Chernick's Carmichael numbers: Difference between revisions

m
m (→‎{{header|Raku}}: note use of 'ntheory' module)
m (→‎{{header|Wren}}: Minor tidy)
 
(2 intermediate revisions by one other user not shown)
Line 53:
 
<br><br>
 
=={{header|C}}==
{{libheader|GMP}}
<langsyntaxhighlight lang="c">#include <stdio.h>
#include <stdlib.h>
#include <gmp.h>
Line 106 ⟶ 105:
 
return 0;
}</langsyntaxhighlight>
{{out}}
<pre>
Line 118 ⟶ 117:
a(10) has m = 3208386195840
</pre>
 
=={{header|C++}}==
{{libheader|GMP}}
<langsyntaxhighlight lang="cpp">#include <gmp.h>
#include <iostream>
 
Line 206 ⟶ 204:
 
return 0;
}</langsyntaxhighlight>
{{out}}
<pre>
Line 219 ⟶ 217:
</pre>
(takes ~3.5 minutes)
 
=={{header|F_Sharp|F#}}==
This task uses [http://www.rosettacode.org/wiki/Extensible_prime_generator#The_function Extensible Prime Generator (F#)]
<langsyntaxhighlight lang="fsharp">
// Generate Chernick's Carmichael numbers. Nigel Galloway: June 1st., 2019
let fMk m k=isPrime(6*m+1) && isPrime(12*m+1) && [1..k-2]|>List.forall(fun n->isPrime(9*(pown 2 n)*m+1))
Line 228 ⟶ 225:
let cherCar k=let m=Seq.head(fX k) in printfn "m=%d primes -> %A " m ([6*m+1;12*m+1]@List.init(k-2)(fun n->9*(pown 2 (n+1))*m+1))
[4..9] |> Seq.iter cherCar
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 238 ⟶ 235:
cherCar(9): m=950560 primes -> [5703361; 11406721; 17110081; 34220161; 68440321; 136880641; 273761281; 547522561; 1095045121]
</pre>
 
 
=={{header|FreeBASIC}}==
===Basic only===
<langsyntaxhighlight lang="freebasic">#include "isprime.bas"
 
Function PrimalityPretest(k As Integer) As Boolean
Line 286 ⟶ 281:
Loop
Next n
Sleep</langsyntaxhighlight>
 
 
=={{header|Go}}==
===Basic only===
<langsyntaxhighlight lang="go">package main
 
import (
Line 347 ⟶ 340:
func main() {
ccNumbers(3, 9)
}</langsyntaxhighlight>
 
{{out}}
Line 369 ⟶ 362:
 
The resulting executable is several hundred times faster than before and, even on my modest Celeron @1.6GHZ, reaches a(9) in under 10ms and a(10) in about 22 minutes.
<langsyntaxhighlight lang="go">package main
 
import (
Line 463 ⟶ 456:
func main() {
ccNumbers(min, max)
}</langsyntaxhighlight>
 
{{out}}
Line 499 ⟶ 492:
Factors: [19250317175041 38500634350081 57750951525121 115501903050241 231003806100481 462007612200961 924015224401921 1848030448803841 3696060897607681 7392121795215361]
</pre>
 
=={{header|J}}==
 
Brute force:
 
<langsyntaxhighlight Jlang="j">a=: {{)v
if.3=y do.1729 return.end.
m=. z=. 2^y-4
Line 513 ⟶ 505:
m=.m+z
end.
}}</langsyntaxhighlight>
 
Task examples:
 
<langsyntaxhighlight Jlang="j"> a 3
1729
a 4
Line 530 ⟶ 522:
53487697914261966820654105730041031613370337776541835775672321
a 9
58571442634534443082821160508299574798027946748324125518533225605795841</langsyntaxhighlight>
 
=={{header|Java}}==
<langsyntaxhighlight lang="java">
import java.math.BigInteger;
import java.util.ArrayList;
Line 728 ⟶ 719:
 
}
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 739 ⟶ 730:
U(9, 950560) = 5703361 * 11406721 * 17110081 * 34220161 * 68440321 * 136880641 * 273761281 * 547522561 * 1095045121 = 58571442634534443082821160508299574798027946748324125518533225605795841
</pre>
 
=={{header|Julia}}==
<langsyntaxhighlight lang="julia">using Primes
 
function trial_pretest(k::UInt64)
Line 848 ⟶ 838:
end
 
cc_numbers(3, 10)</langsyntaxhighlight>
 
{{out}}
Line 863 ⟶ 853:
 
(takes ~6.5 minutes)
 
=={{header|Mathematica}} / {{header|Wolfram Language}}==
<langsyntaxhighlight Mathematicalang="mathematica">ClearAll[PrimeFactorCounts, U]
PrimeFactorCounts[n_Integer] := Total[FactorInteger[n][[All, 2]]]
U[n_, m_] := (6 m + 1) (12 m + 1) Product[2^i 9 m + 1, {i, 1, n - 2}]
Line 890 ⟶ 879:
FindFirstChernickCarmichaelNumber[7]
FindFirstChernickCarmichaelNumber[8]
FindFirstChernickCarmichaelNumber[9]</langsyntaxhighlight>
{{out}}
<pre>{1,1729}
Line 899 ⟶ 888:
{950560,53487697914261966820654105730041031613370337776541835775672321}
{950560,58571442634534443082821160508299574798027946748324125518533225605795841}</pre>
 
=={{header|Nim}}==
{{libheader|bignum}}
Line 909 ⟶ 897:
With these optimizations, the program executes in 4-5 minutes.
 
<langsyntaxhighlight Nimlang="nim">import strutils, sequtils
import bignum
 
Line 984 ⟶ 972:
s.addSep(" × ")
s.add($factor)
stdout.write s, '\n'</langsyntaxhighlight>
 
{{out}}
Line 995 ⟶ 983:
a(9) = U(9, 950560) = 5703361 × 11406721 × 17110081 × 34220161 × 68440321 × 136880641 × 273761281 × 547522561 × 1095045121
a(10) = U(10, 3208386195840) = 19250317175041 × 38500634350081 × 57750951525121 × 115501903050241 × 231003806100481 × 462007612200961 × 924015224401921 × 1848030448803841 × 3696060897607681 × 7392121795215361</pre>
 
=={{header|PARI/GP}}==
<langsyntaxhighlight lang="parigp">
cherCar(n)={
my(C=vector(n));C[1]=6; C[2]=12; for(g=3,n,C[g]=2^(g-2)*9);
Line 1,005 ⟶ 992:
printf("cherCar(%d): m = %d\n",n,m)}
for(x=3,9,cherCar(x))
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 1,017 ⟶ 1,004:
cherCar(10): m = 3208386195840
</pre>
 
=={{header|Perl}}==
{{libheader|ntheory}}
<langsyntaxhighlight lang="perl">use 5.020;
use warnings;
use ntheory qw/:all/;
Line 1,043 ⟶ 1,029:
foreach my $n (3..9) {
chernick_carmichael_number($n, sub (@f) { say "a($n) = ", vecprod(@f) });
}</langsyntaxhighlight>
 
{{out}}
Line 1,055 ⟶ 1,041:
a(9) = 58571442634534443082821160508299574798027946748324125518533225605795841
</pre>
 
=={{header|Phix}}==
{{libheader|Phix/mpfr}}
{{trans|Sidef}}
<!--<langsyntaxhighlight Phixlang="phix">(phixonline)-->
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">chernick_carmichael_factors</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">n</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">m</span><span style="color: #0000FF;">)</span>
Line 1,098 ⟶ 1,083:
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"U(%d,%d): %s = %s\n"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">n</span><span style="color: #0000FF;">,</span><span style="color: #000000;">m</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">mpz_get_str</span><span style="color: #0000FF;">(</span><span style="color: #000000;">p</span><span style="color: #0000FF;">),</span><span style="color: #7060A8;">join</span><span style="color: #0000FF;">(</span><span style="color: #000000;">f</span><span style="color: #0000FF;">,</span><span style="color: #008000;">" * "</span><span style="color: #0000FF;">)})</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<!--</langsyntaxhighlight>-->
{{out}}
<pre style="font-size: 10px">
Line 1,114 ⟶ 1,099:
{{trans|C}} with added cheat for the a(10) case - I found a nice big prime factor of k and added that on each iteration instead of 1.<br>
You could also use the sequence {1,1,1,1,19,19,4877,457,457,12564169}, if you know a way to build that, and then it wouldn't be cheating anymore...
<!--<langsyntaxhighlight Phixlang="phix">(phixonline)-->
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #008080;">include</span> <span style="color: #004080;">mpfr</span><span style="color: #0000FF;">.</span><span style="color: #000000;">e</span>
Line 1,166 ⟶ 1,151:
<span style="color: #008080;">end</span> <span style="color: #008080;">procedure</span>
<span style="color: #000000;">main</span><span style="color: #0000FF;">()</span>
<!--</langsyntaxhighlight>-->
{{out}}
<pre>
Line 1,179 ⟶ 1,164:
"0.1s"
</pre>
 
=={{header|Prolog}}==
SWI Prolog is too slow to solve for a(10), even with optimizing by increasing the multiplier and implementing a trial division check. (actually, my implementation of Miller-Rabin in Prolog already starts with a trial division by small primes.)
<syntaxhighlight lang="prolog">
<lang Prolog>
?- use_module(library(primality)).
 
Line 1,212 ⟶ 1,196:
 
?- main.
</syntaxhighlight>
</lang>
isprime predicate:
<syntaxhighlight lang="prolog">
<lang Prolog>
prime(N) :-
integer(N),
Line 1,260 ⟶ 1,244:
succ(S0, S1), D1 is D0 >> 1,
factor_2s(S1, D1, S, D).
</syntaxhighlight>
</lang>
{{Out}}
<pre>
Line 1,272 ⟶ 1,256:
</pre>
=={{header|Python}}==
<langsyntaxhighlight lang="python">
"""
 
Line 1,339 ⟶ 1,323:
k += 1
</syntaxhighlight>
</lang>
 
{{out}}
Line 1,351 ⟶ 1,335:
a(9) has m = 950560
</pre>
 
=={{header|Raku}}==
(formerly Perl 6)
Line 1,358 ⟶ 1,341:
{{trans|Perl}}
{{libheader|ntheory}}
<syntaxhighlight lang="raku" perl6line>use Inline::Perl5;
use ntheory:from<Perl5> <:all>;
 
Line 1,380 ⟶ 1,363:
my @f = chernick-factors($n, $m);
say "U($n, $m): {[×] @f} = {@f.join(' ⨉ ')}";
}</langsyntaxhighlight>
{{out}}
<pre>U(3, 1): 1729 = 7 ⨉ 13 ⨉ 19
Line 1,389 ⟶ 1,372:
U(8, 950560): 53487697914261966820654105730041031613370337776541835775672321 = 5703361 ⨉ 11406721 ⨉ 17110081 ⨉ 34220161 ⨉ 68440321 ⨉ 136880641 ⨉ 273761281 ⨉ 547522561
U(9, 950560): 58571442634534443082821160508299574798027946748324125518533225605795841 = 5703361 ⨉ 11406721 ⨉ 17110081 ⨉ 34220161 ⨉ 68440321 ⨉ 136880641 ⨉ 273761281 ⨉ 547522561 ⨉ 1095045121</pre>
 
=={{header|Sidef}}==
<langsyntaxhighlight lang="ruby">func chernick_carmichael_factors (n, m) {
[6*m + 1, 12*m + 1, {|i| 2**i * 9*m + 1 }.map(1 .. n-2)...]
}
Line 1,409 ⟶ 1,391:
for n in (3..9) {
chernick_carmichael_number(n, {|*f| say "a(#{n}) = #{f.join(' * ')}" })
}</langsyntaxhighlight>
 
{{out}}
Line 1,421 ⟶ 1,403:
a(9) = 5703361 * 11406721 * 17110081 * 34220161 * 68440321 * 136880641 * 273761281 * 547522561 * 1095045121
</pre>
 
=={{header|Wren}}==
{{trans|Go}}
Line 1,427 ⟶ 1,408:
{{libheader|Wren-fmt}}
Based on Go's 'more efficient' version. Reaches a(9) in just over 0.1 seconds but a(10) would still be out of reasonable reach for Wren so I've had to be content with that.
<langsyntaxhighlight ecmascriptlang="wren">import "./big" for BigInt, BigInts
import "./fmt" for Fmt
 
var min = 3
Line 1,488 ⟶ 1,469:
 
init.call()
ccNumbers.call(min, max)</langsyntaxhighlight>
 
{{out}}
Line 1,526 ⟶ 1,507:
Using GMP (probabilistic primes),
because it is easy and fast to check primeness.
<langsyntaxhighlight lang="zkl">var [const] BI=Import("zklBigNum"); // libGMP
 
fcn ccFactors(n,m){ // not re-entrant
Line 1,553 ⟶ 1,534:
}
}
}</langsyntaxhighlight>
<syntaxhighlight lang ="zkl">ccNumbers(3,9);</langsyntaxhighlight>
{{out}}
<pre>
9,476

edits