504852792594438639238221344248108379300295 α terms=2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
ß terms= 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
ß terms=9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 ...
gen √10 = 3.16227766016837933199889354443271853371955513932521682685750485279259443863923822134424810837930029 α terms= 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
gen √11 = 3.316624790355399849114932736670686683927088545589353597058682146116484642609043846708843399128290651 α terms=2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
ß terms= 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
ß terms=10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 ...
gen √11 = 3.31662479035539984911493273667068668392708854558935359705868214611648464260904384670884339912829065 α terms= 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
gen √12 = 3.464101615137754587054892683011744733885610507620761256111613958903866033817600074162292373514497151 α terms=2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
ß terms= 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
ß terms=11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 ...
gen √½ = 0.70710678118654752440084436210484903928483593768847403658833986899536623923105351942519376716382078 α terms= 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
gen √13 = 3.605551275463989293119221267470495946251296573845246212710453056227166948293010445204619082018490718 α terms=2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
ß terms= -½ -½ -½ -½ -½ -½ -½ -½ -½ -½ -½ -½ -½ -½ -½ -½ -½ -½ -½ -½ -½ -½ -½
ß terms=12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 ...
e = 2.71828182845904523536028747135266249775724709369995957496696762772407663035354759457138217852516642 α terms= 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
gen √14 = 3.741657386773941385583748732316549301756019807778726946303745467320035156306939027976809895194379572 α terms=2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
ß terms= 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
ß terms=13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 ...
1÷[√e-1] = 1.54149408253679828413110344447251463834045923684188210947413695663754263914331480707182572408500774 α terms= 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
gen √15 = 3.872983346207416885179265399782399610832921705291590826587573766113483091936979033519287376858673518 α terms=2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...
ß terms= 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
ß terms=14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
1÷[e-1] = 0.58197670686932642438500200510901155854686930107539613626678705964804381739166974328720470940487505 α terms= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
gen √16 = 4 ßα terms=2 2 2 2 12 2 32 42 52 62 72 82 92 102 112 122 132 142 152 162 172 182 192 202 21 22 23 24 252 26...
ß terms=15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 ...
φ, phi = 1.61803398874989484820458683436563811772030917980576286213544862270526046281890244970720720418939113 α terms= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
gen tan(1)√17 = 14.55740772465490223050697480745836017308725077238152003838394660569886139715172728955509996520224298123105625617660549821409855974077025147199225373620434398633573094954346337621593587863650810684297 α terms=2 2 12 12 12 32 12 52 12 72 12 92 12 112 12 132 12 152 12 172 12 192 12 212 12 23 1 25 1 27 1 29 1...
ß terms=16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 ...
coth(1) = 1.31303528549933130363616124693084783291201394124045265554315296756708427046187438267467924148085630 α terms= 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
coth(gen √ ½) = 20.16395341373865284877000401021802311709373860215079227253357411929608763478333948657440941880975011707106781186547524400844362104849039284835937688474036588339868995366239231053519425193767163820786 α terms=2 2 2 62 102 142 182 222 262 302 342 382 422 462 502 542 582 622 662 702 742 782 822 862 902 94...
4÷π = 1.27283479368898552763028955877501991659132774562422849516943825241995907438793488819711543252100078 α terms= 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ß terms=-0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 ...
e = 2.718281828459045235360287471352662497757247093699959574966967627724076630353547594571382178525166427 α terms=1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...
ß terms= 1 9 25 49 81 121 169 225 289 361 441 529 625 729 841 961 1089 1225
½π φ, ½piphi = 1.57071779679495409624134340842172803914665374867756685353559415360226497865248110814032818773478787618033988749894848204586834365638117720309179805762862135448622705260462818902449707207204189391137 α terms=1 1 1 ½1 1/3 ¼1 1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 1/14 1/15 1/16 1/17 1 1 1 1 1 1 ...
tan(1) = 1.557407724654902230506974807458360173087250772381520038383946605698861397151727289555099965202242984 α terms=1 1 3 1 5 1 7 1 9 1 11 1 13 1 15 1 17 1 19 1 21 1 ...
π, pi = 3.14259165433954305090112773725220456615353825631695587367530386050342717161955770321769607013860474 α terms= 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
coth(1) = 1.313035285499331303636161246930847832912013941240452655543152967567084270461874382674679241480856303 α terms=3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 ...
ß terms= 4 1 9 25 49 81 121 169 225 289 361 441 529 625 729 841 961 1089 1225
coth(½) = 2.163953413738652848770004010218023117093738602150792272533574119296087634783339486574409418809750115 α terms=6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 ...
π, pi = 3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706 α terms= 0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41
π, pi = 3.141592653589792988470143264530440384041017830472772036746332303472711537960073664096818977224037083 α terms=6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 ...
ß terms= 4 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400
π, pi = 3.14159265358979298847014326453044038404101783047277203674633230347271153796007366409681897722403708 α terms= 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
ß terms= 1 9 25 49 81 121 169 225 289 361 441 529 625 729 841 961 1089 1225
</pre>
Note: &nbsp; even with 200 digit accuracy and 100,000 terms, the last calculation of π (pi) is only accurate to 15 digits.
 
===Versionversion 2 derived from [[#PL/I|PL/I]]===
<langsyntaxhighlight lang="rexx">/* REXX **************************************************************
* Derived from PL/I with a little "massage"
* SQRT2= 1.41421356237309505 <- PL/I Result
Line 1,814 ⟶ 3,310:
end
call Get_Coeffs form, 0
return (A + Temp)</langsyntaxhighlight>
 
===Version 3 better approximation===
===version 3 better approximation===
<lang rexx>/* REXX *************************************************************
<syntaxhighlight lang="rexx">/* REXX *************************************************************
* The task description specifies a continued fraction for pi
* that gives a reasonable approximation.
Line 1,887 ⟶ 3,384:
end
call Get_Coeffs 0
return (A + Temp)</langsyntaxhighlight>
 
=={{header|Ring}}==
<syntaxhighlight lang="ring">
# Project : Continued fraction
 
see "SQR(2) = " + contfrac(1, 1, "2", "1") + nl
see " e = " + contfrac(2, 1, "n", "n") + nl
see " PI = " + contfrac(3, 1, "6", "(2*n+1)^2") + nl
 
func contfrac(a0, b1, a, b)
expr = ""
n = 0
while len(expr) < (700 - n)
n = n + 1
eval("temp1=" + a)
eval("temp2=" + b)
expr = expr + string(temp1) + char(43) + string(temp2) + "/("
end
str = copy(")",n)
eval("temp3=" + expr + "1" + str)
return a0 + b1 / temp3
</syntaxhighlight>
Output:
<pre>
SQR(2) = 1.414213562373095
e = 2.718281828459046
PI = 3.141592653588017
</pre>
 
=={{header|RPL}}==
This task demonstrates how both global and local variables, arithmetic expressions and stack can be used together to build a compact and versatile piece of code.
{{works with|Halcyon Calc|4.2.7}}
{| class="wikitable"
! RPL code
! Comment
|-
|
4 ROLL ROT → an bn
≪ 'N' STO 0 '''WHILE''' N 2 ≥ '''REPEAT'''
an + INV bn * EVAL
'N' 1 STO- '''END'''
an + / + EVAL
'N' PURGE
≫ ≫ ‘'''→CFRAC'''’ STO
|
'''→CFRAC''' ''( a0 an b1 bn N -- x ) ''
Unstack an and bn
Loop from N to 2
Calculate Nth fraction
Decrement counter
Calculate last fraction with b1 in stack, then add a0
Discard N variable - not mandatory but hygienic
|}
{{in}}
<pre>
1 2 1 1 100 →CFRAC
2 'N' 1 'N-1' 100 →CFRAC
3 6 1 '(2*N-1)^2' 1000 →CFRAC
1 1 1 1 100 →CFRAC
1 '2-MOD(N,2)' 1 1 100 →CFRAC
</pre>
{{out}}
<pre>
5: 1.41421356237
4: 2.71828182846
3: 3.14159265334
2: 1.61803398875
1: 1.73205080757
</pre>
 
=={{header|Ruby}}==
<langsyntaxhighlight lang="ruby">require 'bigdecimal'
 
# square root of 2
Line 1,936 ⟶ 3,504:
puts estimate(sqrt2, 50).to_s('F')
puts estimate(napier, 50).to_s('F')
puts estimate(pi, 10).to_s('F')</langsyntaxhighlight>
{{out}}
<pre>$ ruby cfrac.rb
Line 1,942 ⟶ 3,510:
2.71828182845904523536028747135266249775724709369996
3.1415926536</pre>
 
=={{header|Rust}}==
<syntaxhighlight lang="rust">
use std::iter;
 
// Calculating a continued fraction is quite easy with iterators, however
// writing a proper iterator adapter is less so. We settle for a macro which
// for most purposes works well enough.
//
// One limitation with this iterator based approach is that we cannot reverse
// input iterators since they are not usually DoubleEnded. To circumvent this
// we can collect the elements and then reverse them, however this isn't ideal
// as we now have to store elements equal to the number of iterations.
//
// Another is that iterators cannot be resused once consumed, so it is often
// required to make many clones of iterators.
macro_rules! continued_fraction {
($a:expr, $b:expr ; $iterations:expr) => (
($a).zip($b)
.take($iterations)
.collect::<Vec<_>>().iter()
.rev()
.fold(0 as f64, |acc: f64, &(x, y)| {
x as f64 + (y as f64 / acc)
})
);
 
($a:expr, $b:expr) => (continued_fraction!($a, $b ; 1000));
}
 
fn main() {
// Sqrt(2)
let sqrt2a = (1..2).chain(iter::repeat(2));
let sqrt2b = iter::repeat(1);
println!("{}", continued_fraction!(sqrt2a, sqrt2b));
 
 
// Napier's Constant
let napiera = (2..3).chain(1..);
let napierb = (1..2).chain(1..);
println!("{}", continued_fraction!(napiera, napierb));
 
 
// Pi
let pia = (3..4).chain(iter::repeat(6));
let pib = (1i64..).map(|x| (2 * x - 1).pow(2));
println!("{}", continued_fraction!(pia, pib));
}
</syntaxhighlight>
 
{{out}}
<pre>
1.4142135623730951
2.7182818284590455
3.141592653339042
</pre>
 
=={{header|Scala}}==
{{works with|Scala|2.9.1}}
Note that Scala-BigDecimal provides a precision of 34 digits. Therefore we take a limitation of 32 digits to avoiding rounding problems.
<langsyntaxhighlight Scalalang="scala">object CF extends App {
import Stream._
val sqrt2 = 1 #:: from(2,0) zip from(1,0)
Line 1,976 ⟶ 3,600:
println()
}
}</langsyntaxhighlight>
{{out}}
<pre>sqrt2:
Line 1,993 ⟶ 3,617:
precision: 3.14159265358</pre>
For higher accuracy of pi we have to take more iterations. Unfortunately the foldRight function in calc isn't tail recursiv - therefore a stack overflow exception will be thrown for higher numbers of iteration, thus we have to implement an iterative way for calculation:
<langsyntaxhighlight Scalalang="scala">object CFI extends App {
import Stream._
val sqrt2 = 1 #:: from(2,0) zip from(1,0)
Line 2,027 ⟶ 3,651:
println()
}
}</langsyntaxhighlight>
{{out}}
<pre>sqrt2:
Line 2,043 ⟶ 3,667:
cf value: 3.14159265358983426214354599901745
precision: 3.141592653589</pre>
 
=={{header|Scheme}}==
The following code relies on a library implementing SRFI 41 (lazy streams). Most Scheme interpreters include an implementation.
 
<syntaxhighlight lang="scheme">#!r6rs
(import (rnrs base (6))
(srfi :41 streams))
 
(define nats (stream-cons 0 (stream-map (lambda (x) (+ x 1)) nats)))
 
(define (build-stream fn) (stream-map fn nats))
 
(define (stream-cycle s . S)
(cond
((stream-null? (car S)) stream-null)
(else (stream-cons (stream-car s)
(apply stream-cycle (append S (list (stream-cdr s))))))))
 
(define (cf-floor cf) (stream-car cf))
(define (cf-num cf) (stream-car (stream-cdr cf)))
(define (cf-denom cf) (stream-cdr (stream-cdr cf)))
 
(define (cf-integer? x) (stream-null? (stream-cdr x)))
 
(define (cf->real x)
(let refine ((x x) (n 65536))
(cond
((= n 0) +inf.0)
((cf-integer? x) (cf-floor x))
(else (+ (cf-floor x)
(/ (cf-num x)
(refine (cf-denom x) (- n 1))))))))
 
(define (real->cf x)
(let-values (((integer-part fractional-part) (div-and-mod x 1)))
(if (= fractional-part 0.0)
(stream (exact integer-part))
(stream-cons
(exact integer-part)
(stream-cons
1
(real->cf (/ fractional-part)))))))
 
 
(define sqrt2 (stream-cons 1 (stream-constant 1 2)))
 
(define napier
(stream-append (stream 2 1)
(stream-cycle (stream-cdr nats) (stream-cdr nats))))
 
(define pi
(stream-cons 3
(stream-cycle (build-stream (lambda (n) (expt (- (* 2 (+ n 1)) 1) 2)))
(stream-constant 6))))</syntaxhighlight>
 
Test:
<syntaxhighlight lang="scheme">> (cf->real sqrt2)
1.4142135623730951
> (cf->real napier)
2.7182818284590455
> (cf->real pi)
3.141592653589794</syntaxhighlight>
 
=={{header|Sidef}}==
<syntaxhighlight lang="ruby">func continued_fraction(a, b, f, n = 1000, r = 1) {
f(func (r) {
r < n ? (a(r) / (b(r) + __FUNC__(r+1))) : 0
}(r))
}
 
var params = Hash(
"φ" => [ { 1 }, { 1 }, { 1 + _ } ],
"√2" => [ { 1 }, { 2 }, { 1 + _ } ],
"e" => [ { _ }, { _ }, { 1 + 1/_ } ],
"π" => [ { (2*_ - 1)**2 }, { 6 }, { 3 + _ } ],
"τ" => [ { _**2 }, { 2*_ + 1 }, { 8 / (1 + _) } ],
)
 
for k in (params.keys.sort) {
printf("%2s ≈ %s\n", k, continued_fraction(params{k}...))
}</syntaxhighlight>
{{out}}
<pre>
e ≈ 2.7182818284590452353602874713526624977572470937
π ≈ 3.14159265383979292596359650286939597045138933078
τ ≈ 6.28318530717958647692528676655900576839433879875
φ ≈ 1.61803398874989484820458683436563811772030917981
√2 ≈ 1.41421356237309504880168872420969807856967187538
</pre>
 
=={{header|Swift}}==
 
{{trans|Rust}}
 
<syntaxhighlight lang="swift">extension BinaryInteger {
@inlinable
public func power(_ n: Self) -> Self {
return stride(from: 0, to: n, by: 1).lazy.map({_ in self }).reduce(1, *)
}
}
 
public struct CycledSequence<WrappedSequence: Sequence> {
private var seq: WrappedSequence
private var iter: WrappedSequence.Iterator
 
init(seq: WrappedSequence) {
self.seq = seq
self.iter = seq.makeIterator()
}
}
 
extension CycledSequence: Sequence, IteratorProtocol {
public mutating func next() -> WrappedSequence.Element? {
if let ele = iter.next() {
return ele
} else {
iter = seq.makeIterator()
 
return iter.next()
}
}
}
 
extension Sequence {
public func cycled() -> CycledSequence<Self> {
return CycledSequence(seq: self)
}
}
 
public struct ChainedSequence<Element> {
private var sequences: [AnySequence<Element>]
private var iter: AnyIterator<Element>
private var curSeq = 0
 
init(chain: ChainedSequence) {
self.sequences = chain.sequences
self.iter = chain.iter
self.curSeq = chain.curSeq
}
 
init<Seq: Sequence>(_ seq: Seq) where Seq.Element == Element {
sequences = [AnySequence(seq)]
iter = sequences[curSeq].makeIterator()
}
 
func chained<Seq: Sequence>(with seq: Seq) -> ChainedSequence where Seq.Element == Element {
var res = ChainedSequence(chain: self)
 
res.sequences.append(AnySequence(seq))
 
return res
}
}
 
extension ChainedSequence: Sequence, IteratorProtocol {
public mutating func next() -> Element? {
if let el = iter.next() {
return el
}
 
curSeq += 1
 
guard curSeq != sequences.endIndex else {
return nil
}
 
iter = sequences[curSeq].makeIterator()
 
return iter.next()
}
}
 
extension Sequence {
public func chained<Seq: Sequence>(with other: Seq) -> ChainedSequence<Element> where Seq.Element == Element {
return ChainedSequence(self).chained(with: other)
}
}
 
func continuedFraction<T: Sequence, V: Sequence>(
_ seq1: T,
_ seq2: V,
iterations: Int = 1000
) -> Double where T.Element: BinaryInteger, T.Element == V.Element {
return zip(seq1, seq2).prefix(iterations).reversed().reduce(0.0, { Double($1.0) + (Double($1.1) / $0) })
}
 
let sqrtA = [1].chained(with: [2].cycled())
let sqrtB = [1].cycled()
 
print("√2 ≈ \(continuedFraction(sqrtA, sqrtB))")
 
let napierA = [2].chained(with: 1...)
let napierB = [1].chained(with: 1...)
 
print("e ≈ \(continuedFraction(napierA, napierB))")
 
let piA = [3].chained(with: [6].cycled())
let piB = (1...).lazy.map({ (2 * $0 - 1).power(2) })
 
print("π ≈ \(continuedFraction(piA, piB))")
</syntaxhighlight>
 
{{out}}
 
<pre>√2 ≈ 1.4142135623730951
e ≈ 2.7182818284590455
π ≈ 3.141592653339042</pre>
 
{{trans|Java}}
 
<syntaxhighlight lang="swift">
import Foundation
 
func calculate(n: Int, operation: (Int) -> [Int])-> Double {
var tmp: Double = 0
for ni in stride(from: n, to:0, by: -1) {
var p = operation(ni)
tmp = Double(p[1])/(Double(p[0]) + tmp);
}
return Double(operation(0)[0]) + tmp;
}
 
func sqrt (n: Int) -> [Int] {
return [n > 0 ? 2 : 1, 1]
}
 
func napier (n: Int) -> [Int] {
var res = [n > 0 ? n : 2, n > 1 ? (n - 1) : 1]
return res
}
 
func pi(n: Int) -> [Int] {
var res = [n > 0 ? 6 : 3, Int(pow(Double(2 * n - 1), 2))]
return res
}
print (calculate(n: 200, operation: sqrt));
print (calculate(n: 200, operation: napier));
print (calculate(n: 200, operation: pi));
 
</syntaxhighlight>
 
=={{header|Tcl}}==
Line 2,048 ⟶ 3,912:
{{trans|Python}}
Note that Tcl does not provide arbitrary precision floating point numbers by default, so all result computations are done with IEEE <code>double</code>s.
<langsyntaxhighlight lang="tcl">package require Tcl 8.6
 
# Term generators; yield list of pairs
Line 2,088 ⟶ 3,952:
puts [cf r2]
puts [cf e]
puts [cf pi 250]; # Converges more slowly</langsyntaxhighlight>
{{out}}
<pre>1.4142135623730951
2.7182818284590455
3.1415926373965735</pre>
 
=={{header|VBA}}==
{{trans|Phix}}<syntaxhighlight lang="vb">Public Const precision = 10000
Private Function continued_fraction(steps As Integer, rid_a As String, rid_b As String) As Double
Dim res As Double
res = 0
For n = steps To 1 Step -1
res = Application.Run(rid_b, n) / (Application.Run(rid_a, n) + res)
Next n
continued_fraction = Application.Run(rid_a, 0) + res
End Function
Function sqr2_a(n As Integer) As Integer
sqr2_a = IIf(n = 0, 1, 2)
End Function
 
Function sqr2_b(n As Integer) As Integer
sqr2_b = 1
End Function
Function nap_a(n As Integer) As Integer
nap_a = IIf(n = 0, 2, n)
End Function
 
Function nap_b(n As Integer) As Integer
nap_b = IIf(n = 1, 1, n - 1)
End Function
Function pi_a(n As Integer) As Integer
pi_a = IIf(n = 0, 3, 6)
End Function
 
Function pi_b(n As Integer) As Long
pi_b = IIf(n = 1, 1, (2 * n - 1) ^ 2)
End Function
 
Public Sub main()
Debug.Print "Precision:", precision
Debug.Print "Sqr(2):", continued_fraction(precision, "sqr2_a", "sqr2_b")
Debug.Print "Napier:", continued_fraction(precision, "nap_a", "nap_b")
Debug.Print "Pi:", continued_fraction(precision, "pi_a", "pi_b")
End Sub</syntaxhighlight>{{out}}
<pre>Precision: 10000
Sqr(2): 1,4142135623731
Napier: 2,71828182845905
Pi: 3,14159265358954 </pre>
 
=={{header|Visual Basic .NET}}==
{{trans|C#}}
<syntaxhighlight lang="vbnet">Module Module1
Function Calc(f As Func(Of Integer, Integer()), n As Integer) As Double
Dim temp = 0.0
For ni = n To 1 Step -1
Dim p = f(ni)
temp = p(1) / (p(0) + temp)
Next
Return f(0)(0) + temp
End Function
 
Sub Main()
Dim fList = {
Function(n As Integer) New Integer() {If(n > 0, 2, 1), 1},
Function(n As Integer) New Integer() {If(n > 0, n, 2), If(n > 1, n - 1, 1)},
Function(n As Integer) New Integer() {If(n > 0, 6, 3), Math.Pow(2 * n - 1, 2)}
}
 
For Each f In fList
Console.WriteLine(Calc(f, 200))
Next
End Sub
 
End Module</syntaxhighlight>
{{out}}
<pre>1.4142135623731
2.71828182845905
3.14159262280485</pre>
 
=={{header|Wren}}==
{{trans|D}}
<syntaxhighlight lang="wren">var calc = Fn.new { |f, n|
var t = 0
for (i in n..1) {
var p = f.call(i)
t = p[1] / (p[0] + t)
}
return f.call(0)[0] + t
}
 
var pList = [
["sqrt(2)", Fn.new { |n| [(n > 0) ? 2 : 1, 1] }],
["e ", Fn.new { |n| [(n > 0) ? n : 2, (n > 1) ? n - 1 : 1] }],
["pi ", Fn.new { |n| [(n > 0) ? 6 : 3, (2*n - 1) * (2*n - 1)] }]
]
for (p in pList) System.print("%(p[0]) = %(calc.call(p[1], 200))")</syntaxhighlight>
 
{{out}}
<pre>
sqrt(2) = 1.4142135623731
e = 2.718281828459
pi = 3.1415926228048
</pre>
 
=={{header|XPL0}}==
The number of iterations (N) needed to get the 13 digits of accuracy was determined by experiment.
<langsyntaxhighlight XPL0lang="xpl0">include c:\cxpl\codes;
int N;
real A, B, F;
Line 2,120 ⟶ 4,085:
RlOut(0, 3.0+F); CrLf(0);
RlOut(0, ACos(-1.0)); CrLf(0);
]</langsyntaxhighlight>
{{out}}
<pre>
Line 2,135 ⟶ 4,100:
 
=={{header|zkl}}==
<langsyntaxhighlight lang="zkl">fcn cf(fa,fb,a0){fcn(fa,fb,a0,n){
a0 + [n..1,-1].reduce('wrap(p,n){fb(n)/(fa(n)+p)},0.0) }
'wrap(p,n){ fb(n)/(fa(n)+p) },0.0) }.fp(fa,fb,a0) }</lang>
}</syntaxhighlight>
cf creates a function that calculates the continued fraction from the bottom up. The new function takes a single parameter, n, which is used to calculate the nth term.
<langsyntaxhighlight lang="zkl">sqrt2:=cf((2.0).noop,(1.0).noop,1.0);
sqrt2(200) : "%.20e".fmt(_).println();
nap:=cf((0.0).create,fcn(n){ (n==1) and 1.0 or (n-1).toFloat() },2.0);
println(nap(15) - (1.0).e);
pi:=cf((6.0).noop,fcn(n){ n=2*n-1; (n*n).toFloat() },3.0);
println(pi(1000) - (1.0).pi);</langsyntaxhighlight>
(1.0).create(n) --> n, (1.0).noop(n) --> 1.0
{{out}}
Line 2,152 ⟶ 4,118:
-2.49251e-10
</pre>
 
=={{header|ZX Spectrum Basic}}==
{{trans|BBC_BASIC}}
<syntaxhighlight lang="zxbasic">10 LET a0=1: LET b1=1: LET a$="2": LET b$="1": PRINT "SQR(2) = ";: GO SUB 1000
20 LET a0=2: LET b1=1: LET a$="N": LET b$="N": PRINT "e = ";: GO SUB 1000
30 LET a0=3: LET b1=1: LET a$="6": LET b$="(2*N+1)^2": PRINT "PI = ";: GO SUB 1000
100 STOP
1000 LET n=0: LET e$="": LET p$=""
1010 LET n=n+1
1020 LET e$=e$+STR$ VAL a$+"+"+STR$ VAL b$+"/("
1030 IF LEN e$<(4000-n) THEN GO TO 1010
1035 FOR i=1 TO n: LET p$=p$+")": NEXT i
1040 PRINT a0+b1/VAL (e$+"1"+p$)
1050 RETURN</syntaxhighlight>
2,120

edits