Circles of given radius through two points: Difference between revisions

→‎{{header|11l}}: make Error a non-fatal exception
(Add Swift)
(→‎{{header|11l}}: make Error a non-fatal exception)
(37 intermediate revisions by 23 users not shown)
Line 1:
[[Category:Geometry]]
{{task}}
[[File:2 circles through 2 points.jpg|500px650px||right|2 circles with a given radius through 2 points in 2D space.]]
 
Given two points on a plane and a radius, usually two circles of given radius can be drawn through the points.
Line 30 ⟶ 31:
*   [http://mathforum.org/library/drmath/view/53027.html Finding the Center of a Circle from 2 Points and Radius] from Math forum @ Drexel
<br><br>
=={{header|11l}}==
{{trans|Python}}
 
<syntaxhighlight lang="11l">T Circle
Float x, y, r
 
F String()
R ‘Circle(x=#.6, y=#.6, r=#.6)’.format(.x, .y, .r)
 
F (x, y, r)
.x = x
.y = y
.r = r
 
T Error
String msg
F (msg)
.msg = msg
 
F circles_from_p1p2r(p1, p2, r) X(Error)
‘Following explanation at http://mathforum.org/library/drmath/view/53027.html’
I r == 0.0
X Error(‘radius of zero’)
V (x1, y1) = p1
V (x2, y2) = p2
I p1 == p2
X Error(‘coincident points gives infinite number of Circles’)
V (dx, dy) = (x2 - x1, y2 - y1)
V q = sqrt(dx ^ 2 + dy ^ 2)
I q > 2.0 * r
X Error(‘separation of points > diameter’)
V (x3, y3) = ((x1 + x2) / 2, (y1 + y2) / 2)
V d = sqrt(r ^ 2 - (q / 2) ^ 2)
V c1 = Circle(x' x3 - d * dy / q,
y' y3 + d * dx / q,
r' abs(r))
V c2 = Circle(x' x3 + d * dy / q,
y' y3 - d * dx / q,
r' abs(r))
R (c1, c2)
 
L(p1, p2, r) [((0.1234, 0.9876), (0.8765, 0.2345), 2.0),
((0.0000, 2.0000), (0.0000, 0.0000), 1.0),
((0.1234, 0.9876), (0.1234, 0.9876), 2.0),
((0.1234, 0.9876), (0.8765, 0.2345), 0.5),
((0.1234, 0.9876), (0.1234, 0.9876), 0.0)]
print("Through points:\n #.,\n #.\n and radius #.6\nYou can construct the following circles:".format(p1, p2, r))
X.try
V (c1, c2) = circles_from_p1p2r(p1, p2, r)
print(" #.\n #.\n".format(c1, c2))
X.handle Error v
print(" ERROR: #.\n".format(v.msg))</syntaxhighlight>
 
{{out}}
<pre>
Through points:
(0.1234, 0.9876),
(0.8765, 0.2345)
and radius 2.000000
You can construct the following circles:
Circle(x=1.863112, y=1.974212, r=2.000000)
Circle(x=-0.863212, y=-0.752112, r=2.000000)
 
Through points:
(0, 2),
(0, 0)
and radius 1.000000
You can construct the following circles:
Circle(x=0.000000, y=1.000000, r=1.000000)
Circle(x=0.000000, y=1.000000, r=1.000000)
 
Through points:
(0.1234, 0.9876),
(0.1234, 0.9876)
and radius 2.000000
You can construct the following circles:
ERROR: coincident points gives infinite number of Circles
 
Through points:
(0.1234, 0.9876),
(0.8765, 0.2345)
and radius 0.500000
You can construct the following circles:
ERROR: separation of points > diameter
 
Through points:
(0.1234, 0.9876),
(0.1234, 0.9876)
and radius 0.000000
You can construct the following circles:
ERROR: radius of zero
</pre>
 
=={{header|Action!}}==
{{libheader|Action! Tool Kit}}
{{libheader|Action! Real Math}}
<syntaxhighlight lang="action!">INCLUDE "H6:REALMATH.ACT"
 
PROC Circles(CHAR ARRAY sx1,sy1,sx2,sy2,sr)
REAL x1,y1,x2,y2,r,x,y,bx,by,pb,cb,xx,yy
REAL two,tmp1,tmp2,tmp3
 
ValR(sx1,x1) ValR(sy1,y1)
ValR(sx2,x2) ValR(sy2,y2)
ValR(sr,r) IntToReal(2,two)
 
Print("p1=(") PrintR(x1) Put(32)
PrintR(y1) Print(") p2=(")
PrintR(x2) Put(32) PrintR(y2)
Print(") r=") PrintR(r) Print(" -> ")
 
IF RealEqual(r,rzero) THEN
PrintE("Radius is zero, no circles") PutE()
RETURN
FI
 
RealSub(x2,x1,tmp1) ;tmp1=x2-x1
RealDiv(tmp1,two,x) ;x=(x2-x1)/2
 
RealSub(y2,y1,tmp1) ;tmp1=y2-y1
RealDiv(tmp1,two,y) ;y=(y2-y1)/2
 
RealAdd(x1,x,bx) ;bx=x1+x
RealAdd(y1,y,by) ;bx=x1+x
 
RealMult(x,x,tmp1) ;tmp1=x^2
RealMult(y,y,tmp2) ;tmp2=y^2
RealAdd(tmp1,tmp2,tmp3) ;tmp3=x^2+y^2
Sqrt(tmp3,pb) ;pb=sqrt(x^2+y^2)
 
IF RealEqual(pb,rzero) THEN
PrintE("Infinite circles")
ELSEIF RealGreater(pb,r) THEN
PrintE("Points are too far, no circles")
ELSE
RealMult(r,r,tmp1) ;tmp1=r^2
RealMult(pb,pb,tmp2) ;tmp2=pb^2
RealSub(tmp1,tmp2,tmp3) ;tmp3=r^2-pb^2
Sqrt(tmp3,cb) ;cb=sqrt(r^2-pb^2)
 
RealMult(y,cb,tmp1) ;tmp1=y*cb
RealDiv(tmp1,pb,xx) ;xx=y*cb/pb
 
RealMult(x,cb,tmp1) ;tmp1=x*cb
RealDiv(tmp1,pb,yy) ;yy=x*cb/pb
 
RealSub(bx,xx,tmp1) ;tmp1=bx-xx
Print("c1=(") PrintR(tmp1) Put(32)
 
RealAdd(by,yy,tmp1) ;tmp1=by+yy
PrintR(tmp1) Print(") c2=(")
 
RealAdd(bx,xx,tmp1) ;tmp1=bx+xx
PrintR(tmp1) Put(32)
 
RealSub(by,yy,tmp1) ;tmp1=by-yy
PrintR(tmp1) PrintE(")")
FI
PutE()
RETURN
 
PROC Main()
Put(125) PutE() ;clear the screen
MathInit()
Circles("0.1234","0.9876","0.8765","0.2345","2.0")
Circles("0.0000","2.0000","0.0000","0.0000","1.0")
Circles("0.1234","0.9876","0.1234","0.9876","2.0")
Circles("0.1234","0.9876","0.8765","0.2345","0.5")
Circles("0.1234","0.9876","0.1234","0.9876","0.0")
RETURN</syntaxhighlight>
{{out}}
[https://gitlab.com/amarok8bit/action-rosetta-code/-/raw/master/images/Circles_of_given_radius_through_two_points.png Screenshot from Atari 8-bit computer]
<pre>
p1=(.1234 .9876) p2=(.8765 .2345) r=2 -> c1=(1.86311176 1.97421176) c2=(-0.86321176 -0.75211176)
 
p1=(0 2) p2=(0 0) r=1 -> c1=(0 1) c2=(0 1)
 
p1=(.1234 .9876) p2=(.1234 .9876) r=2 -> Infinite circles
 
p1=(.1234 .9876) p2=(.8765 .2345) r=.5 -> c1=(1.19528365 1.30638365) c2=(-0.1953836533 -0.0842836533)
 
p1=(.1234 .9876) p2=(.1234 .9876) r=0 -> Radius is zero, no circles
</pre>
=={{header|ALGOL 68}}==
Calculations based on the C solution.
<langsyntaxhighlight lang="algol68"># represents a point #
MODE POINT = STRUCT( REAL x, REAL y );
# returns TRUE if p1 is the same point as p2, FALSE otherwise #
Line 139 ⟶ 322:
print circles( 0.1234, 0.9876, 0.1234, 0.9876, 2.0 );
print circles( 0.1234, 0.9876, 0.8765, 0.2345, 0.5 );
print circles( 0.1234, 0.9876, 0.1234, 0.9876, 0.0 )</langsyntaxhighlight>
{{out}}
<pre>
Line 148 ⟶ 331:
One circle : radius: 0.0000 @( 0.1234, 0.9876)
</pre>
=={{header|Arturo}}==
 
<syntaxhighlight lang="arturo">getPoint: function [p]-> ~{(x: |p\0|, y: |p\1|)}
getCircle: function [c]-> ~{(x: |c\0|, y: |c\1|, r: |c\2|)}
 
circles: function [p1, p2, r][
if r = 0 -> return "radius of zero"
if p1 = p2 -> return "coincident points gives infinite number of circles"
 
[dx, dy]: @[p2\0 - p1\0, p2\1 - p1\1]
q: sqrt add dx*dx dy*dy
if q > 2*r -> return "separation of points > diameter"
 
p3: @[(p1\0 + p2\0)/ 2, (p1\1 + p2\1) / 2]
d: sqrt (r*r) - (q/2)*(q/2)
return @[
@[(p3\0 - d*dy/q), (p3\1 + d*dx/q), abs r],
@[(p3\0 + d*dy/q), (p3\1 - d*dx/q), abs r]
]
]
 
loop [
[[0.1234, 0.9876], [0.8765, 0.2345], 2.0]
[[0.0000, 2.0000], [0.0000, 0.0000], 1.0]
[[0.1234, 0.9876], [0.1234, 0.9876], 2.0]
[[0.1234, 0.9876], [0.8765, 0.2345], 0.5]
[[0.1234, 0.9876], [0.1234, 0.9876], 0.0]
] 'tr [
[p1, p2, r]: tr
print ["Through points:\n " getPoint p1 "\n " getPoint p2]
print ["and radius" (to :string r)++"," "you can construct the following circles:"]
if? string? cic: <= circles p1 p2 r -> print [" ERROR:" cic]
else [
[c1, c2]: cic
print [" " getCircle c1]
print [" " getCircle c2]
]
print ""
]</syntaxhighlight>
 
{{out}}
 
<pre>Through points:
(x: 0.1234, y: 0.9876)
(x: 0.8764999999999999, y: 0.2345)
and radius 2.0, you can construct the following circles:
(x: 1.863111801658189, y: 1.974211801658189, r: 2.0)
(x: -0.8632118016581896, y: -0.7521118016581892, r: 2.0)
 
Through points:
(x: 0.0, y: 2.0)
(x: 0.0, y: 0.0)
and radius 1.0, you can construct the following circles:
(x: 0.0, y: 1.0, r: 1.0)
(x: 0.0, y: 1.0, r: 1.0)
 
Through points:
(x: 0.1234, y: 0.9876)
(x: 0.1234, y: 0.9876)
and radius 2.0, you can construct the following circles:
ERROR: coincident points gives infinite number of circles
 
Through points:
(x: 0.1234, y: 0.9876)
(x: 0.8764999999999999, y: 0.2345)
and radius 0.5, you can construct the following circles:
ERROR: separation of points > diameter
 
Through points:
(x: 0.1234, y: 0.9876)
(x: 0.1234, y: 0.9876)
and radius 0.0, you can construct the following circles:
ERROR: radius of zero</pre>
 
=={{header|AutoHotkey}}==
<langsyntaxhighlight AutoHotkeylang="autohotkey">CircleCenter(x1, y1, x2, y2, r){
d := sqrt((x2-x1)**2 + (y2-y1)**2)
x3 := (x1+x2)/2 , y3 := (y1+y2)/2
Line 166 ⟶ 422:
return "no solution"
return cx1 "," cy1 " & " cx2 "," cy2
}</langsyntaxhighlight>
Examples:<langsyntaxhighlight AutoHotkeylang="autohotkey">data =
(
0.1234 0.9876 0.8765 0.2345 2.0
Line 180 ⟶ 436:
obj := StrSplit(A_LoopField, " ")
MsgBox, % CircleCenter(obj[1], obj[2], obj[3], obj[4], obj[5])
}</langsyntaxhighlight>
{{out}}
<pre>0.1234 0.9876 0.8765 0.2345 2.0 > 1.863112,1.974212 & -0.863212,-0.752112
Line 189 ⟶ 445:
</pre>
 
=={{header|AWK}}==
<syntaxhighlight lang="awk">
# syntax: GAWK -f CIRCLES_OF_GIVEN_RADIUS_THROUGH_TWO_POINTS.AWK
# converted from PL/I
BEGIN {
split("0.1234,0,0.1234,0.1234,0.1234",m1x,",")
split("0.9876,2,0.9876,0.9876,0.9876",m1y,",")
split("0.8765,0,0.1234,0.8765,0.1234",m2x,",")
split("0.2345,0,0.9876,0.2345,0.9876",m2y,",")
leng = split("2,1,2,0.5,0",r,",")
print(" x1 y1 x2 y2 r cir1x cir1y cir2x cir2y")
print("------- ------- ------- ------- ---- ------- ------- ------- -------")
for (i=1; i<=leng; i++) {
printf("%7.4f %7.4f %7.4f %7.4f %4.2f %s\n",m1x[i],m1y[i],m2x[i],m2y[i],r[i],main(m1x[i],m1y[i],m2x[i],m2y[i],r[i]))
}
exit(0)
}
function main(m1x,m1y,m2x,m2y,r, bx,by,pb,x,x1,y,y1) {
if (r == 0) { return("radius of zero gives no circles") }
x = (m2x - m1x) / 2
y = (m2y - m1y) / 2
bx = m1x + x
by = m1y + y
pb = sqrt(x^2 + y^2)
if (pb == 0) { return("coincident points give infinite circles") }
if (pb > r) { return("points are too far apart for the given radius") }
cb = sqrt(r^2 - pb^2)
x1 = y * cb / pb
y1 = x * cb / pb
return(sprintf("%7.4f %7.4f %7.4f %7.4f",bx-x1,by+y1,bx+x1,by-y1))
}
</syntaxhighlight>
{{out}}
<pre>
x1 y1 x2 y2 r cir1x cir1y cir2x cir2y
------- ------- ------- ------- ---- ------- ------- ------- -------
0.1234 0.9876 0.8765 0.2345 2.00 1.8631 1.9742 -0.8632 -0.7521
0.0000 2.0000 0.0000 0.0000 1.00 0.0000 1.0000 0.0000 1.0000
0.1234 0.9876 0.1234 0.9876 2.00 coincident points give infinite circles
0.1234 0.9876 0.8765 0.2345 0.50 points are too far apart for the given radius
0.1234 0.9876 0.1234 0.9876 0.00 radius of zero gives no circles
</pre>
=={{header|BASIC}}==
==={{header|BASIC256}}===
{{works with|FreeBASIC}}
{{trans|Liberty BASIC}}
<lang freebasic>Type Point
<syntaxhighlight lang="basic256">
As Double x,y
function twoCircles(x1, y1, x2, y2, radio)
Declare Property length As Double
if x1 = x2 and y1 = y2 then #Si los puntos coinciden
End Type
if radio = 0 then #a no ser que radio=0
print "Los puntos son los mismos "
return ""
else
print "Hay cualquier número de círculos a través de un solo punto ("; x1; ", "; y1; ") de radio "; int(radio)
return ""
end if
end if
r2 = sqr((x1-x2)^2+(y1-y2)^2) / 2 #distancia media entre puntos
if radio < r2 then
print "Los puntos están demasiado separados ("; 2*r2; ") - no hay círculos de radio "; int(radio)
return ""
end if
 
#si no, calcular dos centros
Property point.length As Double
cx = (x1+x2) / 2 #punto medio
Return Sqr(x*x+y*y)
cy = (y1+y2) / 2
End Property
#debe moverse desde el punto medio a lo largo de la perpendicular en dd2
dd2 = sqr(radio^2 - r2^2) #distancia perpendicular
dx1 = x2-cx #vector al punto medio
dy1 = y2-cy
dx = 0-dy1 / r2*dd2 #perpendicular:
dy = dx1 / r2*dd2 #rotar y escalar
print " -> Circulo 1 ("; cx+dy; ", "; cy+dx; ")" #dos puntos, con (+)
print " -> Circulo 2 ("; cx-dy; ", "; cy-dx; ")" #y (-)
return ""
end function
 
# p1 p2 radio
Sub circles(p1 As Point,p2 As Point,radius As Double)
x1 = 0.1234 : y1 = 0.9876 : x2 = 0.8765 : y2 = 0.2345 : radio = 2.0
Print "Points ";"("&p1.x;","&p1.y;"),("&p2.x;","&p2.y;")";", Rad ";radius
print "Puntos "; "("; x1; ","; y1; "), ("; x2; ","; y2; ")"; ", Radio "; int(radio)
Var ctr=Type<Point>((p1.x+p2.x)/2,(p1.y+p2.y)/2)
print twoCircles (x1, y1, x2, y2, radio)
Var half=Type<Point>(p1.x-ctr.x,p1.y-ctr.y)
x1 = 0.0000 : y1 = 2.0000 : x2 = 0.0000 : y2 = 0.0000 : radio = 1.0
Var lenhalf=half.length
print "Puntos "; "("; x1; ","; y1; "), ("; x2; ","; y2; ")"; ", Radio "; int(radio)
If radius<lenhalf Then Print "Can't solve":Print:Exit Sub
print twoCircles (x1, y1, x2, y2, radio)
If lenhalf=0 Then Print "Points are the same":Print:Exit Sub
x1 = 0.1234 : y1 = 0.9876 : x2 = 0.12345 : y2 = 0.9876 : radio = 2.0
Var dist=Sqr(radius^2-lenhalf^2)/lenhalf
print "Puntos "; "("; x1; ","; y1; "), ("; x2; ","; y2; ")"; ", Radio "; int(radio)
Var rot= Type<Point>(-dist*(p1.y-ctr.y) +ctr.x,dist*(p1.x-ctr.x) +ctr.y)
print twoCircles (x1, y1, x2, y2, radio)
Print " -> Circle 1 ("&rot.x;","&rot.y;")"
x1 = 0.1234 : y1 = 0.9876 : x2 = 0.8765 : y2 = 0.2345 : radio = 0.5
rot= Type<Point>(-(rot.x-ctr.x) +ctr.x,-((rot.y-ctr.y)) +ctr.y)
print "Puntos "; "("; x1; ","; y1; "), ("; x2; ","; y2; ")"; ", Radio "; int(radio)
Print" -> Circle 2 ("&rot.x;","&rot.y;")"
print twoCircles (x1, y1, x2, y2, radio)
Print
x1 = 0.1234 : y1 = 0.9876 : x2 = 1234 : y2 = 0.9876 : radio = 0.0
End Sub
print "Puntos "; "("; x1; ","; y1; "), ("; x2; ","; y2; ")"; ", Radio "; int(radio)
 
print twoCircles (x1, y1, x2, y2, radio)
 
end
Dim As Point p1=(.1234,.9876),p2=(.8765,.2345)
</syntaxhighlight>
circles(p1,p2,2)
p1=Type<Point>(0,2):p2=Type<Point>(0,0)
circles(p1,p2,1)
p1=Type<Point>(.1234,.9876):p2=p1
circles(p1,p2,2)
p1=Type<Point>(.1234,.9876):p2=Type<Point>(.8765,.2345)
circles(p1,p2,.5)
p1=Type<Point>(.1234,.9876):p2=p1
circles(p1,p2,0)
 
Sleep</lang>
{{out}}
<pre>Points (0.1234,0.9876),(0.8765,0.2345), Rad 2
-> Circle 1 (-0.8632118016581893,-0.7521118016581889)
-> Circle 2 (1.863111801658189,1.974211801658189)
 
Points (0,2),(0,0), Rad 1
-> Circle 1 (0,1)
-> Circle 2 (0,1)
 
Points (0.1234,0.9876),(0.1234,0.9876), Rad 2
Points are the same
 
Points (0.1234,0.9876),(0.8765,0.2345), Rad 0.5
Can't solve
 
Points (0.1234,0.9876),(0.1234,0.9876), Rad 0
Points are the same</pre>
 
=={{header|C}}==
<langsyntaxhighlight Clang="c">#include<stdio.h>
#include<math.h>
 
Line 310 ⟶ 604:
return 0;
}
</syntaxhighlight>
</lang>
{{out|test run}}
<pre>
Line 325 ⟶ 619:
No circles can be drawn through (0.1234,0.9876)
</pre>
=={{header|C sharp|C#}}==
 
=={{header|C sharp}}==
{{works with|C sharp|6}}
<langsyntaxhighlight lang="csharp">using System;
public class CirclesOfGivenRadiusThroughTwoPoints
{
Line 399 ⟶ 692:
}
}</langsyntaxhighlight>
{{out}}
<pre>
Line 412 ⟶ 705:
Points (0.1234, 0.9876) and (0.1234, 0.9876) with radius 0:
(0.1234, 0.9876)</pre>
 
=={{header|C++}}==
{{works with|C++11}}
<langsyntaxhighlight lang="cpp">
#include <iostream>
#include <cmath>
Line 443 ⟶ 735:
if(half_distance > r) return std::make_tuple(NONE, ans1, ans2);
if(half_distance - r == 0) return std::make_tuple(ONE_DIAMETER, center, ans2);
double root = std::hypotsqrt(pow(r, 2.l) - pow(half_distance, 2.l)) / distance(p1, p2);
ans1.x = center.x + root * (p1.y - p2.y);
ans1.y = center.y + root * (p2.x - p1.x);
Line 479 ⟶ 771:
for(int i = 0; i < size; ++i)
print(find_circles(points[i*2], points[i*2 + 1], radius[i]));
}</langsyntaxhighlight>
{{out}}
<pre>
Two solutions: 1.9634486311 21.0745497421 and -0.963536863212 -0.852436752112
Only one solution: 0 1
Infinitely many circles can be drawn
Line 491 ⟶ 783:
=={{header|D}}==
{{trans|Python}}
<langsyntaxhighlight lang="d">import std.stdio, std.typecons, std.math;
 
class ValueException : Exception {
Line 552 ⟶ 844:
writefln(" ERROR: %s\n", v.msg);
}
}</langsyntaxhighlight>
{{out}}
<pre>Through points:
Line 581 ⟶ 873:
ERROR: radius of zero
</pre>
=={{header|Delphi}}==
{{libheader| System.SysUtils}}
{{libheader| System.Types}}
{{libheader| System.Math}}
{{Trans|C}}
<syntaxhighlight lang="delphi">
program Circles_of_given_radius_through_two_points;
 
{$APPTYPE CONSOLE}
 
uses
System.SysUtils,
System.Types,
System.Math;
 
const
Cases: array[0..9] of TPointF = ((
x: 0.1234;
y: 0.9876
), (
x: 0.8765;
y: 0.2345
), (
x: 0.0000;
y: 2.0000
), (
x: 0.0000;
y: 0.0000
), (
x: 0.1234;
y: 0.9876
), (
x: 0.1234;
y: 0.9876
), (
x: 0.1234;
y: 0.9876
), (
x: 0.8765;
y: 0.2345
), (
x: 0.1234;
y: 0.9876
), (
x: 0.1234;
y: 0.9876
));
radii: array of double = [2.0, 1.0, 2.0, 0.5, 0.0];
 
procedure FindCircles(p1, p2: TPointF; radius: double);
var
separation, mirrorDistance: double;
begin
separation := p1.Distance(p2);
if separation = 0.0 then
begin
if radius = 0 then
write(format(#10'No circles can be drawn through (%.4f,%.4f)', [p1.x, p1.y]))
else
write(format(#10'Infinitely many circles can be drawn through (%.4f,%.4f)',
[p1.x, p1.y]));
exit;
end;
 
if separation = 2 * radius then
begin
write(format(#10'Given points are opposite ends of a diameter of the circle with center (%.4f,%.4f) and radius %.4f',
[(p1.x + p2.x) / 2, (p1.y + p2.y) / 2, radius]));
exit;
end;
 
if separation > 2 * radius then
begin
write(format(#10'Given points are farther away from each other than a diameter of a circle with radius %.4f',
[radius]));
exit;
end;
 
mirrorDistance := sqrt(Power(radius, 2) - Power(separation / 2, 2));
write(#10'Two circles are possible.');
write(format(#10'Circle C1 with center (%.4f,%.4f), radius %.4f and Circle C2 with center (%.4f,%.4f), radius %.4f',
[(p1.x + p2.x) / 2 + mirrorDistance * (p1.y - p2.y) / separation, (p1.y + p2.y)
/ 2 + mirrorDistance * (p2.x - p1.x) / separation, radius, (p1.x + p2.x) / 2
- mirrorDistance * (p1.y - p2.y) / separation, (p1.y + p2.y) / 2 -
mirrorDistance * (p2.x - p1.x) / separation, radius]));
 
end;
 
begin
for var i := 0 to 4 do
begin
write(#10'Case ', i + 1,')');
findCircles(cases[2 * i], cases[2 * i + 1], radii[i]);
end;
readln;
end.</syntaxhighlight>
=={{header|EasyLang}}==
{{trans|AWK}}
<syntaxhighlight>
func$ fmt a b .
return "(" & a & " " & b & ")"
.
proc test m1x m1y m2x m2y r . .
print "Points: " & fmt m1x m1y & " " & fmt m2x m2y & " Radius: " & r
if r = 0
print "Radius of zero gives no circles"
print ""
return
.
x = (m2x - m1x) / 2
y = (m2y - m1y) / 2
bx = m1x + x
by = m1y + y
pb = sqrt (x * x + y * y)
if pb = 0
print "Coincident points give infinite circles"
print ""
return
.
if pb > r
print "Points are too far apart for the given radius"
print ""
return
.
cb = sqrt (r * r - pb * pb)
x1 = y * cb / pb
y1 = x * cb / pb
print "Circles: " & fmt (bx - x1) (by + y1) & " " & fmt (bx + x1) (by - y1)
print ""
.
test 0.1234 0.9876 0.8765 0.2345 2.0
test 0.0000 2.0000 0.0000 0.0000 1.0
test 0.1234 0.9876 0.1234 0.9876 2.0
test 0.1234 0.9876 0.8765 0.2345 0.5
test 0.1234 0.9876 0.1234 0.9876 0.0
</syntaxhighlight>
 
=={{header|Elixir}}==
{{trans|Ruby}}
<langsyntaxhighlight lang="elixir">defmodule RC do
def circle(p, p, r) when r>0.0 do
raise ArgumentError, message: "Infinite number of circles, points coincide."
Line 621 ⟶ 1,049:
end
IO.puts ""
end)</langsyntaxhighlight>
 
{{out}}
Line 661 ⟶ 1,089:
 
=={{header|ERRE}}==
<syntaxhighlight lang="text">
PROGRAM CIRCLES
 
Line 713 ⟶ 1,141:
END FOR
END PROGRAM
</syntaxhighlight>
</lang>
=={{header|F Sharp|F#}}==
 
<syntaxhighlight lang="fsharp">open System
=={{header|F#|F sharp}}==
<lang fsharp>open System
 
let add (a:double, b:double) (x:double, y:double) = (a + x, b + y)
Line 750 ⟶ 1,177:
printfn "%A" (circlePoints (0.1234, 0.9876) (0.1234, 0.1234) 0.0)
 
0 // return an integer exit code</langsyntaxhighlight>
{{out}}
<pre>Some ((-0.8632118017, -0.7521118017), (1.863111802, 1.974211802))
Line 757 ⟶ 1,184:
<null>
<null></pre>
 
=={{header|Factor}}==
<langsyntaxhighlight lang="factor">USING: accessors combinators combinators.short-circuit
formatting io kernel literals locals math math.distances
math.functions prettyprint sequences strings ;
Line 853 ⟶ 1,279:
] each ;
 
MAIN: circles-demo</langsyntaxhighlight>
{{out}}
<pre>
Line 871 ⟶ 1,297:
one degenerate circle found at (0.1234, 0.9876).
</pre>
 
=={{header|Fortran}}==
<langsyntaxhighlight lang="fortran">
! Implemented by Anant Dixit (Nov. 2014)
! Transpose elements in find_center to obtain correct results. R.N. McLean (Dec 2017)
Line 978 ⟶ 1,403:
Center(2,1) = MP(1) + dd*(P2(2) - P1(2))/dm
Center(2,2) = MP(2) - dd*(P2(1) - P1(1))/dm
end subroutine find_center</langsyntaxhighlight>
 
{{out}}
Line 1,018 ⟶ 1,443:
===Using complex numbers===
Fortran 66 made standard the availability of complex number arithmetic. This version however takes advantage of facilities offered in F90 so as to perform some array-based arithmetic, though the opportunities in this small routine are thin: two statements become one (look for CMPLX). More seriously, the MODULE facility allows the definition of an array SQUAWK which contains an explanatory text associated with each return code. The routine has a troublesome variety of possible odd conditions to report. An older approach would be to have a return message CHARACTER variable to present the remark, at the cost of filling up that variable with text every time. By returning an integer code, less effort is required, but there is no explication of the return codes. One could still have an array of messages (and prior to F90, array index counting started at one only, so no starting with -3 for errorish codes) but making that array available would require some sort of COMMON storage. The MODULE facility eases this problem.
<langsyntaxhighlight Fortranlang="fortran"> MODULE GEOMETRY !Limited scope.
CHARACTER*(*) SQUAWK(-3:2) !Holds a schedule of complaints.
PARAMETER (SQUAWK = (/ !According to what might go wrong.
Line 1,080 ⟶ 1,505:
 
20 CLOSE(IN) !Finihed with input.
END !Finished. </langsyntaxhighlight>
 
Results: little attempt has been made to present a fancy layout, "free-format" output does well enough. Notably, complex numbers are presented in brackets with a comma as ''(x,y)''; a FORMAT statement version would have to supply those decorations. Free-format input also expects such bracketing when reading complex numbers. The supplied data format however does ''not'' include the brackets and so is improper. Suitable data would be
Line 1,113 ⟶ 1,538:
One 'circle', centred on the co-incident points. R is zero!
</pre>
=={{header|FreeBASIC}}==
<syntaxhighlight lang="freebasic">Type Point
As Double x,y
Declare Property length As Double
End Type
 
Property point.length As Double
Return Sqr(x*x+y*y)
End Property
 
Sub circles(p1 As Point,p2 As Point,radius As Double)
Print "Points ";"("&p1.x;","&p1.y;"),("&p2.x;","&p2.y;")";", Rad ";radius
Var ctr=Type<Point>((p1.x+p2.x)/2,(p1.y+p2.y)/2)
Var half=Type<Point>(p1.x-ctr.x,p1.y-ctr.y)
Var lenhalf=half.length
If radius<lenhalf Then Print "Can't solve":Print:Exit Sub
If lenhalf=0 Then Print "Points are the same":Print:Exit Sub
Var dist=Sqr(radius^2-lenhalf^2)/lenhalf
Var rot= Type<Point>(-dist*(p1.y-ctr.y) +ctr.x,dist*(p1.x-ctr.x) +ctr.y)
Print " -> Circle 1 ("&rot.x;","&rot.y;")"
rot= Type<Point>(-(rot.x-ctr.x) +ctr.x,-((rot.y-ctr.y)) +ctr.y)
Print" -> Circle 2 ("&rot.x;","&rot.y;")"
Print
End Sub
 
 
Dim As Point p1=(.1234,.9876),p2=(.8765,.2345)
circles(p1,p2,2)
p1=Type<Point>(0,2):p2=Type<Point>(0,0)
circles(p1,p2,1)
p1=Type<Point>(.1234,.9876):p2=p1
circles(p1,p2,2)
p1=Type<Point>(.1234,.9876):p2=Type<Point>(.8765,.2345)
circles(p1,p2,.5)
p1=Type<Point>(.1234,.9876):p2=p1
circles(p1,p2,0)
 
Sleep</syntaxhighlight>
{{out}}
<pre>Points (0.1234,0.9876),(0.8765,0.2345), Rad 2
-> Circle 1 (-0.8632118016581893,-0.7521118016581889)
-> Circle 2 (1.863111801658189,1.974211801658189)
 
Points (0,2),(0,0), Rad 1
-> Circle 1 (0,1)
-> Circle 2 (0,1)
 
Points (0.1234,0.9876),(0.1234,0.9876), Rad 2
Points are the same
 
Points (0.1234,0.9876),(0.8765,0.2345), Rad 0.5
Can't solve
 
Points (0.1234,0.9876),(0.1234,0.9876), Rad 0
Points are the same</pre>
=={{header|Go}}==
<langsyntaxhighlight lang="go">package main
 
import (
Line 1,188 ⟶ 1,667:
fmt.Println()
}
}</langsyntaxhighlight>
{{out}}
<pre>
Line 1,220 ⟶ 1,699:
Center: {0.1234 0.9876}
</pre>
=={{header|Groovy}}==
{{trans|Java}}
<syntaxhighlight lang="groovy">class Circles {
private static class Point {
private final double x, y
 
Point(Double x, Double y) {
this.x = x
this.y = y
}
 
double distanceFrom(Point other) {
double dx = x - other.x
double dy = y - other.y
return Math.sqrt(dx * dx + dy * dy)
}
 
@Override
boolean equals(Object other) {
//if (this == other) return true
if (other == null || getClass() != other.getClass()) return false
Point point = (Point) other
return x == point.x && y == point.y
}
 
@Override
String toString() {
return String.format("(%.4f, %.4f)", x, y)
}
}
 
private static Point[] findCircles(Point p1, Point p2, double r) {
if (r < 0.0) throw new IllegalArgumentException("the radius can't be negative")
if (r == 0.0.toDouble() && p1 != p2) throw new IllegalArgumentException("no circles can ever be drawn")
if (r == 0.0.toDouble()) return [p1, p1]
if (Objects.equals(p1, p2)) throw new IllegalArgumentException("an infinite number of circles can be drawn")
double distance = p1.distanceFrom(p2)
double diameter = 2.0 * r
if (distance > diameter) throw new IllegalArgumentException("the points are too far apart to draw a circle")
Point center = new Point((p1.x + p2.x) / 2.0, (p1.y + p2.y) / 2.0)
if (distance == diameter) return [center, center]
double mirrorDistance = Math.sqrt(r * r - distance * distance / 4.0)
double dx = (p2.x - p1.x) * mirrorDistance / distance
double dy = (p2.y - p1.y) * mirrorDistance / distance
return [
new Point(center.x - dy, center.y + dx),
new Point(center.x + dy, center.y - dx)
]
}
 
static void main(String[] args) {
Point[] p = [
new Point(0.1234, 0.9876),
new Point(0.8765, 0.2345),
new Point(0.0000, 2.0000),
new Point(0.0000, 0.0000)
]
Point[][] points = [
[p[0], p[1]],
[p[2], p[3]],
[p[0], p[0]],
[p[0], p[1]],
[p[0], p[0]],
]
double[] radii = [2.0, 1.0, 2.0, 0.5, 0.0]
for (int i = 0; i < radii.length; ++i) {
Point p1 = points[i][0]
Point p2 = points[i][1]
double r = radii[i]
printf("For points %s and %s with radius %f\n", p1, p2, r)
try {
Point[] circles = findCircles(p1, p2, r)
Point c1 = circles[0]
Point c2 = circles[1]
if (Objects.equals(c1, c2)) {
printf("there is just one circle with center at %s\n", c1)
} else {
printf("there are two circles with centers at %s and %s\n", c1, c2)
}
} catch (IllegalArgumentException ex) {
println(ex.getMessage())
}
println()
}
}
}</syntaxhighlight>
{{out}}
<pre>For points (0.1234, 0.9876) and (0.8765, 0.2345) with radius 2.000000
there are two circles with centers at (1.8631, 1.9742) and (-0.8632, -0.7521)
 
For points (0.0000, 2.0000) and (0.0000, 0.0000) with radius 1.000000
there is just one circle with center at (0.0000, 1.0000)
 
For points (0.1234, 0.9876) and (0.1234, 0.9876) with radius 2.000000
an infinite number of circles can be drawn
 
For points (0.1234, 0.9876) and (0.8765, 0.2345) with radius 0.500000
the points are too far apart to draw a circle
 
For points (0.1234, 0.9876) and (0.1234, 0.9876) with radius 0.000000
there is just one circle with center at (0.1234, 0.9876)</pre>
=={{header|Haskell}}==
<langsyntaxhighlight Haskelllang="haskell">add (a, b) (x, y) = (a + x, b + y)
sub (a, b) (x, y) = (a - x, b - y)
magSqr (a, b) = (a ^^ 2) + (b ^^ 2)
Line 1,257 ⟶ 1,836:
((0.1234, 0.9876), (0.1234, 0.9876), 2),
((0.1234, 0.9876), (0.8765, 0.2345), 0.5),
((0.1234, 0.9876), (0.1234, 0.1234), 0)]</langsyntaxhighlight>
{{out}}
<pre>Just ((-0.8632118016581896,-0.7521118016581892),(1.8631118016581893,1.974211801658189))
Line 1,267 ⟶ 1,846:
{{trans|AutoHotKey}}
Works in both languages.
<langsyntaxhighlight lang="unicon">procedure main()
A := [ [0.1234, 0.9876, 0.8765, 0.2345, 2.0],
[0.0000, 2.0000, 0.0000, 0.0000, 1.0],
Line 1,288 ⟶ 1,867:
if d = r2 then return "Single circle at ("||cx1||","||cy1||")"
return "("||cx1||","||cy1||") and ("||cx2||","||cy2||")"
end</langsyntaxhighlight>
 
{{out}}
Line 1,300 ⟶ 1,879:
->
</pre>
 
=={{header|J}}==
 
2D computations are often easier using the complex plane.
<langsyntaxhighlight Jlang="j">average =: +/ % #
 
circles =: verb define"1
Line 1,348 ⟶ 1,926:
│0.1234 0.9876 0.1234 0.9876 0 │Degenerate point at 0.1234 0.9876 │
└───────────────────────────────┴────────────────────────────────────────────────────┘
</syntaxhighlight>
</lang>
 
=={{header|Java}}==
{{trans|Kotlin}}
<langsyntaxhighlight Javalang="java">import java.util.Objects;
 
public class Circles {
Line 1,437 ⟶ 2,014:
}
}
}</langsyntaxhighlight>
{{out}}
<pre>For points (0.1234, 0.9876) and (0.8765, 0.2345) with radius 2.000000
Line 1,453 ⟶ 2,030:
For points (0.1234, 0.9876) and (0.1234, 0.9876) with radius 0.000000
there is just one circle with center at (0.1234, 0.9876)</pre>
 
=={{header|JavaScript}}==
 
====ES6====
 
<langsyntaxhighlight JavaScriptlang="javascript">const hDist = (p1, p2) => Math.hypot(...p1.map((e, i) => e - p2[i])) / 2;
const pAng = (p1, p2) => Math.atan(p1.map((e, i) => e - p2[i]).reduce((p, c) => c / p, 1));
const solveF = (p, r) => t => [r*Math.cos(t) + p[0], r*Math.sin(t) + p[1]];
Line 1,500 ⟶ 2,076:
[[0.1234, 0.9876], [0.1234, 0.9876], 0.0]
].forEach((t,i) => console.log(`Test: ${i}: ${findC(...t)}`));
</langsyntaxhighlight>
 
Output:
<syntaxhighlight lang="javascript">
<lang JavaScript>
Test: 0: p1: 0.1234,0.9876, p2: 0.8765,0.2345, r:2 Result: Circle at 1.8631118016581891,1.974211801658189 Circle at -0.863211801658189,-0.7521118016581889
Test: 1: p1: 0,2, p2: 0,0, r:1 Result: Points on diameter. Circle at: 0,1
Line 1,509 ⟶ 2,085:
Test: 3: p1: 0.1234,0.9876, p2: 0.8765,0.2345, r:0.5 Result: No intersection. Points further apart than circle diameter
Test: 4: p1: 0.1234,0.9876, p2: 0.1234,0.9876, r:0 Result: Radius Zero
</syntaxhighlight>
</lang>
 
=={{header|jq}}==
{{works with|jq|1.4}}
In this section, a point in the plane will be represented by its Cartesian co-ordinates expressed as a JSON array: [x,y].
<langsyntaxhighlight lang="jq"># circle_centers is defined here as a filter.
# Input should be an array [x1, y1, x2, y2, r] giving the co-ordinates
# of the two points and a radius.
Line 1,540 ⟶ 2,115:
elif ($cx1 and $cy1 and $cx2 and $cy2) | not then "no solution"
else [$cx1, $cy1, $cx2, $cy2 ]
end;</langsyntaxhighlight>
'''Examples''':
<langsyntaxhighlight lang="jq">(
[0.1234, 0.9876, 0.8765, 0.2345, 2],
[0.0000, 2.0000, 0.0000, 0.0000, 1],
Line 1,549 ⟶ 2,124:
[0.1234, 0.9876, 0.1234, 0.9876, 0]
)
| "\(.) ───► \(circle_centers)"</langsyntaxhighlight>
{{out}}
<langsyntaxhighlight lang="sh">$ jq -n -c -r -f /Users/peter/jq/circle_centers.jq
 
[0.1234,0.9876,0.8765,0.2345,2] ───► [1.8631118016581893,1.974211801658189,-0.8632118016581896,-0.7521118016581892]
Line 1,558 ⟶ 2,133:
[0.1234,0.9876,0.1234,0.9876,2] ───► infinitely many circles can be drawn
[0.1234,0.9876,0.8765,0.2345,0.5] ───► points are too far from each other
[0.1234,0.9876,0.1234,0.9876,0] ───► [0.1234,0.9876]</langsyntaxhighlight>
 
=={{header|Julia}}==
This solution uses the package [https://github.com/timholy/AffineTransforms.jl AffineTransforms.jl] to introduce a coordinate system (u, v) centered on the midpoint between the two points and rotated so that these points are on the u-axis. In this system, solving for the circles' centers is trivial. The two points are cast as complex numbers to aid in determining the location of the midpoint and rotation angle.
 
'''Types and Functions'''
<syntaxhighlight lang="julia">
<lang Julia>
immutable Point{T<:FloatingPoint}
x::T
Line 1,606 ⟶ 2,180:
return (cp, "Two Solutions")
end
</syntaxhighlight>
</lang>
 
'''Main'''
<syntaxhighlight lang="julia">
<lang Julia>
tp = [Point(0.1234, 0.9876),
Point(0.0000, 2.0000),
Line 1,637 ⟶ 2,211:
end
end
</syntaxhighlight>
</lang>
 
{{out}}
Line 1,652 ⟶ 2,226:
(0.1234, 0.9876), 0.0000
</pre>
 
=={{header|Kotlin}}==
<langsyntaxhighlight lang="scala">// version 1.1.51
 
typealias IAE = IllegalArgumentException
Line 1,717 ⟶ 2,290:
println()
}
}</langsyntaxhighlight>
 
{{out}}
Line 1,736 ⟶ 2,309:
there is just one circle with center at (0.1234, 0.9876)
</pre>
=={{header|Lambdatalk}}==
<syntaxhighlight lang="scheme">
input: OP1=(x1,y1), OP2=(x2,y2), r
output: OC = OH + HC
where OH = (OP1+OP2)/2
and HC = j*|HC|
where j is the unit vector rotated -90° from P1P2
and |HC| = √(r^2 - (|P1P2|/2)^2) if exists
 
{def circleby2points
{lambda {:x1 :y1 :x2 :y2 :r}
{if {= :r 0}
then radius is zero
else {if {and {= :x1 :x2} {= :y1 :y2}}
then same points
else {let { {:r :r}
{:vx {- :x2 :x1}} {:vy {- :y2 :y1}} // v = P1P2
{:hx {/ {+ :x1 :x2} 2}} {:hy {/ {+ :y1 :y2} 2}} } // h = OH
{let { {:r :r} {:vx :vx} {:vy :vy} {:hx :hx} {:hy :hy} // closure
{:d {sqrt {+ {* :px :px} {* :py :py}}} } } // d = |P1P2|
{if {> :d {* 2 :r}} // d > diam
then no circle, points are too far apart
else {if {= :d {* 2 :r}} // d = diam
then one circle: opposite ends of diameter with centre (:hx,:hy)
else {let { {:r :r} {:hx :hx} {:hy :hy} // closure
{:jx {- {/ :vy :d}}} {:jy {/ :vx :d}} // j unit -90° to P1P2
{:d {sqrt {- {* :r :r} {/ {* :d :d} 4}}}} } // |HC|
two circles: {br}({+ :hx {* :d :jx}},{+ :hy {* :d :jy}}) // OH + j*|HC|
{br}({- :hx {* :d :jx}},{- :hy {* :d :jy}}) // OH - j*|HC|
}}}}}}}}}
 
{circleby2points -1 0 1 0 0.5}
-> no circle:
points are too far apart
 
{circleby2points -1 0 1 0 1}
-> one circle:
opposite ends of diameter with centre (0,0)
 
{circleby2points -1 0 1 0 {sqrt 2}}
-> two circles:
(0,1.0000000000000002)
(0,-1.0000000000000002)
 
rosetta's task:
 
{circleby2points 0.1234 0.9876 0.8765 0.2345 2.0}
-> two circles:
(1.8631118016581893,1.974211801658189)
(-0.8632118016581896,-0.7521118016581892)
 
{circleby2points 0.0000 2.0000 0.0000 0.0000 1.0}
-> one circle: opposite ends of diameter with centre (0,1)
 
{circleby2points 0.1234 0.9876 0.1234 0.9876 2.0}
-> same points
 
{circleby2points 0.1234 0.9876 0.8765 0.2345 0.5}
-> no circle, points are too far apart
 
{circleby2points 0.1234 0.9876 0.1234 0.9876 0.0}
-> radius is zero
</syntaxhighlight>
=={{header|Liberty BASIC}}==
<syntaxhighlight lang="lb">
<lang lb>
'[RC] Circles of given radius through two points
for i = 1 to 5
Line 1,784 ⟶ 2,419:
 
end sub
</syntaxhighlight>
</lang>
 
Output:
<langsyntaxhighlight lang="text">
1) 0.1234 0.9876 0.8765 0.2345 2
(1.8631118,1.9742118)
Line 1,800 ⟶ 2,435:
5) 0.1234 0.9876 0.1234 0.9876 0
It will be a single point (0.1234,0.9876) of radius 0
</syntaxhighlight>
</lang>
 
=={{header|Lua}}==
{{trans|C}}
<langsyntaxhighlight lang="lua">function distance(p1, p2)
local dx = (p1.x-p2.x)
local dy = (p1.y-p2.y)
Line 1,853 ⟶ 2,487:
print("Case "..i)
findCircles(cases[i*2-1], cases[i*2], radii[i])
end</langsyntaxhighlight>
{{out}}
<pre>Case 1
Line 1,871 ⟶ 2,505:
Case 5
No circles can be drawn through (0.1234, 0.9876)</pre>
 
=={{header|Maple}}==
<langsyntaxhighlight lang="maple">drawCircles := proc(x1, y1, x2, y2, r, $)
local c1, c2, p1, p2;
use geometry in
Line 1,900 ⟶ 2,533:
drawCircles(0.1234, 0.9876, 0.1234, 0.9876, 2.0);
drawCircles(0.1234, 0.9876, 0.8765, 0.2345, 0.5);
drawCircles(0.1234, 0.9876, 0.1234, 0.9876, 0.0);</langsyntaxhighlight>
{{out}}
[[File:Circles1_Maple.png]]
Line 1,910 ⟶ 2,543:
The circle is a point at [.1234, .9876].
</pre>
=={{header|Mathematica}}/{{header|Wolfram Language}}==
 
<syntaxhighlight lang="mathematica">Off[Solve::ratnz];
=={{header|Mathematica}}==
<lang Mathematica>Off[Solve::ratnz];
circs::invrad = "The radius is invalid.";
circs::equpts = "The given points (`1`, `2`) are equivalent.";
Line 1,927 ⟶ 2,559:
Values /@
Solve[Abs[x - p1x]^2 + Abs[y - p1y]^2 ==
Abs[x - p2x]^2 + Abs[y - p2y]^2 == r^2, {x, y}];</langsyntaxhighlight>
{{out}}
<pre>In[2]:= circs[{.1234, .9876}, {.8765, .2345}, 2.]
{{-0.863212, -0.752112}, {1.86311, 1.97421}}
 
Outcircs[2]= {{-0.8632121234, -0.7521129876}, {1.863111234, 1.97421}9876}, 2.]
 
In[3]:= circs[{.1234, .9876}, {.1234, .9876}, 2.]
 
circs::equpts: The given points (0.1234`, 0.9876`) are equivalent.
circs[{.1234, .9876}, {.8765, .2345}, .5]
 
In[4]circs::dist:= circs[{The given points (0.1234`, 0.9876},`) {and (0.8765`, 0.2345},`) are too far apart for radius 0.5]`.
circs[{.1234, .9876}, {.1234, .9876}, 0.]
 
circs::dist: The given points (0.1234`, 0.9876`) and (0.8765`, 0.2345`) are too
far apart for radius 0.5`.
 
In[5]:= circs[{.1234, .9876}, {.1234, .9876}, 0.]
 
circs::invrad: The radius is invalid.</pre>
 
=={{header|Maxima}}==
<langsyntaxhighlight Maximalang="maxima">/* define helper function */
vabs(a):= sqrt(a.a);
realp(e):=freeof(%i, e);
Line 1,989 ⟶ 2,612:
apply('getsol, cons(sol, d[2]));
apply('getsol, cons(sol, d[3]));
apply('getsol, cons(sol, d[4]));</langsyntaxhighlight>
{{out}}
<syntaxhighlight lang="text">apply('getsol, cons(sol, d[1]));
two solutions
(%o9) [[x0 = 1.86311180165819, y0 = 1.974211801658189],
Line 2,003 ⟶ 2,626:
(%i12) apply('getsol, cons(sol, d[4]));
infinity many solutions
(%o12) infmany</langsyntaxhighlight>
 
=={{header|МК-61/52}}==
<syntaxhighlight lang="text">П0 С/П П1 С/П П2 С/П П3 С/П П4
ИП2 ИП0 - x^2 ИП3 ИП1 - x^2 + КвКор П5
ИП0 ИП2 + 2 / П6 ИП1 ИП3 + 2 / П7
Line 2,017 ⟶ 2,639:
ИП4 2 * ИП5 - ПE x#0 97 ИПB ИПA 8 5 ИНВ С/П
ИПE x>=0 97 8 3 ИНВ С/П
ИПD ИПC ИПB ИПA С/П</langsyntaxhighlight>
 
{{in}}
Line 2,027 ⟶ 2,649:
"8.L" if the points are coincident; "8.-" if the points are opposite ends of a diameter of the circle, РY and РZ are coordinates of the center; "8.Г" if the points are farther away from each other than a diameter of a circle; else РX, РY and РZ, РT are coordinates of the circles centers.
</pre>
 
=={{header|Modula-2}}==
<langsyntaxhighlight lang="modula2">MODULE Circles;
FROM EXCEPTIONS IMPORT AllocateSource,ExceptionSource,GetMessage,RAISE;
FROM FormatString IMPORT FormatString;
Line 2,146 ⟶ 2,767:
 
ReadChar
END Circles.</langsyntaxhighlight>
 
=={{header|Nim}}==
{{trans|Python}}
<langsyntaxhighlight lang="nim">import math
 
type
Line 2,197 ⟶ 2,817:
except ValueError:
echo " ERROR: ", getCurrentExceptionMsg()
echo ""</langsyntaxhighlight>
{{out}}
<pre>Through points:
Line 2,235 ⟶ 2,855:
You can construct the following circles:
ERROR: radius of zero</pre>
=={{header|OCaml}}==
Original version by [http://rosettacode.org/wiki/User:Vanyamil User:Vanyamil]
<syntaxhighlight lang="ocaml">
(* Task : Circles of given radius through two points *)
 
(* Types to make code even more readable *)
type point = float * float
type radius = float
type circle = Circle of radius * point
type circ_output =
NoSolution
| OneSolution of circle
| TwoSolutions of circle * circle
| InfiniteSolutions
;;
 
(* Actual function *)
let circles_2points_radius (x1, y1 : point) (x2, y2 : point) (r : radius) =
let (dx, dy) = (x2 -. x1, y2 -. y1) in
let dist_sq = dx *. dx +. dy *. dy in
match dist_sq, r with
(* Edge case - point circles *)
| 0., 0. -> OneSolution (Circle (r, (x1, y1)))
(* Edge case - coinciding points *)
| 0., _ -> InfiniteSolutions
| _ ->
let side_len_sq = r *. r -. dist_sq /. 4. in
let midp = ((x1 +. x2) *. 0.5, (y1 +. y2) *. 0.5) in
(* Points are too far apart; same whether r = 0 or not *)
if side_len_sq < 0. then NoSolution
(* Points are on diameter *)
else if side_len_sq = 0. then OneSolution (Circle (r, midp))
else
(* A right-angle triangle is made with the radius as hyp, dist/2 as one side *)
let side_len = sqrt (r *. r -. dist_sq /. 4.) in
let dist = sqrt dist_sq in
(* A 90-deg rotation of a vector (x, y) is obtained by either (y, -x) or (-y, x)
We need both, so pick one and the other is its negative.
*)
let (vx, vy) = (-. dy *. side_len /. dist, dx *. side_len /. dist) in
let c1 = Circle (r, (fst midp +. vx, snd midp +. vy)) in
let c2 = Circle (r, (fst midp -. vx, snd midp -. vy)) in
TwoSolutions (c1, c2)
;;
 
(* Relevant tests and printing *)
let tests = [
(0.1234, 0.9876), (0.8765, 0.2345), 2.0;
(0.0000, 2.0000), (0.0000, 0.0000), 1.0;
(0.1234, 0.9876), (0.1234, 0.9876), 2.0;
(0.1234, 0.9876), (0.8765, 0.2345), 0.5;
(0.1234, 0.9876), (0.1234, 0.9876), 0.0;
] ;;
 
let format_output (out : circ_output) = match out with
| NoSolution -> print_endline "No solution"
| OneSolution (Circle (_, (x, y))) -> Printf.printf "One solution: (%.6f, %.6f)\n" x y
| TwoSolutions (Circle (_, (x1, y1)), Circle (_, (x2, y2))) ->
Printf.printf "Two solutions: (%.6f, %.6f) and (%.6f, %.6f)\n" x1 y1 x2 y2
| InfiniteSolutions -> print_endline "Infinite solutions"
;;
 
let _ =
List.iter
(fun (a, b, c) -> circles_2points_radius a b c |> format_output)
tests
;;
</syntaxhighlight>
{{out}}
<pre>
Two solutions: (1.863112, 1.974212) and (-0.863212, -0.752112)
One solution: (0.000000, 1.000000)
Infinite solutions
No solution
One solution: (0.123400, 0.987600)
</pre>
=={{header|Oforth}}==
 
<langsyntaxhighlight lang="oforth">: circleCenter(x1, y1, x2, y2, r)
| d xmid ymid r1 md |
x2 x1 - sq y2 y1 - sq + sqrt -> d
Line 2,253 ⟶ 2,948:
System.Out "C1 : (" << xmid y1 y2 - md * d / + << ", " << ymid x2 x1 - md * d / + << ")" << cr
System.Out "C2 : (" << xmid y1 y2 - md * d / - << ", " << ymid x2 x1 - md * d / - << ")" << cr
;</langsyntaxhighlight>
 
{{out}}
Line 2,274 ⟶ 2,969:
 
</pre>
 
=={{header|ooRexx}}==
{{trans|REXX}}
<langsyntaxhighlight lang="oorexx">/*REXX pgm finds 2 circles with a specific radius given two (X,Y) points*/
a.=''
a.1=0.1234 0.9876 0.8765 0.2345 2
Line 2,315 ⟶ 3,009:
f: Return format(arg(1),2,4) /* format a number with 4 dec dig.*/
 
::requires 'rxMath' library</langsyntaxhighlight>
{{out}}
<pre> x1 y1 x2 y2 radius cir1x cir1y cir2x cir2y
Line 2,324 ⟶ 3,018:
0.1234 0.9876 0.8765 0.2345 0.5 points are too far apart for the given radius
0.1234 0.9876 0.1234 0.9876 0.0 radius of zero gives no circles.</pre>
=={{header|OpenSCAD}}==
<syntaxhighlight lang="OpenSCAD">
// distance between two points
function distance(p1, p2) = sqrt((difference(p2.x, p1.x)) ^ 2 + (difference(p2.y, p1.y) ^ 2));
// difference between two values in any order
function difference(a, b) = let(x = a > b ? a - b : b - a) x;
 
// function to find the circles of given radius through two points
function circles_of_given_radius_through_two_points(p1, p2, radius) =
let(mid = (p1 + p2)/2, q = distance(p1, p2), x_dist = sqrt(radius ^ 2 - (q / 2) ^ 2) * (p1.y - p2.y) / q,
y_dist = sqrt(radius ^ 2 - (q / 2) ^ 2) * (p2.x - p1.x) / q)
// point 1 and point 2 must not be the same point
assert(p1 != p2)
// radius must be more than 0
assert(radius > 0)
// distance between points cannot be more than diameter
assert(q < radius * 2)
// return both qualifying centres
[mid + [ x_dist, y_dist ], mid - [ x_dist, y_dist ]];
 
// test module for circles_of_given_radius_through_two_points
module test_circles_of_given_radius_through_two_points()
{
tests = [
[ [ -10, -10, 0 ], [ 50, 0, 0 ], 100 ], [ [ 200, 0, 0 ], [ 220, -20, 0 ], 30 ],
[ [ 300, 100, 0 ], [ 350, 200, 0 ], 80 ]
];
 
for (t = tests)
{
let(start = t[0], end = t[1], radius = t[2])
{
// plot start and end dots - these should be at the intersections of the circles
color("green") translate(start) cylinder(h = 3, r = 4);
color("green") translate(end) cylinder(h = 3, r = 4);
 
// call function
centres = circles_of_given_radius_through_two_points(start, end, radius);
echo("centres", centres);
// plot results
color("yellow") translate(centres[0]) cylinder(h = 1, r = radius);
color("red") translate(centres[1]) cylinder(h = 2, r = radius);
};
};
// The following tests will stop all execution. To run them, uncomment one at a time
// should fail - same points
// echo(circles_of_given_radius_through_two_points([0,0],[0,0],1));
// should fail - points are more than diameter apart
// echo(circles_of_given_radius_through_two_points(p1 = [0,0], p2 = [0,101], radius = 50));
// should fail - radius must be greater than 0
// echo(circles_of_given_radius_through_two_points(p1= [1,1], p2 = [10,1], radius = 0));
}
 
test_circles_of_given_radius_through_two_points();
</syntaxhighlight>
 
=={{header|PARI/GP}}==
<langsyntaxhighlight lang="parigp">circ(a, b, r)={
if(a==b, return("impossible"));
my(h=(b-a)/2,t=sqrt(r^2-abs(h)^2)/abs(h)*h);
Line 2,335 ⟶ 3,084:
circ(0.1234 + 0.9876*I, 0.1234 + 0.9876*I, 2)
circ(0.1234 + 0.9876*I, 0.8765 + 0.2345*I, .5)
circ(0.1234 + 0.9876*I, 0.1234 + 0.9876*I, 0)</langsyntaxhighlight>
{{out}}
<pre>%1 = [1.86311180 + 1.97421180*I, -0.863211802 - 0.752111802*I]
Line 2,342 ⟶ 3,091:
%4 = [0.370374144 + 0.740625856*I, 0.629525856 + 0.481474144*I]
%5 = "impossible"</pre>
 
 
=={{header|Perl}}==
{{trans|Python}}
<langsyntaxhighlight lang="perl">use strict;
 
sub circles {
Line 2,378 ⟶ 3,126:
);
 
printf "(%.4f, %.4f) and (%.4f, %.4f) with radius %.1f: %s\n", @$_[0..4], circles @$_ for @arr;</langsyntaxhighlight>
{{out}}
<pre>(0.1234, 0.9876) and (0.8765, 0.2345) with radius 2.0: (1.8631, 1.9742) and (-0.8632, -0.7521)
Line 2,385 ⟶ 3,133:
(0.1234, 0.9876) and (0.8765, 0.2345) with radius 0.5: Separation of points greater than diameter
(0.1234, 0.9876) and (0.1234, 0.9876) with radius 0.0: Radius is zero</pre>
 
=={{header|Perl 6}}==
<lang Perl6>multi sub circles (@A, @B where ([and] @A Z== @B), 0.0) { 'Degenerate point' }
multi sub circles (@A, @B where ([and] @A Z== @B), $) { 'Infinitely many share a point' }
multi sub circles (@A, @B, $radius) {
my @middle = (@A Z+ @B) X/ 2;
my @diff = @A Z- @B;
my $q = sqrt [+] @diff X** 2;
return 'Too far apart' if $q > $radius * 2;
 
my @orth = -@diff[0], @diff[1] X* sqrt($radius ** 2 - ($q / 2) ** 2) / $q;
return (@middle Z+ @orth), (@middle Z- @orth);
}
 
my @input =
([0.1234, 0.9876], [0.8765, 0.2345], 2.0),
([0.0000, 2.0000], [0.0000, 0.0000], 1.0),
([0.1234, 0.9876], [0.1234, 0.9876], 2.0),
([0.1234, 0.9876], [0.8765, 0.2345], 0.5),
([0.1234, 0.9876], [0.1234, 0.9876], 0.0),
;
 
for @input {
say .list.perl, ': ', circles(|$_).join(' and ');
}</lang>
{{out}}
<pre>([0.1234, 0.9876], [0.8765, 0.2345], 2.0): 1.86311180165819 1.97421180165819 and -0.863211801658189 -0.752111801658189
([0.0, 2.0], [0.0, 0.0], 1.0): 0 1 and 0 1
([0.1234, 0.9876], [0.1234, 0.9876], 2.0): Infinitely many share a point
([0.1234, 0.9876], [0.8765, 0.2345], 0.5): Too far apart
([0.1234, 0.9876], [0.1234, 0.9876], 0.0): Degenerate point</pre>
 
Another possibility is to use the Complex plane,
for it often makes calculations easier with plane geometry:
 
<lang perl6>multi sub circles ($a, $b where $a == $b, 0.0) { 'Degenerate point' }
multi sub circles ($a, $b where $a == $b, $) { 'Infinitely many share a point' }
multi sub circles ($a, $b, $r) {
my $h = ($b - $a) / 2;
my $l = sqrt($r**2 - $h.abs**2);
return 'Too far apart' if $l.isNaN;
return map { $a + $h + $l * $_ * $h / $h.abs }, i, -i;
}
 
my @input =
(0.1234 + 0.9876i, 0.8765 + 0.2345i, 2.0),
(0.0000 + 2.0000i, 0.0000 + 0.0000i, 1.0),
(0.1234 + 0.9876i, 0.1234 + 0.9876i, 2.0),
(0.1234 + 0.9876i, 0.8765 + 0.2345i, 0.5),
(0.1234 + 0.9876i, 0.1234 + 0.9876i, 0.0),
;
 
for @input {
say .join(', '), ': ', circles(|$_).join(' and ');
}</lang>
 
{{out}}
<pre>0.1234+0.9876i, 0.8765+0.2345i, 2: 1.86311180165819+1.97421180165819i and -0.863211801658189-0.752111801658189i
0+2i, 0+0i, 1: 0+1i and 0+1i
0.1234+0.9876i, 0.1234+0.9876i, 2: Infinitely many share a point
0.1234+0.9876i, 0.8765+0.2345i, 0.5: Too far apart
0.1234+0.9876i, 0.1234+0.9876i, 0: Degenerate point</pre>
 
=={{header|Phix}}==
<!--<syntaxhighlight lang="phix">(phixonline)-->
<lang Phix>constant tests = {{0.1234, 0.9876, 0.8765, 0.2345, 2.0},
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
{0.0000, 2.0000, 0.0000, 0.0000, 1.0},
<span style="color: #008080;">constant</span> <span style="color: #000000;">tests</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{{</span><span style="color: #000000;">0.1234</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">0.9876</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">0.8765</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">0.2345</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">2.0</span><span style="color: #0000FF;">},</span>
{0.1234, 0.9876, 0.1234, 0.9876, 2.0},
<span style="color: #0000FF;">{</span><span style="color: #000000;">0.0000</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">2.0000</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">0.0000</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">0.0000</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">1.0</span><span style="color: #0000FF;">},</span>
{0.1234, 0.9876, 0.8765, 0.2345, 0.5},
<span style="color: #0000FF;">{</span><span style="color: #000000;">0.1234</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">0.9876</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">0.1234</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">0.9876</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">2.0</span><span style="color: #0000FF;">},</span>
{0.1234, 0.9876, 0.1234, 0.9876, 0.0}}
<span style="color: #0000FF;">{</span><span style="color: #000000;">0.1234</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">0.9876</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">0.8765</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">0.2345</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">0.5</span><span style="color: #0000FF;">},</span>
for i=1 to length(tests) do
<span style="color: #0000FF;">{</span><span style="color: #000000;">0.1234</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">0.9876</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">0.1234</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">0.9876</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">0.0</span><span style="color: #0000FF;">}}</span>
atom {x1,y1,x2,y2,r} = tests[i],
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">tests</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span>
xd = x2-x1, yd = y1-y2,
<span style="color: #004080;">atom</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">x1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">y1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">x2</span><span style="color: #0000FF;">,</span><span style="color: #000000;">y2</span><span style="color: #0000FF;">,</span><span style="color: #000000;">r</span><span style="color: #0000FF;">}</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">tests</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">],</span>
s2 = xd*xd+yd*yd,
<span style="color: #000000;">xd</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">x2</span><span style="color: #0000FF;">-</span><span style="color: #000000;">x1</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">yd</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">y1</span><span style="color: #0000FF;">-</span><span style="color: #000000;">y2</span><span style="color: #0000FF;">,</span>
sep = sqrt(s2),
<span style="color: #000000;">s2</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">xd</span><span style="color: #0000FF;">*</span><span style="color: #000000;">xd</span><span style="color: #0000FF;">+</span><span style="color: #000000;">yd</span><span style="color: #0000FF;">*</span><span style="color: #000000;">yd</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">sep</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">sqrt</span><span style="color: #0000FF;">(</span><span style="color: #000000;">s2</span><span style="color: #0000FF;">),</span>
xh = (x1+x2)/2,
<span style="color: #000000;">xh</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">(</span><span style="color: #000000;">x1</span><span style="color: #0000FF;">+</span><span style="color: #000000;">x2</span><span style="color: #0000FF;">)/</span><span style="color: #000000;">2</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">yh</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">(</span><span style="color: #000000;">y1</span><span style="color: #0000FF;">+</span><span style="color: #000000;">y2</span><span style="color: #0000FF;">)/</span><span style="color: #000000;">2</span>
yh = (y1+y2)/2
<span style="color: #004080;">string</span> <span style="color: #000000;">txt</span>
string txt
<span style="color: #008080;">if</span> <span style="color: #000000;">sep</span><span style="color: #0000FF;">=</span><span style="color: #000000;">0</span> <span style="color: #008080;">then</span>
if sep=0 then
<span style="color: #000000;">txt</span> <span style="color: #0000FF;">=</span> <span style="color: #008000;">"same points/"</span><span style="color: #0000FF;">&</span><span style="color: #008080;">iff</span><span style="color: #0000FF;">(</span><span style="color: #000000;">r</span><span style="color: #0000FF;">=</span><span style="color: #000000;">0</span><span style="color: #0000FF;">?</span><span style="color: #008000;">"radius is zero"</span><span style="color: #0000FF;">:</span><span style="color: #008000;">"infinite solutions"</span><span style="color: #0000FF;">)</span>
txt = "same points/"&iff(r=0?"radius is zero":"infinite solutions")
<span style="color: #008080;">elsif</span> <span style="color: #000000;">sep</span><span style="color: #0000FF;">=</span><span style="color: #000000;">2</span><span style="color: #0000FF;">*</span><span style="color: #000000;">r</span> <span style="color: #008080;">then</span>
elsif sep=2*r then
<span style="color: #000000;">txt</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">sprintf</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"opposite ends of diameter with centre {%.4f,%.4f}"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">xh</span><span style="color: #0000FF;">,</span><span style="color: #000000;">yh</span><span style="color: #0000FF;">})</span>
txt = sprintf("opposite ends of diameter with centre {%.4f,%.4f}",{xh,yh})
<span style="color: #008080;">elsif</span> <span style="color: #000000;">sep</span><span style="color: #0000FF;">></span><span style="color: #000000;">2</span><span style="color: #0000FF;">*</span><span style="color: #000000;">r</span> <span style="color: #008080;">then</span>
elsif sep>2*r then
<span style="color: #000000;">txt</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">sprintf</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"too far apart (%.4f &gt; %.4f)"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">sep</span><span style="color: #0000FF;">,</span><span style="color: #000000;">2</span><span style="color: #0000FF;">*</span><span style="color: #000000;">r</span><span style="color: #0000FF;">})</span>
txt = sprintf("too far apart (%.4f > %.4f)",{sep,2*r})
<span style="color: #008080;">else</span>
else
<span style="color: #004080;">atom</span> <span style="color: #000000;">md</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">sqrt</span><span style="color: #0000FF;">(</span><span style="color: #000000;">r</span><span style="color: #0000FF;">*</span><span style="color: #000000;">r</span><span style="color: #0000FF;">-</span><span style="color: #000000;">s2</span><span style="color: #0000FF;">/</span><span style="color: #000000;">4</span><span style="color: #0000FF;">),</span> <span style="color: #000000;">xs</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">md</span><span style="color: #0000FF;">*</span><span style="color: #000000;">xd</span><span style="color: #0000FF;">/</span><span style="color: #000000;">sep</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">ys</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">md</span><span style="color: #0000FF;">*</span><span style="color: #000000;">yd</span><span style="color: #0000FF;">/</span><span style="color: #000000;">sep</span>
atom md = sqrt(r*r-s2/4),
<span style="color: #000000;">txt</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">sprintf</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"{%.4f,%.4f} and {%.4f,%.4f}"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">xh</span><span style="color: #0000FF;">+</span><span style="color: #000000;">ys</span><span style="color: #0000FF;">,</span><span style="color: #000000;">yh</span><span style="color: #0000FF;">+</span><span style="color: #000000;">xs</span><span style="color: #0000FF;">,</span><span style="color: #000000;">xh</span><span style="color: #0000FF;">-</span><span style="color: #000000;">ys</span><span style="color: #0000FF;">,</span><span style="color: #000000;">yh</span><span style="color: #0000FF;">-</span><span style="color: #000000;">xs</span><span style="color: #0000FF;">})</span>
xs = md*xd/sep,
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
ys = md*yd/sep
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"points {%.4f,%.4f}, {%.4f,%.4f} with radius %.1f ==&gt; %s\n"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">x1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">y1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">x2</span><span style="color: #0000FF;">,</span><span style="color: #000000;">y2</span><span style="color: #0000FF;">,</span><span style="color: #000000;">r</span><span style="color: #0000FF;">,</span><span style="color: #000000;">txt</span><span style="color: #0000FF;">})</span>
txt = sprintf("{%.4f,%.4f} and {%.4f,%.4f}",{xh+ys,yh+xs,xh-ys,yh-xs})
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
end if
<!--</syntaxhighlight>-->
printf(1,"points {%.4f,%.4f}, {%.4f,%.4f} with radius %.1f ==> %s\n",{x1,y1,x2,y2,r,txt})
end for</lang>
{{out}}
<pre>
Line 2,484 ⟶ 3,168:
points {0.1234,0.9876}, {0.1234,0.9876} with radius 0.0 ==> same points/radius is zero
</pre>
 
=={{header|PL/I}}==
{{trans|REXX}}
<langsyntaxhighlight PLlang="pl/Ii">twoci: Proc Options(main);
Dcl 1 *(5),
2 m1x Dec Float Init(0.1234, 0,0.1234,0.1234,0.1234),
Line 2,528 ⟶ 3,211:
Return(res);
End;
End;</langsyntaxhighlight>
{{out}}
<pre> x1 y1 x2 y2 r cir1x cir1y cir2x cir2y
Line 2,538 ⟶ 3,221:
0.1234 0.9876 0.1234 0.9876 0 radius of zero gives no circles.
</pre>
=={{header|PureBasic}}==
<syntaxhighlight lang="purebasic">DataSection
DataStart:
Data.d 0.1234, 0.9876, 0.8765, 0.2345, 2.0
Data.d 0.0000, 2.0000, 0.0000, 0.0000, 1.0
Data.d 0.1234, 0.9876, 0.1234, 0.9876, 2.0
Data.d 0.1234, 0.9876, 0.9765, 0.2345, 0.5
Data.d 0.1234, 0.9876, 0.1234, 0.9876, 0.0
DataEnd:
EndDataSection
Macro MaxRec : (?DataEnd-?DataStart)/SizeOf(P2r)-1 : EndMacro
 
Structure Pxy : x.d : y.d : EndStructure
Structure P2r : p1.Pxy : p2.Pxy : r.d : EndStructure
Structure PData : Prec.P2r[5] : EndStructure
 
Procedure.s cCenter(Rec.i)
If Rec<0 Or Rec>MaxRec : ProcedureReturn "Data set number incorrect." : EndIf
*myP.PData=?DataStart
r.d=*myP\Prec[Rec]\r
If r<=0.0 : ProcedureReturn "Illegal radius." : EndIf
r2.d=2.0*r
x1.d=*myP\Prec[Rec]\p1\x : x2.d=*myP\Prec[Rec]\p2\x
y1.d=*myP\Prec[Rec]\p1\y : y2.d=*myP\Prec[Rec]\p2\y
d.d=Sqr(Pow(x2-x1,2)+Pow(y2-y1,2))
If d=0.0 : ProcedureReturn "Identical points, infinite number of circles." : EndIf
If d>r2 : ProcedureReturn "No circles possible." : EndIf
z.d=Sqr(Pow(r,2)-Pow(d/2.0,2))
x3.d =(x1+x2)/2.0 : y3.d =(y1+y2)/2.0
cx1.d=x3+z*(y1-y2)/d : cy1.d=y3+z*(x2-x1)/d
cx2.d=x3-z*(y1-y2)/d : cy2.d=y3-z*(x2-x1)/d
If d=r2 : ProcedureReturn "Single circle at ("+StrD(cx1)+","+StrD(cy1)+")" : EndIf
ProcedureReturn "("+StrD(cx1)+","+StrD(cy1)+") and ("+StrD(cx2)+","+StrD(cy2)+")"
EndProcedure
 
If OpenConsole("")
For i=0 To MaxRec : PrintN(cCenter(i)) : Next : Input()
EndIf</syntaxhighlight>
{{out}}
<pre>(1.8631118017,1.9742118017) and (-0.8632118017,-0.7521118017)
Single circle at (0,1)
Identical points, infinite number of circles.
No circles possible.
Illegal radius.</pre>
=={{header|Python}}==
The function raises the ValueError exception for the special cases
and uses try - except to catch these and extract the exception detail.
 
<langsyntaxhighlight lang="python">from collections import namedtuple
from math import sqrt
 
Line 2,587 ⟶ 3,313:
print(' %r\n %r\n' % circles_from_p1p2r(p1, p2, r))
except ValueError as v:
print(' ERROR: %s\n' % (v.args[0],))</langsyntaxhighlight>
 
{{out}}
Line 2,626 ⟶ 3,352:
You can construct the following circles:
ERROR: radius of zero</pre>
 
 
=={{header|Racket}}==
Using library `plot/utils` for simple vector operations.
 
<langsyntaxhighlight lang="racket">
#lang racket
(require plot/utils)
Line 2,656 ⟶ 3,380:
;; returns a vector which is orthogonal to the geven one
(define orth (match-lambda [(vector x y) (vector y (- x))]))
</syntaxhighlight>
</lang>
 
{{out|Testing}}
Line 2,680 ⟶ 3,404:
Drawing circles:
 
<langsyntaxhighlight lang="racket">
(require 2htdp/image)
 
Line 2,696 ⟶ 3,420:
((compose (point p1) (point p2) (circ x1 r) (circ x2 r))
(empty-scene 100 100))
</syntaxhighlight>
</lang>
=={{header|Raku}}==
(formerly Perl 6)
{{works with|Rakudo|2020.08.1}}
<syntaxhighlight lang="raku" line>multi sub circles (@A, @B where ([and] @A Z== @B), 0.0) { 'Degenerate point' }
multi sub circles (@A, @B where ([and] @A Z== @B), $) { 'Infinitely many share a point' }
multi sub circles (@A, @B, $radius) {
my @middle = (@A Z+ @B) X/ 2;
my @diff = @A Z- @B;
my $q = sqrt [+] @diff X** 2;
return 'Too far apart' if $q > $radius * 2;
 
my @orth = -@diff[0], @diff[1] X* sqrt($radius ** 2 - ($q / 2) ** 2) / $q;
return (@middle Z+ @orth), (@middle Z- @orth);
}
 
my @input =
([0.1234, 0.9876], [0.8765, 0.2345], 2.0),
([0.0000, 2.0000], [0.0000, 0.0000], 1.0),
([0.1234, 0.9876], [0.1234, 0.9876], 2.0),
([0.1234, 0.9876], [0.8765, 0.2345], 0.5),
([0.1234, 0.9876], [0.1234, 0.9876], 0.0),
;
 
for @input {
say .list.raku, ': ', circles(|$_).join(' and ');
}</syntaxhighlight>
{{out}}
<pre>([0.1234, 0.9876], [0.8765, 0.2345], 2.0): 1.86311180165819 1.97421180165819 and -0.863211801658189 -0.752111801658189
([0.0, 2.0], [0.0, 0.0], 1.0): 0 1 and 0 1
([0.1234, 0.9876], [0.1234, 0.9876], 2.0): Infinitely many share a point
([0.1234, 0.9876], [0.8765, 0.2345], 0.5): Too far apart
([0.1234, 0.9876], [0.1234, 0.9876], 0.0): Degenerate point</pre>
 
Another possibility is to use the Complex plane,
for it often makes calculations easier with plane geometry:
 
<syntaxhighlight lang="raku" line>multi sub circles ($a, $b where $a == $b, 0.0) { 'Degenerate point' }
multi sub circles ($a, $b where $a == $b, $) { 'Infinitely many share a point' }
multi sub circles ($a, $b, $r) {
my $h = ($b - $a) / 2;
my $l = sqrt($r**2 - $h.abs**2);
return 'Too far apart' if $l.isNaN;
return map { $a + $h + $l * $_ * $h / $h.abs }, i, -i;
}
 
my @input =
(0.1234 + 0.9876i, 0.8765 + 0.2345i, 2.0),
(0.0000 + 2.0000i, 0.0000 + 0.0000i, 1.0),
(0.1234 + 0.9876i, 0.1234 + 0.9876i, 2.0),
(0.1234 + 0.9876i, 0.8765 + 0.2345i, 0.5),
(0.1234 + 0.9876i, 0.1234 + 0.9876i, 0.0),
;
 
for @input {
say .join(', '), ': ', circles(|$_).join(' and ');
}</syntaxhighlight>
 
{{out}}
<pre>0.1234+0.9876i, 0.8765+0.2345i, 2: 1.86311180165819+1.97421180165819i and -0.863211801658189-0.752111801658189i
0+2i, 0+0i, 1: 0+1i and 0+1i
0.1234+0.9876i, 0.1234+0.9876i, 2: Infinitely many share a point
0.1234+0.9876i, 0.8765+0.2345i, 0.5: Too far apart
0.1234+0.9876i, 0.1234+0.9876i, 0: Degenerate point</pre>
=={{header|REXX}}==
{{trans|XPL0}}
 
<br>The REXX language doesn't have a &nbsp; '''sqrt''' &nbsp; function, &nbsp; so one is included below.
<langsyntaxhighlight lang="rexx">/*REXX programpgm finds two2 circles with a specific radius given two2 (XX1,YY1) and points. (X2,Y2) ctr points*/
@.=; @.1= 0.1234 0.9876 0.8765 0.2345 2
@.2= 0 2 0 0 1
Line 2,710 ⟶ 3,497:
say ' ════════ ════════ ════════ ════════ ══════ ════════ ════════ ════════ ════════'
do j=1 while @.j\==''; parse var @.j p1 p2 p3 p4 r /*points, radii*/
say ffmt(p1) ffmt(p2) ffmt(p3) ffmt(p4) center(r/1, 9) "───► " 2circ(@.j)
end /*j*/
exit 0 /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
2circ: procedure; parse arg px py qx qy r .; x= (qx-px)/2; y= (qy-py)/2
bx= px + x; by=py + y; pb by=sqrt(x**2 py + y**2)
pb= sqrt(x**2 + y**2)
if r = 0 then return 'radius of zero yields no circles.'
if pb==0 then return 'coincident points give infinite circles.'
if pb >r then return 'points are too far apart for the specified radius.'
cb= sqrt(r**2 - pb**2); x1= y * cb / pb; y1= x * cb / pb
return ffmt(bx-x1) ffmt(by+y1) ffmt(bx+x1) ffmt(by-y1)
/*──────────────────────────────────────────────────────────────────────────────────────*/
ffmt: arg f; f= right( format( arg(1)f, , 4), 9); _= f /*format # with 4 dec digits*/
if pos(.,f)>0 & pos('E',f)=0 then f= strip(f,'T',0) /*strip trailing 0s if .& ¬E*/
return left( strip(f, 'T', .), length(_)) ) /*strip trailing dec point. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
sqrt: procedure; arg x; if x=0 then return 0; d=digits(); numeric digits; h=d+6; m.=9
numeric form; parse value format(x,2,1,,0) 'E0' with g "E" _ .; g=g *.5'e'_ % 2
do j=0 while h>9; m.j=h; h=h%2+1; end /*j*/
do k=j+5 to 0 by -1; numeric digits m.k; g=(g+x/g)*.5; end /*k*/; return g</langsyntaxhighlight>
{{out|output|text=&nbsp; when using the default inputs:}}
<pre>
x1 y1 x2 y2 radius circle1x circle1y circle2x circle2y
Line 2,740 ⟶ 3,528:
0.1234 0.9876 0.1234 0.9876 0 ───► radius of zero gives no circles.
</pre>
 
=={{header|Ring}}==
<langsyntaxhighlight lang="ring">
# Project : Circles of given radius through two points
 
Line 2,810 ⟶ 3,597:
see "(" + (cx+dy) + ", " + (cy+dx) + ")" + nl
see "(" + (cx-dy) + ", " + (cy-dx) + ")" + nl + nl
</syntaxhighlight>
</lang>
Output:
<pre>
Line 2,830 ⟶ 3,617:
It will be a single point (0.1234,0.9876) of radius 0
</pre>
 
=={{header|Ruby}}==
{{trans|Python}}
<langsyntaxhighlight lang="ruby">Pt = Struct.new(:x, :y)
Circle = Struct.new(:x, :y, :r)
 
Line 2,869 ⟶ 3,655:
end
puts
end</langsyntaxhighlight>
{{out}}
<pre>
Line 2,906 ⟶ 3,692:
#<struct Circle x=0.1234, y=0.9876, r=0.0>
</pre>
 
=={{header|Run BASIC}}==
<langsyntaxhighlight lang="rnbasic">
html "<TABLE border=1>"
html "<tr bgcolor=wheat align=center><td>No.</td><td>x1</td><td>y1</td><td>x2</td><td>y2</td><td>r</td><td>cir x1</td><td>cir y1</td><td>cir x2</td><td>cir y2</td></tr>"
Line 2,954 ⟶ 3,739:
html "<td>";cx+dy;"</td><td>";cy+dx;"</td>" 'two points, with (+)
html "<td>";cx-dy;"</td><td>";cy-dx;"</td></TR>" 'and (-)
RETURN</langsyntaxhighlight>
{{Out}}<TABLE BORDER="1">
<TR ALIGN="CENTER" BGCOLOR="wheat"><TD>No.</TD><TD>x1</TD><TD>y1</TD><TD>x2
Line 2,968 ⟶ 3,753:
<TD ALIGN="LEFT" COLSPAN="4">It will be a single point (0.1234,0.9876) of radius 0</TD></TR>
</TABLE>
 
=={{header|Rust}}==
{{trans|C}}
<langsyntaxhighlight lang="rust">use std::fmt;
 
#[derive(Clone,Copy)]
Line 3,028 ⟶ 3,812:
describe_circle(p.0, p.1, r);
}
}</langsyntaxhighlight>
{{out}}
<pre>Points: ((0.1234, 0.9876), (0.8765, 0.2345)), Radius: 2.0000
Line 3,045 ⟶ 3,829:
Points: ((0.1234, 0.9876), (0.1234, 0.9876)), Radius: 0.0000
No circles can be drawn through (0.1234, 0.9876)</pre>
 
=={{header|Scala}}==
<langsyntaxhighlight lang="scala">import org.scalatest.FunSuite
import math._
 
Line 3,101 ⟶ 3,884:
Circle(V2(mid.x + d * diff.y / diff.distance, mid.y - d * diff.x / diff.distance), abs(radius))).distinct
}
}</langsyntaxhighlight>
{{out}}
<pre> p1 p2 r result
Line 3,109 ⟶ 3,892:
(0.1234, 0.9876) (0.8765, 0.2345) 0.5: radius is less then the distance between points
(0.1234, 0.9876) (0.1234, 0.9876) 0.0: radius of zero yields no circlesEmpty test suite.</pre>
 
=={{header|Scheme}}==
 
<langsyntaxhighlight lang="scheme">
(import (scheme base)
(scheme inexact)
Line 3,175 ⟶ 3,957:
'((0.8765 0.2345) (0.0000 0.0000) (0.1234 0.9876) (0.8765 0.2345) (0.1234 0.9876))
'(2.0 1.0 2.0 0.5 0.0))
</syntaxhighlight>
</lang>
 
{{out}}
Line 3,185 ⟶ 3,967:
p1: (0.1234 0.9876) p2: (0.1234 0.9876) r: 0.0 => ((0.1234 0.9876))
</pre>
 
=={{header|Seed7}}==
<langsyntaxhighlight lang="seed7">$ include "seed7_05.s7i";
include "float.s7i";
include "math.s7i";
Line 3,256 ⟶ 4,037:
point(cases[index][3], cases[index][4]), cases[index][5]);
end for;
end func;</langsyntaxhighlight>
 
{{out}}
Line 3,273 ⟶ 4,054:
Radius of zero. No circles can be drawn through (0.1234, 0.9876)
</pre>
 
=={{header|Sidef}}==
{{trans|Perl 6Raku}}
<langsyntaxhighlight lang="ruby">func circles(a, b, r) {
 
if (a == b) {
Line 3,310 ⟶ 4,090:
input.each {|a|
say (a.join(', '), ': ', circles(a...).join(' and '))
}</langsyntaxhighlight>
{{out}}
<pre>
Line 3,319 ⟶ 4,099:
0.1234+0.9876i, 0.1234+0.9876i, 0: Degenerate point
</pre>
 
=={{header|Stata}}==
Each circle center is the image of B by the composition of a rotation and homothecy centered at A. It's how the centers are computed in this implementation. The coordinates are returned as the columns of a 2x2 matrix. When the solution is not unique or does not exist, this matrix contains only missing values.
 
<langsyntaxhighlight lang="stata">real matrix centers(real colvector a, real colvector b, real scalar r) {
real matrix rot
real scalar d, u, v
Line 3,341 ⟶ 4,120:
return(J(2, 2, .))
}
}</langsyntaxhighlight>
 
Examples:
 
<langsyntaxhighlight lang="stata">:a=0.1234\0.9876
:b=0.8765\0.2345
: centers(a,b,2)
Line 3,382 ⟶ 4,161:
1 | .1234 .1234 |
2 | .9876 .9876 |
+-----------------+</langsyntaxhighlight>
 
=={{header|Swift}}==
 
{{trans|F#}}
 
<langsyntaxhighlight lang="swift">import Foundation
 
struct Point: Equatable {
Line 3,399 ⟶ 4,177:
var radius: Double
 
public static func circleBetween(
_ p1: Point,
_ p2: Point,
Line 3,466 ⟶ 4,244:
}
 
</syntaxhighlight>
</lang>
 
{{out}}
Line 3,475 ⟶ 4,253:
No ans
No ans</pre>
 
=={{header|Tcl}}==
{{trans|Python}}
<langsyntaxhighlight lang="tcl">proc findCircles {p1 p2 r} {
lassign $p1 x1 y1
lassign $p2 x2 y2
Line 3,509 ⟶ 4,286:
set c2 [list [expr {$x3 + $f*$dy}] [expr {$y3 - $f*$dx}] $r]
return [list $c1 $c2]
}</langsyntaxhighlight>
 
{{out|Demo}}
<langsyntaxhighlight lang="tcl">foreach {p1 p2 r} {
{0.1234 0.9876} {0.8765 0.2345} 2.0
{0.0000 2.0000} {0.0000 0.0000} 1.0
Line 3,527 ⟶ 4,304:
puts "\tERROR: $msg"
}
}</langsyntaxhighlight>
{{out}}
<pre>
Line 3,543 ⟶ 4,320:
Circle:(0.1234, 0.9876, 0.0)
</pre>
 
=={{header|VBA}}==
{{trans|Phix}}<langsyntaxhighlight lang="vb">Public Sub circles()
tests = [{0.1234, 0.9876, 0.8765, 0.2345, 2.0; 0.0000, 2.0000, 0.0000, 0.0000, 1.0; 0.1234, 0.9876, 0.1234, 0.9876, 2.0; 0.1234, 0.9876, 0.8765, 0.2345, 0.5; 0.1234, 0.9876, 0.1234, 0.9876, 0.0}]
For i = 1 To UBound(tests)
Line 3,579 ⟶ 4,355:
Debug.Print "points " & "{" & x1 & ", " & y1 & "}" & ", " & "{" & x2 & ", " & y2 & "}" & " with radius " & R & " ==> " & txt
Next i
End Sub</langsyntaxhighlight>{{out}}
<pre>points {0,1234, 0,9876}, {0,8765, 0,2345} with radius 2 ==> {1,8631, 1,9742} and {-0,8632, -0,7521}
points {0, 2}, {0, 0} with radius 1 ==> opposite ends of diameter with centre 0, 1.
Line 3,587 ⟶ 4,363:
=={{header|Visual Basic .NET}}==
{{trans|C#}}
<langsyntaxhighlight lang="vbnet">Public Class CirclesOfGivenRadiusThroughTwoPoints
Public Shared Sub Main()
For Each valu In New Double()() {
Line 3,652 ⟶ 4,428:
End Function
End Structure
End Class</langsyntaxhighlight>
{{out}}
<pre>Points (0.1234, 0.9876) and (0.8765, 0.2345) with radius 2:
Line 3,666 ⟶ 4,442:
Points (0.1234, 0.9876) and (0.2345, 0.8765) with radius 0:
No circles.</pre>
 
=={{header|Visual FoxPro}}==
Translation of BASIC.
<langsyntaxhighlight lang="vfp">
LOCAL p1 As point, p2 As point, rr As Double
CLOSE DATABASES ALL
Line 3,754 ⟶ 4,529:
 
ENDDEFINE
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 3,783 ⟶ 4,558:
Points (0.1234,0.9876), (0.1234,0.9876) Radius 0.0000.
Points are coincident.
</pre>
=={{header|V (Vlang)}}==
{{trans|Go}}
<syntaxhighlight lang="v (vlang)">import math
 
const (
two = "two circles."
r0 = "R==0.0 does not describe circles."
co = "coincident points describe an infinite number of circles."
cor0 = "coincident points with r==0.0 describe a degenerate circle."
diam = "Points form a diameter and describe only a single circle."
far = "Points too far apart to form circles."
)
struct Point {
x f64
y f64
}
fn circles(p1 Point, p2 Point, r f64) (Point, Point, string) {
mut case := ''
c1, c2 := p1, p2
if p1 == p2 {
if r == 0 {
return p1, p1, cor0
}
case = co
return c1, c2, case
}
if r == 0 {
return p1, p2, r0
}
dx := p2.x - p1.x
dy := p2.y - p1.y
q := math.hypot(dx, dy)
if q > 2*r {
case = far
return c1, c2, case
}
m := Point{(p1.x + p2.x) / 2, (p1.y + p2.y) / 2}
if q == 2*r {
return m, m, diam
}
d := math.sqrt(r*r - q*q/4)
ox := d * dx / q
oy := d * dy / q
return Point{m.x - oy, m.y + ox}, Point{m.x + oy, m.y - ox}, two
}
 
struct Cir {
p1 Point
p2 Point
r f64
}
const td = [
Cir{Point{0.1234, 0.9876}, Point{0.8765, 0.2345}, 2.0},
Cir{Point{0.0000, 2.0000}, Point{0.0000, 0.0000}, 1.0},
Cir{Point{0.1234, 0.9876}, Point{0.1234, 0.9876}, 2.0},
Cir{Point{0.1234, 0.9876}, Point{0.8765, 0.2345}, 0.5},
Cir{Point{0.1234, 0.9876}, Point{0.1234, 0.9876}, 0.0},
]
fn main() {
for tc in td {
println("p1: $tc.p1")
println("p2: $tc.p2")
println("r: $tc.r")
c1, c2, case := circles(tc.p1, tc.p2, tc.r)
println(" $case")
match case {
cor0, diam{
println(" Center: $c1")
}
two {
println(" Center 1: $c1")
println(" Center 2: $c2")
}
else{}
}
println('')
}
}</syntaxhighlight>
 
{{out}}
<pre>
p1: Point{
x: 0.1234
y: 0.9876
}
p2: Point{
x: 0.8765
y: 0.2345
}
r: 2
two circles.
Center 1: Point{
x: 1.863111801658189
y: 1.9742118016581887
}
Center 2: Point{
x: -0.8632118016581891
y: -0.7521118016581888
}
 
p1: Point{
x: 0
y: 2
}
p2: Point{
x: 0
y: 0
}
r: 1
Points form a diameter and describe only a single circle.
Center: Point{
x: 0
y: 1
}
 
p1: Point{
x: 0.1234
y: 0.9876
}
p2: Point{
x: 0.1234
y: 0.9876
}
r: 2
coincident points describe an infinite number of circles.
 
p1: Point{
x: 0.1234
y: 0.9876
}
p2: Point{
x: 0.8765
y: 0.2345
}
r: 0.5
Points too far apart to form circles.
 
p1: Point{
x: 0.1234
y: 0.9876
}
p2: Point{
x: 0.1234
y: 0.9876
}
r: 0
coincident points with r==0.0 describe a degenerate circle.
Center: Point{
x: 0.1234
y: 0.9876
}
</pre>
 
=={{header|Wren}}==
{{trans|Go}}
{{libheader|Wren-math}}
<syntaxhighlight lang="wren">import "./math" for Math
 
var Two = "Two circles."
var R0 = "R == 0 does not describe circles."
var Co = "Coincident points describe an infinite number of circles."
var CoR0 = "Coincident points with r == 0 describe a degenerate circle."
var Diam = "Points form a diameter and describe only a single circle."
var Far = "Points too far apart to form circles."
 
class Point {
construct new(x, y) {
_x = x
_y = y
}
 
x { _x }
y { _y }
==(p) { _x == p.x && _y == p.y }
 
toString { "(%(_x), %(_y))" }
}
 
var circles = Fn.new { |p1, p2, r|
var c1 = Point.new(0, 0)
var c2 = Point.new(0, 0)
if (p1 == p2) {
if (r == 0) return [p1, p1, CoR0]
return [c1, c2, Co]
}
if (r == 0) return [p1, p2, R0]
var dx = p2.x - p1.x
var dy = p2.y - p1.y
var q = Math.hypot(dx, dy)
if (q > 2*r) return [c1, c2, Far]
var m = Point.new((p1.x + p2.x)/2, (p1.y + p2.y)/2)
if (q == 2*r) return [m, m, Diam]
var d = (r*r - q*q/4).sqrt
var ox = d * dx / q
var oy = d * dy / q
return [Point.new(m.x - oy, m.y + ox), Point.new(m.x + oy, m.y - ox), Two]
}
 
var td = [
[Point.new(0.1234, 0.9876), Point.new(0.8765, 0.2345), 2.0],
[Point.new(0.0000, 2.0000), Point.new(0.0000, 0.0000), 1.0],
[Point.new(0.1234, 0.9876), Point.new(0.1234, 0.9876), 2.0],
[Point.new(0.1234, 0.9876), Point.new(0.8765, 0.2345), 0.5],
[Point.new(0.1234, 0.9876), Point.new(0.1234, 0.9876), 0.0]
]
for (tc in td) {
System.print("p1: %(tc[0])")
System.print("p2: %(tc[1])")
System.print("r : %(tc[2])")
var res = circles.call(tc[0], tc[1], tc[2])
System.print(" %(res[2])")
if (res[2] == CoR0 || res[2] == Diam) {
System.print(" Center: %(res[0])")
} else if (res[2] == Two) {
System.print(" Center 1: %(res[0])")
System.print(" Center 2: %(res[1])")
}
System.print()
}</syntaxhighlight>
 
{{out}}
<pre>
p1: (0.1234, 0.9876)
p2: (0.8765, 0.2345)
r : 2
Two circles.
Center 1: (1.8631118016582, 1.9742118016582)
Center 2: (-0.86321180165819, -0.75211180165819)
 
p1: (0, 2)
p2: (0, 0)
r : 1
Points form a diameter and describe only a single circle.
Center: (0, 1)
 
p1: (0.1234, 0.9876)
p2: (0.1234, 0.9876)
r : 2
Coincident points describe an infinite number of circles.
 
p1: (0.1234, 0.9876)
p2: (0.8765, 0.2345)
r : 0.5
Points too far apart to form circles.
 
p1: (0.1234, 0.9876)
p2: (0.1234, 0.9876)
r : 0
Coincident points with r == 0 describe a degenerate circle.
Center: (0.1234, 0.9876)
</pre>
 
Line 3,794 ⟶ 4,823:
The method used here is a streamlining of these steps.
 
<langsyntaxhighlight XPL0lang="xpl0">include c:\cxpl\codes;
 
proc Circles; real Data; \Show centers of circles, given points P & Q and radius
Line 3,818 ⟶ 4,847:
[0.1234, 0.9876, 0.1234, 0.9876, 0.0]];
for I:= 0 to 4 do Circles(Tbl(I));
]</langsyntaxhighlight>
 
{{out}}
Line 3,828 ⟶ 4,857:
Radius = zero gives no circles
</pre>
=={{header|Yabasic}}==
{{trans|Liberty BASIC}}
<syntaxhighlight lang="yabasic">
sub twoCircles (x1, y1, x2, y2, radio)
if x1 = x2 and y1 = y2 then //Si los puntos coinciden
if radio = 0 then //a no ser que radio=0
print "Los puntos son los mismos\n"
return true
else
print "Hay cualquier numero de circulos a traves de un solo punto (", x1, ",", y1, ") de radio ", radio : print
return true
end if
end if
r2 = sqr((x1-x2)^2+(y1-y2)^2) / 2 //distancia media entre puntos
if radio < r2 then
print "Los puntos estan demasiado separados (", 2*r2, ") - no hay circulos de radio ", radio : print
return true
end if
 
//si no, calcular dos centros
cx = (x1+x2) / 2 //punto medio
cy = (y1+y2) / 2
//debe moverse desde el punto medio a lo largo de la perpendicular en dd2
dd2 = sqr(radio^2 - r2^2) //distancia perpendicular
dx1 = x2-cx //vector al punto medio
dy1 = y2-cy
dx = 0-dy1 / r2*dd2 //perpendicular:
dy = dx1 / r2*dd2 //rotar y escalar
print " -> Circulo 1 (", cx+dy, ", ", cy+dx, ")" //dos puntos, con (+)
print " -> Circulo 2 (", cx-dy, ", ", cy-dx, ")\n" //y (-)
end sub
 
for i = 1 to 5
read x1, y1, x2, y2, radio
print "Puntos ", "(", x1, ",", y1, "), (", x2, ",", y2, ")", ", Radio ", radio
twoCircles (x1, y1, x2, y2, radio)
next
end
 
//p1 p2 radio
data 0.1234, 0.9876, 0.8765, 0.2345, 2.0
data 0.0000, 2.0000, 0.0000, 0.0000, 1.0
data 0.1234, 0.9876, 0.1234, 0.9876, 2.0
data 0.1234, 0.9876, 0.8765, 0.2345, 0.5
data 0.1234, 0.9876, 0.1234, 0.9876, 0.0
 
</syntaxhighlight>
=={{header|zkl}}==
{{trans|C}}
<langsyntaxhighlight lang="zkl">fcn findCircles(a,b, c,d, r){ //-->T(T(x,y,r) [,T(x,y,r)]))
delta:=(a-c).hypot(b-d);
switch(delta){ // could just catch MathError
Line 3,865 ⟶ 4,940:
else print(cs);
println();
}</langsyntaxhighlight>
{{out}}
<pre>
Line 3,879 ⟶ 4,954:
Circles: singularity
</pre>
 
=={{header|ZX Spectrum Basic}}==
{{trans|Liberty BASIC}}
<langsyntaxhighlight lang="zxbasic">10 FOR i=1 TO 5
20 READ x1,y1,x2,y2,r
30 PRINT i;") ";x1;" ";y1;" ";x2;" ";y2;" ";r
Line 3,908 ⟶ 4,982:
1190 PRINT "(";cx+dy;",";cy+dx;")"
1200 PRINT "(";cx-dy;",";cy-dx;")"
1210 RETURN</langsyntaxhighlight>
 
[[Category:Geometry]]
1,480

edits