Composite numbers k with no single digit factors whose factors are all substrings of k: Difference between revisions

Added FreeBASIC
m (→‎slightly faster: duplicate line)
(Added FreeBASIC)
 
(31 intermediate revisions by 16 users not shown)
Line 1:
{{draft task}}
 
Find the composite numbers '''k''' in base 10, that have no single digit prime factors and whose prime factors are all a substring of '''k'''.
Line 18:
 
=={{header|ALGOL 68}}==
<langsyntaxhighlight lang="algol68">BEGIN # find composite k with no single digit factors whose factors are all substrings of k #
# returns TRUE if the string representation of f is a substring of k str, FALSE otherwise #
PROC is substring = ( STRING k str, INT f )BOOL:
Line 70:
FI
OD
END</langsyntaxhighlight>
{{out}}
<pre>
Line 76:
5526173 11610313 13436683 13731373 13737841 13831103 15813251 17692313 19173071 28118827
</pre>
 
=={{header|Arturo}}==
 
<syntaxhighlight lang="rebol">valid?: function [n][
pf: factors.prime n
every? pf 'f ->
and? [contains? to :string n to :string f]
[1 <> size digits f]
]
 
cnt: 0
i: new 3
 
while [cnt < 10][
if and? [not? prime? i][valid? i][
print i
cnt: cnt + 1
]
'i + 2
]</syntaxhighlight>
 
{{out}}
 
<pre>15317
59177
83731
119911
183347
192413
1819231
2111317
2237411
3129361</pre>
 
=={{header|C}}==
<syntaxhighlight lang="c">#include <stdio.h>
#include <stdbool.h>
 
bool is_substring(unsigned n, unsigned k) {
unsigned startMatch = 0;
 
for (unsigned pfx = k; n > 0; n /= 10) {
if (pfx % 10 == n % 10) {
pfx /= 10;
if (startMatch == 0) startMatch = n;
} else {
pfx = k;
if (startMatch != 0) n = startMatch;
startMatch = 0;
}
 
if (pfx == 0) return true;
}
return false;
}
 
bool factors_are_substrings(unsigned n) {
if (n%2==0 || n%3==0 || n%5==0 || n%7==0) return false;
 
unsigned factor_count = 0;
for (unsigned factor = 11, n_rest = n; factor <= n_rest; factor += 2) {
if (n_rest % factor != 0) continue;
while (n_rest % factor == 0) n_rest /= factor;
if (!is_substring(n, factor)) return false;
factor_count++;
}
return factor_count > 1;
}
 
int main(void) {
unsigned amount = 10;
for (unsigned n = 11; amount > 0; n += 2) {
if (factors_are_substrings(n)) {
printf("%u\n", n);
amount--;
}
}
return 0;
}</syntaxhighlight>
{{out}}
<pre>15317
59177
83731
119911
183347
192413
1819231
2111317
2237411
3129361</pre>
 
=={{header|C++}}==
<syntaxhighlight lang="c++">
#include <algorithm>
#include <cstdint>
#include <iostream>
#include <string>
#include <unordered_set>
#include <vector>
 
std::vector<uint32_t> primes;
 
void sieve_primes(const uint32_t& limit) {
std::vector<bool> marked_prime(limit + 1, true);
 
for ( uint32_t p = 2; p * p <= limit; ++p ) {
if ( marked_prime[p] ) {
for ( uint32_t i = p * p; i <= limit; i += p ) {
marked_prime[i] = false;
}
}
}
 
for ( uint32_t p = 2; p <= limit; ++p ) {
if ( marked_prime[p] ) {
primes.emplace_back(p);
}
}
}
 
bool is_substring(const uint32_t& k, const uint32_t& factor) {
const std::string string_k = std::to_string(k);
const std::string string_factor = std::to_string(factor);
return string_k.find(string_factor) != std::string::npos;
}
 
int main() {
sieve_primes(30'000'000);
 
std::unordered_set<uint32_t> distinct_factors;
std::vector<uint32_t> result;
uint32_t k = 11 * 11;
 
while ( result.size() < 10 ) {
while ( k % 3 == 0 || k % 5 == 0 || k % 7 == 0 ) {
k += 2;
}
 
distinct_factors.clear();
uint32_t copy_k = k;
uint32_t index = 4;
 
while ( copy_k > 1 ) {
while ( copy_k % primes[index] == 0 ) {
distinct_factors.insert(primes[index]);
copy_k /= primes[index];
}
index += 1;
}
 
if ( distinct_factors.size() > 1 ) {
if ( std::all_of(distinct_factors.begin(), distinct_factors.end(),
[&k](uint32_t factor) { return is_substring(k, factor); }) ) {
result.emplace_back(k);
}
}
 
k += 2;
}
 
for ( uint64_t i = 0; i < result.size(); ++i ) {
std::cout << result[i] << " ";
}
std::cout << std::endl;
}
</syntaxhighlight>
{{ out }}
<pre>
15317 59177 83731 119911 183347 192413 1819231 2111317 2237411 3129361
</pre>
 
=={{header|Delphi}}==
{{works with|Delphi|6.0}}
{{libheader|SysUtils,StdCtrls}}
Brute force method with a few obvious optimizations. Could be speeded up a lot, with some work.
 
<syntaxhighlight lang="Delphi">
 
 
 
procedure MultidigitComposites(Memo: TMemo);
var I,Cnt: integer;
var IA: TIntegerDynArray;
var Sieve: TPrimeSieve;
 
 
function MatchCriteria(N: integer): boolean;
{Test N against Criteria}
var I,L: integer;
var SN,ST: string;
begin
Result:=False;
{No even numbers}
if (N and 1)=0 then exit;
{N can't be prime}
if Sieve[N] then exit;
I:=3;
SN:=IntToStr(N);
repeat
begin
{Is it a factor }
if (N mod I) = 0 then
begin
{No one-digit numbers}
if I<10 then exit;
{Factor string must be found in N's string}
ST:=IntToStr(I);
if Pos(ST,SN)<1 then exit;
N:=N div I;
end
else I:=I+2;
end
until N<=1;
Result:=True;
end;
 
 
begin
Sieve:=TPrimeSieve.Create;
try
{Create 30 million primes}
Sieve.Intialize(30000000);
Cnt:=0;
{Smallest prime factor}
I:=11*11;
while I<High(integer) do
begin
{Test if I matches criteria}
if MatchCriteria(I) then
begin
Inc(Cnt);
Memo.Lines.Add(IntToStr(Cnt)+' - '+FloatToStrF(I,ffNumber,18,0));
if Cnt>=20 then break;
end;
Inc(I,2);
end;
finally Sieve.Free; end;
end;
 
</syntaxhighlight>
{{out}}
<pre>
1 - 15,317
2 - 59,177
3 - 83,731
4 - 119,911
5 - 183,347
6 - 192,413
7 - 1,819,231
8 - 2,111,317
9 - 2,237,411
10 - 3,129,361
11 - 5,526,173
12 - 11,610,313
13 - 13,436,683
14 - 13,731,373
15 - 13,737,841
16 - 13,831,103
17 - 15,813,251
18 - 17,692,313
19 - 19,173,071
20 - 28,118,827
Elapsed Time: 02:39.291 min
</pre>
 
=={{header|EasyLang}}==
{{trans|C}} (optimized)
<syntaxhighlight>
fastfunc isin n k .
h = k
while n > 0
if h mod 10 = n mod 10
h = h div 10
if match = 0
match = n
.
else
h = k
if match <> 0
n = match
.
match = 0
.
if h = 0
return 1
.
n = n div 10
.
return 0
.
 
fastfunc test n .
if n mod 2 = 0 or n mod 3 = 0 or n mod 5 = 0 or n mod 7 = 0
return 0
.
rest = n
fact = 11
while fact <= rest
if rest mod fact = 0
while rest mod fact = 0
rest /= fact
.
if isin n fact = 0
return 0
.
nfacts += 1
.
fact += 2
if fact > sqrt n and nfacts = 0
return 0
.
.
if nfacts > 1
return 1
.
return 0
.
n = 11
while count < 10
if test n = 1
print n
count += 1
.
n += 2
.
</syntaxhighlight>
 
=={{header|F_Sharp|F#}}==
Can anything be described as a translation of J? I use a wheel as described in J's comments, but of course I use numerical methods not euyuk! strings.
<langsyntaxhighlight lang="fsharp">
// Composite numbers k with no single digit factors whose factors are all substrings of k. Nigel Galloway: January 28th., 2022
let fG n g=let rec fN i g e l=match i<g,g=0L,i%10L=g%10L with (true,_,_)->false |(_,true,_)->true |(_,_,true)->fN(i/10L)(g/10L) e l |_->fN l e e (l/10L) in fN n g g (n/10L)
Line 85 ⟶ 411:
Seq.unfold(fun n->Some(n|>List.filter(fun(n:int64)->not(Open.Numeric.Primes.Prime.Numbers.IsPrime &n) && fN n),n|>List.map((+)210L)))([1L..2L..209L]
|>List.filter(fun n->n%3L>0L && n%5L>0L && n%7L>0L))|>Seq.concat|>Seq.skip 1|>Seq.take 20|>Seq.iter(printfn "%d")
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 110 ⟶ 436:
Real: 00:00:26.059
</pre>
 
=={{header|FreeBASIC}}==
{{trans|ALGOL 68}}
<syntaxhighlight lang="vbnet">Function isSubstring(kStr As String, f As Integer) As Integer
Dim As String fStr = Str(f)
Dim As Integer fLen = Len(fStr)
Dim As Integer result = 0
Dim As Integer fEnd = Len(kStr) - fLen + 1
For fPos As Integer = 1 To Len(kStr) - fLen + 1
If Mid(kStr, fPos, fLen) = fStr Then
result = -1
Exit For
End If
Next fPos
Return result
End Function
 
Dim As Integer requiredNumbers = 20
Dim As Integer kCount = 0
For k As Integer = 11 To 99999999 Step 2
If k Mod 3 <> 0 And k Mod 5 <> 0 And k Mod 7 <> 0 Then
Dim As Integer isCandidate = -1
Dim As String kStr = Str(k)
Dim As Integer v = k
Dim As Integer fCount = 0
For f As Integer = 11 To Sqr(k) + 1
If v Mod f = 0 Then
isCandidate = isSubstring(kStr, f)
If isCandidate Then
While v Mod f = 0
fCount += 1
v \= f
Wend
Else
Exit For
End If
End If
Next f
If isCandidate And (fCount > 1 Or (v <> k And v > 1)) Then
If v > 1 Then isCandidate = isSubstring(kStr, v)
If isCandidate Then
Print Using "#######,###"; k;
kCount += 1
If kCount Mod 10 = 0 Then Print
End If
End If
End If
If kCount >= requiredNumbers Then Exit For
Next k</syntaxhighlight>
{{out}}
<pre> 15,317 59,177 83,731 119,911 183,347 192,413 1,819,231 2,111,317 2,237,411 3,129,361
5,526,173 11,610,313 13,436,683 13,731,373 13,737,841 13,831,103 15,813,251 17,692,313 19,173,071 28,118,827</pre>
 
=={{header|Go}}==
{{trans|Wren}}
{{libheader|Go-rcu}}
<syntaxhighlight lang="go">package main
 
import (
"fmt"
"rcu"
"strconv"
"strings"
)
 
func main() {
count := 0
k := 11 * 11
var res []int
for count < 20 {
if k%3 == 0 || k%5 == 0 || k%7 == 0 {
k += 2
continue
}
factors := rcu.PrimeFactors(k)
if len(factors) > 1 {
s := strconv.Itoa(k)
includesAll := true
prev := -1
for _, f := range factors {
if f == prev {
continue
}
fs := strconv.Itoa(f)
if strings.Index(s, fs) == -1 {
includesAll = false
break
}
}
if includesAll {
res = append(res, k)
count++
}
}
k += 2
}
for _, e := range res[0:10] {
fmt.Printf("%10s ", rcu.Commatize(e))
}
fmt.Println()
for _, e := range res[10:20] {
fmt.Printf("%10s ", rcu.Commatize(e))
}
fmt.Println()
}</syntaxhighlight>
 
{{out}}
<pre>
15,317 59,177 83,731 119,911 183,347 192,413 1,819,231 2,111,317 2,237,411 3,129,361
5,526,173 11,610,313 13,436,683 13,731,373 13,737,841 13,831,103 15,813,251 17,692,313 19,173,071 28,118,827
</pre>
 
=={{header|J}}==
<langsyntaxhighlight Jlang="j"> */2 3 5 7
210
#1+I.0=+/|:4 q:1+i.210
48</langsyntaxhighlight>
 
Or: 48 out of every 210 positive numbers have no single digit factors.
Line 120 ⟶ 558:
So, we can generate a few hundred thousand lists of 48 numbers, discard the primes (and 1), then check what's left using substring matching on the factors. (We allow '0' as a 'factor' in our substring test so that we can work with a padded array of factors, avoiding variable length factor lists.)
 
<langsyntaxhighlight Jlang="j"> 2{._10 ]\(#~ */"1@((+./@(E. '0 ',])~&>)&:(":&.>)q:))(#~ 1-1&p:)}.,(1+I.0=+/|:4 q:1+i.210)+/~210*i.2e5
15317 59177 83731 119911 183347 192413 1819231 2111317 2237411 3129361
5526173 11610313 13436683 13731373 13737841 13831103 15813251 17692313 19173071 28118827</langsyntaxhighlight>
 
Most of the time here is the substring testing, so this could be better optimized.
 
=={{header|Java}}==
<syntaxhighlight lang="java">
 
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.ThreadLocalRandom;
 
public final class CompositeNumbersK {
 
public static void main(String[] aArgs) {
int k = 11 * 11;
List<Integer> result = new ArrayList<Integer>();
while ( result.size() < 20 ) {
while ( k % 3 == 0 || k % 5 == 0 || k % 7 == 0 ) {
k += 2;
}
List<Integer> factors = primeFactors(k);
if ( factors.size() > 1 ) {
String stringK = String.valueOf(k);
if ( factors.stream().allMatch( factor -> stringK.indexOf(String.valueOf(factor)) >= 0 ) ) {
result.add(k);
}
}
k += 2;
}
for ( int i = 0; i < result.size(); i++ ) {
System.out.print(String.format("%10d%s", result.get(i), ( i == 9 || i == 19 ? "\n" : "" )));
}
}
private static List<Integer> primeFactors(int aK) {
List<Integer> result = new ArrayList<Integer>();
if ( aK <= 1 ) {
return result;
}
BigInteger bigK = BigInteger.valueOf(aK);
if ( bigK.isProbablePrime(CERTAINTY_LEVEL) ) {
result.add(aK);
return result;
}
final int divisor = pollardsRho(bigK).intValueExact();
result.addAll(primeFactors(divisor));
result.addAll(primeFactors(aK / divisor));
Collections.sort(result);
return result;
}
private static BigInteger pollardsRho(BigInteger aN) {
final BigInteger constant = new BigInteger(aN.bitLength(), RANDOM);
BigInteger x = new BigInteger(aN.bitLength(), RANDOM);
BigInteger xx = x;
BigInteger divisor = null;
if ( aN.mod(BigInteger.TWO).signum() == 0 ) {
return BigInteger.TWO;
}
do {
x = x.multiply(x).mod(aN).add(constant).mod(aN);
xx = xx.multiply(xx).mod(aN).add(constant).mod(aN);
xx = xx.multiply(xx).mod(aN).add(constant).mod(aN);
divisor = x.subtract(xx).gcd(aN);
} while ( divisor.compareTo(BigInteger.ONE) == 0 );
return divisor;
}
private static final ThreadLocalRandom RANDOM = ThreadLocalRandom.current();
private static final int CERTAINTY_LEVEL = 10;
 
}
</syntaxhighlight>
{{ out }}
<pre>
15317 59177 83731 119911 183347 192413 1819231 2111317 2237411 3129361
5526173 11610313 13436683 13731373 13737841 13831103 15813251 17692313 19173071 28118827
</pre>
 
=={{header|Julia}}==
<langsyntaxhighlight lang="julia">using Lazy
using Primes
 
Line 138 ⟶ 660:
 
foreach(p -> print(lpad(last(p), 9), first(p) == 10 ? "\n" : ""), enumerate(take(20, seq)))
</langsyntaxhighlight>{{out}}
<pre>
15317 59177 83731 119911 183347 192413 1819231 2111317 2237411 3129361
5526173 11610313 13436683 13731373 13737841 13831103 15813251 17692313 19173071 28118827
</pre>
 
=={{header|Mathematica}}/{{header|Wolfram Language}}==
<syntaxhighlight lang="mathematica">ClearAll[CompositeAndContainsPrimeFactor]
CompositeAndContainsPrimeFactor[k_Integer] := Module[{id, pf},
If[CompositeQ[k],
pf = FactorInteger[k][[All, 1]];
If[AllTrue[pf, GreaterThan[10]],
id = IntegerDigits[k];
AllTrue[pf, SequenceCount[id, IntegerDigits[#]] > 0 &]
,
False
]
,
False
]
]
out = Select[Range[30000000], CompositeAndContainsPrimeFactor]</syntaxhighlight>
{{out}}
<pre>{15317, 59177, 83731, 119911, 183347, 192413, 1819231, 2111317, 2237411, 3129361, 5526173, 11610313, 13436683, 13731373, 13737841, 13831103, 15813251, 17692313, 19173071, 28118827}</pre>
 
=={{header|Nim}}==
We use a sieve to build a list of prime factors. This is more efficient than computing the list of prime factors on the fly.
 
To find the 20 first elements of the sequence, the program takes less than 10 seconds on an Intel Core I5-8250U 4×1.6GHz.
<syntaxhighlight lang="Nim">import std/[strformat, strutils]
 
const Max = 80_000_000 # Maximal value for composite number.
 
# Prime factors of odd numbers.
# If a number is prime, its factor list is empty.
var factors: array[0..(Max - 3) div 2, seq[uint32]]
 
template primeFactors(n: Natural): seq[uint32] =
factors[(n - 3) shr 1]
 
# Build the list of factors.
for n in countup(3u32, Max div 11, 2):
if primeFactors(n).len == 0:
# "n" is prime.
for k in countup(n + n + n, Max, 2 * n):
primeFactors(k).add n
 
const N = 20 # Number of results.
var n = 11 * 11
var count = 0
while count < N:
if primeFactors(n).len > 0:
let nStr = $n
block Check:
for f in primeFactors(n):
if f < 11 or $f notin nStr: break Check
inc count
echo &"{count:2}: {insertSep($n)}"
inc n, 2
</syntaxhighlight>
 
{{out}}
<pre> 1: 15_317
2: 59_177
3: 83_731
4: 119_911
5: 183_347
6: 192_413
7: 1_819_231
8: 2_111_317
9: 2_237_411
10: 3_129_361
11: 5_526_173
12: 11_610_313
13: 13_436_683
14: 13_731_373
15: 13_737_841
16: 13_831_103
17: 15_813_251
18: 17_692_313
19: 19_173_071
20: 28_118_827
</pre>
 
=={{header|PARI/GP}}==
<syntaxhighlight lang="PARI/GP">
/* Returns a substring of str starting at s with length n */
ssubstr(str, s = 1, n = 0) = {
my(vt = Vecsmall(str), ve, vr, vtn = #str, n1);
if (vtn == 0, return(""));
if (s < 1 || s > vtn, return(str));
n1 = vtn - s + 1; if (n == 0, n = n1); if (n > n1, n = n1);
ve = vector(n, z, z - 1 + s); vr = vecextract(vt, ve); return(Strchr(vr));
}
 
/* Checks if subStr is a substring of mainStr */
isSubstring(mainStr, subStr) = {
mainLen = #Vecsmall(mainStr);
subLen = #Vecsmall(subStr);
for (startPos = 1, mainLen - subLen + 1,
if (ssubstr(mainStr, startPos, subLen) == subStr,
return(1); /* True: subStr found in mainStr */
)
);
return(0); /* False: subStr not found */
}
 
/* Determines if a number's factors, all > 9, are substrings of its decimal representation */
contains_its_prime_factors_all_over_9(n) = {
if (n < 10 || isprime(n), return(0)); /* Skip if n < 10 or n is prime */
strn = Str(n); /* Convert n to string */
pfacs = factor(n)[, 1]; /* Get unique prime factors of n */
for (i = 1, #pfacs,
if (pfacs[i] <= 9, return(0)); /* Skip factors ≤ 9 */
if (!isSubstring(strn, Str(pfacs[i])), return(0)); /* Check if factor is a substring */
);
return(1); /* All checks passed */
}
 
/* Main loop to find and print numbers meeting the criteria */
{
found = 0; /* Counter for numbers found */
for (n = 0, 30 * 10^6, /* Iterate from 0 to 30 million */
if (contains_its_prime_factors_all_over_9(n),
found += 1; /* Increment counter if n meets criteria */
print1(n, " "); /* Print n followed by a space */
if (found % 10 == 0, print("")); /* Newline every 10 numbers */
if (found == 20, break); /* Stop after finding 20 numbers */
);
);
}
</syntaxhighlight>
{{out}}
<pre>
15317 59177 83731 119911 183347 192413 1819231 2111317 2237411 3129361
Line 147 ⟶ 801:
==={{header|Free Pascal}}===
modified [[Factors_of_an_integer#using_Prime_decomposition]]
<langsyntaxhighlight lang="pascal">program FacOfInt;
// gets factors of consecutive integers fast
// limited to 1.2e11
Line 505 ⟶ 1,159:
writeln('runtime ',T0/1000:0:3,' s');
end.
</syntaxhighlight>
</lang>
{{out|@TIO.RUN}}
<pre style="height:480px">
Line 706 ⟶ 1,360:
{{trans|Raku}}
{{libheader|ntheory}}
<langsyntaxhighlight lang="perl"> use strict;
use warnings;
use ntheory qw<is_prime factor gcd>;
Line 717 ⟶ 1,371:
last LOOP if ++$cnt == 20;
}
print $values =~ s/.{1,100}\K/\n/gr;</langsyntaxhighlight>
{{out}}
<pre> 15317 59177 83731 119911 183347 192413 1819231 2111317 2237411 3129361
Line 724 ⟶ 1,378:
=={{header|Phix}}==
{{trans|Wren}}
<!--<langsyntaxhighlight Phixlang="phix">(phixonline)-->
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">count</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">n</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">11</span><span style="color: #0000FF;">*</span><span style="color: #000000;">11</span><span style="color: #0000FF;">,</span>
Line 754 ⟶ 1,408:
<span style="color: #008080;">end</span> <span style="color: #008080;">while</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"Total time:%s\n"</span><span style="color: #0000FF;">,{</span><span style="color: #7060A8;">elapsed</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">time</span><span style="color: #0000FF;">()-</span><span style="color: #000000;">t0</span><span style="color: #0000FF;">)})</span>
<!--</langsyntaxhighlight>-->
{{out}}
<small>(As usual, limiting to the first 10 under pwa/p2js keeps the time staring at a blank screen under 10s)</small>
Line 784 ⟶ 1,438:
The obvious problem with the above is that prime_factors() quite literally does not know when to quit.
Output as above, except Total time is reduced to 47s.
<!--<langsyntaxhighlight Phixlang="phix">(phixonline)-->
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">count</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">n</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">11</span><span style="color: #0000FF;">*</span><span style="color: #000000;">11</span><span style="color: #0000FF;">,</span>
Line 821 ⟶ 1,475:
<span style="color: #008080;">end</span> <span style="color: #008080;">while</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"Total time:%s\n"</span><span style="color: #0000FF;">,{</span><span style="color: #7060A8;">elapsed</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">time</span><span style="color: #0000FF;">()-</span><span style="color: #000000;">t0</span><span style="color: #0000FF;">)})</span>
<!--</langsyntaxhighlight>-->
 
=={{header|Python}}==
<syntaxhighlight lang="python">from sympy import isprime, factorint
 
def contains_its_prime_factors_all_over_7(n):
if n < 10 or isprime(n):
return False
strn = str(n)
pfacs = factorint(n).keys()
return all(f > 9 and str(f) in strn for f in pfacs)
 
found = 0
for n in range(1_000_000_000):
if contains_its_prime_factors_all_over_7(n):
found += 1
print(f'{n: 12,}', end = '\n' if found % 10 == 0 else '')
if found == 20:
break
</syntaxhighlight>{{out}}
<pre>
15,317 59,177 83,731 119,911 183,347 192,413 1,819,231 2,111,317 2,237,411 3,129,361
5,526,173 11,610,313 13,436,683 13,731,373 13,737,841 13,831,103 15,813,251 17,692,313 19,173,071 28,118,827
</pre>
 
=={{header|Raku}}==
 
<syntaxhighlight lang="raku" perl6line>use Prime::Factor;
use Lingua::EN::Numbers;
 
Line 831 ⟶ 1,508:
next if (1 < $_ gcd 210) || .is-prime || any .&prime-factors.map: -> $n { !.contains: $n };
$_
} )[^20].batch(10)».&comma».fmt("%10s").join: "\n";</langsyntaxhighlight>
 
{{out}}
<pre> 15,317 59,177 83,731 119,911 183,347 192,413 1,819,231 2,111,317 2,237,411 3,129,361
5,526,173 11,610,313 13,436,683 13,731,373 13,737,841 13,831,103 15,813,251 17,692,313 19,173,071 28,118,827</pre>
 
=={{header|RPL}}==
{{works with|HP|49}}
≪ '''IF''' DUP ISPRIME? '''THEN''' DROP <span style="color:red">0</span> '''ELSE'''
DUP FACTORS DUP SIZE
ROT →STR → n
≪ { }
<span style="color:red">1</span> ROT '''FOR''' j
OVER j GET →STR + <span style="color:grey">@ extract prime factors and convert into strings</span>
<span style="color:red">2</span> '''STEP''' NIP
≪ n SWAP POS ≫ MAP <span style="color:red">1</span> + ΠLIST <span style="color:grey">@ + 1 to avoid arror with singletons</span>
'''END'''
≫ '<span style="color:blue">MATRIOSHKA?</span>' STO
≪ 999999999 → max
≪ { }
<span style="color:red">11 </span>max '''FOR''' j
'''IF''' j <span style="color:red">105</span> GCD 1 == '''THEN''' <span style="color:grey">@ if no single digit factor</span>
'''IF''' j <span style="color:blue">MATRIOSHKA?</span> '''THEN'''
j +
'''IF''' DUP SIZE <span style="color:red">6</span> == '''THEN''' max 'j' STO '''END'''
'''END'''
'''END'''
<span style="color:red">2</span> '''STEP'''
≫ '<span style="color:blue">TASK</span>' STO
{{out}}
<pre>
1: {15317 59177 83731 119911 183347 192413}
</pre>
Finding the first six numbers takes 4 minutes 20 seconds with an iOS HP-49 emulator, meaning that about two hours would be required to get ten. We're gonna need a bigger boat.
 
=={{header|Ruby}}==
<syntaxhighlight lang="ruby">require 'prime'
 
generator2357 = Enumerator.new do |y|
gen23 = Prime::Generator23.new
gen23.each {|n| y << n unless (n%5 == 0 || n%7 == 0) }
end
 
res = generator2357.lazy.select do |n|
primes, exp = n.prime_division.transpose
next if exp.sum < 2 #exclude primes
s = n.to_s
primes.all?{|pr| s.match?(-pr.to_s) }
end
 
res.take(10).each{|n| puts n}</syntaxhighlight>
{{out}}
<pre>15317
59177
83731
119911
183347
192413
1819231
2111317
2237411
3129361
</pre>
 
=={{header|Rust}}==
<syntaxhighlight lang="rust">use primes::{is_prime,factors_uniq};
 
/// True if non-prime n's factors, all > 9, are all substrings of its representation in base 10
fn contains_its_prime_factors_all_over_7(n: u64) -> bool {
if n < 10 || is_prime(n) {
return false;
}
let strn = &n.to_string();
let pfacs = factors_uniq(n);
return pfacs.iter().all(|f| f > &9 && strn.contains(&f.to_string()));
}
 
fn main() {
let mut found = 0;
// 20 of these < 30 million
for n in 0..30_000_000 {
if contains_its_prime_factors_all_over_7(n) {
found += 1;
print!("{:12}{}", n, {if found % 10 == 0 {"\n"} else {""}});
if found == 20 {
break;
}
}
}
}
</syntaxhighlight>{{out}}
<pre>
15317 59177 83731 119911 183347 192413 1819231 2111317 2237411 3129361
5526173 11610313 13436683 13731373 13737841 13831103 15813251 17692313 19173071 28118827
</pre>
=={{header|Scala}}==
for Scala3
<syntaxhighlight lang="scala">
def isComposite(num: Int): Boolean = {
val numStr = num.toString
def iter(n: Int, start: Int): Boolean = {
val limit = math.sqrt(n).floor.toInt
(start to limit by 2).dropWhile(n % _ > 0).headOption match {
case Some(v) if v < 10 => false
case Some(v) =>
if (v == start || numStr.contains(v.toString)) iter(n / v, v)
else false
case None => n < num && numStr.contains(n.toString)
}
}
iter(num, 3)
}
 
def composites = Iterator.from(121, 2).filter(isComposite(_))
 
@main def main = {
val start = System.currentTimeMillis
composites.take(20)
.grouped(10)
.foreach(grp => println(grp.map("%8d".format(_)).mkString(" ")))
val time = System.currentTimeMillis - start
println(s"time elapsed: $time ms")
}
</syntaxhighlight>
{{out}}
<pre>
15317 59177 83731 119911 183347 192413 1819231 2111317 2237411 3129361
5526173 11610313 13436683 13731373 13737841 13831103 15813251 17692313 19173071 28118827
time elapsed: 59821 ms
</pre>
 
=={{header|Sidef}}==
<syntaxhighlight lang="ruby">var e = Enumerator({|f|
 
var c = (9.primorial)
var a = (1..c -> grep { .is_coprime(c) })
 
loop {
var n = a.shift
 
a.push(n + c)
n.is_composite || next
 
f(n) if n.factor.all {|p| Str(n).contains(p) }
}
})
 
var count = 10
 
e.each {|n|
say n
break if (--count <= 0)
}</syntaxhighlight>
{{out}}
<pre>
15317
59177
83731
119911
183347
192413
1819231
2111317
2237411
3129361
</pre>
 
=={{header|Wren}}==
Line 841 ⟶ 1,681:
{{libheader|Wren-seq}}
{{libheader|Wren-fmt}}
<langsyntaxhighlight ecmascriptlang="wren">import "./math" for Int
import "./seq" for Lst
import "./fmt" for Fmt
 
var count = 0
Line 872 ⟶ 1,712:
}
Fmt.print("$,10d", res[0..9])
Fmt.print("$,10d", res[10..19])</langsyntaxhighlight>
 
{{out}}
Line 882 ⟶ 1,722:
=={{header|XPL0}}==
Runs in 33.6 seconds on Raspberry Pi 4.
<langsyntaxhighlight XPL0lang="xpl0">include xpllib; \for ItoA, StrFind and RlOutC
int K, C;
 
Line 920 ⟶ 1,760:
K:= K+2; \must be odd because all factors > 2 are odd primes
until C >= 20;
]</langsyntaxhighlight>
 
{{out}}
2,122

edits