Carmichael 3 strong pseudoprimes: Difference between revisions

m
→‎{{header|RPL}}: tweaked the code
(First implementation in PL/I)
m (→‎{{header|RPL}}: tweaked the code)
 
(117 intermediate revisions by 45 users not shown)
Line 1:
{{task|Prime Numbers}}
A lot of composite numbers can be separated from primes by Fermat's Little Theorem, but there are some that completely confound it. The [[Miller-Rabin primality test|Miller Rabin Test]] uses a combination of Fermat's Little Theorem and Chinese Division Theorem to overcome this.
 
A lot of composite numbers can be separated from primes by Fermat's Little Theorem, but there are some that completely confound it.
The purpose of this task is to investigate such numbers using a method based on [[wp:Carmichael number|Carmichael numbers]], as suggested in [http://www.maths.lancs.ac.uk/~jameson/carfind.pdf Notes by G.J.O Jameson March 2010].
 
The   [[Miller-Rabin primality test|Miller Rabin Test]]   uses a combination of Fermat's Little Theorem and Chinese Division Theorem to overcome this.
The objective is to find Carmichael numbers of the form <math>Prime_1 \times Prime_2 \times Prime_3</math> (where <math>Prime_1 < Prime_2 < Prime_3</math>) for all <math>Prime_1</math> up to 61 (see page 7 of [http://www.maths.lancs.ac.uk/~jameson/carfind.pdf Notes by G.J.O Jameson March 2010] for solutions).
 
The purpose of this task is to investigate such numbers using a method based on &nbsp; [[wp:Carmichael number|Carmichael numbers]], &nbsp; as suggested in &nbsp; [http://www.maths.lancs.ac.uk/~jameson/carfind.pdf Notes by G.J.O Jameson March 2010].
'''Pseudocode:'''<br>For a given <math>Prime_1</math>
 
<tt>for 1 < h3 < Prime<sub>1</sub></tt>
:<tt>for 0 < d < h3+Prime<sub>1</sub></tt>
::<tt>if (h3+Prime<sub>1</sub>)*(Prime<sub>1</sub>-1) mod d == 0 and -Prime<sub>1</sub> squared mod h3 == d mod h3</tt>
::<tt>then</tt>
:::<tt>Prime<sub>2</sub> = 1 + ((Prime<sub>1</sub>-1) * (h3+Prime<sub>1</sub>)/d)</tt>
:::<tt>next d if Prime<sub>2</sub> is not prime</tt>
:::<tt>Prime<sub>3</sub> = 1 + (Prime<sub>1</sub>*Prime<sub>2</sub>/h3)</tt>
:::<tt>next d if Prime<sub>3</sub> is not prime</tt>
:::<tt>next d if (Prime<sub>2</sub>*Prime<sub>3</sub>) mod (Prime<sub>1</sub>-1) not equal 1</tt>
:::<tt>Prime<sub>1</sub> * Prime<sub>2</sub> * Prime<sub>3</sub> is a Carmichael Number</tt>
 
;Task:
Find Carmichael numbers of the form:
:::: <big> <i>Prime</i><sub>1</sub> &times; <i>Prime</i><sub>2</sub> &times; <i>Prime</i><sub>3</sub> </big>
 
where &nbsp; <big> (<i>Prime</i><sub>1</sub> < <i>Prime</i><sub>2</sub> < <i>Prime</i><sub>3</sub>) </big> &nbsp; for all &nbsp; <big> <i>Prime</i><sub>1</sub> </big> &nbsp; up to &nbsp; '''61'''.
<br>(See page 7 of &nbsp; [http://www.maths.lancs.ac.uk/~jameson/carfind.pdf Notes by G.J.O Jameson March 2010] &nbsp; for solutions.)
 
 
;Pseudocode:
For a given &nbsp; <math>Prime_1</math>
 
<tt>for 1 < h3 < Prime<sub>1</sub></tt>
<tt>for 0 < d < h3+Prime<sub>1</sub></tt>
<tt>if (h3+Prime<sub>1</sub>)*(Prime<sub>1</sub>-1) mod d == 0 and -Prime<sub>1</sub> squared mod h3 == d mod h3</tt>
<tt>then</tt>
<tt>Prime<sub>2</sub> = 1 + ((Prime<sub>1</sub>-1) * (h3+Prime<sub>1</sub>)/d)</tt>
<tt>next d if Prime<sub>2</sub> is not prime</tt>
<tt>Prime<sub>3</sub> = 1 + (Prime<sub>1</sub>*Prime<sub>2</sub>/h3)</tt>
<tt>next d if Prime<sub>3</sub> is not prime</tt>
<tt>next d if (Prime<sub>2</sub>*Prime<sub>3</sub>) mod (Prime<sub>1</sub>-1) not equal 1</tt>
<tt>Prime<sub>1</sub> * Prime<sub>2</sub> * Prime<sub>3</sub> is a Carmichael Number</tt>
<br><br>
;related task
[[Chernick's Carmichael numbers]]
<br><br>
=={{header|11l}}==
{{trans|D}}
<syntaxhighlight lang="11l">F mod_(n, m)
R ((n % m) + m) % m
F is_prime(n)
I n C (2, 3)
R 1B
E I n < 2 | n % 2 == 0 | n % 3 == 0
R 0B
V div = 5
V inc = 2
L div ^ 2 <= n
I n % div == 0
R 0B
div += inc
inc = 6 - inc
R 1B
L(p) 2 .< 62
I !is_prime(p)
L.continue
L(h3) 2 .< p
V g = h3 + p
L(d) 1 .< g
I (g * (p - 1)) % d != 0 | mod_(-p * p, h3) != d % h3
L.continue;
V q = 1 + (p - 1) * g I/ d;
I !is_prime(q)
L.continue
V r = 1 + (p * q I/ h3)
I !is_prime(r) | (q * r) % (p - 1) != 1
L.continue
print(p‘ x ’q‘ x ’r)</syntaxhighlight>
{{out}}
<pre>
3 x 11 x 17
5 x 29 x 73
5 x 17 x 29
5 x 13 x 17
7 x 19 x 67
7 x 31 x 73
7 x 13 x 31
7 x 23 x 41
...
61 x 1301 x 19841
61 x 277 x 2113
61 x 181 x 1381
61 x 541 x 3001
61 x 661 x 2521
61 x 271 x 571
61 x 241 x 421
61 x 3361 x 4021
</pre>
=={{header|Ada}}==
 
Uses the Miller_Rabin package from
[[Miller-Rabin primality test#ordinary integers]].
<langsyntaxhighlight Adalang="ada">with Ada.Text_IO, Miller_Rabin;
 
procedure Nemesis is
Line 63 ⟶ 131:
end if;
end loop;
end Nemesis;</langsyntaxhighlight>
 
{{out}}
Line 77 ⟶ 145:
61 * 241 * 421 = 6189121
61 * 3361 * 4021 = 824389441</pre>
=={{header|ALGOL 68}}==
Uses the Sieve of Eratosthenes code from the Smith Numbers task with an increased upper-bound (included here for convenience).
<syntaxhighlight lang="algol68"># sieve of Eratosthene: sets s[i] to TRUE if i is prime, FALSE otherwise #
PROC sieve = ( REF[]BOOL s )VOID:
BEGIN
# start with everything flagged as prime #
FOR i TO UPB s DO s[ i ] := TRUE OD;
# sieve out the non-primes #
s[ 1 ] := FALSE;
FOR i FROM 2 TO ENTIER sqrt( UPB s ) DO
IF s[ i ] THEN FOR p FROM i * i BY i TO UPB s DO s[ p ] := FALSE OD FI
OD
END # sieve # ;
 
# construct a sieve of primes up to the maximum number required for the task #
# For Prime1, we need to check numbers up to around 120 000 #
INT max number = 200 000;
[ 1 : max number ]BOOL is prime;
sieve( is prime );
 
# Find the Carmichael 3 Stromg Pseudoprimes for Prime1 up to 61 #
 
FOR prime1 FROM 2 TO 61 DO
IF is prime[ prime 1 ] THEN
FOR h3 TO prime1 - 1 DO
FOR d TO ( h3 + prime1 ) - 1 DO
IF ( h3 + prime1 ) * ( prime1 - 1 ) MOD d = 0
AND ( - ( prime1 * prime1 ) ) MOD h3 = d MOD h3
THEN
INT prime2 = 1 + ( ( prime1 - 1 ) * ( h3 + prime1 ) OVER d );
IF is prime[ prime2 ] THEN
INT prime3 = 1 + ( prime1 * prime2 OVER h3 );
IF is prime[ prime3 ] THEN
IF ( prime2 * prime3 ) MOD ( prime1 - 1 ) = 1 THEN
print( ( whole( prime1, 0 ), " ", whole( prime2, 0 ), " ", whole( prime3, 0 ) ) );
print( ( newline ) )
FI
FI
FI
FI
OD
OD
FI
OD</syntaxhighlight>
{{out}}
<pre>
3 11 17
5 29 73
5 17 29
5 13 17
7 19 67
7 31 73
7 13 31
7 23 41
7 73 103
7 13 19
13 61 397
13 37 241
13 97 421
13 37 97
13 37 61
...
59 1451 2089
61 421 12841
61 181 5521
61 1301 19841
61 277 2113
61 181 1381
61 541 3001
61 661 2521
61 271 571
61 241 421
61 3361 4021
</pre>
 
=={{header|Arturo}}==
<syntaxhighlight lang="arturo">printOneLine: function [a,b,c,d]->
print [
pad to :string a 3 "x"
pad to :string b 5 "x"
pad to :string c 5 "="
pad to :string d 10
]
 
2..61 | select => prime?
| loop 'p ->
loop 2..p 'h3 [
g: h3 + p
loop 1..g 'd ->
if and? -> zero? mod g*p-1 d
-> zero? mod d+p*p h3 [
 
q: 1 + ((p-1)*g)/d
 
if prime? q [
r: 1 + (p * q) / h3
 
if and? [prime? r]
[one? (q*r) % p-1]->
printOneLine p q r (p*q*r)
]
]
]</syntaxhighlight>
 
{{out}}
 
<pre> 3 x 11 x 17 = 561
3 x 3 x 5 = 45
5 x 29 x 73 = 10585
5 x 5 x 13 = 325
5 x 17 x 29 = 2465
5 x 13 x 17 = 1105
7 x 19 x 67 = 8911
7 x 31 x 73 = 15841
7 x 13 x 31 = 2821
7 x 23 x 41 = 6601
7 x 7 x 13 = 637
7 x 73 x 103 = 52633
7 x 13 x 19 = 1729
11 x 11 x 61 = 7381
11 x 11 x 41 = 4961
11 x 11 x 31 = 3751
13 x 61 x 397 = 314821
13 x 37 x 241 = 115921
13 x 97 x 421 = 530881
13 x 37 x 97 = 46657
13 x 37 x 61 = 29341
17 x 41 x 233 = 162401
17 x 17 x 97 = 28033
17 x 353 x 1201 = 7207201
19 x 43 x 409 = 334153
19 x 19 x 181 = 65341
19 x 19 x 73 = 26353
19 x 19 x 37 = 13357
19 x 199 x 271 = 1024651
23 x 23 x 89 = 47081
23 x 23 x 67 = 35443
23 x 199 x 353 = 1615681
29 x 29 x 421 = 354061
29 x 113 x 1093 = 3581761
29 x 29 x 281 = 236321
29 x 197 x 953 = 5444489
31 x 991 x 15361 = 471905281
31 x 61 x 631 = 1193221
31 x 151 x 1171 = 5481451
31 x 31 x 241 = 231601
31 x 61 x 271 = 512461
31 x 61 x 211 = 399001
31 x 271 x 601 = 5049001
31 x 31 x 61 = 58621
31 x 181 x 331 = 1857241
37 x 109 x 2017 = 8134561
37 x 73 x 541 = 1461241
37 x 613 x 1621 = 36765901
37 x 73 x 181 = 488881
37 x 37 x 73 = 99937
37 x 73 x 109 = 294409
41 x 1721 x 35281 = 2489462641
41 x 881 x 12041 = 434932961
41 x 41 x 281 = 472361
41 x 41 x 241 = 405121
41 x 101 x 461 = 1909001
41 x 241 x 761 = 7519441
41 x 241 x 521 = 5148001
41 x 73 x 137 = 410041
41 x 61 x 101 = 252601
43 x 631 x 13567 = 368113411
43 x 271 x 5827 = 67902031
43 x 127 x 2731 = 14913991
43 x 43 x 463 = 856087
43 x 127 x 1093 = 5968873
43 x 211 x 757 = 6868261
43 x 631 x 1597 = 43331401
43 x 127 x 211 = 1152271
43 x 211 x 337 = 3057601
43 x 433 x 643 = 11972017
43 x 547 x 673 = 15829633
43 x 3361 x 3907 = 564651361
47 x 47 x 277 = 611893
47 x 47 x 139 = 307051
47 x 3359 x 6073 = 958762729
47 x 1151 x 1933 = 104569501
47 x 3727 x 5153 = 902645857
53 x 53 x 937 = 2632033
53 x 157 x 2081 = 17316001
53 x 79 x 599 = 2508013
53 x 53 x 313 = 879217
53 x 157 x 521 = 4335241
53 x 53 x 157 = 441013
59 x 59 x 1741 = 6060421
59 x 59 x 349 = 1214869
59 x 59 x 233 = 811073
59 x 1451 x 2089 = 178837201
61 x 421 x 12841 = 329769721
61 x 181 x 5521 = 60957361
61 x 61 x 1861 = 6924781
61 x 1301 x 19841 = 1574601601
61 x 277 x 2113 = 35703361
61 x 181 x 1381 = 15247621
61 x 541 x 3001 = 99036001
61 x 661 x 2521 = 101649241
61 x 271 x 571 = 9439201
61 x 241 x 421 = 6189121
61 x 3361 x 4021 = 824389441</pre>
 
=={{header|AWK}}==
<syntaxhighlight lang="awk">
# syntax: GAWK -f CARMICHAEL_3_STRONG_PSEUDOPRIMES.AWK
# converted from C
BEGIN {
printf("%5s%8s%8s%13s\n","P1","P2","P3","PRODUCT")
for (p1=2; p1<62; p1++) {
if (!is_prime(p1)) { continue }
for (h3=1; h3<p1; h3++) {
for (d=1; d<h3+p1; d++) {
if ((h3+p1)*(p1-1)%d == 0 && mod(-p1*p1,h3) == d%h3) {
p2 = int(1+((p1-1)*(h3+p1)/d))
if (!is_prime(p2)) { continue }
p3 = int(1+(p1*p2/h3))
if (!is_prime(p3) || (p2*p3)%(p1-1) != 1) { continue }
printf("%5d x %5d x %5d = %10d\n",p1,p2,p3,p1*p2*p3)
count++
}
}
}
}
printf("%d numbers\n",count)
exit(0)
}
function is_prime(n, i) {
if (n <= 3) {
return(n > 1)
}
else if (!(n%2) || !(n%3)) {
return(0)
}
else {
for (i=5; i*i<=n; i+=6) {
if (!(n%i) || !(n%(i+2))) {
return(0)
}
}
return(1)
}
}
function mod(n,m) {
# the % operator actually calculates the remainder of a / b so we need a small adjustment so it works as expected for negative values
return(((n%m)+m)%m)
}
</syntaxhighlight>
{{out}}
<pre>
P1 P2 P3 PRODUCT
3 x 11 x 17 = 561
5 x 29 x 73 = 10585
5 x 17 x 29 = 2465
5 x 13 x 17 = 1105
7 x 19 x 67 = 8911
7 x 31 x 73 = 15841
7 x 13 x 31 = 2821
7 x 23 x 41 = 6601
7 x 73 x 103 = 52633
7 x 13 x 19 = 1729
13 x 61 x 397 = 314821
13 x 37 x 241 = 115921
13 x 97 x 421 = 530881
13 x 37 x 97 = 46657
13 x 37 x 61 = 29341
17 x 41 x 233 = 162401
17 x 353 x 1201 = 7207201
19 x 43 x 409 = 334153
19 x 199 x 271 = 1024651
23 x 199 x 353 = 1615681
29 x 113 x 1093 = 3581761
29 x 197 x 953 = 5444489
31 x 991 x 15361 = 471905281
31 x 61 x 631 = 1193221
31 x 151 x 1171 = 5481451
31 x 61 x 271 = 512461
31 x 61 x 211 = 399001
31 x 271 x 601 = 5049001
31 x 181 x 331 = 1857241
37 x 109 x 2017 = 8134561
37 x 73 x 541 = 1461241
37 x 613 x 1621 = 36765901
37 x 73 x 181 = 488881
37 x 73 x 109 = 294409
41 x 1721 x 35281 = 2489462641
41 x 881 x 12041 = 434932961
41 x 101 x 461 = 1909001
41 x 241 x 761 = 7519441
41 x 241 x 521 = 5148001
41 x 73 x 137 = 410041
41 x 61 x 101 = 252601
43 x 631 x 13567 = 368113411
43 x 271 x 5827 = 67902031
43 x 127 x 2731 = 14913991
43 x 127 x 1093 = 5968873
43 x 211 x 757 = 6868261
43 x 631 x 1597 = 43331401
43 x 127 x 211 = 1152271
43 x 211 x 337 = 3057601
43 x 433 x 643 = 11972017
43 x 547 x 673 = 15829633
43 x 3361 x 3907 = 564651361
47 x 3359 x 6073 = 958762729
47 x 1151 x 1933 = 104569501
47 x 3727 x 5153 = 902645857
53 x 157 x 2081 = 17316001
53 x 79 x 599 = 2508013
53 x 157 x 521 = 4335241
59 x 1451 x 2089 = 178837201
61 x 421 x 12841 = 329769721
61 x 181 x 5521 = 60957361
61 x 1301 x 19841 = 1574601601
61 x 277 x 2113 = 35703361
61 x 181 x 1381 = 15247621
61 x 541 x 3001 = 99036001
61 x 661 x 2521 = 101649241
61 x 271 x 571 = 9439201
61 x 241 x 421 = 6189121
61 x 3361 x 4021 = 824389441
69 numbers
</pre>
 
=={{header|BASIC}}==
==={{header|BASIC256}}===
{{trans|FreeBASIC}}
<syntaxhighlight lang="vbnet">for i = 3 to max_sieve step 2
isprime[i] = 1
next i
 
isprime[2] = 1
for i = 3 to sqr(max_sieve) step 2
if isprime[i] = 1 then
for j = i * i to max_sieve step i * 2
isprime[j] = 0
next j
end if
next i
 
subroutine carmichael3(p1)
if isprime[p1] <> 0 then
for h3 = 1 to p1 -1
t1 = (h3 + p1) * (p1 -1)
t2 = (-p1 * p1) % h3
if t2 < 0 then t2 = t2 + h3
for d = 1 to h3 + p1 -1
if t1 % d = 0 and t2 = (d % h3) then
p2 = 1 + (t1 \ d)
if isprime[p2] = 0 then continue for
p3 = 1 + (p1 * p2 \ h3)
if isprime[p3] = 0 or ((p2 * p3) % (p1 -1)) <> 1 then continue for
print p1; " * "; p2; " * "; p3
end if
next d
next h3
end if
end subroutine
 
for i = 2 to 61
call carmichael3(i)
next i
end</syntaxhighlight>
 
==={{header|Chipmunk Basic}}===
{{trans|FreeBASIC}}
{{works with|Chipmunk Basic|3.6.4}}
<syntaxhighlight lang="vbnet">100 cls
110 max_sieve = 10000000 ' 10^7
120 dim isprime(max_sieve)
130 sub carmichael3(p1)
140 if isprime(p1) = 0 then goto 440
150 for h3 = 1 to p1-1
160 t1 = (h3+p1)*(p1-1)
170 t2 = (-p1*p1) mod h3
180 if t2 < 0 then t2 = t2+h3
190 for d = 1 to h3+p1-1
200 if t1 mod d = 0 and t2 = (d mod h3) then
210 p2 = 1+int(t1/d)
220 if isprime(p2) = 0 then goto 270
230 p3 = 1+int(p1*p2/h3)
240 if isprime(p3) = 0 or ((p2*p3) mod (p1-1)) <> 1 then goto 270
250 print format$(p1,"###");" * ";format$(p2,"####");" * ";format$(p3,"#####")
260 endif
270 next d
280 next h3
290 end sub
300 'set up sieve
310 for i = 3 to max_sieve step 2
320 isprime(i) = 1
330 next i
340 isprime(2) = 1
350 for i = 3 to sqr(max_sieve) step 2
360 if isprime(i) = 1 then
370 for j = i*i to max_sieve step i*2
380 isprime(j) = 0
390 next j
400 endif
410 next i
420 for i = 2 to 61
430 carmichael3(i)
440 next i
450 end</syntaxhighlight>
 
==={{header|FreeBASIC}}===
<syntaxhighlight lang="freebasic">' version 17-10-2016
' compile with: fbc -s console
 
' using a sieve for finding primes
 
#Define max_sieve 10000000 ' 10^7
ReDim Shared As Byte isprime(max_sieve)
 
' translated the pseudo code to FreeBASIC
Sub carmichael3(p1 As Integer)
 
If isprime(p1) = 0 Then Exit Sub
 
Dim As Integer h3, d, p2, p3, t1, t2
 
For h3 = 1 To p1 -1
t1 = (h3 + p1) * (p1 -1)
t2 = (-p1 * p1) Mod h3
If t2 < 0 Then t2 = t2 + h3
For d = 1 To h3 + p1 -1
If t1 Mod d = 0 And t2 = (d Mod h3) Then
p2 = 1 + (t1 \ d)
If isprime(p2) = 0 Then Continue For
p3 = 1 + (p1 * p2 \ h3)
If isprime(p3) = 0 Or ((p2 * p3) Mod (p1 -1)) <> 1 Then Continue For
Print Using "### * #### * #####"; p1; p2; p3
End If
Next d
Next h3
End Sub
 
' ------=< MAIN >=------
 
Dim As UInteger i, j
 
'set up sieve
For i = 3 To max_sieve Step 2
isprime(i) = 1
Next i
 
isprime(2) = 1
For i = 3 To Sqr(max_sieve) Step 2
If isprime(i) = 1 Then
For j = i * i To max_sieve Step i * 2
isprime(j) = 0
Next j
End If
Next i
 
For i = 2 To 61
carmichael3(i)
Next i
 
' empty keyboard buffer
While InKey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End</syntaxhighlight>
{{out}}
<pre> 3 * 11 * 17
5 * 29 * 73
5 * 17 * 29
5 * 13 * 17
7 * 19 * 67
7 * 31 * 73
7 * 13 * 31
7 * 23 * 41
7 * 73 * 103
7 * 13 * 19
13 * 61 * 397
13 * 37 * 241
13 * 97 * 421
13 * 37 * 97
13 * 37 * 61
17 * 41 * 233
17 * 353 * 1201
19 * 43 * 409
19 * 199 * 271
23 * 199 * 353
29 * 113 * 1093
29 * 197 * 953
31 * 991 * 15361
31 * 61 * 631
31 * 151 * 1171
31 * 61 * 271
31 * 61 * 211
31 * 271 * 601
31 * 181 * 331
37 * 109 * 2017
37 * 73 * 541
37 * 613 * 1621
37 * 73 * 181
37 * 73 * 109
41 * 1721 * 35281
41 * 881 * 12041
41 * 101 * 461
41 * 241 * 761
41 * 241 * 521
41 * 73 * 137
41 * 61 * 101
43 * 631 * 13567
43 * 271 * 5827
43 * 127 * 2731
43 * 127 * 1093
43 * 211 * 757
43 * 631 * 1597
43 * 127 * 211
43 * 211 * 337
43 * 433 * 643
43 * 547 * 673
43 * 3361 * 3907
47 * 3359 * 6073
47 * 1151 * 1933
47 * 3727 * 5153
53 * 157 * 2081
53 * 79 * 599
53 * 157 * 521
59 * 1451 * 2089
61 * 421 * 12841
61 * 181 * 5521
61 * 1301 * 19841
61 * 277 * 2113
61 * 181 * 1381
61 * 541 * 3001
61 * 661 * 2521
61 * 271 * 571
61 * 241 * 421
61 * 3361 * 4021</pre>
 
==={{header|Gambas}}===
{{trans|FreeBASIC}}
<syntaxhighlight lang="vbnet">Public isprime[1000000] As Integer
 
Public Sub Main()
Dim max_sieve As Integer = 1000000
Dim i As Integer, j As Integer
'set up sieve
For i = 3 To max_sieve Step 2
isprime[i] = 1
Next
isprime[2] = 1
For i = 3 To Sqr(max_sieve) Step 2
If isprime[i] = 1 Then
For j = i * i To max_sieve Step i * 2
isprime[j] = 0
Next
End If
Next
For i = 2 To 61
If isprime[i] <> 0 Then carmichael3(i)
Next
End
 
Sub carmichael3(p1 As Integer)
Dim h3 As Integer, d As Integer
Dim p2 As Integer, p3 As Integer, t1 As Integer, t2 As Integer
For h3 = 1 To p1 - 1
t1 = (h3 + p1) * (p1 - 1)
t2 = (-p1 * p1) Mod h3
If t2 < 0 Then t2 = t2 + h3
For d = 1 To h3 + p1 - 1
If t1 Mod d = 0 And t2 = (d Mod h3) Then
p2 = 1 + (t1 \ d)
If isprime[p2] = 0 Then Continue
p3 = 1 + ((p1 * p2) \ h3)
If isprime[p3] = 0 Or ((p2 * p3) Mod (p1 - 1)) <> 1 Then Continue
Print Format$(p1, "###"); " * "; Format$(p2, "####"); " * "; Format$(p3, "#####")
End If
Next
Next
End Sub</syntaxhighlight>
 
==={{header|Yabasic}}===
{{trans|FreeBASIC}}
<syntaxhighlight lang="vbnet">max_sieve = 1e7
dim isprime(max_sieve)
 
//set up sieve
for i = 3 to max_sieve step 2
isprime(i) = 1
next i
 
isprime(2) = 1
for i = 3 to sqrt(max_sieve) step 2
if isprime(i) = 1 then
for j = i * i to max_sieve step i * 2
isprime(j) = 0
next j
fi
next i
 
for i = 2 to 61
carmichael3(i)
next i
end
sub carmichael3(p1)
local h3, d, p2, p3, t1, t2
 
if isprime(p1) = 0 return
for h3 = 1 to p1 -1
t1 = (h3 + p1) * (p1 -1)
t2 = mod((-p1 * p1), h3)
if t2 < 0 t2 = t2 + h3
for d = 1 to h3 + p1 -1
if mod(t1, d) = 0 and t2 = mod(d, h3) then
p2 = 1 + int(t1 / d)
if isprime(p2) = 0 continue
p3 = 1 + int(p1 * p2 / h3)
if isprime(p3) = 0 or mod((p2 * p3), (p1 -1)) <> 1 continue
print p1 using ("###"), " * ", p2 using ("####"), " * ", p3 using ("#####")
fi
next d
next h3
end sub</syntaxhighlight>
 
==={{header|ZX Spectrum Basic}}===
{{trans|C}}
<syntaxhighlight lang="zxbasic">10 FOR p=2 TO 61
20 LET n=p: GO SUB 1000
30 IF NOT n THEN GO TO 200
40 FOR h=1 TO p-1
50 FOR d=1 TO h-1+p
60 IF NOT (FN m((h+p)*(p-1),d)=0 AND FN w(-p*p,h)=FN m(d,h)) THEN GO TO 180
70 LET q=INT (1+((p-1)*(h+p)/d))
80 LET n=q: GO SUB 1000
90 IF NOT n THEN GO TO 180
100 LET r=INT (1+(p*q/h))
110 LET n=r: GO SUB 1000
120 IF (NOT n) OR ((FN m((q*r),(p-1))<>1)) THEN GO TO 180
130 PRINT p;" ";q;" ";r
180 NEXT d
190 NEXT h
200 NEXT p
210 STOP
1000 IF n<4 THEN LET n=(n>1): RETURN
1010 IF (NOT FN m(n,2)) OR (NOT FN m(n,3)) THEN LET n=0: RETURN
1020 LET i=5
1030 IF NOT ((i*i)<=n) THEN LET n=1: RETURN
1040 IF (NOT FN m(n,i)) OR NOT FN m(n,(i+2)) THEN LET n=0: RETURN
1050 LET i=i+6
1060 GO TO 1030
2000 DEF FN m(a,b)=a-(INT (a/b)*b): REM Mod function
2010 DEF FN w(a,b)=FN m(FN m(a,b)+b,b): REM Mod function modified
</syntaxhighlight>
 
=={{header|C}}==
<syntaxhighlight lang="c">
#include <stdio.h>
 
/* C's % operator actually calculates the remainder of a / b so we need a
* small adjustment so it works as expected for negative values */
#define mod(n,m) ((((n) % (m)) + (m)) % (m))
 
int is_prime(unsigned int n)
{
if (n <= 3) {
return n > 1;
}
else if (!(n % 2) || !(n % 3)) {
return 0;
}
else {
unsigned int i;
for (i = 5; i*i <= n; i += 6)
if (!(n % i) || !(n % (i + 2)))
return 0;
return 1;
}
}
 
void carmichael3(int p1)
{
if (!is_prime(p1)) return;
 
int h3, d, p2, p3;
for (h3 = 1; h3 < p1; ++h3) {
for (d = 1; d < h3 + p1; ++d) {
if ((h3 + p1)*(p1 - 1) % d == 0 && mod(-p1 * p1, h3) == d % h3) {
p2 = 1 + ((p1 - 1) * (h3 + p1)/d);
if (!is_prime(p2)) continue;
p3 = 1 + (p1 * p2 / h3);
if (!is_prime(p3) || (p2 * p3) % (p1 - 1) != 1) continue;
printf("%d %d %d\n", p1, p2, p3);
}
}
}
}
 
int main(void)
{
int p1;
for (p1 = 2; p1 < 62; ++p1)
carmichael3(p1);
return 0;
}
</syntaxhighlight>
{{out}}
<pre>
3 11 17
5 29 73
5 17 29
5 13 17
7 19 67
7 31 73
.
.
.
61 181 1381
61 541 3001
61 661 2521
61 271 571
61 241 421
61 3361 4021
</pre>
=={{header|C++}}==
<syntaxhighlight lang="cpp">#include <iomanip>
#include <iostream>
 
int mod(int n, int d) {
return (d + n % d) % d;
}
 
bool is_prime(int n) {
if (n < 2)
return false;
if (n % 2 == 0)
return n == 2;
if (n % 3 == 0)
return n == 3;
for (int p = 5; p * p <= n; p += 4) {
if (n % p == 0)
return false;
p += 2;
if (n % p == 0)
return false;
}
return true;
}
 
void print_carmichael_numbers(int prime1) {
for (int h3 = 1; h3 < prime1; ++h3) {
for (int d = 1; d < h3 + prime1; ++d) {
if (mod((h3 + prime1) * (prime1 - 1), d) != 0
|| mod(-prime1 * prime1, h3) != mod(d, h3))
continue;
int prime2 = 1 + (prime1 - 1) * (h3 + prime1)/d;
if (!is_prime(prime2))
continue;
int prime3 = 1 + prime1 * prime2/h3;
if (!is_prime(prime3))
continue;
if (mod(prime2 * prime3, prime1 - 1) != 1)
continue;
unsigned int c = prime1 * prime2 * prime3;
std::cout << std::setw(2) << prime1 << " x "
<< std::setw(4) << prime2 << " x "
<< std::setw(5) << prime3 << " = "
<< std::setw(10) << c << '\n';
}
}
}
 
int main() {
for (int p = 2; p <= 61; ++p) {
if (is_prime(p))
print_carmichael_numbers(p);
}
return 0;
}</syntaxhighlight>
 
{{out}}
<pre style="height:50ex">
3 x 11 x 17 = 561
5 x 29 x 73 = 10585
5 x 17 x 29 = 2465
5 x 13 x 17 = 1105
7 x 19 x 67 = 8911
7 x 31 x 73 = 15841
7 x 13 x 31 = 2821
7 x 23 x 41 = 6601
7 x 73 x 103 = 52633
7 x 13 x 19 = 1729
13 x 61 x 397 = 314821
13 x 37 x 241 = 115921
13 x 97 x 421 = 530881
13 x 37 x 97 = 46657
13 x 37 x 61 = 29341
17 x 41 x 233 = 162401
17 x 353 x 1201 = 7207201
19 x 43 x 409 = 334153
19 x 199 x 271 = 1024651
23 x 199 x 353 = 1615681
29 x 113 x 1093 = 3581761
29 x 197 x 953 = 5444489
31 x 991 x 15361 = 471905281
31 x 61 x 631 = 1193221
31 x 151 x 1171 = 5481451
31 x 61 x 271 = 512461
31 x 61 x 211 = 399001
31 x 271 x 601 = 5049001
31 x 181 x 331 = 1857241
37 x 109 x 2017 = 8134561
37 x 73 x 541 = 1461241
37 x 613 x 1621 = 36765901
37 x 73 x 181 = 488881
37 x 73 x 109 = 294409
41 x 1721 x 35281 = 2489462641
41 x 881 x 12041 = 434932961
41 x 101 x 461 = 1909001
41 x 241 x 761 = 7519441
41 x 241 x 521 = 5148001
41 x 73 x 137 = 410041
41 x 61 x 101 = 252601
43 x 631 x 13567 = 368113411
43 x 271 x 5827 = 67902031
43 x 127 x 2731 = 14913991
43 x 127 x 1093 = 5968873
43 x 211 x 757 = 6868261
43 x 631 x 1597 = 43331401
43 x 127 x 211 = 1152271
43 x 211 x 337 = 3057601
43 x 433 x 643 = 11972017
43 x 547 x 673 = 15829633
43 x 3361 x 3907 = 564651361
47 x 3359 x 6073 = 958762729
47 x 1151 x 1933 = 104569501
47 x 3727 x 5153 = 902645857
53 x 157 x 2081 = 17316001
53 x 79 x 599 = 2508013
53 x 157 x 521 = 4335241
59 x 1451 x 2089 = 178837201
61 x 421 x 12841 = 329769721
61 x 181 x 5521 = 60957361
61 x 1301 x 19841 = 1574601601
61 x 277 x 2113 = 35703361
61 x 181 x 1381 = 15247621
61 x 541 x 3001 = 99036001
61 x 661 x 2521 = 101649241
61 x 271 x 571 = 9439201
61 x 241 x 421 = 6189121
61 x 3361 x 4021 = 824389441
</pre>
=={{header|Clojure}}==
<syntaxhighlight lang="lisp">
(ns example
(:gen-class))
 
(defn prime? [n]
" Prime number test (using Java) "
(.isProbablePrime (biginteger n) 16))
 
(defn carmichael [p1]
" Triplets of Carmichael primes, with first element prime p1 "
(if (prime? p1)
(into [] (for [h3 (range 2 p1)
:let [g (+ h3 p1)]
d (range 1 g)
:when (and (= (mod (* g (dec p1)) d) 0)
(= (mod (- (* p1 p1)) h3) (mod d h3)))
:let [p2 (inc (quot (* (dec p1) g) d))]
:when (prime? p2)
:let [p3 (inc (quot (* p1 p2) h3))]
:when (prime? p3)
:when (= (mod (* p2 p3) (dec p1)) 1)]
[p1 p2 p3]))))
 
; Generate Result
(def numbers (mapcat carmichael (range 2 62)))
(println (count numbers) "Carmichael numbers found:")
(doseq [t numbers]
(println (format "%5d x %5d x %5d = %10d" (first t) (second t) (last t) (apply * t))))
</syntaxhighlight>
{{Out}}
<pre>
69 Carmichael numbers found
3 x 11 x 17 = 561
5 x 29 x 73 = 10585
5 x 17 x 29 = 2465
5 x 13 x 17 = 1105
7 x 19 x 67 = 8911
7 x 31 x 73 = 15841
7 x 13 x 31 = 2821
7 x 23 x 41 = 6601
7 x 73 x 103 = 52633
7 x 13 x 19 = 1729
13 x 61 x 397 = 314821
13 x 37 x 241 = 115921
13 x 97 x 421 = 530881
13 x 37 x 97 = 46657
13 x 37 x 61 = 29341
17 x 41 x 233 = 162401
17 x 353 x 1201 = 7207201
19 x 43 x 409 = 334153
19 x 199 x 271 = 1024651
23 x 199 x 353 = 1615681
29 x 113 x 1093 = 3581761
29 x 197 x 953 = 5444489
31 x 991 x 15361 = 471905281
31 x 61 x 631 = 1193221
31 x 151 x 1171 = 5481451
31 x 61 x 271 = 512461
31 x 61 x 211 = 399001
31 x 271 x 601 = 5049001
31 x 181 x 331 = 1857241
37 x 109 x 2017 = 8134561
37 x 73 x 541 = 1461241
37 x 613 x 1621 = 36765901
37 x 73 x 181 = 488881
37 x 73 x 109 = 294409
41 x 1721 x 35281 = 2489462641
41 x 881 x 12041 = 434932961
41 x 101 x 461 = 1909001
41 x 241 x 761 = 7519441
41 x 241 x 521 = 5148001
41 x 73 x 137 = 410041
41 x 61 x 101 = 252601
43 x 631 x 13567 = 368113411
43 x 271 x 5827 = 67902031
43 x 127 x 2731 = 14913991
43 x 127 x 1093 = 5968873
43 x 211 x 757 = 6868261
43 x 631 x 1597 = 43331401
43 x 127 x 211 = 1152271
43 x 211 x 337 = 3057601
43 x 433 x 643 = 11972017
43 x 547 x 673 = 15829633
43 x 3361 x 3907 = 564651361
47 x 3359 x 6073 = 958762729
47 x 1151 x 1933 = 104569501
47 x 3727 x 5153 = 902645857
53 x 157 x 2081 = 17316001
53 x 79 x 599 = 2508013
53 x 157 x 521 = 4335241
59 x 1451 x 2089 = 178837201
61 x 421 x 12841 = 329769721
61 x 181 x 5521 = 60957361
61 x 1301 x 19841 = 1574601601
61 x 277 x 2113 = 35703361
61 x 181 x 1381 = 15247621
61 x 541 x 3001 = 99036001
61 x 661 x 2521 = 101649241
61 x 271 x 571 = 9439201
61 x 241 x 421 = 6189121
61 x 3361 x 4021 = 824389441
 
</pre>
=={{header|D}}==
<syntaxhighlight lang="d">enum mod = (in int n, in int m) pure nothrow @nogc=> ((n % m) + m) % m;
This uses the third D entry of the Sieve of Eratosthenes Task.
<lang d>import std.stdio, sieve_of_eratosthenes3;
 
intbool modisPrime(in intuint n, in int m) pure nothrow @nogc {
returnif ((n %== m)2 +|| m)n %== m;3)
return true;
else if (n < 2 || n % 2 == 0 || n % 3 == 0)
return false;
for (uint div = 5, inc = 2; div ^^ 2 <= n;
div += inc, inc = 6 - inc)
if (n % div == 0)
return false;
return true;
}
 
void main() {
import std.stdio;
 
foreach (immutable p; 2 .. 62) {
if (!p.IsPrimeisPrime) continue;
foreach (immutable h3; 2 .. p) {
immutable g = h3 + p;
Line 95 ⟶ 1,132:
continue;
immutable q = 1 + (p - 1) * g / d;
if (!q.IsPrimeisPrime) continue;
immutable r = 1 + (p * q / h3);
if (!r.IsPrimeisPrime || (q * r) % (p - 1) != 1) continue;
writeln(p, " x ", q, " x ", r);
}
}
}
}</langsyntaxhighlight>
{{out}}
<pre>3 x 11 x 17
Line 173 ⟶ 1,210:
61 x 241 x 421
61 x 3361 x 4021</pre>
=={{header|EasyLang}}==
{{trans|C}}
<syntaxhighlight>
func isprim num .
i = 2
while i <= sqrt num
if num mod i = 0
return 0
.
i += 1
.
return 1
.
proc carmichael3 p1 . .
for h3 = 1 to p1 - 1
for d = 1 to h3 + p1 - 1
if (h3 + p1) * (p1 - 1) mod d = 0 and -p1 * p1 mod h3 = d mod h3
p2 = 1 + (p1 - 1) * (h3 + p1) div d
if isprim p2 = 1
p3 = 1 + (p1 * p2 div h3)
if isprim p3 = 1 and (p2 * p3) mod (p1 - 1) = 1
print p1 & " " & p2 & " " & p3
.
.
.
.
.
.
for p1 = 2 to 61
if isprim p1 = 1
carmichael3 p1
.
.
</syntaxhighlight>
 
=={{header|EchoLisp}}==
<syntaxhighlight lang="scheme">
;; charmichaël numbers up to N-th prime ; 61 is 18-th prime
(define (charms (N 18) local: (h31 0) (Prime2 0) (Prime3 0))
(for* ((Prime1 (primes N))
(h3 (in-range 1 Prime1))
(d (+ h3 Prime1)))
(set! h31 (+ h3 Prime1))
#:continue (!zero? (modulo (* h31 (1- Prime1)) d))
#:continue (!= (modulo d h3) (modulo (- (* Prime1 Prime1)) h3))
(set! Prime2 (1+ ( * (1- Prime1) (quotient h31 d))))
#:when (prime? Prime2)
(set! Prime3 (1+ (quotient (* Prime1 Prime2) h3)))
#:when (prime? Prime3)
#:when (= 1 (modulo (* Prime2 Prime3) (1- Prime1)))
(printf " 💥 %12d = %d x %d x %d" (* Prime1 Prime2 Prime3) Prime1 Prime2 Prime3)))
</syntaxhighlight>
{{out}}
<syntaxhighlight lang="scheme">
(charms 3)
💥 561 = 3 x 11 x 17
💥 10585 = 5 x 29 x 73
💥 2465 = 5 x 17 x 29
💥 1105 = 5 x 13 x 17
 
(charms 18)
;; skipped ....
💥 902645857 = 47 x 3727 x 5153
💥 2632033 = 53 x 53 x 937
💥 17316001 = 53 x 157 x 2081
💥 4335241 = 53 x 157 x 521
💥 178837201 = 59 x 1451 x 2089
💥 329769721 = 61 x 421 x 12841
💥 60957361 = 61 x 181 x 5521
💥 6924781 = 61 x 61 x 1861
💥 6924781 = 61 x 61 x 1861
💥 15247621 = 61 x 181 x 1381
💥 99036001 = 61 x 541 x 3001
💥 101649241 = 61 x 661 x 2521
💥 6189121 = 61 x 241 x 421
💥 824389441 = 61 x 3361 x 4021
</syntaxhighlight>
 
=={{header|F_Sharp|F#}}==
This task uses [http://www.rosettacode.org/wiki/Extensible_prime_generator#The_function Extensible Prime Generator (F#)]
<syntaxhighlight lang="fsharp">
// Carmichael Number . Nigel Galloway: November 19th., 2017
let fN n = Seq.collect ((fun g->(Seq.map(fun e->(n,1+(n-1)*(n+g)/e,g,e))){1..(n+g-1)})){2..(n-1)}
let fG (P1,P2,h3,d) =
let mod' n g = (n%g+g)%g
let fN P3 = if isPrime P3 && (P2*P3)%(P1-1)=1 then Some (P1,P2,P3) else None
if isPrime P2 && ((h3+P1)*(P1-1))%d=0 && mod' (-P1*P1) h3=d%h3 then fN (1+P1*P2/h3) else None
let carms g = primes|>Seq.takeWhile(fun n->n<=g)|>Seq.collect fN|>Seq.choose fG
carms 61 |> Seq.iter (fun (P1,P2,P3)->printfn "%2d x %4d x %5d = %10d" P1 P2 P3 ((uint64 P3)*(uint64 (P1*P2))))
</syntaxhighlight>
{{out}}
<pre>
3 x 11 x 17 = 561
5 x 29 x 73 = 10585
5 x 17 x 29 = 2465
5 x 13 x 17 = 1105
7 x 19 x 67 = 8911
7 x 31 x 73 = 15841
7 x 13 x 31 = 2821
7 x 23 x 41 = 6601
7 x 73 x 103 = 52633
7 x 13 x 19 = 1729
13 x 61 x 397 = 314821
13 x 37 x 241 = 115921
13 x 97 x 421 = 530881
13 x 37 x 97 = 46657
13 x 37 x 61 = 29341
17 x 41 x 233 = 162401
17 x 353 x 1201 = 7207201
19 x 43 x 409 = 334153
19 x 199 x 271 = 1024651
23 x 199 x 353 = 1615681
29 x 113 x 1093 = 3581761
29 x 197 x 953 = 5444489
31 x 991 x 15361 = 471905281
31 x 61 x 631 = 1193221
31 x 151 x 1171 = 5481451
31 x 61 x 271 = 512461
31 x 61 x 211 = 399001
31 x 271 x 601 = 5049001
31 x 181 x 331 = 1857241
37 x 109 x 2017 = 8134561
37 x 73 x 541 = 1461241
37 x 613 x 1621 = 36765901
37 x 73 x 181 = 488881
37 x 73 x 109 = 294409
41 x 1721 x 35281 = 2489462641
41 x 881 x 12041 = 434932961
41 x 101 x 461 = 1909001
41 x 241 x 761 = 7519441
41 x 241 x 521 = 5148001
41 x 73 x 137 = 410041
41 x 61 x 101 = 252601
43 x 631 x 13567 = 368113411
43 x 271 x 5827 = 67902031
43 x 127 x 2731 = 14913991
43 x 127 x 1093 = 5968873
43 x 211 x 757 = 6868261
43 x 631 x 1597 = 43331401
43 x 127 x 211 = 1152271
43 x 211 x 337 = 3057601
43 x 433 x 643 = 11972017
43 x 547 x 673 = 15829633
43 x 3361 x 3907 = 564651361
47 x 3359 x 6073 = 958762729
47 x 1151 x 1933 = 104569501
47 x 3727 x 5153 = 902645857
53 x 157 x 2081 = 17316001
53 x 79 x 599 = 2508013
53 x 157 x 521 = 4335241
59 x 1451 x 2089 = 178837201
61 x 421 x 12841 = 329769721
61 x 181 x 5521 = 60957361
61 x 1301 x 19841 = 1574601601
61 x 277 x 2113 = 35703361
61 x 181 x 1381 = 15247621
61 x 541 x 3001 = 99036001
61 x 661 x 2521 = 101649241
61 x 271 x 571 = 9439201
61 x 241 x 421 = 6189121
61 x 3361 x 4021 = 824389441
</pre>
=={{header|Factor}}==
Note the use of <code>rem</code> instead of <code>mod</code> when the remainder should always be positive.
<syntaxhighlight lang="factor">USING: formatting kernel locals math math.primes math.ranges
sequences ;
IN: rosetta-code.carmichael
 
:: carmichael ( p1 -- )
1 p1 (a,b) [| h3 |
h3 p1 + [1,b) [| d |
h3 p1 + p1 1 - * d mod zero?
p1 neg p1 * h3 rem d h3 mod = and
[
p1 1 - h3 p1 + * d /i 1 + :> p2
p1 p2 * h3 /i 1 + :> p3
p2 p3 [ prime? ] both?
p2 p3 * p1 1 - mod 1 = and
[ p1 p2 p3 "%d %d %d\n" printf ] when
] when
] each
] each
;
 
: carmichael-demo ( -- ) 61 primes-upto [ carmichael ] each ;
 
MAIN: carmichael-demo</syntaxhighlight>
{{out}}
<pre>
3 11 17
5 29 73
5 17 29
5 13 17
7 19 67
7 31 73
7 13 31
7 23 41
7 73 103
7 13 19
13 61 397
13 37 241
13 97 421
13 37 97
13 37 61
17 41 233
17 353 1201
19 43 409
19 199 271
23 199 353
29 113 1093
29 197 953
31 991 15361
31 61 631
31 151 1171
31 61 271
31 61 211
31 271 601
31 181 331
37 109 2017
37 73 541
37 613 1621
37 73 181
37 73 109
41 1721 35281
41 881 12041
41 101 461
41 241 761
41 241 521
41 73 137
41 61 101
43 631 13567
43 271 5827
43 127 2731
43 127 1093
43 211 757
43 631 1597
43 127 211
43 211 337
43 433 643
43 547 673
43 3361 3907
47 3359 6073
47 1151 1933
47 3727 5153
53 157 2081
53 79 599
53 157 521
59 1451 2089
61 421 12841
61 181 5521
61 1301 19841
61 277 2113
61 181 1381
61 541 3001
61 661 2521
61 271 571
61 241 421
61 3361 4021
</pre>
=={{header|Fortran}}==
===Plan===
This is F77 style, and directly translates the given calculation as per ''formula translation''. It turns out that the normal integers suffice for the demonstration, except for just one of the products of the three primes: 41x1721x35281 = 2489462641, which is bigger than 2147483647, the 32-bit limit. Fortunately, INTEGER*8 variables are also available, so the extension is easy. Otherwise, one would have to mess about with using two integers in a bignum style, one holding say the millions, and the second the number up to a million.
===Source===
So, using the double MOD approach (see the ''Discussion'') - which gives the same result for either style of MOD... <syntaxhighlight lang="fortran"> LOGICAL FUNCTION ISPRIME(N) !Ad-hoc, since N is not going to be big...
INTEGER N !Despite this intimidating allowance of 32 bits...
INTEGER F !A possible factor.
ISPRIME = .FALSE. !Most numbers aren't prime.
DO F = 2,SQRT(DFLOAT(N)) !Wince...
IF (MOD(N,F).EQ.0) RETURN !Not even avoiding even numbers beyond two.
END DO !Nice and brief, though.
ISPRIME = .TRUE. !No factor found.
END FUNCTION ISPRIME !So, done. Hopefully, not often.
 
PROGRAM CHASE
INTEGER P1,P2,P3 !The three primes to be tested.
INTEGER H3,D !Assistants.
INTEGER MSG !File unit number.
MSG = 6 !Standard output.
WRITE (MSG,1) !A heading would be good.
1 FORMAT ("Carmichael numbers that are the product of three primes:"
& /" P1 x P2 x P3 =",9X,"C")
DO P1 = 2,61 !Step through the specified range.
IF (ISPRIME(P1)) THEN !Selecting only the primes.
DO H3 = 2,P1 - 1 !For 1 < H3 < P1.
DO D = 1,H3 + P1 - 1 !For 0 < D < H3 + P1.
IF (MOD((H3 + P1)*(P1 - 1),D).EQ.0 !Filter.
& .AND. (MOD(H3 + MOD(-P1**2,H3),H3) .EQ. MOD(D,H3))) THEN !Beware MOD for negative numbers! MOD(-P1**2, may surprise...
P2 = 1 + (P1 - 1)*(H3 + P1)/D !Candidate for the second prime.
IF (ISPRIME(P2)) THEN !Is it prime?
P3 = 1 + P1*P2/H3 !Yes. Candidate for the third prime.
IF (ISPRIME(P3)) THEN !Is it prime?
IF (MOD(P2*P3,P1 - 1).EQ.1) THEN !Yes! Final test.
WRITE (MSG,2) P1,P2,P3, INT8(P1)*P2*P3 !Result!
2 FORMAT (3I6,I12)
END IF
END IF
END IF
END IF
END DO
END DO
END IF
END DO
END</syntaxhighlight>
 
===Output===
<pre>
Carmichael numbers that are the product of three primes:
P1 x P2 x P3 = C
3 11 17 561
5 29 73 10585
5 17 29 2465
5 13 17 1105
7 19 67 8911
7 31 73 15841
7 13 31 2821
7 23 41 6601
7 73 103 52633
7 13 19 1729
13 61 397 314821
13 37 241 115921
13 97 421 530881
13 37 97 46657
13 37 61 29341
17 41 233 162401
17 353 1201 7207201
19 43 409 334153
19 199 271 1024651
23 199 353 1615681
29 113 1093 3581761
29 197 953 5444489
31 991 15361 471905281
31 61 631 1193221
31 151 1171 5481451
31 61 271 512461
31 61 211 399001
31 271 601 5049001
31 181 331 1857241
37 109 2017 8134561
37 73 541 1461241
37 613 1621 36765901
37 73 181 488881
37 73 109 294409
41 1721 35281 2489462641
41 881 12041 434932961
41 101 461 1909001
41 241 761 7519441
41 241 521 5148001
41 73 137 410041
41 61 101 252601
43 631 13567 368113411
43 271 5827 67902031
43 127 2731 14913991
43 127 1093 5968873
43 211 757 6868261
43 631 1597 43331401
43 127 211 1152271
43 211 337 3057601
43 433 643 11972017
43 547 673 15829633
43 3361 3907 564651361
47 3359 6073 958762729
47 1151 1933 104569501
47 3727 5153 902645857
53 157 2081 17316001
53 79 599 2508013
53 157 521 4335241
59 1451 2089 178837201
61 421 12841 329769721
61 181 5521 60957361
61 1301 19841 1574601601
61 277 2113 35703361
61 181 1381 15247621
61 541 3001 99036001
61 661 2521 101649241
61 271 571 9439201
61 241 421 6189121
61 3361 4021 824389441
</pre>
 
=={{header|Go}}==
<syntaxhighlight lang="go">package main
 
import "fmt"
 
// Use this rather than % for negative integers
func mod(n, m int) int {
return ((n % m) + m) % m
}
 
func isPrime(n int) bool {
if n < 2 { return false }
if n % 2 == 0 { return n == 2 }
if n % 3 == 0 { return n == 3 }
d := 5
for d * d <= n {
if n % d == 0 { return false }
d += 2
if n % d == 0 { return false }
d += 4
}
return true
}
 
func carmichael(p1 int) {
for h3 := 2; h3 < p1; h3++ {
for d := 1; d < h3 + p1; d++ {
if (h3 + p1) * (p1 - 1) % d == 0 && mod(-p1 * p1, h3) == d % h3 {
p2 := 1 + (p1 - 1) * (h3 + p1) / d
if !isPrime(p2) { continue }
p3 := 1 + p1 * p2 / h3
if !isPrime(p3) { continue }
if p2 * p3 % (p1 - 1) != 1 { continue }
c := p1 * p2 * p3
fmt.Printf("%2d %4d %5d %d\n", p1, p2, p3, c)
}
}
}
}
 
func main() {
fmt.Println("The following are Carmichael munbers for p1 <= 61:\n")
fmt.Println("p1 p2 p3 product")
fmt.Println("== == == =======")
 
for p1 := 2; p1 <= 61; p1++ {
if isPrime(p1) { carmichael(p1) }
}
}</syntaxhighlight>
 
{{out}}
<pre>
The following are Carmichael munbers for p1 <= 61:
 
p1 p2 p3 product
== == == =======
3 11 17 561
5 29 73 10585
5 17 29 2465
5 13 17 1105
7 19 67 8911
7 31 73 15841
7 13 31 2821
7 23 41 6601
7 73 103 52633
7 13 19 1729
13 61 397 314821
13 37 241 115921
13 97 421 530881
13 37 97 46657
13 37 61 29341
17 41 233 162401
17 353 1201 7207201
19 43 409 334153
19 199 271 1024651
23 199 353 1615681
29 113 1093 3581761
29 197 953 5444489
31 991 15361 471905281
31 61 631 1193221
31 151 1171 5481451
31 61 271 512461
31 61 211 399001
31 271 601 5049001
31 181 331 1857241
37 109 2017 8134561
37 73 541 1461241
37 613 1621 36765901
37 73 181 488881
37 73 109 294409
41 1721 35281 2489462641
41 881 12041 434932961
41 101 461 1909001
41 241 761 7519441
41 241 521 5148001
41 73 137 410041
41 61 101 252601
43 631 13567 368113411
43 271 5827 67902031
43 127 2731 14913991
43 127 1093 5968873
43 211 757 6868261
43 631 1597 43331401
43 127 211 1152271
43 211 337 3057601
43 433 643 11972017
43 547 673 15829633
43 3361 3907 564651361
47 3359 6073 958762729
47 1151 1933 104569501
47 3727 5153 902645857
53 157 2081 17316001
53 79 599 2508013
53 157 521 4335241
59 1451 2089 178837201
61 421 12841 329769721
61 181 5521 60957361
61 1301 19841 1574601601
61 277 2113 35703361
61 181 1381 15247621
61 541 3001 99036001
61 661 2521 101649241
61 271 571 9439201
61 241 421 6189121
61 3361 4021 824389441
</pre>
=={{header|Haskell}}==
{{trans|Ruby}}
Line 179 ⟶ 1,720:
{{Works with|GHC|7.4.1}}
{{Works with|primes|0.2.1.0}}
<langsyntaxhighlight lang="haskell">#!/usr/bin/runhaskell
 
import Data.Numbers.Primes
Line 196 ⟶ 1,737:
return (p, q, r)
 
main = putStr $ unlines $ map show carmichaels</langsyntaxhighlight>
{{out}}
<pre>
Line 269 ⟶ 1,810:
(61,3361,4021)
</pre>
=={{header|Icon}} and {{header|Unicon}}==
 
The following works in both languages.
=={{header|Mathematica}}==
<syntaxhighlight lang="unicon">link "factors"
<lang mathematica>Cases[Cases[
 
procedure main(A)
n := integer(!A) | 61
every write(carmichael3(!n))
end
 
procedure carmichael3(p1)
every (isprime(p1), (h := 1+!(p1-1)), (d := !(h+p1-1))) do
if (mod(((h+p1)*(p1-1)),d) = 0, mod((-p1*p1),h) = mod(d,h)) then {
p2 := 1 + (p1-1)*(h+p1)/d
p3 := 1 + p1*p2/h
if (isprime(p2), isprime(p3), mod((p2*p3),(p1-1)) = 1) then
suspend format(p1,p2,p3)
}
end
 
procedure mod(n,d)
return (d+n%d)%d
end
 
procedure format(p1,p2,p3)
return left(p1||" * "||p2||" * "||p3,20)||" = "||(p1*p2*p3)
end</syntaxhighlight>
 
Output, with middle lines elided:
<pre>
->c3sp
3 * 11 * 17 = 561
5 * 29 * 73 = 10585
5 * 17 * 29 = 2465
5 * 13 * 17 = 1105
7 * 19 * 67 = 8911
7 * 31 * 73 = 15841
7 * 13 * 31 = 2821
7 * 23 * 41 = 6601
7 * 73 * 103 = 52633
7 * 13 * 19 = 1729
13 * 61 * 397 = 314821
13 * 37 * 241 = 115921
...
53 * 157 * 2081 = 17316001
53 * 79 * 599 = 2508013
53 * 157 * 521 = 4335241
59 * 1451 * 2089 = 178837201
61 * 421 * 12841 = 329769721
61 * 181 * 5521 = 60957361
61 * 1301 * 19841 = 1574601601
61 * 277 * 2113 = 35703361
61 * 181 * 1381 = 15247621
61 * 541 * 3001 = 99036001
61 * 661 * 2521 = 101649241
61 * 271 * 571 = 9439201
61 * 241 * 421 = 6189121
61 * 3361 * 4021 = 824389441
->
</pre>
=={{header|J}}==
<syntaxhighlight lang="j">
q =: (,"0 1~ >:@i.@<:@+/"1)&.>@(,&.>"0 1~ >:@i.)&.>@I.@(1&p:@i.)@>:
f1 =: (0: = {. | <:@{: * 1&{ + {:) *. ((1&{ | -@*:@{:) = 1&{ | {.)
f2 =: 1: = <:@{. | ({: * 1&{)
p2 =: 0:`((* 1&p:)@(<.@(1: + <:@{: * {. %~ 1&{ + {:)))@.f1
p3 =: 3:$0:`((* 1&p:)@({: , {. , (<.@>:@(1&{ %~ {. * {:))))@.(*@{.)@(p2 , }.)
(-. 3:$0:)@(((*"0 f2)@p3"1)@;@;@q) 61
</syntaxhighlight>
Output
<pre>
3 11 17
5 29 73
5 17 29
5 13 17
7 19 67
7 31 73
7 13 31
7 23 41
7 73 103
7 13 19
13 61 397
13 37 241
13 97 421
13 37 97
13 37 61
17 41 233
17 353 1201
19 43 409
19 199 271
23 199 353
29 113 1093
29 197 953
31 991 15361
31 61 631
31 151 1171
31 61 271
31 61 211
31 271 601
31 181 331
37 109 2017
37 73 541
37 613 1621
37 73 181
37 73 109
41 1721 35281
41 881 12041
41 101 461
41 241 761
41 241 521
41 73 137
41 61 101
43 631 13567
43 271 5827
43 127 2731
43 127 1093
43 211 757
43 631 1597
43 127 211
43 211 337
43 433 643
43 547 673
43 3361 3907
47 3359 6073
47 1151 1933
47 3727 5153
53 157 2081
53 79 599
53 157 521
59 1451 2089
61 421 12841
61 181 5521
61 1301 19841
61 277 2113
61 181 1381
61 541 3001
61 661 2521
61 271 571
61 241 421
61 3361 4021
</pre>
=={{header|Java}}==
{{trans|D}}
<syntaxhighlight lang="java">public class Test {
 
static int mod(int n, int m) {
return ((n % m) + m) % m;
}
 
static boolean isPrime(int n) {
if (n == 2 || n == 3)
return true;
else if (n < 2 || n % 2 == 0 || n % 3 == 0)
return false;
for (int div = 5, inc = 2; Math.pow(div, 2) <= n;
div += inc, inc = 6 - inc)
if (n % div == 0)
return false;
return true;
}
 
public static void main(String[] args) {
for (int p = 2; p < 62; p++) {
if (!isPrime(p))
continue;
for (int h3 = 2; h3 < p; h3++) {
int g = h3 + p;
for (int d = 1; d < g; d++) {
if ((g * (p - 1)) % d != 0 || mod(-p * p, h3) != d % h3)
continue;
int q = 1 + (p - 1) * g / d;
if (!isPrime(q))
continue;
int r = 1 + (p * q / h3);
if (!isPrime(r) || (q * r) % (p - 1) != 1)
continue;
System.out.printf("%d x %d x %d%n", p, q, r);
}
}
}
}
}</syntaxhighlight>
<pre>3 x 11 x 17
5 x 29 x 73
5 x 17 x 29
5 x 13 x 17
7 x 19 x 67
7 x 31 x 73
7 x 13 x 31
7 x 23 x 41
7 x 73 x 103
7 x 13 x 19
13 x 61 x 397
13 x 37 x 241
13 x 97 x 421
13 x 37 x 97
13 x 37 x 61
17 x 41 x 233
17 x 353 x 1201
19 x 43 x 409
19 x 199 x 271
23 x 199 x 353
29 x 113 x 1093
29 x 197 x 953
31 x 991 x 15361
31 x 61 x 631
31 x 151 x 1171
31 x 61 x 271
31 x 61 x 211
31 x 271 x 601
31 x 181 x 331
37 x 109 x 2017
37 x 73 x 541
37 x 613 x 1621
37 x 73 x 181
37 x 73 x 109
41 x 1721 x 35281
41 x 881 x 12041
41 x 101 x 461
41 x 241 x 761
41 x 241 x 521
41 x 73 x 137
41 x 61 x 101
43 x 631 x 13567
43 x 271 x 5827
43 x 127 x 2731
43 x 127 x 1093
43 x 211 x 757
43 x 631 x 1597
43 x 127 x 211
43 x 211 x 337
43 x 433 x 643
43 x 547 x 673
43 x 3361 x 3907
47 x 3359 x 6073
47 x 1151 x 1933
47 x 3727 x 5153
53 x 157 x 2081
53 x 79 x 599
53 x 157 x 521
59 x 1451 x 2089
61 x 421 x 12841
61 x 181 x 5521
61 x 1301 x 19841
61 x 277 x 2113
61 x 181 x 1381
61 x 541 x 3001
61 x 661 x 2521
61 x 271 x 571
61 x 241 x 421
61 x 3361 x 4021</pre>
=={{header|Julia}}==
This solution is a straightforward implementation of the algorithm of the Jameson paper cited in the task description. Just for fun, I use Julia's capacity to accommodate Unicode identifiers to match some of the paper's symbols to the variables used in the <tt>carmichael</tt> function.
 
'''Function'''
<syntaxhighlight lang="julia">using Primes
 
function carmichael(pmax::Integer)
if pmax ≤ 0 throw(DomainError("pmax must be strictly positive")) end
car = Vector{typeof(pmax)}(0)
for p in primes(pmax)
for h₃ in 2:(p-1)
m = (p - 1) * (h₃ + p)
pmh = mod(-p ^ 2, h₃)
for Δ in 1:(h₃+p-1)
if m % Δ != 0 || Δ % h₃ != pmh continue end
q = m ÷ Δ + 1
if !isprime(q) continue end
r = (p * q - 1) ÷ h₃ + 1
if !isprime(r) || mod(q * r, p - 1) == 1 continue end
append!(car, [p, q, r])
end
end
end
return reshape(car, 3, length(car) ÷ 3)
end</syntaxhighlight>
 
'''Main'''
<syntaxhighlight lang="julia">hi = 61
car = carmichael(hi)
 
curp = tcnt = 0
print("Carmichael 3 (p×q×r) pseudoprimes, up to p = $hi:")
for j in sortperm(1:size(car)[2], by=x->(car[1,x], car[2,x], car[3,x]))
p, q, r = car[:, j]
c = prod(car[:, j])
if p != curp
curp = p
@printf("\n\np = %d\n ", p)
tcnt = 0
end
if tcnt == 4
print("\n ")
tcnt = 1
else
tcnt += 1
end
@printf("p× %d × %d = %d ", q, r, c)
end
println("\n\n", size(car)[2], " results in total.")</syntaxhighlight>
 
{{out}}
<pre>Carmichael 3 (p×q×r) pseudoprimes, up to p = 61:
 
 
p = 11
p× 29 × 107 = 34133 p× 37 × 59 = 24013
 
p = 17
p× 23 × 79 = 30889 p× 53 × 101 = 91001
 
p = 19
p× 59 × 113 = 126673 p× 139 × 661 = 1745701 p× 193 × 283 = 1037761
 
p = 23
p× 43 × 53 = 52417 p× 59 × 227 = 308039 p× 71 × 137 = 223721 p× 83 × 107 = 204263
 
p = 29
p× 41 × 109 = 129601 p× 89 × 173 = 446513 p× 97 × 149 = 419137 p× 149 × 541 = 2337661
 
p = 31
p× 67 × 1039 = 2158003 p× 73 × 79 = 178777 p× 79 × 307 = 751843 p× 223 × 1153 = 7970689
p× 313 × 463 = 4492489
 
p = 41
p× 89 × 1217 = 4440833 p× 97 × 569 = 2262913
 
p = 43
p× 67 × 241 = 694321 p× 107 × 461 = 2121061 p× 131 × 257 = 1447681 p× 139 × 1993 = 11912161
p× 157 × 751 = 5070001 p× 199 × 373 = 3191761
 
p = 47
p× 53 × 499 = 1243009 p× 89 × 103 = 430849 p× 101 × 1583 = 7514501 p× 107 × 839 = 4219331
p× 157 × 239 = 1763581
 
p = 53
p× 113 × 1997 = 11960033 p× 197 × 233 = 2432753 p× 281 × 877 = 13061161
 
p = 59
p× 131 × 1289 = 9962681 p× 139 × 821 = 6733021 p× 149 × 587 = 5160317 p× 173 × 379 = 3868453
p× 179 × 353 = 3728033
 
p = 61
p× 1009 × 2677 = 164766673
 
42 results in total.</pre>
=={{header|Kotlin}}==
{{trans|D}}
<syntaxhighlight lang="scala">fun Int.isPrime(): Boolean {
return when {
this == 2 -> true
this <= 1 || this % 2 == 0 -> false
else -> {
val max = Math.sqrt(toDouble()).toInt()
(3..max step 2)
.filter { this % it == 0 }
.forEach { return false }
true
}
}
}
 
fun mod(n: Int, m: Int) = ((n % m) + m) % m
 
fun main(args: Array<String>) {
for (p1 in 3..61) {
if (p1.isPrime()) {
for (h3 in 2 until p1) {
val g = h3 + p1
for (d in 1 until g) {
if ((g * (p1 - 1)) % d == 0 && mod(-p1 * p1, h3) == d % h3) {
val q = 1 + (p1 - 1) * g / d
if (q.isPrime()) {
val r = 1 + (p1 * q / h3)
if (r.isPrime() && (q * r) % (p1 - 1) == 1) {
println("$p1 x $q x $r")
}
}
}
}
}
}
}
}</syntaxhighlight>
{{out}}
See D output.
=={{header|Lua}}==
<syntaxhighlight lang="lua">local function isprime(n)
if n < 2 then return false end
if n % 2 == 0 then return n==2 end
if n % 3 == 0 then return n==3 end
local f, limit = 5, math.sqrt(n)
while (f <= limit) do
if n % f == 0 then return false end; f=f+2
if n % f == 0 then return false end; f=f+4
end
return true
end
 
local function carmichael3(p)
local list = {}
if not isprime(p) then return list end
for h = 2, p-1 do
for d = 1, h+p-1 do
if ((h + p) * (p - 1)) % d == 0 and (-p * p) % h == (d % h) then
local q = 1 + math.floor((p - 1) * (h + p) / d)
if isprime(q) then
local r = 1 + math.floor(p * q / h)
if isprime(r) and (q * r) % (p - 1) == 1 then
list[#list+1] = { p=p, q=q, r=r }
end
end
end
end
end
return list
end
 
local found = 0
for p = 2, 61 do
local list = carmichael3(p)
found = found + #list
table.sort(list, function(a,b) return (a.p<b.p) or (a.p==b.p and a.q<b.q) or (a.p==b.p and a.q==b.q and a.r<b.r) end)
for k,v in ipairs(list) do
print(string.format("%.f × %.f × %.f = %.f", v.p, v.q, v.r, v.p*v.q*v.r))
end
end
print(found.." found.")</syntaxhighlight>
{{out}}
<pre style="height:30ex;overflow:scroll">3 × 11 × 17 = 561
5 × 13 × 17 = 1105
5 × 17 × 29 = 2465
5 × 29 × 73 = 10585
7 × 13 × 19 = 1729
7 × 13 × 31 = 2821
7 × 19 × 67 = 8911
7 × 23 × 41 = 6601
7 × 31 × 73 = 15841
7 × 73 × 103 = 52633
13 × 37 × 61 = 29341
13 × 37 × 97 = 46657
13 × 37 × 241 = 115921
13 × 61 × 397 = 314821
13 × 97 × 421 = 530881
17 × 41 × 233 = 162401
17 × 353 × 1201 = 7207201
19 × 43 × 409 = 334153
19 × 199 × 271 = 1024651
23 × 199 × 353 = 1615681
29 × 113 × 1093 = 3581761
29 × 197 × 953 = 5444489
31 × 61 × 211 = 399001
31 × 61 × 271 = 512461
31 × 61 × 631 = 1193221
31 × 151 × 1171 = 5481451
31 × 181 × 331 = 1857241
31 × 271 × 601 = 5049001
31 × 991 × 15361 = 471905281
37 × 73 × 109 = 294409
37 × 73 × 181 = 488881
37 × 73 × 541 = 1461241
37 × 109 × 2017 = 8134561
37 × 613 × 1621 = 36765901
41 × 61 × 101 = 252601
41 × 73 × 137 = 410041
41 × 101 × 461 = 1909001
41 × 241 × 521 = 5148001
41 × 241 × 761 = 7519441
41 × 881 × 12041 = 434932961
41 × 1721 × 35281 = 2489462641
43 × 127 × 211 = 1152271
43 × 127 × 1093 = 5968873
43 × 127 × 2731 = 14913991
43 × 211 × 337 = 3057601
43 × 211 × 757 = 6868261
43 × 271 × 5827 = 67902031
43 × 433 × 643 = 11972017
43 × 547 × 673 = 15829633
43 × 631 × 1597 = 43331401
43 × 631 × 13567 = 368113411
43 × 3361 × 3907 = 564651361
47 × 1151 × 1933 = 104569501
47 × 3359 × 6073 = 958762729
47 × 3727 × 5153 = 902645857
53 × 79 × 599 = 2508013
53 × 157 × 521 = 4335241
53 × 157 × 2081 = 17316001
59 × 1451 × 2089 = 178837201
61 × 181 × 1381 = 15247621
61 × 181 × 5521 = 60957361
61 × 241 × 421 = 6189121
61 × 271 × 571 = 9439201
61 × 277 × 2113 = 35703361
61 × 421 × 12841 = 329769721
61 × 541 × 3001 = 99036001
61 × 661 × 2521 = 101649241
61 × 1301 × 19841 = 1574601601
61 × 3361 × 4021 = 824389441
69 found.</pre>
=={{header|Mathematica}} / {{header|Wolfram Language}}==
<syntaxhighlight lang="mathematica">Cases[Cases[
Cases[Table[{p1, h3, d}, {p1, Array[Prime, PrimePi@61]}, {h3, 2,
p1 - 1}, {d, 1, h3 + p1 - 1}], {p1_Integer, h3_, d_} /;
Line 278 ⟶ 2,317:
Infinity], {p1_, p2_, h3_} /; PrimeQ[1 + Floor[p1 p2/h3]] :> {p1,
p2, 1 + Floor[p1 p2/h3]}], {p1_, p2_, p3_} /;
Mod[p2 p3, p1 - 1] == 1 :> Print[p1, "*", p2, "*", p3]]</langsyntaxhighlight>
=={{header|Perl 6Nim}}==
{{trans|Vala}} with some modifications
An almost direct translation of the pseudocode. We take the liberty of going up to 67 to show we aren't limited to 32-bit integers. (Perl 6 uses arbitrary precision in any case.)
<syntaxhighlight lang="nim">import strformat
<lang perl6>for (2..67).grep: *.is-prime -> \Prime1 {
 
for 1 ^..^ Prime1 -> \h3 {
func isPrime(n: int64): bool =
my \g = h3 + Prime1;
if n == 2 or n == 3:
for 0 ^..^ h3 + Prime1 -> \d {
return true
if (h3 + Prime1) * (Prime1 - 1) %% d and -Prime1**2 % h3 == d % h3 {
elif n < 2 or n mod 2 == 0 or n mod my \Prime23 == floor 1 + (Prime1 - 1) * g / d;0:
return false
next unless Prime2.is-prime;
var `div` = 5i64
my \Prime3 = floor 1 + Prime1 * Prime2 / h3;
var `inc` = 2i64
next unless Prime3.is-prime;
while `div` * `div` <= n:
next unless (Prime2 * Prime3) % (Prime1 - 1) == 1;
if n mod `div` == 0:
say "{Prime1} × {Prime2} × {Prime3} == {Prime1 * Prime2 * Prime3}";
return }false
`div` += }`inc`
`inc` = 6 - `inc`
}
return true
}</lang>
 
for p in 2i64 .. 61:
if not isPrime(p):
continue
for h3 in 2i64 ..< p:
var g = h3 + p
for d in 1 ..< g:
if g * (p - 1) mod d != 0 or (d + p * p) mod h3 != 0:
continue
var q = 1 + (p - 1) * g div d
if not isPrime(q):
continue
var r = 1 + (p * q div h3)
if not isPrime(r) or (q * r) mod (p - 1) != 1:
continue
echo &"{p:5} × {q:5} × {r:5} = {p * q * r:10}"</syntaxhighlight>
{{out}}
<pre>
<pre>3 × 11 × 17 == 561
5 3 × 29 11 × 73 17 == 10585 561
5 × 17 × 29 × 73 == 2465 10585
5 × 13 × 17 × 29 == 1105 2465
7 5 × 19 13 × 67 17 == 8911 1105
7 × 31 19 × 73 67 == 15841 8911
7 × 13 × 31 × 73 == 2821 15841
7 × 23 13 × 41 31 == 6601 2821
7 × 73 23 × 103 41 == 52633 6601
7 × 13 73 × 19 103 == 1729 52633
13 7 × 61 13 × 397 19 == 314821 1729
13 × 37 61 × 241 397 == 115921 314821
13 × 97 37 × 421 241 == 530881 115921
13 × 37 × 97 × 421 == 46657 530881
13 × 37 × 61 97 == 29341 46657
17 13 × 41 37 × 233 61 == 162401 29341
17 × 353 41 × 1201 233 == 7207201 162401
19 17 × 43 353 × 409 1201 == 334153 7207201
19 × 199 43 × 271 409 == 1024651 334153
23 19 × 199 × 353 271 == 1615681 1024651
29 23 × 113 199 × 1093 353 == 3581761 1615681
29 × 197 113 × 953 1093 == 5444489 3581761
31 29 × 991 197 × 15361 953 == 471905281 5444489
31 × 61 991 × 63115361 == 1193221 471905281
31 × 151 61 × 1171 631 == 5481451 1193221
31 × 61 151 × 271 1171 == 512461 5481451
31 × 61 × 211 271 == 399001 512461
31 × 271 61 × 601 211 == 5049001 399001
31 × 181 271 × 331 601 == 1857241 5049001
37 31 × 109 181 × 2017 331 == 8134561 1857241
37 × 73 109 × 541 2017 == 1461241 8134561
37 × 613 73 × 1621 541 == 36765901 1461241
37 × 73 613 × 181 1621 == 488881 36765901
37 × 73 × 109 181 == 294409 488881
41 37 × 1721 73 × 35281 109 == 2489462641 294409
41 × 881 1721 × 1204135281 == 4349329612489462641
41 × 101 881 × 46112041 == 1909001 434932961
41 × 241 101 × 761 461 == 7519441 1909001
41 × 241 × 521 761 == 5148001 7519441
41 × 73 241 × 137 521 == 410041 5148001
41 × 61 73 × 101 137 == 252601 410041
43 41 × 631 61 × 13567 101 == 368113411 252601
43 × 271 631 × 582713567 == 67902031 368113411
43 × 127 271 × 2731 5827 == 14913991 67902031
43 × 127 × 1093 2731 == 5968873 14913991
43 × 211 127 × 757 1093 == 6868261 5968873
43 × 631 211 × 1597 757 == 43331401 6868261
43 × 127 631 × 211 1597 == 1152271 43331401
43 × 211 127 × 337 211 == 3057601 1152271
43 × 433 211 × 643 337 == 11972017 3057601
43 × 547 433 × 673 643 == 15829633 11972017
43 × 3361 547 × 3907 673 == 564651361 15829633
47 43 × 3359 3361 × 6073 3907 == 958762729 564651361
47 × 1151 3359 × 1933 6073 == 104569501 958762729
47 × 3727 1151 × 5153 1933 == 902645857 104569501
53 47 × 157 3727 × 2081 5153 == 17316001 902645857
53 × 79 157 × 599 2081 == 2508013 17316001
53 × 157 79 × 521 599 == 4335241 2508013
59 53 × 1451 157 × 2089 521 == 178837201 4335241
61 59 × 421 1451 × 12841 2089 == 329769721 178837201
61 × 181 421 × 552112841 == 60957361 329769721
61 × 1301 181 × 19841 5521 == 1574601601 60957361
61 × 277 1301 × 211319841 == 357033611574601601
61 × 181 277 × 1381 2113 == 15247621 35703361
61 × 541 181 × 3001 1381 == 99036001 15247621
61 × 661 541 × 2521 3001 == 101649241 99036001
61 × 271 661 × 571 2521 == 9439201 101649241
61 × 241 271 × 421 571 == 6189121 9439201
61 × 3361 241 × 4021 421 == 824389441 6189121
67 61 × 2311 3361 × 51613 4021 == 7991602081 824389441
</pre>
67 × 331 × 7393 == 163954561
=={{header|PARI/GP}}==
67 × 331 × 463 == 10267951</pre>
<syntaxhighlight lang="parigp">f(p)={
my(v=List(),q,r);
for(h=2,p-1,
for(d=1,h+p-1,
if((h+p)*(p-1)%d==0 && Mod(p,h)^2==-d && isprime(q=(p-1)*(h+p)/d+1) && isprime(r=p*q\h+1)&&q*r%(p-1)==1,
listput(v,p*q*r)
)
)
);
Set(v)
};
forprime(p=3,67,v=f(p); for(i=1,#v,print1(v[i]", ")))</syntaxhighlight>
{{out}}
<pre>561, 1105, 2465, 10585, 1729, 2821, 6601, 8911, 15841, 52633, 29341, 46657, 115921, 314821, 530881, 162401, 7207201, 334153, 1024651, 1615681, 3581761, 5444489, 399001, 512461, 1193221, 1857241, 5049001, 5481451, 471905281, 294409, 488881, 1461241, 8134561, 36765901, 252601, 410041, 1909001, 5148001, 7519441, 434932961, 2489462641, 1152271, 3057601, 5968873, 6868261, 11972017, 14913991, 15829633, 43331401, 67902031, 368113411, 564651361, 104569501, 902645857, 958762729, 2508013, 4335241, 17316001, 178837201, 6189121, 9439201, 15247621, 35703361, 60957361, 99036001, 101649241, 329769721, 824389441, 1574601601, 10267951, 163954561, 7991602081,</pre>
=={{header|Perl}}==
{{libheader|ntheory}}
<syntaxhighlight lang="perl">use ntheory qw/forprimes is_prime vecprod/;
 
forprimes { my $p = $_;
for my $h3 (2 .. $p-1) {
my $ph3 = $p + $h3;
for my $d (1 .. $ph3-1) { # Jameseon procedure page 6
next if ((-$p*$p) % $h3) != ($d % $h3);
next if (($p-1)*$ph3) % $d;
my $q = 1 + ($p-1)*$ph3 / $d; # Jameson eq 7
next unless is_prime($q);
my $r = 1 + ($p*$q-1) / $h3; # Jameson eq 6
next unless is_prime($r);
next unless ($q*$r) % ($p-1) == 1;
printf "%2d x %5d x %5d = %s\n",$p,$q,$r,vecprod($p,$q,$r);
}
}
} 3,61;</syntaxhighlight>
{{out}}
<pre>
3 x 11 x 17 = 561
5 x 29 x 73 = 10585
5 x 17 x 29 = 2465
5 x 13 x 17 = 1105
... full output is 69 lines ...
61 x 661 x 2521 = 101649241
61 x 271 x 571 = 9439201
61 x 241 x 421 = 6189121
61 x 3361 x 4021 = 824389441
</pre>
=={{header|Phix}}==
<!--<syntaxhighlight lang="phix">(phixonline)-->
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">count</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">p1</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #000000;">61</span> <span style="color: #008080;">do</span>
<span style="color: #008080;">if</span> <span style="color: #7060A8;">is_prime</span><span style="color: #0000FF;">(</span><span style="color: #000000;">p1</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">then</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">h3</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #000000;">p1</span> <span style="color: #008080;">do</span>
<span style="color: #004080;">atom</span> <span style="color: #000000;">h3p1</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">h3</span> <span style="color: #0000FF;">+</span> <span style="color: #000000;">p1</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">d</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #000000;">h3p1</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span> <span style="color: #008080;">do</span>
<span style="color: #008080;">if</span> <span style="color: #7060A8;">mod</span><span style="color: #0000FF;">(</span><span style="color: #000000;">h3p1</span><span style="color: #0000FF;">*(</span><span style="color: #000000;">p1</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">),</span><span style="color: #000000;">d</span><span style="color: #0000FF;">)=</span><span style="color: #000000;">0</span>
<span style="color: #008080;">and</span> <span style="color: #7060A8;">mod</span><span style="color: #0000FF;">(-(</span><span style="color: #000000;">p1</span><span style="color: #0000FF;">*</span><span style="color: #000000;">p1</span><span style="color: #0000FF;">),</span><span style="color: #000000;">h3</span><span style="color: #0000FF;">)</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">mod</span><span style="color: #0000FF;">(</span><span style="color: #000000;">d</span><span style="color: #0000FF;">,</span><span style="color: #000000;">h3</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">then</span>
<span style="color: #004080;">atom</span> <span style="color: #000000;">p2</span> <span style="color: #0000FF;">:=</span> <span style="color: #000000;">1</span> <span style="color: #0000FF;">+</span> <span style="color: #7060A8;">floor</span><span style="color: #0000FF;">(((</span><span style="color: #000000;">p1</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)*</span><span style="color: #000000;">h3p1</span><span style="color: #0000FF;">)/</span><span style="color: #000000;">d</span><span style="color: #0000FF;">),</span>
<span style="color: #000000;">p3</span> <span style="color: #0000FF;">:=</span> <span style="color: #000000;">1</span> <span style="color: #0000FF;">+</span><span style="color: #7060A8;">floor</span><span style="color: #0000FF;">(</span><span style="color: #000000;">p1</span><span style="color: #0000FF;">*</span><span style="color: #000000;">p2</span><span style="color: #0000FF;">/</span><span style="color: #000000;">h3</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">if</span> <span style="color: #7060A8;">is_prime</span><span style="color: #0000FF;">(</span><span style="color: #000000;">p2</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">and</span> <span style="color: #7060A8;">is_prime</span><span style="color: #0000FF;">(</span><span style="color: #000000;">p3</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">and</span> <span style="color: #7060A8;">mod</span><span style="color: #0000FF;">(</span><span style="color: #000000;">p2</span><span style="color: #0000FF;">*</span><span style="color: #000000;">p3</span><span style="color: #0000FF;">,</span><span style="color: #000000;">p1</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)=</span><span style="color: #000000;">1</span> <span style="color: #008080;">then</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">count</span><span style="color: #0000FF;"><</span><span style="color: #000000;">5</span> <span style="color: #008080;">or</span> <span style="color: #000000;">count</span><span style="color: #0000FF;">></span><span style="color: #000000;">65</span> <span style="color: #008080;">then</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"%d * %d * %d = %d\n"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">p1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">p2</span><span style="color: #0000FF;">,</span><span style="color: #000000;">p3</span><span style="color: #0000FF;">,</span><span style="color: #000000;">p1</span><span style="color: #0000FF;">*</span><span style="color: #000000;">p2</span><span style="color: #0000FF;">*</span><span style="color: #000000;">p3</span><span style="color: #0000FF;">})</span>
<span style="color: #008080;">elsif</span> <span style="color: #000000;">count</span><span style="color: #0000FF;">=</span><span style="color: #000000;">35</span> <span style="color: #008080;">then</span> <span style="color: #7060A8;">puts</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"...\n"</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #000000;">count</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">1</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"%d Carmichael numbers found\n"</span><span style="color: #0000FF;">,</span><span style="color: #000000;">count</span><span style="color: #0000FF;">)</span>
<!--</syntaxhighlight>-->
{{out}}
<pre>
3 * 11 * 17 = 561
5 * 29 * 73 = 10585
5 * 17 * 29 = 2465
5 * 13 * 17 = 1105
7 * 19 * 67 = 8911
...
61 * 271 * 571 = 9439201
61 * 241 * 421 = 6189121
61 * 3361 * 4021 = 824389441
69 Carmichael numbers found
</pre>
=={{header|PicoLisp}}==
<syntaxhighlight lang="picolisp">(de modulo (X Y)
(% (+ Y (% X Y)) Y) )
(de prime? (N)
(let D 0
(or
(= N 2)
(and
(> N 1)
(bit? 1 N)
(for (D 3 T (+ D 2))
(T (> D (sqrt N)) T)
(T (=0 (% N D)) NIL) ) ) ) ) )
(for P1 61
(when (prime? P1)
(for (H3 2 (> P1 H3) (inc H3))
(let G (+ H3 P1)
(for (D 1 (> G D) (inc D))
(when
(and
(=0
(% (* G (dec P1)) D) )
(=
(modulo (* (- P1) P1) H3)
(% D H3)) )
(let
(P2
(inc
(/ (* (dec P1) G) D) )
P3 (inc (/ (* P1 P2) H3)) )
(when
(and
(prime? P2)
(prime? P3)
(= 1 (modulo (* P2 P3) (dec P1))) )
(print (list P1 P2 P3)) ) ) ) ) ) ) ) )
(prinl)
(bye)</syntaxhighlight>
=={{header|PL/I}}==
<langsyntaxhighlight PLlang="pl/Ii">Carmichael: procedure options (main, reorder); /* 24 January 2014 */
declare (Prime1, Prime2, Prime3, h3, d) fixed binary (31);
 
Line 397 ⟶ 2,578:
/* Uses is_prime from Rosetta Code PL/I. */
 
end Carmichael;</langsyntaxhighlight>
Results:
<pre>
Line 494 ⟶ 2,675:
61 x 3361 x 4021
</pre>
=={{header|Prolog}}==
<syntaxhighlight lang="prolog">
show(Limit) :-
forall(
carmichael(Limit, P1, P2, P3, C),
format("~w * ~w * ~w ~t~20| = ~w~n", [P1, P2, P3, C])).
 
carmichael(Upto, P1, P2, P3, X) :-
between(2, Upto, P1),
prime(P1),
Limit is P1 - 1, between(2, Limit, H3),
MaxD is H3 + P1 - 1, between(1, MaxD, D),
(H3 + P1)*(P1 - 1) mod D =:= 0,
-P1*P1 mod H3 =:= D mod H3,
P2 is 1 + (P1 - 1)*(H3 + P1) div D,
prime(P2),
P3 is 1 + P1*P2 div H3,
prime(P3),
X is P1*P2*P3.
 
wheel235(L) :-
W = [4, 2, 4, 2, 4, 6, 2, 6 | W],
L = [1, 2, 2 | W].
 
prime(N) :-
N >= 2,
wheel235(W),
prime(N, 2, W).
 
prime(N, D, _) :- D*D > N, !.
prime(N, D, [A|As]) :-
N mod D =\= 0,
D2 is D + A, prime(N, D2, As).
</syntaxhighlight>
{{Out}}
<pre>
?- show(61).
3 * 11 * 17 = 561
5 * 29 * 73 = 10585
5 * 17 * 29 = 2465
5 * 13 * 17 = 1105
7 * 19 * 67 = 8911
7 * 31 * 73 = 15841
7 * 13 * 31 = 2821
7 * 23 * 41 = 6601
7 * 73 * 103 = 52633
7 * 13 * 19 = 1729
11 * 29 * 107 = 34133
11 * 37 * 59 = 24013
13 * 61 * 397 = 314821
13 * 37 * 241 = 115921
13 * 97 * 421 = 530881
13 * 37 * 97 = 46657
13 * 37 * 61 = 29341
17 * 41 * 233 = 162401
17 * 353 * 1201 = 7207201
17 * 23 * 79 = 30889
17 * 53 * 101 = 91001
19 * 43 * 409 = 334153
19 * 139 * 661 = 1745701
19 * 59 * 113 = 126673
19 * 193 * 283 = 1037761
19 * 199 * 271 = 1024651
23 * 59 * 227 = 308039
23 * 71 * 137 = 223721
23 * 199 * 353 = 1615681
23 * 83 * 107 = 204263
23 * 43 * 53 = 52417
29 * 113 * 1093 = 3581761
29 * 197 * 953 = 5444489
29 * 149 * 541 = 2337661
29 * 41 * 109 = 129601
29 * 89 * 173 = 446513
29 * 97 * 149 = 419137
31 * 991 * 15361 = 471905281
31 * 67 * 1039 = 2158003
31 * 61 * 631 = 1193221
31 * 151 * 1171 = 5481451
31 * 223 * 1153 = 7970689
31 * 61 * 271 = 512461
31 * 79 * 307 = 751843
31 * 61 * 211 = 399001
31 * 271 * 601 = 5049001
31 * 181 * 331 = 1857241
31 * 313 * 463 = 4492489
31 * 73 * 79 = 178777
37 * 109 * 2017 = 8134561
37 * 73 * 541 = 1461241
37 * 613 * 1621 = 36765901
37 * 73 * 181 = 488881
37 * 73 * 109 = 294409
41 * 1721 * 35281 = 2489462641
41 * 881 * 12041 = 434932961
41 * 89 * 1217 = 4440833
41 * 97 * 569 = 2262913
41 * 101 * 461 = 1909001
41 * 241 * 761 = 7519441
41 * 241 * 521 = 5148001
41 * 73 * 137 = 410041
41 * 61 * 101 = 252601
43 * 631 * 13567 = 368113411
43 * 271 * 5827 = 67902031
43 * 127 * 2731 = 14913991
43 * 139 * 1993 = 11912161
43 * 127 * 1093 = 5968873
43 * 157 * 751 = 5070001
43 * 107 * 461 = 2121061
43 * 211 * 757 = 6868261
43 * 67 * 241 = 694321
43 * 631 * 1597 = 43331401
43 * 131 * 257 = 1447681
43 * 199 * 373 = 3191761
43 * 127 * 211 = 1152271
43 * 211 * 337 = 3057601
43 * 433 * 643 = 11972017
43 * 547 * 673 = 15829633
43 * 3361 * 3907 = 564651361
47 * 101 * 1583 = 7514501
47 * 53 * 499 = 1243009
47 * 107 * 839 = 4219331
47 * 3359 * 6073 = 958762729
47 * 1151 * 1933 = 104569501
47 * 157 * 239 = 1763581
47 * 3727 * 5153 = 902645857
47 * 89 * 103 = 430849
53 * 113 * 1997 = 11960033
53 * 157 * 2081 = 17316001
53 * 79 * 599 = 2508013
53 * 157 * 521 = 4335241
53 * 281 * 877 = 13061161
53 * 197 * 233 = 2432753
59 * 131 * 1289 = 9962681
59 * 139 * 821 = 6733021
59 * 149 * 587 = 5160317
59 * 173 * 379 = 3868453
59 * 179 * 353 = 3728033
59 * 1451 * 2089 = 178837201
61 * 421 * 12841 = 329769721
61 * 181 * 5521 = 60957361
61 * 1301 * 19841 = 1574601601
61 * 277 * 2113 = 35703361
61 * 181 * 1381 = 15247621
61 * 541 * 3001 = 99036001
61 * 661 * 2521 = 101649241
61 * 1009 * 2677 = 164766673
61 * 271 * 571 = 9439201
61 * 241 * 421 = 6189121
61 * 3361 * 4021 = 824389441
true.
</pre>
=={{header|Python}}==
<langsyntaxhighlight lang="python">class Isprime():
'''
Extensible sieve of ErastosthenesEratosthenes
>>> isprime.check(11)
Line 566 ⟶ 2,896:
ans = sorted(sum((carmichael(n) for n in range(62) if isprime(n)), []))
print(',\n'.join(repr(ans[i:i+5])[1:-1] for i in range(0, len(ans)+1, 5)))</langsyntaxhighlight>
{{out}}
<pre>(3, 11, 17), (5, 13, 17), (5, 17, 29), (5, 29, 73), (7, 13, 19),
Line 582 ⟶ 2,912:
(61, 181, 5521), (61, 241, 421), (61, 271, 571), (61, 277, 2113), (61, 421, 12841),
(61, 541, 3001), (61, 661, 2521), (61, 1301, 19841), (61, 3361, 4021)</pre>
 
=={{header|Racket}}==
<langsyntaxhighlight lang="racket">
#lang racket
(require math)
Line 601 ⟶ 2,930:
(displayln (list p1 p2 p3 '=> (* p1 p2 p3))))))
(next (+ d 1))))))
</syntaxhighlight>
</lang>
Output:
<langsyntaxhighlight lang="racket">
(3 11 17 => 561)
(5 29 73 => 10585)
Line 666 ⟶ 2,995:
(61 241 421 => 6189121)
(61 3361 4021 => 824389441)
</syntaxhighlight>
</lang>
=={{header|Raku}}==
 
(formerly Perl 6)
{{works with|Rakudo|2015.12}}
An almost direct translation of the pseudocode. We take the liberty of going up to 67 to show we aren't limited to 32-bit integers. (Raku uses arbitrary precision in any case.)
<syntaxhighlight lang="raku" line>for (2..67).grep: *.is-prime -> \Prime1 {
for 1 ^..^ Prime1 -> \h3 {
my \g = h3 + Prime1;
for 0 ^..^ h3 + Prime1 -> \d {
if (h3 + Prime1) * (Prime1 - 1) %% d and -Prime1**2 % h3 == d % h3 {
my \Prime2 = floor 1 + (Prime1 - 1) * g / d;
next unless Prime2.is-prime;
my \Prime3 = floor 1 + Prime1 * Prime2 / h3;
next unless Prime3.is-prime;
next unless (Prime2 * Prime3) % (Prime1 - 1) == 1;
say "{Prime1} × {Prime2} × {Prime3} == {Prime1 * Prime2 * Prime3}";
}
}
}
}</syntaxhighlight>
{{out}}
<pre>3 × 11 × 17 == 561
5 × 29 × 73 == 10585
5 × 17 × 29 == 2465
5 × 13 × 17 == 1105
7 × 19 × 67 == 8911
7 × 31 × 73 == 15841
7 × 13 × 31 == 2821
7 × 23 × 41 == 6601
7 × 73 × 103 == 52633
7 × 13 × 19 == 1729
13 × 61 × 397 == 314821
13 × 37 × 241 == 115921
13 × 97 × 421 == 530881
13 × 37 × 97 == 46657
13 × 37 × 61 == 29341
17 × 41 × 233 == 162401
17 × 353 × 1201 == 7207201
19 × 43 × 409 == 334153
19 × 199 × 271 == 1024651
23 × 199 × 353 == 1615681
29 × 113 × 1093 == 3581761
29 × 197 × 953 == 5444489
31 × 991 × 15361 == 471905281
31 × 61 × 631 == 1193221
31 × 151 × 1171 == 5481451
31 × 61 × 271 == 512461
31 × 61 × 211 == 399001
31 × 271 × 601 == 5049001
31 × 181 × 331 == 1857241
37 × 109 × 2017 == 8134561
37 × 73 × 541 == 1461241
37 × 613 × 1621 == 36765901
37 × 73 × 181 == 488881
37 × 73 × 109 == 294409
41 × 1721 × 35281 == 2489462641
41 × 881 × 12041 == 434932961
41 × 101 × 461 == 1909001
41 × 241 × 761 == 7519441
41 × 241 × 521 == 5148001
41 × 73 × 137 == 410041
41 × 61 × 101 == 252601
43 × 631 × 13567 == 368113411
43 × 271 × 5827 == 67902031
43 × 127 × 2731 == 14913991
43 × 127 × 1093 == 5968873
43 × 211 × 757 == 6868261
43 × 631 × 1597 == 43331401
43 × 127 × 211 == 1152271
43 × 211 × 337 == 3057601
43 × 433 × 643 == 11972017
43 × 547 × 673 == 15829633
43 × 3361 × 3907 == 564651361
47 × 3359 × 6073 == 958762729
47 × 1151 × 1933 == 104569501
47 × 3727 × 5153 == 902645857
53 × 157 × 2081 == 17316001
53 × 79 × 599 == 2508013
53 × 157 × 521 == 4335241
59 × 1451 × 2089 == 178837201
61 × 421 × 12841 == 329769721
61 × 181 × 5521 == 60957361
61 × 1301 × 19841 == 1574601601
61 × 277 × 2113 == 35703361
61 × 181 × 1381 == 15247621
61 × 541 × 3001 == 99036001
61 × 661 × 2521 == 101649241
61 × 271 × 571 == 9439201
61 × 241 × 421 == 6189121
61 × 3361 × 4021 == 824389441
67 × 2311 × 51613 == 7991602081
67 × 331 × 7393 == 163954561
67 × 331 × 463 == 10267951</pre>
=={{header|REXX}}==
Note that REXX's version of &nbsp; '''modulus''' &nbsp; (<big><code>'''//'''</code></big>) &nbsp; is really a &nbsp; ''remainder'' &nbsp; function,.
<br>so a version of the &nbsp; '''modulus''' &nbsp; function was hard-coded below.
<br>(It was necessary to use '''modulus''' instead of '''remainder''' when using a negative value.)
===numbers in order of calculation===
<lang rexx>/*REXX program calculates Carmichael 3-strong pseudoprimes (up to N).*/
numeric digits 30 /*in case user wants bigger nums.*/
parse arg N .; if N=='' then N=61 /*allow user to specify the limit*/
if 1=='f1'x then times='af'x /*if EBCDIC machine, use a bullet*/
else times='f9'x /* " ASCII " " " " */
carms=0 /*number of Carmichael #s so far.*/
!.=0 /*a method of prime memoization. */
do p=3 to N by 2; if \isPrime(p) then iterate /*Not prime? Skip.*/
pm=p-1; nps=-p*p; @.=0; min=1e9; max=0 /*some handy-dandy variables.*/
do h3=2 to pm; g=h3+p /*find Carmichael #s for this P. */
do d=1 to g-1
if g*pm//d\==0 then iterate
if ((nps//h3)+h3)//h3\==d//h3 then iterate
q=1+pm*g%d; if \isPrime(q) then iterate
r=1+p*q%h3; if q*r//pm\==1 then iterate
if \isPrime(r) then iterate
carms=carms+1 /*bump the Carmichael # counter. */
min=min(min,q); max=max(max,q); @.q=r /*build a list.*/
end /*d*/
end /*h3*/
/*display a list of some Carm #s.*/
do j=min to max by 2; if @.j==0 then iterate /*one of the #s?*/
say '──────── a Carmichael number: ' p times j times @.j
end /*j*/
say /*show bueatification blank line.*/
end /*p*/
say; say carms ' Carmichael numbers found.'
exit /*stick a fork in it, we're done.*/
/*──────────────────────────────────ISPRIME subroutine──────────────────*/
isPrime: procedure expose !.; parse arg x; if !.x then return 1
if wordpos(x,'2 3 5 7 11 13')\==0 then do; !.x=1; return 1; end
if x<17 then return 0; if x//2==0 then return 0; if x//3==0 then return 0
if right(x,1)==5 then return 0; if x//7==0 then return 0
do i=11 by 6 until i*i>x; if x// i ==0 then return 0
if x//(i+2) ==0 then return 0
end /*i*/
!.x=1; return 1</lang>
'''output''' when using the default input
<br><br>The Carmichael numbers were grouped by the first Carmichael number.
<pre style="height:50ex;overflow:scroll">
──────── a Carmichael number: 3 ∙ 11 ∙ 17
 
──────── aThe Carmichael number: numbers 5are shown 29in numerical 73order.
──────── a Carmichael number: 5 ∙ 17 ∙ 29
──────── a Carmichael number: 5 ∙ 13 ∙ 17
 
Some code optimization was done, while not necessary for the small default number ('''61'''), &nbsp; it was significant for larger numbers.
──────── a Carmichael number: 7 ∙ 19 ∙ 67
<syntaxhighlight lang="rexx">/*REXX program calculates Carmichael 3─strong pseudoprimes (up to and including N). */
──────── a Carmichael number: 7 ∙ 31 ∙ 73
numeric digits 18 /*handle big dig #s (9 is the default).*/
──────── a Carmichael number: 7 ∙ 13 ∙ 31
parse arg N .; if N=='' | N=="," then N=61 /*allow user to specify for the search.*/
──────── a Carmichael number: 7 ∙ 23 ∙ 41
tell= N>0; N= abs(N) /*N>0? Then display Carmichael numbers*/
──────── a Carmichael number: 7 ∙ 73 ∙ 103
#= 0 /*number of Carmichael numbers so far. */
──────── a Carmichael number: 7 ∙ 13 ∙ 19
@.=0; @.2=1; @.3=1; @.5=1; @.7=1; @.11=1; @.13=1; @.17=1; @.19=1; @.23=1; @.29=1; @.31=1
/*[↑] prime number memoization array. */
do p=3 to N by 2; pm= p-1; bot=0; top=0 /*step through some (odd) prime numbers*/
if \isPrime(p) then iterate; nps= -p*p /*is P a prime? No, then skip it.*/
c.= 0 /*the list of Carmichael #'s (so far).*/
do h3=2 for pm-1; g= h3 + p /*get Carmichael numbers for this prime*/
npsH3= ((nps // h3) + h3) // h3 /*define a couple of shortcuts for pgm.*/
gPM= g * pm /*define a couple of shortcuts for pgm.*/
/* [↓] perform some weeding of D values*/
do d=1 for g-1; if gPM // d \== 0 then iterate
if npsH3 \== d//h3 then iterate
q= 1 + gPM % d; if \isPrime(q) then iterate
r= 1 + p * q % h3; if q * r // pm \== 1 then iterate
if \isPrime(r) then iterate
#= # + 1; c.q= r /*bump Carmichael counter; add to array*/
if bot==0 then bot= q; bot= min(bot, q); top= max(top, q)
end /*d*/
end /*h3*/
$= /*build list of some Carmichael numbers*/
if tell then do j=bot to top by 2; if c.j\==0 then $= $ p"∙"j'∙'c.j
end /*j*/
 
if $\=='' then say 'Carmichael number: ' strip($)
end /*p*/
say
say '──────── ' # " Carmichael numbers found."
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
isPrime: parse arg x; if @.x then return 1 /*is X a known prime?*/
if x<37 then return 0; if x//2==0 then return 0; if x// 3==0 then return 0
parse var x '' -1 _; if _==5 then return 0; if x// 7==0 then return 0
if x//11==0 then return 0; if x//13==0 then return 0; if x//17==0 then return 0
if x//19==0 then return 0; if x//23==0 then return 0; if x//29==0 then return 0
do k=29 by 6 until k*k>x; if x//k ==0 then return 0
if x//(k+2) ==0 then return 0
end /*k*/
@.x=1; return 1</syntaxhighlight>
'''output''' &nbsp; when using the default input:
<pre>
Carmichael number: 3∙11∙17
Carmichael number: 5∙13∙17 5∙17∙29 5∙29∙73
Carmichael number: 7∙13∙19 7∙19∙67 7∙23∙41 7∙31∙73 7∙73∙103
Carmichael number: 13∙37∙61 13∙61∙397 13∙97∙421
Carmichael number: 17∙41∙233 17∙353∙1201
Carmichael number: 19∙43∙409 19∙199∙271
Carmichael number: 23∙199∙353
Carmichael number: 29∙113∙1093 29∙197∙953
Carmichael number: 31∙61∙211 31∙151∙1171 31∙181∙331 31∙271∙601 31∙991∙15361
Carmichael number: 37∙73∙109 37∙109∙2017 37∙613∙1621
Carmichael number: 41∙61∙101 41∙73∙137 41∙101∙461 41∙241∙521 41∙881∙12041 41∙1721∙35281
Carmichael number: 43∙127∙211 43∙211∙337 43∙271∙5827 43∙433∙643 43∙547∙673 43∙631∙1597 43∙3361∙3907
Carmichael number: 47∙1151∙1933 47∙3359∙6073 47∙3727∙5153
Carmichael number: 53∙79∙599 53∙157∙521
Carmichael number: 59∙1451∙2089
Carmichael number: 61∙181∙1381 61∙241∙421 61∙271∙571 61∙277∙2113 61∙421∙12841 61∙541∙3001 61∙661∙2521 61∙1301∙19841 61∙3361∙4021
 
──────── a Carmichael69 number: Carmichael 13 ∙ 61 ∙numbers 397found.
</pre>
──────── a Carmichael number: 13 ∙ 37 ∙ 241
'''output''' &nbsp; when using the input of: &nbsp; <tt> -1000 </tt>
──────── a Carmichael number: 13 ∙ 97 ∙ 421
<pre>
──────── a Carmichael number: 13 ∙ 37 ∙ 97
──────── a Carmichael1038 number: Carmichael 13 ∙ 37 ∙numbers 61found.
</pre>
'''output''' &nbsp; when using the input of: &nbsp; <tt> -10000 </tt>
<pre>
──────── 8716 Carmichael numbers found.
</pre>
=={{header|Ring}}==
<syntaxhighlight lang="ring">
# Project : Carmichael 3 strong pseudoprimes
 
────────see a"The following are Carmichael number:munbers for 17p1 <= 4161:" + 233nl
see "p1 p2 p3 product" + nl
──────── a Carmichael number: 17 ∙ 353 ∙ 1201
 
for p = 2 to 61
──────── a Carmichael number: 19 ∙ 43 ∙ 409
carmichael3(p)
──────── a Carmichael number: 19 ∙ 199 ∙ 271
next
 
func carmichael3(p1)
──────── a Carmichael number: 23 ∙ 199 ∙ 353
if isprime(p1) = 0 return ok
 
for h3 = 1 to p1 -1
──────── a Carmichael number: 29 ∙ 113 ∙ 1093
t1 = (h3 + p1) * (p1 -1)
──────── a Carmichael number: 29 ∙ 197 ∙ 953
t2 = (-p1 * p1) % h3
 
if t2 < 0
──────── a Carmichael number: 31 ∙ 991 ∙ 15361
t2 = t2 + h3
──────── a Carmichael number: 31 ∙ 61 ∙ 631
ok
──────── a Carmichael number: 31 ∙ 151 ∙ 1171
for d = 1 to h3 + p1 -1
──────── a Carmichael number: 31 ∙ 61 ∙ 271
if t1 % d = 0 and t2 = (d % h3)
──────── a Carmichael number: 31 ∙ 61 ∙ 211
p2 = 1 + (t1 / d)
──────── a Carmichael number: 31 ∙ 271 ∙ 601
if isprime(p2) = 0
──────── a Carmichael number: 31 ∙ 181 ∙ 331
loop
 
ok
──────── a Carmichael number: 37 ∙ 109 ∙ 2017
p3 = 1 + floor((p1 * p2 / h3))
──────── a Carmichael number: 37 ∙ 73 ∙ 541
if isprime(p3) = 0 or ((p2 * p3) % (p1 -1)) != 1
──────── a Carmichael number: 37 ∙ 613 ∙ 1621
loop
──────── a Carmichael number: 37 ∙ 73 ∙ 181
ok
──────── a Carmichael number: 37 ∙ 73 ∙ 109
see "" + p1 + " " + p2 + " " + p3 + " " + p1*p2*p3 + nl
 
ok
──────── a Carmichael number: 41 ∙ 1721 ∙ 35281
next
──────── a Carmichael number: 41 ∙ 881 ∙ 12041
next
──────── a Carmichael number: 41 ∙ 101 ∙ 461
──────── a Carmichael number: 41 ∙ 241 ∙ 761
func isprime(num)
──────── a Carmichael number: 41 ∙ 241 ∙ 521
if (num <= 1) return 0 ok
──────── a Carmichael number: 41 ∙ 73 ∙ 137
if (num % 2 = 0) and num != 2
──────── a Carmichael number: 41 ∙ 61 ∙ 101
return 0
 
ok
──────── a Carmichael number: 43 ∙ 631 ∙ 13567
for i = 3 to floor(num / 2) -1 step 2
──────── a Carmichael number: 43 ∙ 271 ∙ 5827
if (num % i = 0)
──────── a Carmichael number: 43 ∙ 127 ∙ 2731
return 0
──────── a Carmichael number: 43 ∙ 127 ∙ 1093
ok
──────── a Carmichael number: 43 ∙ 211 ∙ 757
next
──────── a Carmichael number: 43 ∙ 631 ∙ 1597
return 1
──────── a Carmichael number: 43 ∙ 127 ∙ 211
</syntaxhighlight>
──────── a Carmichael number: 43 ∙ 211 ∙ 337
Output:
──────── a Carmichael number: 43 ∙ 433 ∙ 643
<pre>
──────── a Carmichael number: 43 ∙ 547 ∙ 673
────────The afollowing are Carmichael number:munbers for 43p1 <= 3361 ∙ 390761:
p1 p2 p3 product
 
== == == =======
──────── a Carmichael number: 47 ∙ 3359 ∙ 6073
3 11 17 561
──────── a Carmichael number: 47 ∙ 1151 ∙ 1933
5 29 73 10585
──────── a Carmichael number: 47 ∙ 3727 ∙ 5153
5 17 29 2465
 
5 13 17 1105
──────── a Carmichael number: 53 ∙ 157 ∙ 2081
7 19 67 8911
──────── a Carmichael number: 53 ∙ 79 ∙ 599
7 31 73 15841
──────── a Carmichael number: 53 ∙ 157 ∙ 521
7 13 31 2821
7 23 41 6601
7 73 103 52633
7 13 19 1729
13 61 397 314821
13 37 241 115921
13 97 421 530881
13 37 97 46657
13 37 61 29341
17 41 233 162401
17 353 1201 7207201
19 43 409 334153
19 199 271 1024651
23 199 353 1615681
29 113 1093 3581761
29 197 953 5444489
31 991 15361 471905281
31 61 631 1193221
31 151 1171 5481451
31 61 271 512461
31 61 211 399001
31 271 601 5049001
31 181 331 1857241
37 109 2017 8134561
37 73 541 1461241
37 613 1621 36765901
37 73 181 488881
37 73 109 294409
41 1721 35281 2489462641
41 881 12041 434932961
41 101 461 1909001
41 241 761 7519441
41 241 521 5148001
41 73 137 410041
41 61 101 252601
43 631 13567 368113411
43 271 5827 67902031
43 127 2731 14913991
43 127 1093 5968873
43 211 757 6868261
43 631 1597 43331401
43 127 211 1152271
43 211 337 3057601
43 433 643 11972017
43 547 673 15829633
43 3361 3907 564651361
47 3359 6073 958762729
47 1151 1933 104569501
47 3727 5153 902645857
53 157 2081 17316001
53 79 599 2508013
53 157 521 4335241
59 1451 2089 178837201
61 421 12841 329769721
61 181 5521 60957361
61 1301 19841 1574601601
61 277 2113 35703361
61 181 1381 15247621
61 541 3001 99036001
61 661 2521 101649241
61 271 571 9439201
61 241 421 6189121
61 3361 4021 824389441
</pre>
=={{header|RPL}}==
{{works with|HP|49}}
« { }
3 ROT '''FOR''' p1
2 p1 1 - '''FOR''' h3
1 h3 p1 + 1 - '''FOR''' d
'''IF''' h3 p1 + p1 1 - * d MOD NOT p1 SQ NEG h3 MOD d h3 MOD == AND '''THEN'''
p1 1 - h3 p1 + d IQUOT * 1 +
'''CASE'''
DUP ISPRIME? NOT '''THEN''' DROP '''END'''
p1 OVER * h3 IQUOT 1 +
DUP ISPRIME? NOT '''THEN''' DROP2 '''END'''
DUP2 * p1 1 - MOD 1 ≠ '''THEN''' DROP2 '''END'''
p1 UNROT 3 →LIST 1 →LIST +
'''END'''
'''END'''
'''NEXT'''
'''NEXT'''
p1 NEXTPRIME 1 - 'p1' STO
'''NEXT'''
» '<span style="color:blue">CARMIC</span>' STO
 
61 <span style="color:blue">CARMIC</span>
──────── a Carmichael number: 59 ∙ 1451 ∙ 2089
{{out}}
 
<pre>
──────── a Carmichael number: 61 ∙ 421 ∙ 12841
1: { { 3 11 17 } { 5 29 73 } { 5 17 29 } { 5 13 17 } { 7 19 67 } { 7 31 73 } { 7 13 31 } { 7 73 103 } { 7 13 19 } { 13 61 397 } { 13 37 241 } { 13 97 421 } { 13 37 97 } { 13 37 61 } { 17 353 1201 } { 19 199 271 } { 23 199 353 } { 29 113 1093 } { 29 197 953 } { 31 991 15361 } { 31 61 631 } { 31 151 1171 } { 31 61 271 } { 31 61 211 } { 31 271 601 } { 31 181 331 } { 37 109 2017 } { 37 73 541 } { 37 613 1621 } { 37 73 181 } { 37 73 109 } { 41 1721 35281 } { 41 881 12041 } { 41 241 761 } { 41 241 521 } { 43 631 13567 } { 43 127 2731 } { 43 127 1093 } { 43 211 757 } { 43 631 1597 } { 43 127 211 } { 43 211 337 } { 43 547 673 } { 43 3361 3907 } { 47 3359 6073 } { 47 1151 1933 } { 47 3727 5153 } { 53 53 937 } { 53 157 2081 } { 53 157 521 } { 59 1451 2089 } { 61 421 12841 } { 61 181 5521 } { 61 61 1861 } { 61 61 1861 } { 61 181 1381 } { 61 541 3001 } { 61 661 2521 } { 61 241 421 } { 61 3361 4021 } }
──────── a Carmichael number: 61 ∙ 181 ∙ 5521
──────── a Carmichael number: 61 ∙ 1301 ∙ 19841
──────── a Carmichael number: 61 ∙ 277 ∙ 2113
──────── a Carmichael number: 61 ∙ 181 ∙ 1381
──────── a Carmichael number: 61 ∙ 541 ∙ 3001
──────── a Carmichael number: 61 ∙ 661 ∙ 2521
──────── a Carmichael number: 61 ∙ 271 ∙ 571
──────── a Carmichael number: 61 ∙ 241 ∙ 421
──────── a Carmichael number: 61 ∙ 3361 ∙ 4021
 
 
69 Carmichael numbers found.
</pre>
 
=={{header|Ruby}}==
===numbers in sorted order===
{{works with|Ruby|1.9}}
With a few lines of code (and using sparse arrays), the Carmichael numbers can be shown in order.
<syntaxhighlight lang="ruby"># Generate Charmichael Numbers
<lang rexx>/*REXX program calculates Carmichael 3-strong pseudoprimes (up to N).*/
numeric digits 30 /*in case user wants bigger nums.*/
parse arg N .; if N=='' then N=61 /*allow user to specify the limit*/
if 1=='f1'x then times='af'x /*if EBCDIC machine, use a bullet*/
else times='f9'x /* " ASCII " " " " */
carms=0 /*number of Carmichael #s so far.*/
!.=0 /*a method of prime memoization. */
/*Carmichael numbers aren't even.*/
do p=3 to N by 2; if \isPrime(p) then iterate /*Not prime? Skip.*/
pm=p-1; nps=-p*p; @.=0; min=1e9; max=0 /*some handy-dandy variables.*/
 
require 'prime'
do h3=2 to pm; g=h3+p /*find Carmichael #s for this P. */
do d=1 to g-1
if g*pm//d\==0 then iterate
if ((nps//h3)+h3)//h3\==d//h3 then iterate
q=1+pm*g%d; if \isPrime(q) then iterate
r=1+p*q%h3; if q*r//pm\==1 then iterate
if \isPrime(r) then iterate
carms=carms+1 /*bump the Carmichael # counter. */
min=min(min,q); max=max(max,q); @.q=r /*build a list.*/
end /*d*/
end /*h3*/
/*display a list of some Carm #s.*/
do j=min to max by 2; if @.j==0 then iterate /*one of the #s?*/
say '──────── a Carmichael number: ' p times j times @.j
end /*j*/
say /*show bueatification blank line.*/
end /*p*/
 
Prime.each(61) do |p|
say; say carms ' Carmichael numbers found.'
(2...p).each do |h3|
exit /*stick a fork in it, we're done.*/
g = h3 + p
/*──────────────────────────────────ISPRIME subroutine──────────────────*/
(1...g).each do |d|
isPrime: procedure expose !.; parse arg x; if !.x then return 1
next if (g*(p-1)) % d != 0 or (-p*p) % h3 != d % h3
if wordpos(x,'2 3 5 7 11 13')\==0 then do; !.x=1; return 1; end
if x<17 then return 0; ifq x//2==0 then1 return+ 0;((p if- x//3==01) then* returng / 0d)
next unless q.prime?
if right(x,1)==5 then return 0; if x//7==0 then return 0
r do i=11 by1 6+ (p until i*i>x; q if x// i ==0 then return 0h3)
next unless r.prime? and (q * r) % (p - if x//(i+21) ==0 then return 01
puts "#{p} x #{q} x #{r}" end /*i*/
end
!.x=1; return 1</lang>
end
'''output''' when using the default input
puts
<pre style="height:50ex;overflow:scroll">
end</syntaxhighlight>
──────── a Carmichael number: 3 ∙ 11 ∙ 17
 
{{out}}
──────── a Carmichael number: 5 ∙ 13 ∙ 17
<pre style="height:30ex;overflow:scroll">
──────── a Carmichael number: 5 ∙ 17 ∙ 29
3 x 11 x 17
──────── a Carmichael number: 5 ∙ 29 ∙ 73
 
5 x 29 x 73
──────── a Carmichael number: 7 ∙ 13 ∙ 19
5 x 17 x 29
──────── a Carmichael number: 7 ∙ 19 ∙ 67
5 x 13 x 17
──────── a Carmichael number: 7 ∙ 23 ∙ 41
──────── a Carmichael number: 7 ∙ 31 ∙ 73
──────── a Carmichael number: 7 ∙ 73 ∙ 103
 
7 x 19 x 67
7 x 31 x 73
7 x 13 x 31
7 x 23 x 41
7 x 73 x 103
7 x 13 x 19
 
──────── a Carmichael number: 13 ∙ 37 ∙ 61
──────── a Carmichael number: 13 ∙ 61 ∙ 397
──────── a Carmichael number: 13 ∙ 97 ∙ 421
 
13 x 61 x 397
──────── a Carmichael number: 17 ∙ 41 ∙ 233
13 x 37 x 241
──────── a Carmichael number: 17 ∙ 353 ∙ 1201
13 x 97 x 421
13 x 37 x 97
13 x 37 x 61
 
17 x 41 x 233
──────── a Carmichael number: 19 ∙ 43 ∙ 409
17 x 353 x 1201
──────── a Carmichael number: 19 ∙ 199 ∙ 271
 
19 x 43 x 409
──────── a Carmichael number: 23 ∙ 199 ∙ 353
19 x 199 x 271
 
23 x 199 x 353
──────── a Carmichael number: 29 ∙ 113 ∙ 1093
──────── a Carmichael number: 29 ∙ 197 ∙ 953
 
29 x 113 x 1093
──────── a Carmichael number: 31 ∙ 61 ∙ 211
29 x 197 x 953
──────── a Carmichael number: 31 ∙ 151 ∙ 1171
──────── a Carmichael number: 31 ∙ 181 ∙ 331
──────── a Carmichael number: 31 ∙ 271 ∙ 601
──────── a Carmichael number: 31 ∙ 991 ∙ 15361
 
31 x 991 x 15361
──────── a Carmichael number: 37 ∙ 73 ∙ 109
31 x 61 x 631
──────── a Carmichael number: 37 ∙ 109 ∙ 2017
31 x 151 x 1171
──────── a Carmichael number: 37 ∙ 613 ∙ 1621
31 x 61 x 271
31 x 61 x 211
31 x 271 x 601
31 x 181 x 331
 
37 x 109 x 2017
──────── a Carmichael number: 41 ∙ 61 ∙ 101
37 x 73 x 541
──────── a Carmichael number: 41 ∙ 73 ∙ 137
37 x 613 x 1621
──────── a Carmichael number: 41 ∙ 101 ∙ 461
37 x 73 x 181
──────── a Carmichael number: 41 ∙ 241 ∙ 521
37 x 73 x 109
──────── a Carmichael number: 41 ∙ 881 ∙ 12041
──────── a Carmichael number: 41 ∙ 1721 ∙ 35281
 
41 x 1721 x 35281
──────── a Carmichael number: 43 ∙ 127 ∙ 211
41 x 881 x 12041
──────── a Carmichael number: 43 ∙ 211 ∙ 337
41 x 101 x 461
──────── a Carmichael number: 43 ∙ 271 ∙ 5827
41 x 241 x 761
──────── a Carmichael number: 43 ∙ 433 ∙ 643
41 x 241 x 521
──────── a Carmichael number: 43 ∙ 547 ∙ 673
41 x 73 x 137
──────── a Carmichael number: 43 ∙ 631 ∙ 1597
41 x 61 x 101
──────── a Carmichael number: 43 ∙ 3361 ∙ 3907
 
43 x 631 x 13567
──────── a Carmichael number: 47 ∙ 1151 ∙ 1933
43 x 271 x 5827
──────── a Carmichael number: 47 ∙ 3359 ∙ 6073
43 x 127 x 2731
──────── a Carmichael number: 47 ∙ 3727 ∙ 5153
43 x 127 x 1093
43 x 211 x 757
43 x 631 x 1597
43 x 127 x 211
43 x 211 x 337
43 x 433 x 643
43 x 547 x 673
43 x 3361 x 3907
 
47 x 3359 x 6073
──────── a Carmichael number: 53 ∙ 79 ∙ 599
47 x 1151 x 1933
──────── a Carmichael number: 53 ∙ 157 ∙ 521
47 x 3727 x 5153
 
53 x 157 x 2081
──────── a Carmichael number: 59 ∙ 1451 ∙ 2089
53 x 79 x 599
53 x 157 x 521
 
59 x 1451 x 2089
──────── a Carmichael number: 61 ∙ 181 ∙ 1381
──────── a Carmichael number: 61 ∙ 241 ∙ 421
──────── a Carmichael number: 61 ∙ 271 ∙ 571
──────── a Carmichael number: 61 ∙ 277 ∙ 2113
──────── a Carmichael number: 61 ∙ 421 ∙ 12841
──────── a Carmichael number: 61 ∙ 541 ∙ 3001
──────── a Carmichael number: 61 ∙ 661 ∙ 2521
──────── a Carmichael number: 61 ∙ 1301 ∙ 19841
──────── a Carmichael number: 61 ∙ 3361 ∙ 4021
 
61 x 421 x 12841
 
61 x 181 x 5521
69 Carmichael numbers found.
61 x 1301 x 19841
61 x 277 x 2113
61 x 181 x 1381
61 x 541 x 3001
61 x 661 x 2521
61 x 271 x 571
61 x 241 x 421
61 x 3361 x 4021
</pre>
 
=={{header|RubyRust}}==
<syntaxhighlight lang="rust">
{{works with|Ruby|1.9}}
fn is_prime(n: i64) -> bool {
<lang ruby># Generate Charmichael Numbers
if n > 1 {
#
(2..((n / 2) + 1)).all(|x| n % x != 0)
# Nigel_Galloway
} else {
# November 30th., 2012.
false
#
require 'prime'
Integer.each_prime(61) {|p|
(2...p).each {|h3|
g = h3 + p
(1...g).each {|d|
next if (g*(p-1)) % d != 0 or (-1*p*p) % h3 != d % h3
q = 1 + ((p - 1) * g / d)
next if not q.prime?
r = 1 + (p * q / h3)
next if not r.prime? or not (q * r) % (p - 1) == 1
puts "#{p} X #{q} X #{r}"
}
}
puts ""
}</lang>
{{out}}
<pre style="height:30ex;overflow:scroll">
3 X 11 X 17
 
// The modulo operator actually calculates the remainder.
5 X 29 X 73
fn modulo(n: i64, m: i64) -> i64 {
5 X 17 X 29
((n % m) + m) % m
5 X 13 X 17
}
 
fn carmichael(p1: i64) -> Vec<(i64, i64, i64)> {
7 X 19 X 67
let mut results = Vec::new();
7 X 31 X 73
if !is_prime(p1) {
7 X 13 X 31
return results;
7 X 23 X 41
7 X 73 X 103}
7 X 13 X 19
 
for h3 in 2..p1 {
for d in 1..(h3 + p1) {
if (h3 + p1) * (p1 - 1) % d != 0 || modulo(-p1 * p1, h3) != d % h3 {
continue;
}
 
let p2 = 1 + ((p1 - 1) * (h3 + p1) / d);
13 X 61 X 397
if !is_prime(p2) {
13 X 37 X 241
continue;
13 X 97 X 421
13 X 37 X 97 }
13 X 37 X 61
 
let p3 = 1 + (p1 * p2 / h3);
17 X 41 X 233
if !is_prime(p3) || ((p2 * p3) % (p1 - 1) != 1) {
17 X 353 X 1201
continue;
}
 
results.push((p1, p2, p3));
19 X 43 X 409
19 X 199 X 271 }
}
 
23 X 199 X 353results
}
 
29 X 113 X 1093
29 X 197 X 953
 
31 X 991 X 15361
31 X 61 X 631
31 X 151 X 1171
31 X 61 X 271
31 X 61 X 211
31 X 271 X 601
31 X 181 X 331
 
37 X 109 X 2017
37 X 73 X 541
37 X 613 X 1621
37 X 73 X 181
37 X 73 X 109
 
fn main() {
41 X 1721 X 35281
41 X 881 X 12041(1..62)
.filter(|&x| is_prime(x))
41 X 101 X 461
.map(carmichael)
41 X 241 X 761
.filter(|x| !x.is_empty())
41 X 241 X 521
.flat_map(|x| x)
41 X 73 X 137
.inspect(|x| println!("{:?}", x))
41 X 61 X 101
.count(); // Evaluate entire iterator
 
}
43 X 631 X 13567
</syntaxhighlight>
43 X 271 X 5827
{{out}}
43 X 127 X 2731
<pre>
43 X 127 X 1093
(3, 11, 17)
43 X 211 X 757
(5, 29, 73)
43 X 631 X 1597
(5, 17, 29)
43 X 127 X 211
(5, 13, 17)
43 X 211 X 337
.
43 X 433 X 643
.
43 X 547 X 673
.
43 X 3361 X 3907
(61, 661, 2521)
 
(61, 271, 571)
47 X 3359 X 6073
(61, 241, 421)
47 X 1151 X 1933
(61, 3361, 4021)
47 X 3727 X 5153
 
53 X 157 X 2081
53 X 79 X 599
53 X 157 X 521
 
59 X 1451 X 2089
 
61 X 421 X 12841
61 X 181 X 5521
61 X 1301 X 19841
61 X 277 X 2113
61 X 181 X 1381
61 X 541 X 3001
61 X 661 X 2521
61 X 271 X 571
61 X 241 X 421
61 X 3361 X 4021
</pre>
 
=={{header|Seed7}}==
The function [http://seed7.sourceforge.net/algorith/math.htm#isPrime isPrime] below is borrowed from the [http://seed7.sourceforge.net/algorith Seed7 algorithm collection].
 
<langsyntaxhighlight lang="seed7">$ include "seed7_05.s7i";
const func boolean: isPrime (in integer: number) is func
Line 1,085 ⟶ 3,542:
end if;
end for;
end func;</langsyntaxhighlight>
 
{{out}}
Line 1,159 ⟶ 3,616:
61 * 3361 * 4021 = 824389441
</pre>
=={{header|Sidef}}==
{{trans|Perl}}
<syntaxhighlight lang="ruby">func forprimes(a, b, callback) {
for (a = (a-1 -> next_prime); a <= b; a.next_prime!) {
callback(a)
}
}
 
forprimes(3, 61, func(p) {
for h3 in (2 ..^ p) {
var ph3 = (p + h3)
for d in (1 ..^ ph3) {
((-p * p) % h3) != (d % h3) && next
((p-1) * ph3) % d && next
var q = 1+((p-1) * ph3 / d)
q.is_prime || next
var r = 1+((p*q - 1)/h3)
r.is_prime || next
(q*r) % (p-1) == 1 || next
printf("%2d x %5d x %5d = %s\n",p,q,r, p*q*r)
}
}
})</syntaxhighlight>
 
{{out}}
<pre>
3 x 11 x 17 = 561
5 x 29 x 73 = 10585
5 x 17 x 29 = 2465
5 x 13 x 17 = 1105
... full output is 69 lines ...
61 x 661 x 2521 = 101649241
61 x 271 x 571 = 9439201
61 x 241 x 421 = 6189121
61 x 3361 x 4021 = 824389441
</pre>
=={{header|Swift}}==
 
{{trans|Rust}}
 
<syntaxhighlight lang="swift">import Foundation
 
extension BinaryInteger {
@inlinable
public var isPrime: Bool {
if self == 0 || self == 1 {
return false
} else if self == 2 {
return true
}
 
let max = Self(ceil((Double(self).squareRoot())))
 
for i in stride(from: 2, through: max, by: 1) {
if self % i == 0 {
return false
}
}
 
return true
}
}
 
@inlinable
public func carmichael<T: BinaryInteger & SignedNumeric>(p1: T) -> [(T, T, T)] {
func mod(_ n: T, _ m: T) -> T { (n % m + m) % m }
 
var res = [(T, T, T)]()
 
guard p1.isPrime else {
return res
}
 
for h3 in stride(from: 2, to: p1, by: 1) {
for d in stride(from: 1, to: h3 + p1, by: 1) {
if (h3 + p1) * (p1 - 1) % d != 0 || mod(-p1 * p1, h3) != d % h3 {
continue
}
 
let p2 = 1 + (p1 - 1) * (h3 + p1) / d
 
guard p2.isPrime else {
continue
}
 
let p3 = 1 + p1 * p2 / h3
 
guard p3.isPrime && (p2 * p3) % (p1 - 1) == 1 else {
continue
}
 
res.append((p1, p2, p3))
}
}
 
return res
}
 
 
let res =
(1..<62)
.lazy
.filter({ $0.isPrime })
.map(carmichael)
.filter({ !$0.isEmpty })
.flatMap({ $0 })
 
for c in res {
print(c)
}</syntaxhighlight>
 
{{out}}
 
<pre>(3, 11, 17)
(5, 29, 73)
(5, 17, 29)
(5, 13, 17)
(7, 19, 67)
...
(61, 661, 2521)
(61, 271, 571)
(61, 241, 421)
(61, 3361, 4021)</pre>
=={{header|Tcl}}==
Using the primality tester from [[Miller-Rabin primality test#Tcl|the Miller-Rabin task]]...
<langsyntaxhighlight lang="tcl">proc carmichael {limit {rounds 10}} {
set carmichaels {}
for {set p1 2} {$p1 <= $limit} {incr p1} {
Line 1,184 ⟶ 3,763:
}
return $carmichaels
}</langsyntaxhighlight>
Demonstrating:
<langsyntaxhighlight lang="tcl">set results [carmichael 61 2]
puts "[expr {[llength $results]/4}] Carmichael numbers found"
foreach {p1 p2 p3 c} $results {
puts "$p1 x $p2 x $p3 = $c"
}</langsyntaxhighlight>
{{out}}
<pre>
Line 1,263 ⟶ 3,842:
61 x 241 x 421 = 6189121
61 x 3361 x 4021 = 824389441
</pre>
=={{header|Vala}}==
{{trans|D}}
<syntaxhighlight lang="vala">long mod(long n, long m) {
return ((n % m) + m) % m;
}
 
bool is_prime(long n) {
if (n == 2 || n == 3)
return true;
else if (n < 2 || n % 2 == 0 || n % 3 == 0)
return false;
for (long div = 5, inc = 2; div * div <= n;
div += inc, inc = 6 - inc)
if (n % div == 0)
return false;
return true;
}
 
void main() {
for (long p = 2; p <= 63; p++) {
if (!is_prime(p)) continue;
for (long h3 = 2; h3 <= p; h3++) {
var g = h3 + p;
for (long d = 1; d <= g; d++) {
if ((g * (p - 1)) % d != 0 || mod(-p * p, h3) != d % h3)
continue;
var q = 1 + (p - 1) * g / d;
if (!is_prime(q)) continue;
var r = 1 + (p * q / h3);
if (!is_prime(r) || (q * r) % (p - 1) != 1) continue;
stdout.printf("%5ld × %5ld × %5ld = %10ld\n", p, q, r, p * q * r);
}
}
}
}</syntaxhighlight>
{{out}}
<pre>
3 × 11 × 17 = 561
3 × 3 × 5 = 45
5 × 29 × 73 = 10585
5 × 5 × 13 = 325
5 × 17 × 29 = 2465
5 × 13 × 17 = 1105
7 × 19 × 67 = 8911
7 × 31 × 73 = 15841
7 × 13 × 31 = 2821
7 × 23 × 41 = 6601
7 × 7 × 13 = 637
7 × 73 × 103 = 52633
7 × 13 × 19 = 1729
11 × 11 × 61 = 7381
11 × 11 × 41 = 4961
11 × 11 × 31 = 3751
13 × 61 × 397 = 314821
13 × 37 × 241 = 115921
13 × 97 × 421 = 530881
13 × 37 × 97 = 46657
13 × 37 × 61 = 29341
17 × 41 × 233 = 162401
17 × 17 × 97 = 28033
17 × 353 × 1201 = 7207201
19 × 43 × 409 = 334153
19 × 19 × 181 = 65341
19 × 19 × 73 = 26353
19 × 19 × 37 = 13357
19 × 199 × 271 = 1024651
23 × 23 × 89 = 47081
23 × 23 × 67 = 35443
23 × 199 × 353 = 1615681
29 × 29 × 421 = 354061
29 × 113 × 1093 = 3581761
29 × 29 × 281 = 236321
29 × 197 × 953 = 5444489
31 × 991 × 15361 = 471905281
31 × 61 × 631 = 1193221
31 × 151 × 1171 = 5481451
31 × 31 × 241 = 231601
31 × 61 × 271 = 512461
31 × 61 × 211 = 399001
31 × 271 × 601 = 5049001
31 × 31 × 61 = 58621
31 × 181 × 331 = 1857241
37 × 109 × 2017 = 8134561
37 × 73 × 541 = 1461241
37 × 613 × 1621 = 36765901
37 × 73 × 181 = 488881
37 × 37 × 73 = 99937
37 × 73 × 109 = 294409
41 × 1721 × 35281 = 2489462641
41 × 881 × 12041 = 434932961
41 × 41 × 281 = 472361
41 × 41 × 241 = 405121
41 × 101 × 461 = 1909001
41 × 241 × 761 = 7519441
41 × 241 × 521 = 5148001
41 × 73 × 137 = 410041
41 × 61 × 101 = 252601
43 × 631 × 13567 = 368113411
43 × 271 × 5827 = 67902031
43 × 127 × 2731 = 14913991
43 × 43 × 463 = 856087
43 × 127 × 1093 = 5968873
43 × 211 × 757 = 6868261
43 × 631 × 1597 = 43331401
43 × 127 × 211 = 1152271
43 × 211 × 337 = 3057601
43 × 433 × 643 = 11972017
43 × 547 × 673 = 15829633
43 × 3361 × 3907 = 564651361
47 × 47 × 277 = 611893
47 × 47 × 139 = 307051
47 × 3359 × 6073 = 958762729
47 × 1151 × 1933 = 104569501
47 × 3727 × 5153 = 902645857
53 × 53 × 937 = 2632033
53 × 157 × 2081 = 17316001
53 × 79 × 599 = 2508013
53 × 53 × 313 = 879217
53 × 157 × 521 = 4335241
53 × 53 × 157 = 441013
59 × 59 × 1741 = 6060421
59 × 59 × 349 = 1214869
59 × 59 × 233 = 811073
59 × 1451 × 2089 = 178837201
61 × 421 × 12841 = 329769721
61 × 181 × 5521 = 60957361
61 × 61 × 1861 = 6924781
61 × 1301 × 19841 = 1574601601
61 × 277 × 2113 = 35703361
61 × 181 × 1381 = 15247621
61 × 541 × 3001 = 99036001
61 × 661 × 2521 = 101649241
61 × 271 × 571 = 9439201
61 × 241 × 421 = 6189121
61 × 3361 × 4021 = 824389441
</pre>
=={{header|Wren}}==
{{trans|Go}}
{{libheader|Wren-fmt}}
{{libheader|Wren-math}}
<syntaxhighlight lang="wren">import "./fmt" for Fmt
import "./math" for Int
 
var mod = Fn.new { |n, m| ((n%m) + m) % m }
 
var carmichael = Fn.new { |p1|
for (h3 in 2...p1) {
for (d in 1...h3 + p1) {
if ((h3 + p1) * (p1 - 1) % d == 0 && mod.call(-p1 * p1, h3) == d % h3) {
var p2 = 1 + ((p1 - 1) * (h3 + p1) / d).floor
if (Int.isPrime(p2)) {
var p3 = 1 + (p1 * p2 / h3).floor
if (Int.isPrime(p3)) {
if (p2 * p3 % (p1 - 1) == 1) {
var c = p1 * p2 * p3
Fmt.print("$2d $4d $5d $10d", p1, p2, p3, c)
}
}
}
}
}
}
}
 
System.print("The following are Carmichael munbers for p1 <= 61:\n")
System.print("p1 p2 p3 product")
System.print("== == == =======")
for (p1 in 2..61) {
if (Int.isPrime(p1)) carmichael.call(p1)
}</syntaxhighlight>
 
{{out}}
<pre>
The following are Carmichael munbers for p1 <= 61:
 
p1 p2 p3 product
== == == =======
3 11 17 561
5 29 73 10585
5 17 29 2465
5 13 17 1105
7 19 67 8911
7 31 73 15841
7 13 31 2821
7 23 41 6601
7 73 103 52633
7 13 19 1729
13 61 397 314821
13 37 241 115921
13 97 421 530881
13 37 97 46657
13 37 61 29341
17 41 233 162401
17 353 1201 7207201
19 43 409 334153
19 199 271 1024651
23 199 353 1615681
29 113 1093 3581761
29 197 953 5444489
31 991 15361 471905281
31 61 631 1193221
31 151 1171 5481451
31 61 271 512461
31 61 211 399001
31 271 601 5049001
31 181 331 1857241
37 109 2017 8134561
37 73 541 1461241
37 613 1621 36765901
37 73 181 488881
37 73 109 294409
41 1721 35281 2489462641
41 881 12041 434932961
41 101 461 1909001
41 241 761 7519441
41 241 521 5148001
41 73 137 410041
41 61 101 252601
43 631 13567 368113411
43 271 5827 67902031
43 127 2731 14913991
43 127 1093 5968873
43 211 757 6868261
43 631 1597 43331401
43 127 211 1152271
43 211 337 3057601
43 433 643 11972017
43 547 673 15829633
43 3361 3907 564651361
47 3359 6073 958762729
47 1151 1933 104569501
47 3727 5153 902645857
53 157 2081 17316001
53 79 599 2508013
53 157 521 4335241
59 1451 2089 178837201
61 421 12841 329769721
61 181 5521 60957361
61 1301 19841 1574601601
61 277 2113 35703361
61 181 1381 15247621
61 541 3001 99036001
61 661 2521 101649241
61 271 571 9439201
61 241 421 6189121
61 3361 4021 824389441
</pre>
 
=={{header|zkl}}==
Using the Miller-Rabin primality test in lib GMP.
<syntaxhighlight lang="zkl">var BN=Import("zklBigNum"), bi=BN(0); // gonna recycle bi
primes:=T(2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61);
var p2,p3;
cs:=[[(p1,h3,d); primes; { [2..p1 - 1] }; // list comprehension
{ [1..h3 + p1 - 1] },
{ ((h3 + p1)*(p1 - 1)%d == 0 and ((-p1*p1):mod(_,h3) == d%h3)) },//guard
{ (p2=1 + (p1 - 1)*(h3 + p1)/d):bi.set(_).probablyPrime() },//guard
{ (p3=1 + (p1*p2/h3)):bi.set(_).probablyPrime() }, //guard
{ 1==(p2*p3)%(p1 - 1) }; //guard
{ T(p1,p2,p3) } // return list of three primes in Carmichael number
]];
fcn mod(a,b) { m:=a%b; if(m<0) m+b else m }</syntaxhighlight>
<syntaxhighlight lang="zkl">cs.len().println(" Carmichael numbers found:");
cs.pump(Console.println,fcn([(p1,p2,p3)]){
"%2d * %4d * %5d = %d".fmt(p1,p2,p3,p1*p2*p3) });</syntaxhighlight>
{{out}}
<pre>
69 Carmichael numbers found:
3 * 11 * 17 = 561
5 * 29 * 73 = 10585
5 * 17 * 29 = 2465
5 * 13 * 17 = 1105
7 * 19 * 67 = 8911
...
61 * 181 * 1381 = 15247621
61 * 541 * 3001 = 99036001
61 * 661 * 2521 = 101649241
61 * 271 * 571 = 9439201
61 * 241 * 421 = 6189121
61 * 3361 * 4021 = 824389441
</pre>
1,151

edits