Call an object method: Difference between revisions

m
sntax highlighting fixup automation
m (sntax highlighting fixup automation)
Line 8:
 
=={{header|ActionScript}}==
<langsyntaxhighlight lang=actionscript>// Static
MyClass.method(someParameter);
 
// Instance
myInstance.method(someParameter);</langsyntaxhighlight>
 
=={{header|Ada}}==
Line 22:
 
Specify the class My_Class, with one primitive subprogram, one dynamic subprogram and a static subprogram:
<langsyntaxhighlight lang=Ada> package My_Class is
type Object is tagged private;
procedure Primitive(Self: Object); -- primitive subprogram
Line 29:
private
type Object is tagged null record;
end My_Class;</langsyntaxhighlight>
 
Implement the package:
<langsyntaxhighlight lang=Ada> package body My_Class is
procedure Primitive(Self: Object) is
begin
Line 49:
Put_Line("Greetings");
end Static;
end My_Class;</langsyntaxhighlight>
 
Specify and implement a subclass of My_Class:
<langsyntaxhighlight lang=Ada> package Other_Class is
type Object is new My_Class.Object with null record;
overriding procedure Primitive(Self: Object);
Line 62:
Put_Line("Hello Universe!");
end Primitive;
end Other_Class;</langsyntaxhighlight>
 
The main program, making the dynamic and static calls:
 
<langsyntaxhighlight lang=Ada>with Ada.Text_IO; use Ada.Text_IO;
 
procedure Call_Method is
Line 85:
Ob1.Dynamic;
Ob2.Dynamic;
end Call_Method;</langsyntaxhighlight>
 
{{out}}
Line 96:
 
=={{header|Apex}}==
<langsyntaxhighlight lang=Java>// Static
MyClass.method(someParameter);
 
// Instance
myInstance.method(someParameter);</langsyntaxhighlight>
 
=={{header|AutoHotkey}}==
{{works with|AutoHotkey_L}}
(AutoHotkey Basic does not have classes)
<langsyntaxhighlight lang=AHK>class myClass
{
Method(someParameter){
Line 114:
myClass.method("hi")
myInstance := new myClass
myInstance.Method("bye")</langsyntaxhighlight>
 
=={{header|Bracmat}}==
Line 120:
 
Inside an object, the object is represented by <code>its</code>, comparable to <code>this</code> in other languages.
<langsyntaxhighlight lang=bracmat>( ( myClass
= (name=aClass)
( Method
Line 132:
& !MyObject:?Alias
& (Alias..Method)$"Example of calling an instance method from an alias"
);</langsyntaxhighlight>
Output:
<pre>Output from aClass: Example of calling a 'class' method
Line 140:
=={{header|C}}==
C has structures and it also has function pointers, which allows C structures to be associated with any function with the same signature as the pointer. Thus, C structures can also have object methods.
<syntaxhighlight lang=C>
<lang C>
#include<stdlib.h>
#include<stdio.h>
Line 168:
return 0;
}
</syntaxhighlight>
</lang>
And yes, it works :
<pre>
Line 177:
 
=={{header|C++}}==
<langsyntaxhighlight lang=cpp>// Static
MyClass::method(someParameter);
 
Line 185:
// Pointer
MyPointer->method(someParameter);
</syntaxhighlight>
</lang>
 
=={{header|C_sharp|C#}}==
<langsyntaxhighlight lang=csharp>// Static
MyClass.Method(someParameter);
// Instance
myInstance.Method(someParameter);</langsyntaxhighlight>
 
=={{header|ChucK}}==
<syntaxhighlight lang=c>
<lang c>
MyClass myClassObject;
myClassObject.myFunction(some parameter);
</syntaxhighlight>
</lang>
 
=={{header|Clojure}}==
<langsyntaxhighlight lang=clojure>(Long/toHexString 15) ; use forward slash for static methods
(System/currentTimeMillis)
 
(.equals 1 2) ; use dot operator to call instance methods
(. 1 (equals 2)) ; alternative style</langsyntaxhighlight>
 
=={{header|COBOL}}==
COBOL has two ways to invoke a method: the <code>INVOKE</code> statement and inline method invocation.
<langsyntaxhighlight lang=cobol>*> INVOKE
INVOKE FooClass "someMethod" RETURNING bar *> Factory object
INVOKE foo-instance "anotherMethod" RETURNING bar *> Instance object
Line 215:
*> Inline method invocation
MOVE FooClass::"someMethod" TO bar *> Factory object
MOVE foo-instance::"anotherMethod" TO bar *> Instance object</langsyntaxhighlight>
 
To call factory methods of objects of an unknown type (such as when you may have a subclass of the class wanted), it is necessary to get a reference to the class's factory object by calling the <code>"FactoryObject"</code> method.
<langsyntaxhighlight lang=cobol>INVOKE foo-instance "FactoryObject" RETURNING foo-factory
*> foo-factory can be treated like a normal object reference.
INVOKE foo-factory "someMethod"</langsyntaxhighlight>
 
=={{header|CoffeeScript}}==
While CoffeeScript does provide a useful class abstraction around its prototype-based inheritance, there aren't any actual classes.
<langsyntaxhighlight lang=coffeescript>class Foo
@staticMethod: -> 'Bar'
 
Line 232:
 
foo.instanceMethod() #=> 'Baz'
Foo.staticMethod() #=> 'Bar'</langsyntaxhighlight>
 
=={{header|Common Lisp}}==
In Common Lisp, classmethods are methods that apply to classes, rather than classes that contain methods.
<langsyntaxhighlight lang=lisp>(defclass my-class ()
((x
:accessor get-x ;; getter function
Line 253:
 
(format t "Value of x^2: ~a~%" (square-x *instance*))
</syntaxhighlight>
</lang>
Output (CLISP v2.49):
<pre>$ clisp object.cl
Line 261:
 
=={{header|D}}==
<langsyntaxhighlight lang=d>struct Cat {
static int staticMethod() {
return 2;
Line 297:
d = new Dog;
assert(d.dynamicMethod() == "Woof!");
}</langsyntaxhighlight>
 
=={{header|Dragon}}==
Making an object of class and then calling it.
<langsyntaxhighlight lang=Dragon>r = new run()
r.val()</langsyntaxhighlight>
 
=={{header|Dyalect}}==
Line 308:
Dyalect supports both instance and static methods. Instance methods have a special <code>this</code> reference that returns an instance. Static method are always invoked through the type name.
 
<langsyntaxhighlight lang=dyalect>//Static method on a built-in type Integer
static func Integer.Div(x, y) {
x / y
Line 319:
print(Integer.Div(12, 3))
print(12.Div(3))</langsyntaxhighlight>
 
{{out}}
Line 330:
A method call in E has the syntax <code><var>recipient</var>.<var>verb</var>(<var>arg1</var>, <var>arg2</var>, <var>...</var>)</code>, where <var>recipient</var> is an expression, <var>verb</var> is an identifier (or a string literal preceded by <code>::</code>), and <var>argN</var> are expressions.
 
<syntaxhighlight lang =e>someObject.someMethod(someParameter)</langsyntaxhighlight>
 
In E, there are no distinguished "static methods". Instead, it is idiomatic to place methods on the maker of the object. This is very similar to methods on constructors in JavaScript, or class methods in Objective-C.
Line 336:
=={{header|Elena}}==
The message call:
<langsyntaxhighlight lang=elena>
console.printLine("Hello"," ","World!");
</syntaxhighlight>
</lang>
 
=={{header|Elixir}}==
Elixir doesn't do objects. Instead of calling methods on object you send messages to processes. Here's an example of a process created with spawn_link which knows how to receive a message "concat" and return a result.
<langsyntaxhighlight lang=elixir>
defmodule ObjectCall do
def new() do
Line 370:
 
IO.puts(obj |> ObjectCall.concat("Hello ", "World!"))
</syntaxhighlight>
</lang>
 
=={{header|Factor}}==
In Factor, there is no distinction between instance and static methods. Methods are contained in generic words and specialize on a class. Generic words define a <i>method combination</i> so methods know which object(s) to dispatch on. (But most methods dispatch on the object at the top of the data stack.) Under this object model, calling a method is no different than calling any other word.
 
<langsyntaxhighlight lang=factor>USING: accessors io kernel literals math sequences ;
IN: rosetta-code.call-a-method
 
Line 399:
0.75 <cat> speak
0.1 <cat> speak
"bird" speak</langsyntaxhighlight>
{{out}}
<pre>
Line 412:
{{trans|D}}
There are numerous, mutually incompatible object oriented frameworks for Forth. This one works with the FOOS preprocessor extension of [[4tH]].
<langsyntaxhighlight lang=forth>include lib/compare.4th
include 4pp/lib/foos.4pp
 
Line 451:
; \ same for dynamic methods
 
main</langsyntaxhighlight>
 
Works with any ANS Forth
Line 457:
Needs the FMS-SI (single inheritance) library code located here:
http://soton.mpeforth.com/flag/fms/index.html
<langsyntaxhighlight lang=forth>include FMS-SI.f
 
:class animal
Line 486:
Frisky speak \ => meow ok
Sparky speak \ => woof ok
</syntaxhighlight>
</lang>
 
=={{header|Fortran}}==
In modern Fortran a "derived type" concept corresponds to "class" in OOP. Such types have "type bound procedures", i.e. static methods. Procedure pointer components depend on the value of the object (so they are object-bound), can be redefined runtime and correspond approx to instances.
<langsyntaxhighlight lang=Fortran>
! type declaration
type my_type
Line 506:
mytype_object%method2() ! call method2 defined as function
 
</syntaxhighlight>
</lang>
 
=={{header|FreeBASIC}}==
<langsyntaxhighlight lang=freebasic>
' FB 1.05.0 Win64
 
Line 534:
Print "Press any key to quit the program"
Sleep
</syntaxhighlight>
</lang>
 
{{out}}
Line 544:
=={{header|Go}}==
Go distances itself from the word "object" and from many object oriented concepts. It does however have methods. Any user-defined type in Go can have methods and these work very much like "instance methods" of object oriented languages. The examples below illustrate details of Go methods and thus represent the concept of instance methods.
<langsyntaxhighlight lang=go>type Foo int // some custom type
 
// method on the type itself; can be called on that type or its pointer
Line 572:
Foo.ValueMethod(myValue, someParameter)
(*Foo).PointerMethod(myPointer, someParameter)
(*Foo).ValueMethod(myPointer, someParameter)</langsyntaxhighlight>
Go has no direct equivalent to class methods as long as you think of a Go type as a class. A Go ''package'' however can be organized and used much like a class, and in this context, any function exported from the package works much like a class method.
 
An example package:
<langsyntaxhighlight lang=go>package box
 
import "sync/atomic"
Line 604:
func Count() uint32 {
return atomic.LoadUint32(&sn)
}</langsyntaxhighlight>
Example use:
<langsyntaxhighlight lang=go>package main
 
import "box"
Line 621:
// Call class method. In Go terms, another exported function.
box.Count()
}</langsyntaxhighlight>
 
==Icon and {{header|Unicon}}==
Line 627:
 
Unicon has no concept of static methods; all methods are normally invoked using an instance of a class. While it is technically possible to call a method without an instance, it requires knowledge of the underlying implementation, such as the name-mangling conventions, and is non-standard.
<langsyntaxhighlight lang=unicon>procedure main()
 
bar := foo() # create instance
Line 649:
initially
L := [cp1]
end</langsyntaxhighlight>
 
=={{header|Haskell}}==
Line 660:
 
Dummy example:
<langsyntaxhighlight lang=haskell>data Obj = Obj { field :: Int, method :: Int -> Int }
 
-- smart constructor
Line 668:
-- adding method from a type class
instanse Show Obj where
show o = "Obj " ++ show (field o) </langsyntaxhighlight>
 
<pre>*Main> let o1 = Obj 1 (*5)
Line 694:
Static:
 
<syntaxhighlight lang =j>methodName_className_ parameters</langsyntaxhighlight>
 
and, given an object instance reference:
 
<langsyntaxhighlight lang=j>objectReference=:'' conew 'className'</langsyntaxhighlight>
 
an instance invocation could be:
 
<syntaxhighlight lang =j>methodName__objectReference parameters</langsyntaxhighlight>
 
Note that J also supports infix notation when using methods. In this case, there will be a second parameter list, on the left of the method reference.
 
<syntaxhighlight lang =j>parameters methodName_className_ parameters</langsyntaxhighlight>
or
<syntaxhighlight lang =j>parameters methodName__objectReference parameters</langsyntaxhighlight>
 
These variations might be useful when building combining words that need to refer to two different kinds of things. But mostly it's to be consistent with the rest of the language.
Line 714:
Finally, note that static methods can be referred to using the same notation as instance methods -- in this case you must have a reference to the class name:
 
<langsyntaxhighlight lang=j>classReference=: <'className'
methodName__classReference parameters</langsyntaxhighlight>
 
This might be useful when you are working with a variety of classes which share a common structure.
Line 721:
You can also refer to a dynamic method in the same fashion that you use to refer to a instance method -- in this case you must know the object name (which is a number). For example, to refer to a method on object 123
 
<syntaxhighlight lang =j>methodName_123_ parameters</langsyntaxhighlight>
 
This last case can be useful when debugging.
Line 727:
=={{header|Java}}==
Static methods in Java are usually called by using the dot operator on a class name:
<langsyntaxhighlight lang=java>ClassWithStaticMethod.staticMethodName(argument1, argument2);//for methods with no arguments, use empty parentheses</langsyntaxhighlight>
Instance methods are called by using the dot operator on an instance:
<langsyntaxhighlight lang=java>ClassWithMethod varName = new ClassWithMethod();
varName.methodName(argument1, argument2);
//or
new ClassWithMethod().methodName(argument1, argument2);</langsyntaxhighlight>
 
Instance methods may not be called on references whose value is <code>null</code> (throws a <code>NullPointerException</code>). <!--Maybe add reflection stuff here too? It might be too complicated or it might not belong here-->
Line 742:
=={{header|JavaScript}}==
If you have a object called <tt>x</tt> and a method called <tt>y</tt> then you can write:
<syntaxhighlight lang =javascript>x.y()</langsyntaxhighlight>
 
=={{header|Julia}}==
Line 777:
=={{header|Kotlin}}==
Kotlin does not have static methods as such but they can be easily simulated by 'companion object' methods :
<langsyntaxhighlight lang=scala>class MyClass {
fun instanceMethod(s: String) = println(s)
 
Line 789:
mc.instanceMethod("Hello instance world!")
MyClass.staticMethod("Hello static world!")
}</langsyntaxhighlight>
 
{{out}}
Line 800:
 
In Latitude, everything is an object. Being prototype-oriented, Latitude does not distinguish between classes and instances. Calling a method on either a class or an instance is done by simple juxtaposition.
<langsyntaxhighlight lang=latitude>myObject someMethod (arg1, arg2, arg3).
MyClass someMethod (arg1, arg2, arg3).</langsyntaxhighlight>
The parentheses on the argument list may be omitted if there is at most one argument and the parse is unambiguous.
<langsyntaxhighlight lang=latitude>myObject someMethod "string constant argument".
myObject someMethod (argument). ;; Parentheses are necessary here
myObject someMethod. ;; No arguments</langsyntaxhighlight>
Finally, a colon may be used instead of parentheses, in which case the rest of the line is considered to be the argument list.
<langsyntaxhighlight lang=latitude>myObject someMethod: arg1, arg2, arg3.</langsyntaxhighlight>
 
=={{header|LFE}}==
Line 819:
 
===With Closures===
<langsyntaxhighlight lang=lisp>(defmodule aquarium
(export all))
 
Line 912:
(defun get-children-count (object)
(funcall (get-method object 'children-count) object))
</syntaxhighlight>
</lang>
 
With this done, one can create objects and interact with them. Here is some usage from the LFE REPL:
<langsyntaxhighlight lang=lisp>; Load the file and create a fish-class instance:
 
> (slurp '"object.lfe")
Line 959:
children: ["fdcf35983bb496650e558a82e34c9935",
"3e64e5c20fb742dd88dac1032749c2fd"]
ok</langsyntaxhighlight>
 
===With Lightweight Processes===
<langsyntaxhighlight lang=lisp>(defmodule object
(export all))
 
Line 1,062:
 
(defun get-children-count (object)
(call-method object 'children-count))</langsyntaxhighlight>
 
Here is some usage from the LFE REPL:
<langsyntaxhighlight lang=lisp>; Load the file and create a fish-class instance:
 
> (slurp '"object.lfe")
Line 1,109:
children: ["fdcf35983bb496650e558a82e34c9935",
"3e64e5c20fb742dd88dac1032749c2fd"]
ok</langsyntaxhighlight>
 
=={{header|Lingo}}==
<langsyntaxhighlight lang=lingo>-- call static method
script("MyClass").foo()
 
-- call instance method
obj = script("MyClass").new()
obj.foo()</langsyntaxhighlight>
 
=={{header|Logtalk}}==
In Logtalk, class or instance are ''roles'' that an object can play depending on the relations in other objects. Thus, a "class" can be defined by having an object specializing another object and an instance can be defined by having an object instantiating another object. Metaclasses are easily defined and thus a class method is just an instance method defined in the class metaclass.
<langsyntaxhighlight lang=logtalk>
% avoid infinite metaclass regression by
% making the metaclass an instance of itself
Line 1,132:
:- end_object.
</syntaxhighlight>
</lang>
<langsyntaxhighlight lang=logtalk>
:- object(class,
instantiates(metaclass)).
Line 1,143:
:- end_object.
</syntaxhighlight>
</lang>
<langsyntaxhighlight lang=logtalk>
:- object(instance,
instantiates(class)).
 
:- end_object.
</syntaxhighlight>
</lang>
Testing:
<langsyntaxhighlight lang=logtalk>
| ?- class::me(Me).
Me = class
Line 1,159:
Class = class
yes
</syntaxhighlight>
</lang>
 
=={{header|Lua}}==
Line 1,165:
 
Instance methods, in their most basic form, are simply function calls where the calling object reference is duplicated and passed as the first argument. Lua offers some syntactical sugar to facilitate this, via the colon operator:
<langsyntaxhighlight lang=lua>local object = { name = "foo", func = function (self) print(self.name) end }
 
object:func() -- with : sugar
object.func(object) -- without : sugar</langsyntaxhighlight>
 
Using metatables, and specifically the __index metamethod, it is possible to call a method stored in an entirely different table, while still passing the object used for the actual call:
<langsyntaxhighlight lang=lua>local methods = { }
function methods:func () -- if a function is declared using :, it is given an implicit 'self' parameter
print(self.name)
Line 1,179:
 
object:func() -- with : sugar
methods.func(object) -- without : sugar</langsyntaxhighlight>
 
Lua does not have a specific way of handling static methods, but similarly to Go, they could simply be implemented as regular functions inside of a module.
 
Example module, named <code>box.lua</code>:
<langsyntaxhighlight lang=lua>local count = 0
local box = { }
local boxmt = { __index = box }
Line 1,199:
return count
end
return M</langsyntaxhighlight>
 
Example use:
<langsyntaxhighlight lang=lua>local box = require 'box'
 
local b = box.new()
 
print(b:tellSecret())
print(box.count())</langsyntaxhighlight>
 
=={{header|M2000 Interpreter}}==
In M2000 there are some kinds of objects. Group is the one type object. We can compose members to groups, with functions, operators, modules, events, and inner groups, among other members of type pointer to object. Another type is the COM type. Here we see the Group object
<langsyntaxhighlight lang=M2000 Interpreter>
Module CheckIt {
\\ A class definition is a function which return a Group
Line 1,260:
}
Checkit
</syntaxhighlight>
</lang>
 
=={{header|Maple}}==
There is no real difference in how you call a static or instance method.
<langsyntaxhighlight lang=Maple># Static
Method( obj, other, arg );</langsyntaxhighlight>
<langsyntaxhighlight lang=Maple># Instance
Method( obj, other, arg );</langsyntaxhighlight>
 
=={{header|MiniScript}}==
MiniScript uses prototype-based inheritance, so the only difference between a static method and an instance method is in whether it uses the <code>self</code> pseudo-keyword.
<langsyntaxhighlight lang=MiniScript>Dog = {}
Dog.name = ""
Dog.help = function()
Line 1,284:
 
Dog.help // calling a "class method"
fido.speak // calling an "instance method"</langsyntaxhighlight>
 
{{out}}
Line 1,291:
 
=={{header|Nanoquery}}==
<langsyntaxhighlight lang=Nanoquery>class MyClass
declare static id = 5
declare MyName
Line 1,317:
// and call the class method
myclass = new(MyClass, "test")
println myclass.getName()</langsyntaxhighlight>
{{out}}
<pre>5
Line 1,323:
 
=={{header|Nemerle}}==
<langsyntaxhighlight lang=Nemerle>// Static
MyClass.Method(someParameter);
// Instance
myInstance.Method(someParameter);</langsyntaxhighlight>
 
=={{header|NetRexx}}==
Like [[#Java|Java]], static methods in NetRexx are called by using the dot operator on a class name:
<syntaxhighlight lang =NetRexx>SomeClass.staticMethod()</langsyntaxhighlight>
Instance methods are called by using the dot operator on an instance:
<langsyntaxhighlight lang=NetRexx>objectInstance = SomeClass() -- create a new instance of the class
objectInstance.instanceMethod() -- call the instance method
 
SomeClass().instanceMethod() -- same as above; create a new instance of the class and call the instance method immediately</langsyntaxhighlight>
 
=={{header|Nim}}==
In Nim there are no object methods, but regular procedures can be called with method call syntax:
<langsyntaxhighlight lang=nim>var x = @[1, 2, 3]
add(x, 4)
x.add(5)</langsyntaxhighlight>
 
=={{header|OASYS Assembler}}==
Line 1,348:
 
The following code calls a method called <tt>&amp;GO</tt> on the current object:
<syntaxhighlight lang =oasys_oaa>+&GO</langsyntaxhighlight>
 
=={{header|Objeck}}==
<langsyntaxhighlight lang=objeck>
ClassName->some_function(); # call class function
instance->some_method(); # call instance method</langsyntaxhighlight>
Objeck uses the same syntax for instance and class method calls. In Objeck, functions are the equivalent of public static methods.
 
Line 1,360:
Object Pascal as implemented in Delphi and Free Pascal supports both static (known in Pascal as class method) and instance methods. Free Pascal has two levels of static methods, one using the class keyword and one using both the class and the static keywords. A class method can be called in Pascal, while a static class method could be called even from C, that's the main difference.
 
<langsyntaxhighlight lang=pascal>// Static (known in Pascal as class method)
MyClass.method(someParameter);
 
// Instance
myInstance.method(someParameter);
</syntaxhighlight>
</lang>
 
=={{header|Objective-C}}==
In Objective-C, calling an instance method is sending a message to an instance, and calling a class method is sending a message to a class object. Class methods are inherited through inheritance of classes. All messages (whether sent to a normal object or class object) are resolved dynamically at runtime, hence there are no "static" methods (see also: Smalltalk).
<langsyntaxhighlight lang=objc>// Class
[MyClass method:someParameter];
// or equivalently:
Line 1,382:
 
// Method with no arguments
[myInstance method];</langsyntaxhighlight>
 
=={{header|OCaml}}==
Line 1,388:
We can only call the method of an instantiated object:
 
<syntaxhighlight lang =ocaml>my_obj#my_meth params</langsyntaxhighlight>
 
=={{header|Oforth}}==
When a method is called, the top of the stack is used as the object on which the method will be applyed :
<syntaxhighlight lang =Oforth>1.2 sqrt</langsyntaxhighlight>
 
For class methods, the top of the stack must be a class (which is also an object of Class class) :
<syntaxhighlight lang =Oforth>Date now</langsyntaxhighlight>
 
=={{header|ooRexx}}==
<langsyntaxhighlight lang=ooRexx>say "pi:" .circle~pi
c=.circle~new(1)
say "c~area:" c~area
Line 1,427:
Say self~class
Say self
return self~class~pi * radius * radius </langsyntaxhighlight>
'''Output:'''
<pre>pi: 3.14159265358979323
Line 1,436:
 
=={{header|Perl}}==
<langsyntaxhighlight lang=perl># Class method
MyClass->classMethod($someParameter);
# Equivalently using a class name
Line 1,452:
# the package and calling it on the class name or object reference explicitly
MyClass::classMethod('MyClass', $someParameter);
MyClass::method($myInstance, $someParameter);</langsyntaxhighlight>
 
=={{header|Phix}}==
Line 1,459:
Phix does not demand that all routines be inside classes; traditional standalone routines are "static" in every sense.<br>
There is no way to call a class method without an instance, since "this" will typecheck even if not otherwise used.
<!--<langsyntaxhighlight lang=Phix>(notonline)-->
<span style="color: #008080;">without</span> <span style="color: #008080;">js</span> <span style="color: #000080;font-style:italic;">-- (no class in p2js)</span>
<span style="color: #008080;">class</span> <span style="color: #000000;">test</span>
Line 1,471:
<span style="color: #000000;">t</span><span style="color: #0000FF;">.</span><span style="color: #000000;">inst</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">t</span><span style="color: #0000FF;">.</span><span style="color: #000000;">show</span>
<span style="color: #000000;">t</span><span style="color: #0000FF;">.</span><span style="color: #000000;">inst</span><span style="color: #0000FF;">()</span> <span style="color: #000080;font-style:italic;">-- prints "this is a test"</span>
<!--</langsyntaxhighlight>-->
 
=={{header|PHP}}==
<langsyntaxhighlight lang=php>// Static method
MyClass::method($someParameter);
// In PHP 5.3+, static method can be called on a string of the class name
Line 1,482:
 
// Instance method
$myInstance->method($someParameter);</langsyntaxhighlight>
 
=={{header|PicoLisp}}==
Method invocation is syntactically equivalent to normal function calls. Method names have a trailing '>' by convention.
<langsyntaxhighlight lang=PicoLisp>(foo> MyClass)
(foo> MyObject)</langsyntaxhighlight>
 
=={{header|Pike}}==
Line 1,493:
 
regular methods can be called in these ways:
<langsyntaxhighlight lang=Pike>obj->method();
obj["method"]();
call_function(obj->method);
call_function(obj["method"]);</langsyntaxhighlight>
<code>call_function()</code> is rarely used anymore.
 
because <code>()</code> is actually an operator that is applied to a function reference, the following is also possible:
<langsyntaxhighlight lang=Pike>function func = obj->method;
func();</langsyntaxhighlight>
as alternative to static function, modules are used. a module is essentially a static class. a function in a module can be called like this:
<langsyntaxhighlight lang=Pike>module.func();
module["func"]();</langsyntaxhighlight>
it should be noted that <code>module.func</code> is resolved at compile time while <code>module["func"]</code> is resolved at runtime.
 
=={{header|PL/SQL}}==
<langsyntaxhighlight lang=PLSQL>create or replace TYPE myClass AS OBJECT (
-- A class needs at least one member even though we don't use it
dummy NUMBER,
Line 1,534:
DBMS_OUTPUT.put_line( myClass.static_method() );
DBMS_OUTPUT.put_line( myInstance.instance_method() );
END;/</langsyntaxhighlight>
 
=={{header|PowerShell}}==
<langsyntaxhighlight lang=PowerShell>$Date = Get-Date
$Date.AddDays( 1 )
[System.Math]::Sqrt( 2 )</langsyntaxhighlight>
 
=={{header|Processing}}==
<langsyntaxhighlight lang=processing>// define a rudimentary class
class HelloWorld
{
Line 1,562:
 
// and call the instance method
hello.sayGoodbye();</langsyntaxhighlight>
 
=={{header|Python}}==
<langsyntaxhighlight lang=python>class MyClass(object):
@classmethod
def myClassMethod(self, x):
Line 1,588:
# You can also call class or static methods on an instance, which will simply call it on the instance's class
myInstance.myClassMethod(someParameter)
myInstance.myStaticMethod(someParameter)</langsyntaxhighlight>
 
=={{header|Quackery}}==
Line 1,599:
(It would be possible to extend this technique to a more fully-fledged object oriented system. See Dick Pountain's slim volume "Object Oriented FORTH: Implementation of Data Structures" (pub. 1987) for an example of doing so in Forth; a language to which Quackery is related, but slightly less amenable to such shenanigans.)
 
<langsyntaxhighlight lang=Quackery>( ---------------- zen object orientation -------------- )
[ immovable
Line 1,669:
say "Current value of mycounter: "
report-counter mycounter echo cr cr</langsyntaxhighlight>
 
{{out}}
Line 1,701:
The following snippet shows a call to the <tt>start</tt> method of the <tt>timer%</tt> class.
 
<langsyntaxhighlight lang=racket>#lang racket/gui
 
(define timer (new timer%))
(send timer start 100)</langsyntaxhighlight>
 
=={{header|Raku}}==
Line 1,710:
{{works with|Rakudo|2015.12}}
=== Basic method calls ===
<syntaxhighlight lang=raku perl6line>class Thing {
method regular-example() { say 'I haz a method' }
 
Line 1,736:
my $foo = new Thing: ;
multi-example $thing: 42;
</syntaxhighlight>
</lang>
 
=== Meta-operators ===
Line 1,742:
The <code>.</code> operator can be decorated with meta-operators.
 
<syntaxhighlight lang=raku perl6line>
my @array = <a z c d y>;
@array .= sort; # short for @array = @array.sort;
 
say @array».uc; # uppercase all the strings: A C D Y Z
</syntaxhighlight>
</lang>
 
=== Classless methods ===
Line 1,753:
A method that is not in a class can be called by using the <code>&</code> sigil explicitly.
 
<syntaxhighlight lang=raku perl6line>
my $object = "a string"; # Everything is an object.
my method example-method {
Line 1,760:
 
say $object.&example-method; # Outputs "This is a string."
</syntaxhighlight>
</lang>
 
=={{header|Ring}}==
<langsyntaxhighlight lang=ring>
new point { print() }
Class Point
x = 10 y = 20 z = 30
func print see x + nl + y + nl + z + nl
</syntaxhighlight>
</lang>
<langsyntaxhighlight lang=ring>
o1 = new System.output.console
o1.print("Hello World")
Line 1,777:
Func Print cText
see cText + nl
</syntaxhighlight>
</lang>
 
=={{header|Ruby}}==
<langsyntaxhighlight lang=ruby># Class method
MyClass.some_method(some_parameter)
 
Line 1,795:
 
# Calling a method with no parameters
my_instance.another_method</langsyntaxhighlight>
 
=={{header|Rust}}==
<langsyntaxhighlight lang=rust>struct Foo;
 
impl Foo {
Line 1,828:
let lots_of_references = &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&foo;
println!("The answer to life is still {}." lots_of_references.get_the_answer_to_life());
}</langsyntaxhighlight>
 
=={{header|Scala}}==
<langsyntaxhighlight lang=scala>/* This class implicitly includes a constructor which accepts an Int and
* creates "val variable1: Int" with that value.
*/
Line 1,854:
assert(n.memberVal == 3)
println("Successfully completed without error.")
}</langsyntaxhighlight>
 
=={{header|Sidef}}==
<langsyntaxhighlight lang=ruby>class MyClass {
method foo(arg) { say arg }
}
Line 1,879:
 
# Alternatively, by asking for a method
instance.method(:foo)(arg);</langsyntaxhighlight>
 
=={{header|Smalltalk}}==
Line 1,885:
Classes are first class objects, meaning that references to them can be passed as argument, stored in other objects or returned as the result of a message send. This makes some of the common design patterns which deal with creation of objects trivial or even superfluous. (see also: ObjectiveC)
 
<langsyntaxhighlight lang=smalltalk>" Class "
MyClass selector: someArgument .
" or equivalently "
Line 1,901:
 
" Binary (operator) message"
myInstance + argument .</langsyntaxhighlight>
 
 
Example for dynamic class determination:
<langsyntaxhighlight lang=smalltalk>theCar := (someCondition ifTrue:[ Ford ] ifFalse: [ Jaguar ]) new.</langsyntaxhighlight>
 
Message names (selectors) can be chosen or constructed dynamically at runtime. For example:
<langsyntaxhighlight lang=smalltalk>whichMessage := #( #'red' #'green' #'blue') at: computedIndex.
foo perform: whichMessage</langsyntaxhighlight>
 
or:
 
<langsyntaxhighlight lang=smalltalk>theMessage := ('handleFileType' , suffix) asSymbol.
foo perform: theMessage.</langsyntaxhighlight>
This is often sometimes used as a dispatch mechanism (also, to implement state machines, for example).
 
Of course, especially with all that dynamics, a selector for an unimplemented message might be encountered. This raises a MessageNotUnderstood exception (runtime exception).
<langsyntaxhighlight lang=smalltalk>[
foo perform: theMessage
] on: MessageNotUnderstood do:[
Dialog information: 'sorry'
]</langsyntaxhighlight>
 
=={{header|SuperCollider}}==
In SuperCollider, classes are objects. To call a class or object method, a message is passed to the class or the object instance. In the implementation, class method names are prefixed with an asterix, all other methods are instance methods.
<langsyntaxhighlight lang=SuperCollider>
SomeClass {
Line 1,943:
a = SomeClass.new;
a.someInstanceMethod;
</syntaxhighlight>
</lang>
 
=={{header|Swift}}==
In Swift, instance methods can be declared on structs, enums, and classes. "Type methods", which include static methods for structs and enums, and class methods for classes, can be called on the type. Class methods are inherited through inheritance of classes, and are resolved dynamically at runtime like instance methods. (see also: Smalltalk).
<langsyntaxhighlight lang=swift>// Class
MyClass.method(someParameter)
// or equivalently:
Line 1,957:
 
// Method with multiple arguments
myInstance.method(red:arg1, green:arg2, blue:arg3)</langsyntaxhighlight>
 
=={{header|Tcl}}==
<langsyntaxhighlight lang=tcl>package require Tcl 8.6
# "Static" (on class object)
MyClass mthd someParameter
 
# Instance
$myInstance mthd someParameter</langsyntaxhighlight>
 
=={{header|Ursa}}==
<langsyntaxhighlight lang=ursa># create an instance of the built-in file class
decl file f
 
# call the file.open method
f.open "filename.txt"</langsyntaxhighlight>
 
=={{header|VBA}}==
First we have to create a class module named "myObject" :
<syntaxhighlight lang=vb>
<lang vb>
Option Explicit
 
Line 1,989:
If myStr <> "" Then strTemp = myStr
Debug.Print strTemp
End Sub</langsyntaxhighlight>
In a "standard" Module, the call should be :
<langsyntaxhighlight lang=vb>Option Explicit
 
Sub test()
Line 1,999:
Obj.Method_1
Obj.Method_2
End Sub</langsyntaxhighlight>
{{out}}
<pre>Hello to you
Line 2,008:
=={{header|Wren}}==
Note that it's possible in Wren for instance and static methods in the same class to share the same name. This is because static methods are considered to belong to a separate meta-class.
<langsyntaxhighlight lang=ecmascript>class MyClass {
construct new() {}
method() { System.print("instance method called") }
Line 2,016:
var mc = MyClass.new()
mc.method()
MyClass.method()</langsyntaxhighlight>
 
{{out}}
Line 2,027:
You can call object methods using two types of structures. Classes and Objects.
===Classes===
<langsyntaxhighlight lang=XBS>class MyClass {
construct=func(self,Props){
self:Props=Props;
Line 2,037:
 
set Class = new MyClass with [{Name="MyClass Name"}];
log(Class::GetProp("Name"));</langsyntaxhighlight>
{{out}}
<pre>
Line 2,043:
</pre>
===Objects===
<langsyntaxhighlight lang=XBS>set MyObj = {
a=10;
AddA=func(self,x){
Line 2,050:
}
 
log(MyObj::AddA(2));</langsyntaxhighlight>
{{out}}
<pre>
Line 2,058:
=={{header|XLISP}}==
Class methods and instance methods are defined using <tt>DEFINE-CLASS-METHOD</tt> and <tt>DEFINE-METHOD</tt> respectively. They are called by sending a message to the class or to an instance of it: the message consists of (<i>a</i>) the name of the object that will receive it, which may be a class; (<i>b</i>) the name of the method, as a quoted symbol; and (<i>c</i>) the parameters if any.
<langsyntaxhighlight lang=xlisp>(DEFINE-CLASS MY-CLASS)
 
(DEFINE-CLASS-METHOD (MY-CLASS 'DO-SOMETHING-WITH SOME-PARAMETER)
Line 2,080:
(DEFINE MY-INSTANCE (MY-CLASS 'NEW))
 
(MY-INSTANCE 'DO-SOMETHING-WITH 'BAR)</langsyntaxhighlight>
{{out}}
<pre>I am the class -- #<Class:MY-CLASS #x38994c8>
Line 2,090:
Zig does not have classes nor objects. Zig's structs, however, can have methods; but they are not special. They are only namespaced functions that can be called with dot syntax.
 
<langsyntaxhighlight lang=zig>const assert = @import("std").debug.assert;
 
pub const ID = struct {
Line 2,122:
assert(person1.getAge() == 18);
assert(ID.getAge(person2) == 20);
}</langsyntaxhighlight>
 
=={{header|zkl}}==
In zkl, a class can be static (there will only exist one instance of the class). A function is always a member of some class but will only be static if it does not refer to instance data.
<langsyntaxhighlight lang=zkl>class C{var v; fcn f{v}}
C.f() // call function f in class C
C.v=5; c2:=C(); // create new instance of C
Line 2,136:
D.f.isStatic //-->False
 
class E{var v; fcn f{}} E.f.isStatic //-->True</langsyntaxhighlight>
 
<!-- Same omits as Classes page -->
10,333

edits