Averages/Mean angle: Difference between revisions

m
No edit summary
m (→‎{{header|Wren}}: Minor tidy)
 
(39 intermediate revisions by 28 users not shown)
Line 1:
[[Category:Geometry]]
{{task}}
 
Line 19 ⟶ 20:
::<math>\bar{\alpha} = \operatorname{atan2}\left(\frac{1}{n}\cdot\sum_{j=1}^n \sin\alpha_j, \frac{1}{n}\cdot\sum_{j=1}^n \cos\alpha_j\right) </math>
 
;Task
{{task heading}}
 
# write a function/method/subroutine/... that given a list of angles in degrees returns their mean angle. <br> (You should use a built-in function if you have one that does this for degrees or radians).
Line 33 ⟶ 34:
 
<br><hr>
 
=={{header|11l}}==
{{trans|C#}}
<syntaxhighlight lang="11l">F mean_angle(angles)
V x = sum(angles.map(a -> cos(radians(a)))) / angles.len
V y = sum(angles.map(a -> sin(radians(a)))) / angles.len
R degrees(atan2(y, x))
 
print(mean_angle([350, 10]))
print(mean_angle([90, 180, 270, 360]))
print(mean_angle([10, 20, 30]))</syntaxhighlight>
{{out}}
<pre>
-1.61481e-15
-90
20
</pre>
 
=={{header|Ada}}==
An implementation based on the formula using the "Arctan" (atan2) function, thus avoiding complex numbers:
<langsyntaxhighlight Adalang="ada">with Ada.Text_IO, Ada.Numerics.Generic_Elementary_Functions;
 
procedure Mean_Angles is
Line 69 ⟶ 87:
Put(Mean_Angle((10.0, 350.0))); Ada.Text_IO.New_Line; -- 0.00
Put(Mean_Angle((90.0, 180.0, 270.0, 360.0))); -- Ada.Numerics.Argument_Error!
end Mean_Angles;</langsyntaxhighlight>
{{out}}
<pre> 20.00
Line 75 ⟶ 93:
 
raised ADA.NUMERICS.ARGUMENT_ERROR : a-ngelfu.adb:427 instantiated at mean_angles.adb:17</pre>
 
=={{header|Aime}}==
<syntaxhighlight lang="aime">real
mean(list l)
{
integer i;
real x, y;
 
x = y = 0;
 
i = 0;
while (i < l_length(l)) {
x += Gcos(l[i]);
y += Gsin(l[i]);
i += 1;
}
 
return Gatan2(y / l_length(l), x / l_length(l));
}
 
integer
main(void)
{
o_form("mean of 1st set: /d6/\n", mean(l_effect(350, 10)));
o_form("mean of 2nd set: /d6/\n", mean(l_effect(90, 180, 270, 360)));
o_form("mean of 3rd set: /d6/\n", mean(l_effect(10, 20, 30)));
 
return 0;
}</syntaxhighlight>
{{out}}
<pre>mean of 1st set: -.000000
mean of 2nd set: -90
mean of 3rd set: 19.999999</pre>
 
=={{header|ALGOL 68}}==
{{works with|ALGOL 68|Revision 1}}
Line 80 ⟶ 132:
{{wont work with|ELLA ALGOL 68|Any (with appropriate job cards) - tested with release [http://sourceforge.net/projects/algol68/files/algol68toc/algol68toc-1.8.8d/algol68toc-1.8-8d.fc9.i386.rpm/download 1.8-8d] - due to extensive use of '''format'''[ted] ''transput''.}}
{{trans|C|Note: This specimen retains the original [[#C|C]] coding style}}
'''File: Averages_Mean_angle.a68'''<langsyntaxhighlight lang="algol68">#!/usr/bin/a68g --script #
# -*- coding: utf-8 -*- #
 
Line 105 ⟶ 157:
printf ((summary fmt,"2nd", mean angle (angle set 2)));
printf ((summary fmt,"3rd", mean angle (angle set 3)))
)</langsyntaxhighlight>{{out}}
<pre>
Mean angle for 1st set : -0.00000 degrees
Line 111 ⟶ 163:
Mean angle for 3rd set : 20.00000 degrees
</pre>
 
=={{header|Aime}}==
<lang aime>real
mean(list l)
{
integer i;
real x, y;
 
x = y = 0;
 
i = 0;
while (i < l_length(l)) {
x += Gcos(l[i]);
y += Gsin(l[i]);
i += 1;
}
 
return Gatan2(y / l_length(l), x / l_length(l));
}
 
integer
main(void)
{
o_form("mean of 1st set: /d6/\n", mean(l_effect(350, 10)));
o_form("mean of 2nd set: /d6/\n", mean(l_effect(90, 180, 270, 360)));
o_form("mean of 3rd set: /d6/\n", mean(l_effect(10, 20, 30)));
 
return 0;
}</lang>
{{out}}
<pre>mean of 1st set: -.000000
mean of 2nd set: -90
mean of 3rd set: 19.999999</pre>
 
=={{header|AutoHotkey}}==
{{works with|AutoHotkey 1.1}}
<langsyntaxhighlight AutoHotkeylang="autohotkey">Angles := [[350, 10], [90, 180, 270, 360], [10, 20, 30]]
MsgBox, % MeanAngle(Angles[1]) "`n"
. MeanAngle(Angles[2]) "`n"
Line 163 ⟶ 182:
atan2(x, y) {
return dllcall("msvcrt\atan2", "Double",y, "Double",x, "CDECL Double")
}</langsyntaxhighlight>
'''Output:'''
<pre>-0.000000
Line 170 ⟶ 189:
 
=={{header|AWK}}==
<langsyntaxhighlight AWKlang="awk">#!/usr/bin/awk -f
{
PI = atan2(0,-1);
Line 182 ⟶ 201:
if (p<0) p += 360;
print p;
}</langsyntaxhighlight>
<pre> echo 350 10 | ./mean_angle.awk
360
Line 192 ⟶ 211:
=={{header|BBC BASIC}}==
{{works with|BBC BASIC for Windows}}
<langsyntaxhighlight lang="bbcbasic"> *FLOAT 64
DIM angles(3)
angles() = 350,10
Line 211 ⟶ 230:
DEF FNatan2(y,x) : ON ERROR LOCAL = SGN(y)*PI/2
IF x>0 THEN = ATN(y/x) ELSE IF y>0 THEN = ATN(y/x)+PI ELSE = ATN(y/x)-PI</langsyntaxhighlight>
{{out}}
<pre>
Line 217 ⟶ 236:
-90
20
</pre>
 
=={{header|Befunge}}==
<lang befunge>&:459**1-`#v_ >+\1+\~25*-#v_\/.>
>859**-^ > ^
</lang>
The code uses new lines to terminate a list. It does not work with numbers of degrees larger than 360.
 
Example input:
<pre>
350 10
10 20 30
90 180 270 360
</pre>
{{out}}
<pre>
0 20 -45
</pre>
 
=={{header|C}}==
<langsyntaxhighlight lang="c">#include<math.h>
#include<stdio.h>
 
Line 266 ⟶ 268:
printf ("\nMean Angle for 3rd set : %lf degrees\n", meanAngle (angleSet3, 3));
return 0;
}</langsyntaxhighlight>
{{out}}
<pre>Mean Angle for 1st set : -0.000000 degrees
Line 273 ⟶ 275:
 
=={{header|C sharp|C#}}==
<langsyntaxhighlight lang="csharp">using System;
using System.Linq;
using static System.Math;
Line 291 ⟶ 293:
printMean(new double[] { 10, 20, 30 });
}
}</langsyntaxhighlight>
{{out}}
<pre>0
-90
20</pre>
 
=={{header|C++}}==
{{trans|C#}}
<syntaxhighlight lang="cpp">#include <iomanip>
#include <iostream>
#include <vector>
 
#define _USE_MATH_DEFINES
#include <math.h>
 
template<typename C>
double meanAngle(const C& c) {
auto it = std::cbegin(c);
auto end = std::cend(c);
 
double x = 0.0;
double y = 0.0;
double len = 0.0;
while (it != end) {
x += cos(*it * M_PI / 180);
y += sin(*it * M_PI / 180);
len++;
 
it = std::next(it);
}
 
return atan2(y, x) * 180 / M_PI;
}
 
void printMean(std::initializer_list<double> init) {
std::cout << std::fixed << std::setprecision(3) << meanAngle(init) << '\n';
}
 
int main() {
printMean({ 350, 10 });
printMean({ 90, 180, 270, 360 });
printMean({ 10, 20, 30 });
 
return 0;
}</syntaxhighlight>
{{out}}
<pre>-0.000
-90.000
20.000</pre>
 
=={{header|Clojure}}==
<langsyntaxhighlight lang="clojure">(defn mean-fn
[k coll]
(let [n (count coll)
Line 309 ⟶ 355:
a (mean-fn :sin radians)
b (mean-fn :cos radians)]
(Math/toDegrees (Math/atan2 a b))))</langsyntaxhighlight>
Example:
<langsyntaxhighlight lang="clojure">(mean-angle [350 10])
;=> -1.614809932057922E-15
 
Line 318 ⟶ 364:
 
(mean-angle [10 20 30])
;=> 19.999999999999996</langsyntaxhighlight>
 
=={{header|Common Lisp}}==
<langsyntaxhighlight lang="lisp">(defun average (list)
(/ (reduce #'+ list) (length list)))
 
Line 328 ⟶ 374:
 
(defun degrees (angle)
(* 180 (/ 1180 pi) angle))
 
(defun mean-angle (angles)
Line 337 ⟶ 383:
 
(loop for angles in '((350 10) (90 180 270 360) (10 20 30))
do (format t "~&The mean angle of ~a is ~$°." angles (mean-angle angles)))</lang>
 
;; or using complex numbers (cis and phase)
 
(defun mean-angle-2 (angles)
(degrees (phase (reduce #'+ angles :key (lambda (deg) (cis (radians deg)))))))
</syntaxhighlight>
{{out}}
<pre>The mean angle of (350 10) is -0.00°.
Line 344 ⟶ 396:
 
=={{header|D}}==
<langsyntaxhighlight lang="d">import std.stdio, std.algorithm, std.complex;
import std.math: PI;
 
Line 359 ⟶ 411:
writefln("The mean angle of %s is: %.2f degrees",
angles, angles.meanAngle);
}</langsyntaxhighlight>
{{out}}
<pre>The mean angle of [350, 10] is: -0.00 degrees
The mean angle of [90, 180, 270, 360] is: 90.00 degrees
The mean angle of [10, 20, 30] is: 20.00 degrees</pre>
=={{header|Delphi}}==
 
See [[#Pascal]].
=={{header|EasyLang}}==
{{trans|C}}
<syntaxhighlight lang=easylang>
func mean ang[] .
for ang in ang[]
x += cos ang
y += sin ang
.
return atan2 (y / len ang[]) (x / len ang[])
.
print mean [ 350 10 ]
print mean [ 90 180 270 360 ]
print mean [ 10 20 30 ]
</syntaxhighlight>
 
=={{header|EchoLisp}}==
<langsyntaxhighlight lang="scheme">
(define-syntax-rule (deg->radian deg) (* deg 1/180 PI))
(define-syntax-rule (radian->deg rad) (* 180 (/ PI) rad))
Line 382 ⟶ 449:
(mean-angles '[10 20 30])
→ 20
</syntaxhighlight>
</lang>
 
=={{header|Elixir}}==
<syntaxhighlight lang="elixir">
<lang Elixir>
defmodule MeanAngle do
def mean_angle(angles) do
Line 407 ⟶ 474:
IO.inspect MeanAngle.mean_angle([90, 180, 270, 360])
IO.inspect MeanAngle.mean_angle([10, 20, 30])
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 417 ⟶ 484:
=={{header|Erlang}}==
The function from_degrees/1 is used to solve [[Averages/Mean_time_of_day]]. Please keep backwards compatibility when editing. Or update the other module, too.
<syntaxhighlight lang="erlang">
<lang Erlang>
-module( mean_angle ).
-export( [from_degrees/1, task/0] ).
Line 437 ⟶ 504:
 
radians( Degrees ) -> Degrees * math:pi() / 180.
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 447 ⟶ 514:
 
=={{header|Euler Math Toolbox}}==
<langsyntaxhighlight EulerMathToolboxlang="eulermathtoolbox">>function meanangle (a) ...
$ z=sum(exp(rad(a)*I));
$ if z~=0 then error("Not meaningful");
Line 462 ⟶ 529:
if z~=0 then error("Not meaningful");
>meanangle([10,20,30])
20</langsyntaxhighlight>
 
 
=={{header|Euphoria}}==
{{works with|OpenEuphoria}}
<syntaxhighlight lang="euphoria">
<lang Euphoria>
include std/console.e
include std/mathcons.e
Line 494 ⟶ 560:
 
if getc(0) then end if
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 503 ⟶ 569:
 
=={{header|F_Sharp|F#}}==
<langsyntaxhighlight lang="fsharp">open System
open System.Numerics
 
Line 517 ⟶ 583:
|> fun c -> c.Phase |> rad2deg
|> printfn "Mean angle for [%s]: %g°" (String.Join("; ",argv))
0</langsyntaxhighlight>
{{out}}
<pre>>RosettaCode 350 10
Line 527 ⟶ 593:
>RosettaCode 90 180 270 360
Mean angle for [90; 180; 270; 360]: -90°
</pre>
 
=={{header|Factor}}==
<syntaxhighlight lang="factor">USING: formatting kernel math math.functions math.libm math.trig
sequences ;
 
: mean-angle ( seq -- x )
[ deg>rad ] map [ [ sin ] map-sum ] [ [ cos ] map-sum ]
[ length ] tri recip [ * ] curry bi@ fatan2 rad>deg ;
 
: show ( seq -- )
dup mean-angle "The mean angle of %u is: %f°\n" printf ;
 
{ { 350 10 } { 90 180 270 360 } { 10 20 30 } } [ show ] each</syntaxhighlight>
{{out}}
<pre>
The mean angle of { 350 10 } is: -0.000000°
The mean angle of { 90 180 270 360 } is: -90.000000°
The mean angle of { 10 20 30 } is: 20.000000°
</pre>
 
=={{header|Fortran}}==
Please find the example output along with the build instructions in the comments at the start of the FORTRAN 2008 source. Compiler: gfortran from the GNU compiler collection. Command interpreter: bash.
<syntaxhighlight lang="fortran">
<lang FORTRAN>
!-*- mode: compilation; default-directory: "/tmp/" -*-
!Compilation started at Mon Jun 3 18:07:59
Line 568 ⟶ 653:
end do
end program average_angles
</syntaxhighlight>
</lang>
 
=={{header|FreeBASIC}}==
<langsyntaxhighlight lang="freebasic">
' FB 1.05.0 Win64
 
Line 597 ⟶ 682:
Print "Press any key to quit the program"
Sleep
</syntaxhighlight>
</lang>
 
{{out}}
Line 608 ⟶ 693:
=={{header|Go}}==
===Complex===
<langsyntaxhighlight lang="go">package main
 
import (
Line 635 ⟶ 720:
fmt.Printf("The mean angle of %v is: %f degrees\n", angles, mean_angle(angles))
}
}</langsyntaxhighlight>
{{out}}
<pre>
Line 645 ⟶ 730:
A mean_angle function that could be substituted above. Functions deg2rad and rad2deg are not used here but there is no runtime advantage either way to using them or not. Inlining should result in eqivalent code being generated. Also the Go Atan2 library function has no limits on the arguments so there is no need to divide by the number of elements.
 
<langsyntaxhighlight lang="go">func mean_angle(deg []float64) float64 {
var ss, sc float64
for _, x := range deg {
Line 653 ⟶ 738:
}
return math.Atan2(ss, sc) * 180 / math.Pi
}</langsyntaxhighlight>
 
=={{header|Groovy}}==
<langsyntaxhighlight lang="groovy">import static java.lang.Math.*
def meanAngle = {
atan2( it.sum { sin(it * PI / 180) } / it.size(), it.sum { cos(it * PI / 180) } / it.size()) * 180 / PI
}</langsyntaxhighlight>
Test:
<langsyntaxhighlight lang="groovy">def verifyAngle = { angles ->
def ma = meanAngle(angles)
printf("Mean Angle for $angles: %5.2f%n", ma)
Line 668 ⟶ 753:
assert verifyAngle([350, 10]) == -0
assert verifyAngle([90, 180, 270, 360]) == -90
assert verifyAngle([10, 20, 30]) == 20</langsyntaxhighlight>
{{out}}
<pre>Mean Angle for [350, 10]: -0.00
Line 675 ⟶ 760:
 
=={{header|Haskell}}==
<langsyntaxhighlight lang="haskell">import Data.Complex (cis, phase)
 
meanAngle
Line 689 ⟶ 774:
"The mean angle of " ++
show angles ++ " is: " ++ show (meanAngle angles) ++ " degrees")
[[350, 10], [90, 180, 270, 360], [10, 20, 30]]</langsyntaxhighlight>
{{out}}
<pre>
Line 700 ⟶ 785:
Alternative Solution: This solution gives an insight about using factoring, many small functions like Forth and using function composition.
 
<langsyntaxhighlight lang="haskell">
 
-- file: trigdeg.fs
Line 719 ⟶ 804:
 
-- End of trigdeg.fs --------
</syntaxhighlight>
</lang>
 
{{out}}
Line 742 ⟶ 827:
=={{header|Icon}} and {{header|Unicon}}==
 
<langsyntaxhighlight lang="unicon">procedure main(A)
write("Mean angle is ",meanAngle(A))
end
Line 750 ⟶ 835:
every (sumCosines := 0.0) +:= cos(dtor(!A))
return rtod(atan(sumSines/*A,sumCosines/*A))
end</langsyntaxhighlight>
 
Sample runs:
Line 760 ⟶ 845:
->ama 10 20 30
Mean angle is 20.0
</pre>
 
=={{header|IDL}}==
<syntaxhighlight lang="idl">function mean_angle, phi
z = total(exp(complex(0,phi*!dtor)))
return, atan(imaginary(z),real_part(z))*!radeg
end</syntaxhighlight>
 
{{out}}
<pre>IDL> print, mean_angle([350, 10])
-7.80250e-06
IDL> print, mean_angle([90, 180, 270, 360])
90.0000
IDL> print, mean_angle([10, 20, 30])
20.0000
</pre>
 
=={{header|J}}==
<langsyntaxhighlight Jlang="j">avgAngleD=: 360|(_1 { [: (**|)&.+.@(+/ % #)&.(*.inv) 1,.])&.(1r180p1&*)</langsyntaxhighlight>
This verb can be represented as simpler component verbs, for example:
<langsyntaxhighlight Jlang="j">rfd=: 1r180p1&* NB. convert angle to radians from degrees
toComplex=: *.inv NB. maps integer pairs as length, complex angle (in radians)
mean=: +/ % # NB. calculate arithmetic mean
roundComplex=: (* * |)&.+. NB. discard an extraneous least significant bit of precision from a complex value whose magnitude is in the vicinity of 1
avgAngleR=: _1 { [: roundComplex@mean&.toComplex 1 ,. ] NB. calculate average angle in radians
avgAngleD=: 360|avgAngleR&.rfd NB. calculate average angle in degrees</langsyntaxhighlight>
Example use:
<langsyntaxhighlight Jlang="j"> avgAngleD 10 350
0
avgAngleD 90 180 270 360 NB. result not meaningful
Line 781 ⟶ 881:
5
avgAngleD 10 340
355</langsyntaxhighlight>
 
Notes:
Line 802 ⟶ 902:
{{trans|NetRexx}}
{{works with|Java|7+}}
<langsyntaxhighlight lang="java5">import java.util.Arrays;
 
public class AverageMeanAngle {
Line 831 ⟶ 931:
return Math.toDegrees(avgR);
}
}</langsyntaxhighlight>
{{out}}
<pre>The mean angle of [350.0, 10.0] is -1.614809932057922E-15
Line 841 ⟶ 941:
=={{header|JavaScript}}==
===atan2===
<langsyntaxhighlight lang="javascript">function sum(a) {
var s = 0;
for (var i in= 0; i < a.length; i++) s += a[i];
return s;
}
 
function degToRad(a) {
return Math.PI / 180 * a;
}
 
function meanAngleDeg(a) {
return 180 / Math.PI * Math.atan2(sum(a.map(degToRad).map(Math.sin))/a.length,sum(a.map(degToRad).map(Math.cos))/a.length);
sum(a.map(degToRad).map(Math.sin)) / a.length,
sum(a.map(degToRad).map(Math.cos)) / a.length
);
}
 
var a = [350, 10], b = [90, 180, 270, 360], c = [10, 20, 30];
console.log(meanAngleDeg(a));
console.log(meanAngleDeg(b));
console.log(meanAngleDeg(c));</langsyntaxhighlight>
{{out}}
<pre>-1.614809932057922e-15
Line 871 ⟶ 974:
 
'''Generic Infrastructure'''
<langsyntaxhighlight lang="jq">def pi: 4 * (1|atan);
 
def deg2rad: . * pi / 180;
Line 889 ⟶ 992:
def abs: if . < 0 then - . else . end;
def summation(f): map(f) | add;</langsyntaxhighlight>
 
'''Mean Angle'''
<langsyntaxhighlight lang="jq"># input: degrees
def mean_angle:
def round:
Line 906 ⟶ 1,009:
| .[1]
| rad2deg
| round;</langsyntaxhighlight>
'''Examples'''
<langsyntaxhighlight lang="jq">([350, 10], [90, 180, 270, 360], [10, 20, 30])
| "The mean angle of \(.) is: \(mean_angle)"</langsyntaxhighlight>
 
{{out}}
<langsyntaxhighlight lang="sh">jq -r -n -f Mean_angle.jq
The mean angle of [350,10] is: 0
The mean angle of [90,180,270,360] is: null
The mean angle of [10,20,30] is: 20</langsyntaxhighlight>
 
=={{header|Julia}}==
Julia has built-in functions <code>sind</code> and <code>cosd</code> to compute the sine and cosine of angles specified in degrees accurately (avoiding the roundoff errors incurred in conversion to radians), and a built-in function to convert radians to degrees (or vice versa). Using these:
<syntaxhighlight lang="julia">using Statistics
<lang julia>meandegrees(degrees) = radians2degrees(atan2(mean(sind(degrees)), mean(cosd(degrees))))</lang>
meandegrees(degrees) = rad2deg(atan(mean(sind.(degrees)), mean(cosd.(degrees))))</syntaxhighlight>
The output is:
<langsyntaxhighlight lang="julia">julia> meandegrees([350, 10])
0.0
 
Line 928 ⟶ 1,032:
 
julia> meandegrees([10, 20, 30]])
19.999999999999996</langsyntaxhighlight>
(Note that the mean of 90°, 180°, 270°, and 360° gives zero because of the lack of roundoff errors in the <code>sind</code> function, since the standard-library <code>atan2(0,0)</code> value is zero. Many of the other languages report an average of 90° or –90° in this case due to rounding errors.)
 
=={{header|Kotlin}}==
<langsyntaxhighlight lang="scala">// version 1.0.5-2
 
fun meanAngle(angles: DoubleArray): Double {
Line 948 ⟶ 1,052:
println("Mean for angles 2 is ${fmt.format(meanAngle(angles2))}")
println("Mean for angles 3 is ${fmt.format(meanAngle(angles3))}")
}</langsyntaxhighlight>
 
{{out}}
Line 958 ⟶ 1,062:
 
=={{header|Liberty BASIC}}==
<langsyntaxhighlight lang="lb">global Pi
Pi =3.1415926535
 
Line 999 ⟶ 1,103:
if y =0 and x =0 then notice "undefined": end
atan2 =at
end function</langsyntaxhighlight>
{{out}}
<pre>
Line 1,006 ⟶ 1,110:
Mean Angle( "10,20,30") = 20.0 degrees.
</pre>
 
=={{header|Logo}}==
<langsyntaxhighlight lang="logo">to mean_angle :angles
local "avgsin
make "avgsin quotient apply "sum map "sin :angles count :angles
Line 1,020 ⟶ 1,125:
 
bye
</syntaxhighlight>
</lang>
 
{{Out}}
Line 1,030 ⟶ 1,135:
{{trans|Tcl}}
{{works with|Lua|5.1}}
<langsyntaxhighlight Lualang="lua">function meanAngle (angleList)
local sumSin, sumCos = 0, 0
for i, angle in pairs(angleList) do
Line 1,042 ⟶ 1,147:
print(meanAngle({350, 10}))
print(meanAngle({90, 180, 270, 360}))
print(meanAngle({10, 20, 30}))</langsyntaxhighlight>
{{out}}
<pre>
Line 1,052 ⟶ 1,157:
=={{header|Maple}}==
The following procedure takes a list of numeric degrees (with attached units) such as
<langsyntaxhighlight Maplelang="maple">> [ 350, 10 ] *~ Unit(arcdeg);
[350 [arcdeg], 10 [arcdeg]]</langsyntaxhighlight>
as input. (We could use "degree" instead of "arcdeg", since "degree" is taken, by default, to mean angle measure, but it seems best to avoid the ambiguity.)
<langsyntaxhighlight Maplelang="maple">MeanAngle := proc( L )
uses Units:-Standard; # for unit-awareness
local u;
evalf( convert( argument( add( u, u = exp~( I *~ L ) ) ), 'units', 'radian', 'degree' ) )
end proc:</langsyntaxhighlight>
Applying this to the given data sets, we obtain:
<langsyntaxhighlight Maplelang="maple">> MeanAngle( [ 350, 10 ] *~ Unit(arcdeg) );
0.
 
Line 1,068 ⟶ 1,173:
 
> MeanAngle( [ 10, 20, 30 ] *~ Unit(arcdeg) );
20.00000000</langsyntaxhighlight>
 
=={{header|Mathematica}} / {{header|Wolfram Language}}==
<langsyntaxhighlight Mathematicalang="mathematica">meanAngle[data_List] := N@Arg[Mean[Exp[I data Degree]]]/Degree</langsyntaxhighlight>
{{out}}
<pre>meanAngle /@ {{350, 10}, {90, 180, 270, 360}, {10, 20, 30}}
Line 1,077 ⟶ 1,182:
 
=={{header|MATLAB}} / {{header|Octave}}==
<langsyntaxhighlight MATLABlang="matlab">function u = mean_angle(phi)
u = angle(mean(exp(i*pi*phi/180)))*180/pi;
end</langsyntaxhighlight>
<pre> mean_angle([350, 10])
ans = -2.7452e-14
Line 1,086 ⟶ 1,191:
mean_angle([10, 20, 30])
ans = 20.000
</pre>
 
=={{header|MiniScript}}==
<syntaxhighlight lang="miniscript">
atan2 = function(y, x)
return 2 * atan((sqrt(x^2 + y^2) - x) / y)
end function
 
deg2rad = function(x); return x * pi / 180; end function
rad2deg = function(x); return x * 180 / pi; end function
 
meanAngle = function(angles)
xsum = 0; ysum = 0
for angle in angles
xsum += cos(deg2rad(angle))
ysum += sin(deg2rad(angle))
end for
return rad2deg(atan2(ysum / angles.len, xsum / angles.len))
end function
 
manyAngledOnes = [[350, 10], [90, 180, 270, 360], [10, 20, 30]]
 
for angles in manyAngledOnes
mean = meanAngle(angles)
print ["Mean of", angles, "is", mean].join(" ")
end for
</syntaxhighlight>
{{out}}
<pre>
Mean of [350, 10] is 0
Mean of [90, 180, 270, 360] is -90
Mean of [10, 20, 30] is 20.0
</pre>
 
=={{header|NetRexx}}==
{{trans|C}}
<langsyntaxhighlight NetRexxlang="netrexx">/* NetRexx */
options replace format comments java crossref symbols nobinary
numeric digits 80
Line 1,123 ⟶ 1,260:
end angles
return
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 1,143 ⟶ 1,280:
 
=={{header|Nim}}==
{{works with|Nim|0.20.0+}}
<lang nim>import math, complex
<syntaxhighlight lang="nim">import math, complex
proc rect(r, phi: float): Complex = (r * cos(phi), sin(phi))
proc phase(c: Complex): float = arctan2(c.im, c.re)
proc radians(x: float): float = (x * Pi) / 180.0
proc degrees(x: float): float = (x * 180.0) / Pi
proc meanAngle(deg: openArray[float]): float =
var c: Complex[float]
for d in deg:
c += rect(1.0, radiansdegToRad(d))
degreesradToDeg(phase(c / float(deg.len)))
echo "The 1st mean angle is: ", meanAngle([350.0, 10.0]), " degrees"
echo "The 2nd mean angle is: ", meanAngle([90.0, 180.0, 270.0, 360.0]), " degrees"
echo "The 3rd mean angle is: ", meanAngle([10.0, 20.0, 30.0]), " degrees"</langsyntaxhighlight>
Output:
<pre>The 1st mean angle is: -21.745176884498468e614809932057922e-1415 degrees
The 2nd mean angle is: -90.0 degrees
The 3rd mean angle is: 20.0 degrees</pre>
Line 1,167 ⟶ 1,299:
=={{header|Oberon-2}}==
{{works with|oo2c}}
<langsyntaxhighlight lang="oberon2">
MODULE MeanAngle;
IMPORT
Line 1,200 ⟶ 1,332:
Out.LongRealFix(Mean(grades) * toDegs,15,9);Out.Ln;
END MeanAngle.
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 1,209 ⟶ 1,341:
 
=={{header|OCaml}}==
<langsyntaxhighlight lang="ocaml">let pi = 3.14159_26535_89793_23846_2643
 
let deg2rad d =
Line 1,233 ⟶ 1,365:
test [90.0; 180.0; 270.0; 360.0];
test [10.0; 20.0; 30.0];
;;</langsyntaxhighlight>
or using the <code>Complex</code> module:
<langsyntaxhighlight lang="ocaml">open Complex
 
let mean_angle angles =
Line 1,241 ⟶ 1,373:
List.fold_left (fun sum a -> add sum (polar 1.0 (deg2rad a))) zero angles
in
rad2deg (arg sum)</langsyntaxhighlight>
{{out}}
<pre>
Line 1,251 ⟶ 1,383:
=={{header|ooRexx}}==
{{trans|REXX}}
<langsyntaxhighlight lang="oorexx">/*REXX program computes the mean angle (angles expressed in degrees). */
numeric digits 50 /*use fifty digits of precision, */
showDig=10 /*··· but only display 10 digits.*/
Line 1,274 ⟶ 1,406:
return left('angles='a,30) 'mean angle=' format(mA,,showDig,0)/1
 
::requires rxMath library;</langsyntaxhighlight>
{{out}}
<pre>angles=350 10 mean angle= 0
angles=90 180 270 360 mean angle= 0
angles=10 20 30 mean angle= 20</pre>
 
=={{header|PARI/GP}}==
<langsyntaxhighlight lang="parigp">meanAngle(v)=atan(sum(i=1,#v,sin(v[i]))/sum(i=1,#v,cos(v[i])))%(2*Pi)
meanDegrees(v)=meanAngle(v*Pi/180)*180/Pi
apply(meanDegrees,[[350, 10], [90, 180, 270, 360], [10, 20, 30]])</langsyntaxhighlight>
{{out}}
<pre>[360.000000, 296.565051, 20.0000000]</pre>
 
=={{header|Pascal}}==
uses library math for sincos, a function of FPU80x87, atan2 and DegToRad.
Tested with free pascal.
Try to catch very small cos values and set to 0.0 degrees " Error : Not meaningful" as http://rosettacode.org/wiki/Averages/Mean_angle#Euler_Math_Toolbox complains.
<langsyntaxhighlight lang="pascal">program MeanAngle;
{$IFDEF DELPHI}
{$APPTYPE CONSOLE}
Line 1,360 ⟶ 1,493:
 
setlength(a,0);
end.</langsyntaxhighlight>
;output:
<pre>
Line 1,368 ⟶ 1,501:
 
=={{header|Perl}}==
<langsyntaxhighlight lang="perl">sub Pi () { 3.1415926535897932384626433832795028842 }
 
sub meanangle {
Line 1,384 ⟶ 1,517:
 
print "The mean angle of [@$_] is: ", meandegrees(@$_), " degrees\n"
for ([350,10], [90,180,270,360], [10,20,30]);</langsyntaxhighlight>
{{out}}
<pre>
Line 1,391 ⟶ 1,524:
The mean angle of [10 20 30] is: 20 degrees
</pre>
 
=={{header|Perl 6}}==
{{works with|Rakudo|2015.12}}
This solution refuses to return an answer when the angles cancel out to a tiny magnitude.
<lang perl6># Of course, you can still use pi and 180.
sub deg2rad { $^d * tau / 360 }
sub rad2deg { $^r * 360 / tau }
 
sub phase ($c) {
my ($mag,$ang) = $c.polar;
return NaN if $mag < 1e-16;
$ang;
}
 
sub meanAngle { rad2deg phase [+] map { cis deg2rad $_ }, @^angles }
 
say meanAngle($_).fmt("%.2f\tis the mean angle of "), $_ for
[350, 10],
[90, 180, 270, 360],
[10, 20, 30];</lang>
{{out}}
<pre>-0.00 is the mean angle of 350 10
NaN is the mean angle of 90 180 270 360
20.00 is the mean angle of 10 20 30</pre>
 
=={{header|Phix}}==
Copied from [[Averages/Mean_angle#Euphoria|Euphoria]], and slightly improved
<!--<syntaxhighlight lang="phix">(phixonline)-->
<lang Phix>function atan2(atom y, atom x)
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
return 2*arctan((sqrt(power(x,2)+power(y,2))-x)/y)
<span style="color: #008080;">function</span> <span style="color: #000000;">MeanAngle</span><span style="color: #0000FF;">(</span><span style="color: #004080;">sequence</span> <span style="color: #000000;">angles</span><span style="color: #0000FF;">)</span>
end function
<span style="color: #004080;">atom</span> <span style="color: #000000;">x</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">y</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span>
 
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">angles</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span>
function MeanAngle(sequence angles)
<span style="color: #004080;">atom</span> <span style="color: #000000;">ai_rad</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">angles</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]*</span><span style="color: #004600;">PI</span><span style="color: #0000FF;">/</span><span style="color: #000000;">180</span>
atom x=0, y=0, ai_rad
<span style="color: #000000;">x</span> <span style="color: #0000FF;">+=</span> <span style="color: #7060A8;">cos</span><span style="color: #0000FF;">(</span><span style="color: #000000;">ai_rad</span><span style="color: #0000FF;">)</span>
integer l=length(angles)
<span style="color: #000000;">y</span> <span style="color: #0000FF;">+=</span> <span style="color: #7060A8;">sin</span><span style="color: #0000FF;">(</span><span style="color: #000000;">ai_rad</span><span style="color: #0000FF;">)</span>
 
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
for i=1 to l do
<span style="color: #008080;">if</span> <span style="color: #7060A8;">abs</span><span style="color: #0000FF;">(</span><span style="color: #000000;">x</span><span style="color: #0000FF;">)<</span><span style="color: #000000;">1e-16</span> <span style="color: #008080;">then</span> <span style="color: #008080;">return</span> <span style="color: #008000;">"not meaningful"</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
ai_rad = angles[i]*PI/180
<span style="color: #008080;">return</span> <span style="color: #7060A8;">sprintf</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"%g"</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">round</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">atan2</span><span style="color: #0000FF;">(</span><span style="color: #000000;">y</span><span style="color: #0000FF;">,</span><span style="color: #000000;">x</span><span style="color: #0000FF;">)*</span><span style="color: #000000;">180</span><span style="color: #0000FF;">/</span><span style="color: #004600;">PI</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1e10</span><span style="color: #0000FF;">))</span>
x += cos(ai_rad)
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
y += sin(ai_rad)
end for
<span style="color: #008080;">constant</span> <span style="color: #000000;">AngleLists</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{{</span><span style="color: #000000;">350</span><span style="color: #0000FF;">,</span><span style="color: #000000;">10</span><span style="color: #0000FF;">},{</span><span style="color: #000000;">90</span><span style="color: #0000FF;">,</span><span style="color: #000000;">180</span><span style="color: #0000FF;">,</span><span style="color: #000000;">270</span><span style="color: #0000FF;">,</span><span style="color: #000000;">360</span><span style="color: #0000FF;">},{</span><span style="color: #000000;">10</span><span style="color: #0000FF;">,</span><span style="color: #000000;">20</span><span style="color: #0000FF;">,</span><span style="color: #000000;">30</span><span style="color: #0000FF;">},{</span><span style="color: #000000;">180</span><span style="color: #0000FF;">},{</span><span style="color: #000000;">0</span><span style="color: #0000FF;">,</span><span style="color: #000000;">180</span><span style="color: #0000FF;">}}</span>
if abs(x)<1e-16 then return "not meaningful" end if
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">AngleLists</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span>
return sprintf("%9.5f",atan2(y,x)*180/PI)
<span style="color: #004080;">sequence</span> <span style="color: #000000;">ai</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">AngleLists</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]</span>
end function
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"%16V: Mean Angle is %s\n"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">ai</span><span style="color: #0000FF;">,</span><span style="color: #000000;">MeanAngle</span><span style="color: #0000FF;">(</span><span style="color: #000000;">ai</span><span style="color: #0000FF;">)})</span>
 
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
constant AngleLists = {{350,10},{90,180,270,360},{10,20,30},{180},{0,180}}
<!--</syntaxhighlight>-->
sequence ai
for i=1 to length(AngleLists) do
ai = AngleLists[i]
printf(1,"%+16s: Mean Angle is %s\n",{sprint(ai),MeanAngle(ai)})
end for
{} = wait_key()</lang>
{{out}}
<pre>
{350,10}: Mean Angle is 0.00000
{90,180,270,360}: Mean Angle is not meaningful
{10,20,30}: Mean Angle is 20.00000
{180}: Mean Angle is 180.00000
{0,180}: Mean Angle is not meaningful
</pre>
Line 1,453 ⟶ 1,557:
=={{header|PHP}}==
{{trans|C}}
<langsyntaxhighlight lang="php"><?php
$samples = array(
'1st' => array(350, 10),
Line 1,475 ⟶ 1,579:
return rad2deg(atan2($y_part, $x_part));
}
?></langsyntaxhighlight>
{{out}}
<pre>Mean angle for 1st sample: -1.6148099320579E-15 degrees.
Line 1,482 ⟶ 1,586:
 
=={{header|PicoLisp}}==
<langsyntaxhighlight PicoLisplang="picolisp">(load "@lib/math.l")
 
(de meanAngle (Lst)
Line 1,495 ⟶ 1,599:
"The mean angle of ["
(glue ", " (mapcar round L '(0 .)))
"] is: " (round (meanAngle L))) )</langsyntaxhighlight>
{{out}}
<pre>The mean angle of [350, 10] is: 0.000
Line 1,502 ⟶ 1,606:
 
=={{header|PL/I}}==
<langsyntaxhighlight PLlang="pl/Ii">averages: procedure options (main); /* 31 August 2012 */
declare b1(2) fixed initial (350, 10);
declare b2(4) fixed initial (90, 180, 270, 360);
Line 1,519 ⟶ 1,623:
end mean;
 
end averages;</langsyntaxhighlight>
Results (the final one brings up an error in inverse tangent):
<pre>
Line 1,530 ⟶ 1,634:
 
=={{header|PowerShell}}==
<syntaxhighlight lang="powershell">
<lang PowerShell>
function Get-MeanAngle ([double[]]$Angles)
{
Line 1,538 ⟶ 1,642:
[Math]::Atan2($y, $x) * 180 / [Math]::PI
}
</syntaxhighlight>
</lang>
 
<syntaxhighlight lang="powershell">
<lang PowerShell>
@(350, 10), @(90, 180, 270, 360), @(10, 20, 30) | ForEach-Object {Get-MeanAngle $_}
</syntaxhighlight>
</lang>
 
{{Out}}
Line 1,550 ⟶ 1,654:
20
</pre>
 
=={{header|Processing}}==
<syntaxhighlight lang="processing">void setup() {
println(meanAngle(350, 10));
println(meanAngle(90, 180, 270, 360));
println(meanAngle(10, 20, 30));
}
 
float meanAngle(float... angles) {
float sum1 = 0, sum2 = 0;
for (int i = 0; i < angles.length; i++) {
sum1 += sin(radians(angles[i])) / angles.length;
sum2 += cos(radians(angles[i])) / angles.length;
}
return degrees(atan2(sum1, sum2));
}</syntaxhighlight>
{{out}}
<pre>-7.8025005E-6
90.0
20.0</pre>
 
=={{header|PureBasic}}==
<syntaxhighlight lang="purebasic">NewList angle.d()
 
Macro AE(x)
AddElement(angle()) : angle()=x
EndMacro
 
Procedure.d atan3(y.d,x.d)
If x<=0.0 : ProcedureReturn Sign(y)*#PI/2 : EndIf
If x>0.0 : ProcedureReturn ATan(y/x) : EndIf
If y>0.0 : ProcedureReturn ATan(y/x)+#PI : EndIf
ProcedureReturn ATan(y/x)-#PI
EndProcedure
 
Procedure.d mAngle(List angle.d())
Define.d sumS,sumC
ForEach angle()
sumS+Sin(Radian(angle())) : sumC+Cos(Radian(angle()))
Next
ProcedureReturn Degree(atan3(sumS,sumC))
EndProcedure
 
AE(350.0) : AE(10.0)
Debug StrD(mAngle(angle()),6) : ClearList(angle())
 
AE(90.0) : AE(180.0) : AE(270.0) : AE(360.0)
Debug StrD(mAngle(angle()),6) : ClearList(angle())
 
AE(10.0) : AE(20.0) : AE(30.0)
Debug StrD(mAngle(angle()),6) : ClearList(angle())
</syntaxhighlight>
{{out}}
<pre>-0.000000
-90.000000
20.000000</pre>
 
=={{header|Python}}==
{{works with|Python|2.6+}}
<langsyntaxhighlight lang="python">>>> from cmath import rect, phase
>>> from math import radians, degrees
>>> def mean_angle(deg):
Line 1,564 ⟶ 1,724:
The mean angle of [90, 180, 270, 360] is: -90.0 degrees
The mean angle of [10, 20, 30] is: 20.0 degrees
>>> </langsyntaxhighlight>
 
=={{header|R}}==
<syntaxhighlight lang="r">
deg2rad <- function(x) {
x * pi/180
}
 
rad2deg <- function(x) {
x * 180/pi
}
 
deg2vec <- function(x) {
c(sin(deg2rad(x)), cos(deg2rad(x)))
}
 
vec2deg <- function(x) {
res <- rad2deg(atan2(x[1], x[2]))
if (res < 0) {
360 + res
} else {
res
}
}
 
mean_vec <- function(x) {
y <- lapply(x, deg2vec)
Reduce(`+`, y)/length(y)
}
 
mean_deg <- function(x) {
vec2deg(mean_vec(x))
}
 
mean_deg(c(350, 10))
mean_deg(c(90, 180, 270, 360))
mean_deg(c(10, 20, 30))
</syntaxhighlight>
{{out}}
<pre>
360
270
20
</pre>
 
=={{header|Racket}}==
The formula given above can be straightforwardly transcribed into a program:
<langsyntaxhighlight lang="racket">
#lang racket
 
Line 1,584 ⟶ 1,787:
(mean-angle '(90 180 270 360))
(mean-angle '(10 20 30))
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 1,591 ⟶ 1,794:
19.999999999999996
</pre>
 
=={{header|Raku}}==
(formerly Perl 6)
{{works with|Rakudo|2015.12}}
This solution refuses to return an answer when the angles cancel out to a tiny magnitude.
<syntaxhighlight lang="raku" line># Of course, you can still use pi and 180.
sub deg2rad { $^d * tau / 360 }
sub rad2deg { $^r * 360 / tau }
 
sub phase ($c) {
my ($mag,$ang) = $c.polar;
return NaN if $mag < 1e-16;
$ang;
}
 
sub meanAngle { rad2deg phase [+] map { cis deg2rad $_ }, @^angles }
 
say meanAngle($_).fmt("%.2f\tis the mean angle of "), $_ for
[350, 10],
[90, 180, 270, 360],
[10, 20, 30];</syntaxhighlight>
{{out}}
<pre>-0.00 is the mean angle of 350 10
NaN is the mean angle of 90 180 270 360
20.00 is the mean angle of 10 20 30</pre>
 
=={{header|REXX}}==
This REXX version uses an &nbsp; '''ATAN2''' &nbsp; solution.
 
The REXX language doesn't have most of the higher mathematical functions (like '''sqrt'''), and
(like '''sqrt'''), and
none of the trigonometric functions, so all of them have to be included as RYO &nbsp; ('''R'''oll-'''Y'''our-'''O'''wn).
none of the trigonometric
<br>functions, &nbsp; so all of them have to be included as
RYO &nbsp; ('''R'''oll-'''Y'''our-'''O'''wn).
<pre>
Note that the second set of angles: 90 180 270 360
 
is the same as: 90 180 -90 0
and: -270 -180 -90 -360
Line 1,605 ⟶ 1,836:
and other combinations.
</pre>
All the trigonometric functions use normalization &nbsp; (converting the
All the trigonometric functions use normalization &nbsp; (converting the angle to a unit circle) &nbsp; before computation, and most of them use shortcuts for some exact values, so there is a minimum of errors due to rounding for &nbsp; ''near values'' &nbsp; for some common values. &nbsp; The consequence is the trigonometric functions may return exact values such as &nbsp; '''0''' &nbsp; (zero) &nbsp; for &nbsp; '''sin(-2π)''' &nbsp; instead of &nbsp; '''-8.154E-61'''.
angle to a unit circle) &nbsp; before computation, &nbsp; and most
<br>of them use shortcuts for some exact values, &nbsp; so there is a minimum of
errors due to rounding for &nbsp; ''near values'' &nbsp; for some
<br>common values.
 
The consequence is the trig functions may return exact values such
This very small difference (almost inconsequential) makes a significant difference when that value is used for a parameter for the &nbsp; '''ATAN2''' &nbsp; function; &nbsp; in particular, the sign of the value. &nbsp;
as &nbsp; '''0''' &nbsp; (zero) &nbsp; for &nbsp; '''sin(-2<big><big><math>\pi</math></big></big>)''' &nbsp; instead
of &nbsp; '''-8.154E-61'''.
 
This very small difference (almost inconsequential) makes a significant difference
There isn't much difference between:
when that value is used for a parameter
<pre>
<br>for the &nbsp; '''ATAN2''' &nbsp; function; &nbsp; in
particular, the &nbsp; ''sign'' &nbsp; of the value.
 
There isn't much difference between:
-8.154e-61 and
+8.154e-61
in magnitude, but the &nbsp; '''ATAN2''' &nbsp; function treats those two numbers
</pre>
in magnitude, but the '''ATAN2''' function treats those two numbers very differently as the angle iswill be in different quadrants, thereby yielding a different value.
<br>thereby yielding a different value.
 
Usually this just results in an angle of &nbsp; '''-90º''' &nbsp; instead
of &nbsp; '''+270º''' &nbsp; (both angles are equivalent).
 
Also note that the REXX subroutines are largely not commented as they provide a
Usually this just results in an angle of &nbsp; '''-90º''' &nbsp; instead of &nbsp; '''+270º''' &nbsp; (both angles are equivalent).
support structure that's normally present
<br><br>Also note that the REXX subroutines are largely not commented as they provide a support structure that's normally present in other languages as BIFs &nbsp; ('''B'''uilt-'''I'''n-'''F'''unctions); &nbsp; to add comments and expand the REXX statements into single lines would detract from the main program.
<br>in other computer programming languages as
<lang rexx>/*REXX program computes the mean angle for a group of angles (expressed in degrees). */
BIFs &nbsp; ('''B'''uilt-'''I'''n-'''F'''unctions); &nbsp; to add comments and expand the
REXX statements
<br>into single lines would increase the program's bulk and detract from the main program.
<syntaxhighlight lang="rexx">/*REXX program computes the mean angle for a group of angles (expressed in degrees). */
call pi /*define the value of pi to some accuracy.*/
numeric digits length(pi) - 1; showDig=10 /*use PI width decimal digits of precision,*/
showDig= 10 /*only display but onlyten display 10 decimal digits. */
#= 350 10 ; say show(#, meanAngleD(#)) /*display mean angle (in degrees), 1st case.*/
#= 90 180 270 360 ; say show(#, meanAngleD(#) ) /* " " " " " 2nd " */
#= 10 20 30 ; say show(#, meanAngleD(#) ) /* " " " " " 3rd " */
exit /*stick a fork in it, we're all done with it*/
/*───────────────────────────────────────────────────────────────────────────────────────────*/
Line 1,635 ⟶ 1,884:
r2d: return d2d((r2r(arg(1)) / pi()) * 180)
r2r: return arg(1) // (pi() * 2)
p: return word(arg(1), 1)
pi: pi=3.1415926535897932384626433832795028841971693993751058209749445923078164062862;return pi
/*───────────────────────────────────────────────────────────────────────────────────────────*/
 
Asin: procedure; parse arg x 1 z 1 o 1 p; xx a= abs(x); aa= a *x a
if xxa>=.51 then returncall AsinErr sign(x) /*argument Acos(sqrt(1-xx))X is out of range.*/
if a do j>=2 by sqrt(2) * until.5 p=z; then p=z;return o=o*xx*sign(j-1x)/j; * acos( z=z+o/sqrt(j+1); - aa), end /*j*/'-ASIN')
return z do j=2 by 2 until p=z; p= z; o= o * aa * (j-1) / j; z= z +o /* [↑](j+1); compute until no more noise.*/end
return z /* [↑] compute until no noise*/
 
/*───────────────────────────────────────────────────────────────────────────────────────────*/
Atan2: procedure; parse arg y,x; call pi; s=sign(y)
Atan2: procedure; parse arg y,x; call pi; s= sign(y)
select
when x=0 then z= s * pi * .5
when x<0 then if y=0 then z= pi; else z= s * (pi - abs( Atan(y/x) ) )
otherwise z= s * Atan(y / x)
end /*select*/; return z
/*───────────────────────────────────────────────────────────────────────────────────────────*/
 
cos: procedure; parse arg x; x= r2r(x); numeric fuzz $fuzz(6, 3)
a= abs(x); if a=0 then return 1; if a=pi then return -1
if a=pi*.5 | a= pi*1.5 then return 0; if a=pi/3 then return .5
if a= pi*2/3 then return -.5; return .sinCos(1, 1, -1)
/*───────────────────────────────────────────────────────────────────────────────────────────*/
 
meanAngleD: procedure; parse arg x; numeric digits digits() + digits() % 4
n= words(x); n=words(x); _sin= 0; _cos= 0
do j=1 for n; != d2r( word(x, j)); _sin= _sin + sin(!); _cos= _cos + cos(!); end /*j*/
return r2d(Atan2(_sin/n,end _cos /*j*/n))
return r2d( Atan2( _sin/n, _cos/n) )
 
/*───────────────────────────────────────────────────────────────────────────────────────────*/
show: parse arg a,mA; _=format(ma, , showDig, 0) / 1
show: parse arg a,mA; _= format(ma, , showDig, 0) / 1
return left('angles='a, 30) "mean angle=" right(_, max(4, length(_)))
return left('angles='a, 30) "mean angle=" right(_, max(4, length(_) ) )
 
/*───────────────────────────────────────────────────────────────────────────────────────────*/
sin: procedure; parse arg x; x=r2r(x); numeric fuzz $fuzz(5, 3)
sin: procedure; parse arg x; if x=pi*.5 r2r(x); thennumeric returnfuzz 1; if x==pi*1.$fuzz(5, then return -13)
if abs(x)=pi |* .5 x=0 then return 01; return .sinCos(x, if x,==pi * 1.5 then return +-1)
if abs(x)=pi | x=0 then return 0; return .sinCos(x, x, +1)
 
/*───────────────────────────────────────────────────────────────────────────────────────────*/
sqrt: procedure; parse arg x; if x=0 then return 0; d=digits(); m.=9; numeric form; h=d+6
sqrt: procedure; parse arg x; if x=0 then return 0; d=digits(); m.=9; numeric form; h= d+6
numeric digits; parse value format(x,2,1,,0) 'E0' with g "E" _ .; g=g * .5'e'_ % 2
numeric digits; parse value do j=format(x,2,1,,0) 'E0' while h>9;with g "E" _ m.j=h; g= g * .5'e'_ % h=h%2+1; end /*j*/
do j=0 while h>9; do k= m.j+5= h; to 0 by -1; numeric digits m.k; g h=(g h % 2 +x/g)*.5 1; end /*kj*/
do k=j+5 to 0 by -1; numeric digits m.k; g= (g + x/g) * .5; end /*k*/
return g</lang>
return g</syntaxhighlight>
''output''' &nbsp; when using the default input:
{{out|output|text=&nbsp; when using the default internal inputs:}}
<pre>
angles=350 10 mean angle= 0
Line 1,679 ⟶ 1,929:
</pre>
Note that with the increase in decimal digit precision, the 2<sup>nd</sup> mean angle changed dramatically from an earlier result. <br><br>
 
=={{header|Ring}}==
<syntaxhighlight lang="ring">
# Project : Averages/Mean angle
 
load "stdlib.ring"
decimals(6)
pi = 3.1415926535897
angles = [350,10]
see meanangle(angles, len(angles)) + nl
angles = [90,180,270,360]
see meanangle(angles, len(angles)) + nl
angles = [10,20,30]
see meanangle(angles, len(angles)) + nl
func meanangle(angles, n)
sumsin = 0
sumcos = 0
for i = 1 to n
sumsin = sumsin + sin(angles[i]*pi/180)
sumcos = sumcos + cos(angles[i]*pi/180)
next
return 180/pi*atan3(sumsin, sumcos)
func atan3(y,x)
if x <= 0
return sign(y)*pi/2
ok
if x>0
return atan(y/x)
else
if y>0
return atan(y/x)+pi
else
return atan(y/x)-pi
ok
ok
</syntaxhighlight>
Output:
<pre>
-0.000000
-90
20.000000
</pre>
 
=={{header|RPL}}==
≪ DEG → angles
≪ 0 1 angles SIZE '''FOR''' j
1 angles j GET R→C P→R + '''NEXT'''
angles SIZE / ARG
≫ ≫ ''''MEANG'''' STO
{{in}}
<pre>
{ 350 10 } MEANG
{ 90 180 270 360 } MEANG
{ 10 20 30 } MEANG
</pre>
{{out}}
<pre>
3: 0
2: -90
1: 20
</pre>
 
=={{header|Ruby}}==
<langsyntaxhighlight lang="ruby">require 'complex' # Superfluous in Ruby >= 2.0; complex is added to core.
 
def deg2rad(d)
Line 1,697 ⟶ 2,010:
[[350, 10], [90, 180, 270, 360], [10, 20, 30]].each {|angles|
puts "The mean angle of %p is: %f degrees" % [angles, mean_angle(angles)]
}</langsyntaxhighlight>
{{out}}
<pre>
Line 1,707 ⟶ 2,020:
=={{header|Rust}}==
 
<langsyntaxhighlight lang="rust">
use std::f64;
// the macro is from
Line 1,751 ⟶ 2,064:
assert_diff!(20.0, mean_angle(&angles3), 0.001);
}
</syntaxhighlight>
</lang>
 
=={{header|Scala}}==
{{libheader|Scala}}<langsyntaxhighlight Scalalang="scala">trait MeanAnglesComputation {
import scala.math.{Pi, atan2, cos, sin}
 
Line 1,772 ⟶ 2,085:
assert(meanAngle(List(10, 20, 30)).round == 20, "Unexpected result with 10, 20, 30")
println("Successfully completed without errors.")
}</langsyntaxhighlight>
 
=={{header|Scheme}}==
Line 1,778 ⟶ 2,091:
{{trans|Common Lisp}}
 
<langsyntaxhighlight lang="scheme">
(import (srfi 1 lists)) ;; use 'fold' from library
 
Line 1,802 ⟶ 2,115:
(display " is ") (display (mean-angle angles)) (newline))
'((350 10) (90 180 270 360) (10 20 30)))
</syntaxhighlight>
</lang>
 
<pre>
Line 1,811 ⟶ 2,124:
 
=={{header|Seed7}}==
<langsyntaxhighlight lang="seed7">$ include "seed7_05.s7i";
include "float.s7i";
include "math.s7i";
Line 1,840 ⟶ 2,153:
writeln(meanAngle([] (90.0, 180.0, 270.0, 360.0)) digits 4);
writeln(meanAngle([] (10.0, 20.0, 30.0)) digits 4);
end func;</langsyntaxhighlight>{{out}}
0.0000
90.0000
Line 1,846 ⟶ 2,159:
 
=={{header|Sidef}}==
<langsyntaxhighlight lang="ruby">func mean_angle(angles) {
atan2(
Math.avg(angles.map{ .deg2rad.sin }...),
Line 1,855 ⟶ 2,168:
[[350,10], [90,180,270,360], [10,20,30]].each { |angles|
say "The mean angle of #{angles.dump} is: #{ '%.2f' % mean_angle(angles)} degrees"
}</langsyntaxhighlight>
{{out}}
<pre>
Line 1,864 ⟶ 2,177:
 
=={{header|Stata}}==
<langsyntaxhighlight lang="stata">mata
function meanangle(a) {
return(arg(sum(exp(C(0,a)))))
}
 
deg=acospi(-1)/180
 
meanangle((350,10)*deg)/deg
Line 1,877 ⟶ 2,190:
meanangle((10,20,30)*deg)/deg
20
end</langsyntaxhighlight>
 
=={{header|Swift}}==
 
<syntaxhighlight lang="swift">import Foundation
 
@inlinable public func d2r<T: FloatingPoint>(_ f: T) -> T { f * .pi / 180 }
@inlinable public func r2d<T: FloatingPoint>(_ f: T) -> T { f * 180 / .pi }
 
public func meanOfAngles(_ angles: [Double]) -> Double {
let cInv = 1 / Double(angles.count)
let (s, c) =
angles.lazy
.map(d2r)
.map({ (sin($0), cos($0)) })
.reduce(into: (0.0, 0.0), { $0.0 += $1.0; $0.1 += $1.1 })
 
return r2d(atan2(cInv * s, cInv * c))
}
 
let fmt = { String(format: "%lf", $0) }
 
print("Mean of angles (350, 10) => \(fmt(meanOfAngles([350, 10])))")
print("Mean of angles (90, 180, 270, 360) => \(fmt(meanOfAngles([90, 180, 270, 360])))")
print("Mean of angles (10, 20, 30) => \(fmt(meanOfAngles([10, 20, 30])))")</syntaxhighlight>
 
{{out}}
 
<pre>Mean of angles (350, 10) => -0.000000
Mean of angles (90, 180, 270, 360) => -90.000000
Mean of angles (10, 20, 30) => 20.000000</pre>
 
=={{header|Tcl}}==
<langsyntaxhighlight lang="tcl">proc meanAngle {angles} {
set toRadians [expr {atan2(0,-1) / 180}]
set sumSin [set sumCos 0.0]
Line 1,889 ⟶ 2,232:
# Don't need to divide by counts; atan2() cancels that out
return [expr {atan2($sumSin, $sumCos) / $toRadians}]
}</langsyntaxhighlight>
Demonstration code:
<langsyntaxhighlight lang="tcl"># A little pretty-printer
proc printMeanAngle {angles} {
puts [format "mean angle of \[%s\] = %.2f" \
Line 1,899 ⟶ 2,242:
printMeanAngle {350 10}
printMeanAngle {90 180 270 360}
printMeanAngle {10 20 30}</langsyntaxhighlight>
{{out}}
<pre>
Line 1,905 ⟶ 2,248:
mean angle of [90, 180, 270, 360] = -90.00
mean angle of [10, 20, 30] = 20.00
</pre>
 
=={{header|Vala}}==
<syntaxhighlight lang="vala">double meanAngle(double[] angles) {
double y_part = 0.0;
double x_part = 0.0;
for (int i = 0; i < angles.length; i++) {
x_part += Math.cos(angles[i] * Math.PI / 180.0);
y_part += Math.sin(angles[i] * Math.PI / 180.0);
}
 
return Math.atan2(y_part / angles.length, x_part / angles.length) * 180 / Math.PI;
}
 
void main() {
double[] angleSet1 = {350.0, 10.0};
double[] angleSet2 = {90.0, 180.0, 270.0, 360.0};
double[] angleSet3 = {10.0, 20.0, 30.0};
 
print("\nMean Angle for 1st set : %lf degrees", meanAngle(angleSet1));
print("\nMean Angle for 2nd set : %lf degrees", meanAngle(angleSet2));
print("\nMean Angle for 3rd set : %lf degrees\n", meanAngle(angleSet3));
}</syntaxhighlight>
 
{{out}}
<pre>
Mean Angle for 1st set : -0.000000 degrees
Mean Angle for 2nd set : -90.000000 degrees
Mean Angle for 3rd set : 20.000000 degrees
</pre>
 
=={{header|VBA}}==
<syntaxhighlight lang="vb">Option Base 1
Private Function mean_angle(angles As Variant) As Double
Dim sins() As Double, coss() As Double
ReDim sins(UBound(angles))
ReDim coss(UBound(angles))
For i = LBound(angles) To UBound(angles)
sins(i) = Sin(WorksheetFunction.Radians(angles(i)))
coss(i) = Cos(WorksheetFunction.Radians(angles(i)))
Next i
mean_angle = WorksheetFunction.Degrees( _
WorksheetFunction.Atan2( _
WorksheetFunction.sum(coss), _
WorksheetFunction.sum(sins)))
End Function
Public Sub main()
Debug.Print Format(mean_angle([{350,10}]), "##0")
Debug.Print Format(mean_angle([{90, 180, 270, 360}]), "##0")
Debug.Print Format(mean_angle([{10, 20, 30}]), "##0")
End Sub</syntaxhighlight>{{out}}
<pre>0
-90
20</pre>
 
=={{header|Visual Basic .NET}}==
{{trans|C#}}
<syntaxhighlight lang="vbnet">Imports System.Math
 
Module Module1
 
Function MeanAngle(angles As Double()) As Double
Dim x = angles.Sum(Function(a) Cos(a * PI / 180)) / angles.Length
Dim y = angles.Sum(Function(a) Sin(a * PI / 180)) / angles.Length
Return Atan2(y, x) * 180 / PI
End Function
 
Sub Main()
Dim printMean = Sub(x As Double()) Console.WriteLine("{0:0.###}", MeanAngle(x))
printMean({350, 10})
printMean({90, 180, 270, 360})
printMean({10, 20, 30})
End Sub
 
End Module</syntaxhighlight>
{{out}}
<pre>0
-90
20</pre>
 
=={{header|V (Vlang)}}==
{{trans|go}}
<syntaxhighlight lang="v (vlang)">import math
fn mean_angle(deg []f64) f64 {
mut ss, mut sc := f64(0), f64(0)
for x in deg {
s, c := math.sincos(x * math.pi / 180)
ss += s
sc += c
}
return math.atan2(ss, sc) * 180 / math.pi
}
fn main() {
for angles in [
[f64(350), 10],
[f64(90), 180, 270, 360],
[f64(10), 20, 30],
] {
println("The mean angle of $angles is: ${mean_angle(angles)} degrees")
}
}</syntaxhighlight>
 
{{out}}
<pre>
The mean angle of [350, 10] is: -2.6644363878955713e-14 degrees
The mean angle of [90, 180, 270, 360] is: -90 degrees
The mean angle of [10, 20, 30] is: 19.999999999999996 degree
</pre>
 
=={{header|Wren}}==
{{libheader|Wren-fmt}}
<syntaxhighlight lang="wren">import "./fmt" for Fmt
 
var meanAngle = Fn.new { |angles|
var n = angles.count
var sinSum = 0
var cosSum = 0
for (angle in angles) {
sinSum = sinSum + (angle * Num.pi / 180).sin
cosSum = cosSum + (angle * Num.pi / 180).cos
}
return (sinSum/n).atan(cosSum/n) * 180 / Num.pi
}
 
var angles1 = [350, 10]
var angles2 = [90, 180, 270, 360]
var angles3 = [10, 20, 30]
 
var i = 1
for (angles in [angles1, angles2, angles3]) {
System.print("Mean for angles %(i) is : %(Fmt.f(6, meanAngle.call(angles), 2))")
i = i + 1
}</syntaxhighlight>
 
{{out}}
<pre>
Mean for angles 1 is : -0.00
Mean for angles 2 is : -90.00
Mean for angles 3 is : 20.00
</pre>
 
=={{header|XPL0}}==
<langsyntaxhighlight XPL0lang="xpl0">include c:\cxpl\codes;
 
def Pi = 3.14159265358979323846;
Line 1,929 ⟶ 2,414:
RlOut(0, MeanAng([4, 90, 180, 270, 360])); CrLf(0);
RlOut(0, MeanAng([3, 10, 20, 30])); CrLf(0);
]</langsyntaxhighlight>
{{out}}
<pre>
Line 1,940 ⟶ 2,425:
 
=={{header|zkl}}==
<langsyntaxhighlight lang="zkl">fcn meanA(a1,a2,etc){
as:=vm.arglist.pump(List,"toFloat","toRad");
n:=as.len();
Line 1,946 ⟶ 2,431:
.atan2(as.apply("cos").sum(0.0)/n)
.toDeg()
}</langsyntaxhighlight>
{{out}}
<pre>
Line 1,956 ⟶ 2,441:
20
</pre>
 
[[Category:Geometry]]
9,485

edits