Arithmetic/Complex: Difference between revisions

Content added Content deleted
m (syntax highlighting fixup automation)
m (Automated syntax highlighting fixup (second round - minor fixes))
Line 29: Line 29:
{{trans|Python}}
{{trans|Python}}


<syntaxhighlight lang=11l>V z1 = 1.5 + 3i
<syntaxhighlight lang="11l">V z1 = 1.5 + 3i
V z2 = 1.5 + 1.5i
V z2 = 1.5 + 1.5i
print(z1 + z2)
print(z1 + z2)
Line 58: Line 58:
=={{header|Action!}}==
=={{header|Action!}}==
{{libheader|Action! Tool Kit}}
{{libheader|Action! Tool Kit}}
<syntaxhighlight lang=Action!>INCLUDE "D2:REAL.ACT" ;from the Action! Tool Kit
<syntaxhighlight lang="action!">INCLUDE "D2:REAL.ACT" ;from the Action! Tool Kit


DEFINE R_="+0"
DEFINE R_="+0"
Line 206: Line 206:


=={{header|Ada}}==
=={{header|Ada}}==
<syntaxhighlight lang=ada>with Ada.Numerics.Generic_Complex_Types;
<syntaxhighlight lang="ada">with Ada.Numerics.Generic_Complex_Types;
with Ada.Text_IO.Complex_IO;
with Ada.Text_IO.Complex_IO;


Line 259: Line 259:
{{works with|ALGOL 68G|Any - tested with release [http://sourceforge.net/projects/algol68/files/algol68g/algol68g-1.18.0/algol68g-1.18.0-9h.tiny.el5.centos.fc11.i386.rpm/download 1.18.0-9h.tiny]}}
{{works with|ALGOL 68G|Any - tested with release [http://sourceforge.net/projects/algol68/files/algol68g/algol68g-1.18.0/algol68g-1.18.0-9h.tiny.el5.centos.fc11.i386.rpm/download 1.18.0-9h.tiny]}}
{{wont work with|ELLA ALGOL 68|Any (with appropriate job cards) - tested with release [http://sourceforge.net/projects/algol68/files/algol68toc/algol68toc-1.8.8d/algol68toc-1.8-8d.fc9.i386.rpm/download 1.8-8d] - due to extensive use of FORMATted transput}}
{{wont work with|ELLA ALGOL 68|Any (with appropriate job cards) - tested with release [http://sourceforge.net/projects/algol68/files/algol68toc/algol68toc-1.8.8d/algol68toc-1.8-8d.fc9.i386.rpm/download 1.8-8d] - due to extensive use of FORMATted transput}}
<syntaxhighlight lang=algol68>main:(
<syntaxhighlight lang="algol68">main:(
FORMAT compl fmt = $g(-7,5)"⊥"g(-7,5)$;
FORMAT compl fmt = $g(-7,5)"⊥"g(-7,5)$;
Line 298: Line 298:
=={{header|ALGOL W}}==
=={{header|ALGOL W}}==
Complex is a built-in type in Algol W.
Complex is a built-in type in Algol W.
<syntaxhighlight lang=algolw>begin
<syntaxhighlight lang="algolw">begin
% show some complex arithmetic %
% show some complex arithmetic %
% returns c + d, using the builtin complex + operator %
% returns c + d, using the builtin complex + operator %
Line 335: Line 335:


=={{header|APL}}==
=={{header|APL}}==
<lang>
<syntaxhighlight lang="text">
x←1j1 ⍝assignment
x←1j1 ⍝assignment
y←5.25j1.5
y←5.25j1.5
Line 355: Line 355:
=={{header|Arturo}}==
=={{header|Arturo}}==


<syntaxhighlight lang=rebol>a: to :complex [1 1]
<syntaxhighlight lang="rebol">a: to :complex [1 1]
b: to :complex @[pi 1.2]
b: to :complex @[pi 1.2]


Line 379: Line 379:
=={{header|AutoHotkey}}==
=={{header|AutoHotkey}}==
contributed by Laszlo on the ahk [http://www.autohotkey.com/forum/post-276431.html#276431 forum]
contributed by Laszlo on the ahk [http://www.autohotkey.com/forum/post-276431.html#276431 forum]
<syntaxhighlight lang=AutoHotkey>Cset(C,1,1)
<syntaxhighlight lang="autohotkey">Cset(C,1,1)
MsgBox % Cstr(C) ; 1 + i*1
MsgBox % Cstr(C) ; 1 + i*1
Cneg(C,C)
Cneg(C,C)
Line 429: Line 429:
=={{header|AWK}}==
=={{header|AWK}}==
contributed by af
contributed by af
<syntaxhighlight lang=awk># simulate a struct using associative arrays
<syntaxhighlight lang="awk"># simulate a struct using associative arrays
function complex(arr, re, im) {
function complex(arr, re, im) {
arr["re"] = re
arr["re"] = re
Line 488: Line 488:
=={{header|BASIC}}==
=={{header|BASIC}}==
{{works with|QuickBasic|4.5}}
{{works with|QuickBasic|4.5}}
<syntaxhighlight lang=qbasic>TYPE complex
<syntaxhighlight lang="qbasic">TYPE complex
real AS DOUBLE
real AS DOUBLE
imag AS DOUBLE
imag AS DOUBLE
Line 579: Line 579:
=={{header|BBC BASIC}}==
=={{header|BBC BASIC}}==
{{works with|BBC BASIC for Windows}}
{{works with|BBC BASIC for Windows}}
<syntaxhighlight lang=bbcbasic> DIM Complex{r, i}
<syntaxhighlight lang="bbcbasic"> DIM Complex{r, i}
DIM a{} = Complex{} : a.r = 1.0 : a.i = 1.0
DIM a{} = Complex{} : a.r = 1.0 : a.i = 1.0
Line 627: Line 627:
=={{header|Bracmat}}==
=={{header|Bracmat}}==
Bracmat recognizes the symbol <code>i</code> as the square root of <code>-1</code>. The results of the functions below are not necessarily of the form <code>a+b*i</code>, but as the last example shows, Bracmat nevertheless can work out that two different representations of the same mathematical object, when subtracted from each other, give zero. You may wonder why in the functions <code>multiply</code> and <code>negate</code> there are terms <code>1</code> and <code>-1</code>. These terms are a trick to force Bracmat to expand the products. As it is more costly to factorize a sum than to expand a product into a sum, Bracmat retains isolated products. However, when in combination with a non-zero term, the product is expanded.
Bracmat recognizes the symbol <code>i</code> as the square root of <code>-1</code>. The results of the functions below are not necessarily of the form <code>a+b*i</code>, but as the last example shows, Bracmat nevertheless can work out that two different representations of the same mathematical object, when subtracted from each other, give zero. You may wonder why in the functions <code>multiply</code> and <code>negate</code> there are terms <code>1</code> and <code>-1</code>. These terms are a trick to force Bracmat to expand the products. As it is more costly to factorize a sum than to expand a product into a sum, Bracmat retains isolated products. However, when in combination with a non-zero term, the product is expanded.
<syntaxhighlight lang=bracmat> (add=a b.!arg:(?a,?b)&!a+!b)
<syntaxhighlight lang="bracmat"> (add=a b.!arg:(?a,?b)&!a+!b)
& ( multiply
& ( multiply
= a b.!arg:(?a,?b)&1+!a*!b+-1
= a b.!arg:(?a,?b)&1+!a*!b+-1
Line 669: Line 669:
{{works with|C99}}
{{works with|C99}}
The more recent [[C99]] standard has built-in complex number primitive types, which can be declared with float, double, or long double precision. To use these types and their associated library functions, you must include the <complex.h> header. (Note: this is a ''different'' header than the <complex> templates that are defined by [[C++]].) [http://www.opengroup.org/onlinepubs/009695399/basedefs/complex.h.html] [http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.vacpp7a.doc/language/ref/clrc03complex_types.htm]
The more recent [[C99]] standard has built-in complex number primitive types, which can be declared with float, double, or long double precision. To use these types and their associated library functions, you must include the <complex.h> header. (Note: this is a ''different'' header than the <complex> templates that are defined by [[C++]].) [http://www.opengroup.org/onlinepubs/009695399/basedefs/complex.h.html] [http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.vacpp7a.doc/language/ref/clrc03complex_types.htm]
<syntaxhighlight lang=c>#include <complex.h>
<syntaxhighlight lang="c">#include <complex.h>
#include <stdio.h>
#include <stdio.h>


Line 704: Line 704:
{{works with|C89}}
{{works with|C89}}
User-defined type:
User-defined type:
<syntaxhighlight lang=c>typedef struct{
<syntaxhighlight lang="c">typedef struct{
double real;
double real;
double imag;
double imag;
Line 768: Line 768:
=={{header|C sharp|C#}}==
=={{header|C sharp|C#}}==
{{works with|C sharp|C#|4.0}}
{{works with|C sharp|C#|4.0}}
<syntaxhighlight lang=csharp>namespace RosettaCode.Arithmetic.Complex
<syntaxhighlight lang="csharp">namespace RosettaCode.Arithmetic.Complex
{
{
using System;
using System;
Line 786: Line 786:
}</syntaxhighlight>
}</syntaxhighlight>
{{works with|C sharp|C#|1.2}}
{{works with|C sharp|C#|1.2}}
<syntaxhighlight lang=csharp>using System;
<syntaxhighlight lang="csharp">using System;


public struct ComplexNumber
public struct ComplexNumber
Line 993: Line 993:


=={{header|C++}}==
=={{header|C++}}==
<syntaxhighlight lang=cpp>#include <iostream>
<syntaxhighlight lang="cpp">#include <iostream>
#include <complex>
#include <complex>
using std::complex;
using std::complex;
Line 1,017: Line 1,017:
Therefore, we use defrecord and the multimethods in
Therefore, we use defrecord and the multimethods in
clojure.algo.generic.arithmetic to make a Complex number type.
clojure.algo.generic.arithmetic to make a Complex number type.
<syntaxhighlight lang=clojure>(ns rosettacode.arithmetic.cmplx
<syntaxhighlight lang="clojure">(ns rosettacode.arithmetic.cmplx
(:require [clojure.algo.generic.arithmetic :as ga])
(:require [clojure.algo.generic.arithmetic :as ga])
(:import [java.lang Number]))
(:import [java.lang Number]))
Line 1,061: Line 1,061:
===.NET Complex class===
===.NET Complex class===
{{trans|C#}}
{{trans|C#}}
<syntaxhighlight lang=cobol> $SET SOURCEFORMAT "FREE"
<syntaxhighlight lang="cobol"> $SET SOURCEFORMAT "FREE"
$SET ILUSING "System"
$SET ILUSING "System"
$SET ILUSING "System.Numerics"
$SET ILUSING "System.Numerics"
Line 1,077: Line 1,077:


===Implementation===
===Implementation===
<syntaxhighlight lang=cobol> $SET SOURCEFORMAT "FREE"
<syntaxhighlight lang="cobol"> $SET SOURCEFORMAT "FREE"
class-id Prog.
class-id Prog.
method-id. Main static.
method-id. Main static.
Line 1,177: Line 1,177:


=={{header|CoffeeScript}}==
=={{header|CoffeeScript}}==
<syntaxhighlight lang=coffeescript>
<syntaxhighlight lang="coffeescript">
# create an immutable Complex type
# create an immutable Complex type
class Complex
class Complex
Line 1,255: Line 1,255:
Complex numbers are a built-in numeric type in Common Lisp. The literal syntax for a complex number is <tt>#C(<var>real</var> <var>imaginary</var>)</tt>. The components of a complex number may be integers, ratios, or floating-point. Arithmetic operations automatically return complex (or real) numbers when appropriate:
Complex numbers are a built-in numeric type in Common Lisp. The literal syntax for a complex number is <tt>#C(<var>real</var> <var>imaginary</var>)</tt>. The components of a complex number may be integers, ratios, or floating-point. Arithmetic operations automatically return complex (or real) numbers when appropriate:


<syntaxhighlight lang=lisp>> (sqrt -1)
<syntaxhighlight lang="lisp">> (sqrt -1)
#C(0.0 1.0)
#C(0.0 1.0)


Line 1,263: Line 1,263:
Here are some arithmetic operations on complex numbers:
Here are some arithmetic operations on complex numbers:


<syntaxhighlight lang=lisp>> (+ #c(0 1) #c(1 0))
<syntaxhighlight lang="lisp">> (+ #c(0 1) #c(1 0))
#C(1 1)
#C(1 1)


Line 1,283: Line 1,283:
Complex numbers can be constructed from real and imaginary parts using the <tt>complex</tt> function, and taken apart using the <tt>realpart</tt> and <tt>imagpart</tt> functions.
Complex numbers can be constructed from real and imaginary parts using the <tt>complex</tt> function, and taken apart using the <tt>realpart</tt> and <tt>imagpart</tt> functions.


<syntaxhighlight lang=lisp>> (complex 64 (/ 3 4))
<syntaxhighlight lang="lisp">> (complex 64 (/ 3 4))
#C(64 3/4)
#C(64 3/4)


Line 1,294: Line 1,294:
=={{header|Component Pascal}}==
=={{header|Component Pascal}}==
BlackBox Component Builder
BlackBox Component Builder
<syntaxhighlight lang=oberon2>
<syntaxhighlight lang="oberon2">
MODULE Complex;
MODULE Complex;
IMPORT StdLog;
IMPORT StdLog;
Line 1,397: Line 1,397:
=={{header|D}}==
=={{header|D}}==
Built-in complex numbers are now deprecated in D, to simplify the language.
Built-in complex numbers are now deprecated in D, to simplify the language.
<syntaxhighlight lang=d>import std.stdio, std.complex;
<syntaxhighlight lang="d">import std.stdio, std.complex;


void main() {
void main() {
Line 1,415: Line 1,415:


=={{header|Dart}}==
=={{header|Dart}}==
<syntaxhighlight lang=dart>
<syntaxhighlight lang="dart">


class complex {
class complex {
Line 1,471: Line 1,471:
{{libheader| System.SysUtils}}
{{libheader| System.SysUtils}}
{{libheader| System.VarCmplx}}
{{libheader| System.VarCmplx}}
<syntaxhighlight lang=Delphi>
<syntaxhighlight lang="delphi">
program Arithmetic_Complex;
program Arithmetic_Complex;


Line 1,507: Line 1,507:
=={{header|EchoLisp}}==
=={{header|EchoLisp}}==
Complex numbers are part of the language. No special library is needed.
Complex numbers are part of the language. No special library is needed.
<syntaxhighlight lang=lisp>
<syntaxhighlight lang="lisp">
(define a 42+666i) → a
(define a 42+666i) → a
(define b 1+i) → b
(define b 1+i) → b
Line 1,521: Line 1,521:


=={{header|Elixir}}==
=={{header|Elixir}}==
<syntaxhighlight lang=elixir>defmodule Complex do
<syntaxhighlight lang="elixir">defmodule Complex do
import Kernel, except: [abs: 1, div: 2]
import Kernel, except: [abs: 1, div: 2]
Line 1,622: Line 1,622:


=={{header|Erlang}}==
=={{header|Erlang}}==
<syntaxhighlight lang=Erlang>%% Task: Complex Arithmetic
<syntaxhighlight lang="erlang">%% Task: Complex Arithmetic
%% Author: Abhay Jain
%% Author: Abhay Jain


Line 1,681: Line 1,681:
end. </syntaxhighlight>
end. </syntaxhighlight>
{{out}}
{{out}}
<syntaxhighlight lang=Erlang>Ans = 6+5i
<syntaxhighlight lang="erlang">Ans = 6+5i
Ans = -1+17i
Ans = -1+17i
Ans = -1-3i
Ans = -1-3i
Line 1,688: Line 1,688:


=={{header|ERRE}}==
=={{header|ERRE}}==
<lang>
<syntaxhighlight lang="text">
PROGRAM COMPLEX_ARITH
PROGRAM COMPLEX_ARITH


Line 1,747: Line 1,747:
=={{header|Euler Math Toolbox}}==
=={{header|Euler Math Toolbox}}==


<syntaxhighlight lang=Euler Math Toolbox>
<syntaxhighlight lang="euler math toolbox">
>a=1+4i; b=5-3i;
>a=1+4i; b=5-3i;
>a+b
>a+b
Line 1,764: Line 1,764:


=={{header|Euphoria}}==
=={{header|Euphoria}}==
<syntaxhighlight lang=euphoria>constant REAL = 1, IMAG = 2
<syntaxhighlight lang="euphoria">constant REAL = 1, IMAG = 2
type complex(sequence s)
type complex(sequence s)
return length(s) = 2 and atom(s[REAL]) and atom(s[IMAG])
return length(s) = 2 and atom(s[REAL]) and atom(s[IMAG])
Line 1,835: Line 1,835:


C1:
C1:
<syntaxhighlight lang=excel>
<syntaxhighlight lang="excel">
=IMSUM(A1;B1)
=IMSUM(A1;B1)
</syntaxhighlight>
</syntaxhighlight>


D1:
D1:
<syntaxhighlight lang=excel>
<syntaxhighlight lang="excel">
=IMPRODUCT(A1;B1)
=IMPRODUCT(A1;B1)
</syntaxhighlight>
</syntaxhighlight>


E1:
E1:
<syntaxhighlight lang=excel>
<syntaxhighlight lang="excel">
=IMSUB(0;D1)
=IMSUB(0;D1)
</syntaxhighlight>
</syntaxhighlight>


F1:
F1:
<syntaxhighlight lang=excel>
<syntaxhighlight lang="excel">
=IMDIV(1;E28)
=IMDIV(1;E28)
</syntaxhighlight>
</syntaxhighlight>


G1:
G1:
<syntaxhighlight lang=excel>
<syntaxhighlight lang="excel">
=IMCONJUGATE(C28)
=IMCONJUGATE(C28)
</syntaxhighlight>
</syntaxhighlight>
Line 1,861: Line 1,861:
E1 will have the negation of D1's value
E1 will have the negation of D1's value


<lang>
<syntaxhighlight lang="text">
1+2i 3+5i 4+7i -7+11i 7-11i 0,0411764705882353+0,0647058823529412i 4-7i
1+2i 3+5i 4+7i -7+11i 7-11i 0,0411764705882353+0,0647058823529412i 4-7i
</syntaxhighlight>
</syntaxhighlight>
Line 1,867: Line 1,867:
=={{header|F Sharp|F#}}==
=={{header|F Sharp|F#}}==
Entered into an interactive session to show the results:
Entered into an interactive session to show the results:
<syntaxhighlight lang=fsharp>
<syntaxhighlight lang="fsharp">
> open Microsoft.FSharp.Math;;
> open Microsoft.FSharp.Math;;


Line 1,916: Line 1,916:


=={{header|Factor}}==
=={{header|Factor}}==
<syntaxhighlight lang=factor>USING: combinators kernel math math.functions prettyprint ;
<syntaxhighlight lang="factor">USING: combinators kernel math math.functions prettyprint ;


C{ 1 2 } C{ 0.9 -2.78 } {
C{ 1 2 } C{ 0.9 -2.78 } {
Line 1,938: Line 1,938:
{{libheader|Forth Scientific Library}}
{{libheader|Forth Scientific Library}}
Historically, there was no standard syntax or mechanism for complex numbers and several implementations suitable for different uses were provided. However later a wordset ''was'' standardised as "Algorithm #60".
Historically, there was no standard syntax or mechanism for complex numbers and several implementations suitable for different uses were provided. However later a wordset ''was'' standardised as "Algorithm #60".
<syntaxhighlight lang=forth>S" fsl-util.fs" REQUIRED
<syntaxhighlight lang="forth">S" fsl-util.fs" REQUIRED
S" complex.fs" REQUIRED
S" complex.fs" REQUIRED


Line 1,954: Line 1,954:
=={{header|Fortran}}==
=={{header|Fortran}}==
In ANSI FORTRAN 66 or later, COMPLEX is a built-in data type with full access to intrinsic arithmetic operations. Putting each native operation in a function is horribly inefficient, so I will simply demonstrate the operations. This example shows usage for Fortran 90 or later:
In ANSI FORTRAN 66 or later, COMPLEX is a built-in data type with full access to intrinsic arithmetic operations. Putting each native operation in a function is horribly inefficient, so I will simply demonstrate the operations. This example shows usage for Fortran 90 or later:
<syntaxhighlight lang=fortran>program cdemo
<syntaxhighlight lang="fortran">program cdemo
complex :: a = (5,3), b = (0.5, 6.0) ! complex initializer
complex :: a = (5,3), b = (0.5, 6.0) ! complex initializer
complex :: absum, abprod, aneg, ainv
complex :: absum, abprod, aneg, ainv
Line 1,965: Line 1,965:


And, although you did not ask, here are demonstrations of some other common complex number operations
And, although you did not ask, here are demonstrations of some other common complex number operations
<syntaxhighlight lang=fortran>program cdemo2
<syntaxhighlight lang="fortran">program cdemo2
complex :: a = (5,3), b = (0.5, 6) ! complex initializer
complex :: a = (5,3), b = (0.5, 6) ! complex initializer
real, parameter :: pi = 3.141592653589793 ! The constant "pi"
real, parameter :: pi = 3.141592653589793 ! The constant "pi"
Line 1,995: Line 1,995:


=={{header|FreeBASIC}}==
=={{header|FreeBASIC}}==
<syntaxhighlight lang=freebasic>' FB 1.05.0 Win64
<syntaxhighlight lang="freebasic">' FB 1.05.0 Win64


Type Complex
Type Complex
Line 2,076: Line 2,076:
=={{header|Free Pascal}}==
=={{header|Free Pascal}}==
FreePascal has a complex units. Example of usage:
FreePascal has a complex units. Example of usage:
<syntaxhighlight lang=Pascal>Program ComplexDemo;
<syntaxhighlight lang="pascal">Program ComplexDemo;


uses
uses
Line 2,108: Line 2,108:
=={{header|Frink}}==
=={{header|Frink}}==
Frink's operations handle complex numbers naturally. The real and imaginary parts of complex numbers can be arbitrary-sized integers, arbitrary-sized rational numbers, or arbitrary-precision floating-point numbers.
Frink's operations handle complex numbers naturally. The real and imaginary parts of complex numbers can be arbitrary-sized integers, arbitrary-sized rational numbers, or arbitrary-precision floating-point numbers.
<syntaxhighlight lang=frink>
<syntaxhighlight lang="frink">
add[x,y] := x + y
add[x,y] := x + y
multiply[x,y] := x * y
multiply[x,y] := x * y
Line 2,135: Line 2,135:
=={{header|Futhark}}==
=={{header|Futhark}}==
{{incorrect|Futhark|Futhark's syntax has changed, so "fun" should be "let"}}
{{incorrect|Futhark|Futhark's syntax has changed, so "fun" should be "let"}}
<syntaxhighlight lang=Futhark>
<syntaxhighlight lang="futhark">
type complex = (f64,f64)
type complex = (f64,f64)


Line 2,166: Line 2,166:


=={{header|GAP}}==
=={{header|GAP}}==
<syntaxhighlight lang=gap># GAP knows gaussian integers, gaussian rationals (i.e. Q[i]), and cyclotomic fields. Here are some examples.
<syntaxhighlight lang="gap"># GAP knows gaussian integers, gaussian rationals (i.e. Q[i]), and cyclotomic fields. Here are some examples.
# E(n) is an nth primitive root of 1
# E(n) is an nth primitive root of 1
i := Sqrt(-1);
i := Sqrt(-1);
Line 2,188: Line 2,188:
=={{header|Go}}==
=={{header|Go}}==
Go has complex numbers built in, with the complex conjugate in the standard library.
Go has complex numbers built in, with the complex conjugate in the standard library.
<syntaxhighlight lang=go>package main
<syntaxhighlight lang="go">package main


import (
import (
Line 2,219: Line 2,219:
=={{header|Groovy}}==
=={{header|Groovy}}==
Groovy does not provide any built-in facility for complex arithmetic. However, it does support arithmetic operator overloading. Thus it is not too hard to build a fairly robust, complete, and intuitive complex number class, such as the following:
Groovy does not provide any built-in facility for complex arithmetic. However, it does support arithmetic operator overloading. Thus it is not too hard to build a fairly robust, complete, and intuitive complex number class, such as the following:
<syntaxhighlight lang=groovy>class Complex {
<syntaxhighlight lang="groovy">class Complex {
final Number real, imag
final Number real, imag
Line 2,322: Line 2,322:


The following ''ComplexCategory'' class allows for modification of regular ''Number'' behavior when interacting with ''Complex''.
The following ''ComplexCategory'' class allows for modification of regular ''Number'' behavior when interacting with ''Complex''.
<syntaxhighlight lang=groovy>import org.codehaus.groovy.runtime.DefaultGroovyMethods
<syntaxhighlight lang="groovy">import org.codehaus.groovy.runtime.DefaultGroovyMethods
class ComplexCategory {
class ComplexCategory {
Line 2,342: Line 2,342:


Test Program (mixes the ComplexCategory methods into the Number class):
Test Program (mixes the ComplexCategory methods into the Number class):
<syntaxhighlight lang=groovy>import static Complex.*
<syntaxhighlight lang="groovy">import static Complex.*
Number.metaClass.mixin ComplexCategory
Number.metaClass.mixin ComplexCategory
Line 2,440: Line 2,440:


=={{header|Hare}}==
=={{header|Hare}}==
<syntaxhighlight lang=hare>use fmt;
<syntaxhighlight lang="hare">use fmt;
use math::complex::{c128,addc128,mulc128,divc128,negc128,conjc128};
use math::complex::{c128,addc128,mulc128,divc128,negc128,conjc128};


Line 2,469: Line 2,469:
have ''Complex Integer'' for the Gaussian Integers, ''Complex Float'', ''Complex Double'', etc. The operations are just the usual overloaded numeric operations.
have ''Complex Integer'' for the Gaussian Integers, ''Complex Float'', ''Complex Double'', etc. The operations are just the usual overloaded numeric operations.


<syntaxhighlight lang=haskell>import Data.Complex
<syntaxhighlight lang="haskell">import Data.Complex


main = do
main = do
Line 2,497: Line 2,497:
{{improve|Unicon|This could be better implemented as an object i n Unicon. Note, however, that Unicon doesn't allow for operator overloading at the current time.}}
{{improve|Unicon|This could be better implemented as an object i n Unicon. Note, however, that Unicon doesn't allow for operator overloading at the current time.}}
Icon doesn't provide native support for complex numbers. Support is included in the IPL.
Icon doesn't provide native support for complex numbers. Support is included in the IPL.
<syntaxhighlight lang=Icon>procedure main()
<syntaxhighlight lang="icon">procedure main()


SetupComplex()
SetupComplex()
Line 2,523: Line 2,523:
{{libheader|Icon Programming Library}}
{{libheader|Icon Programming Library}}
[http://www.cs.arizona.edu/icon/library/src/procs/complex.icn provides complex number support] supplemented by the code below.
[http://www.cs.arizona.edu/icon/library/src/procs/complex.icn provides complex number support] supplemented by the code below.
<syntaxhighlight lang=Icon>
<syntaxhighlight lang="icon">
link complex # for complex number support
link complex # for complex number support


Line 2,576: Line 2,576:
<tt>complex</tt> (and <tt>dcomplex</tt> for double-precision) is a built-in data type in IDL:
<tt>complex</tt> (and <tt>dcomplex</tt> for double-precision) is a built-in data type in IDL:


<syntaxhighlight lang=idl>x=complex(1,1)
<syntaxhighlight lang="idl">x=complex(1,1)
y=complex(!pi,1.2)
y=complex(!pi,1.2)
print,x+y
print,x+y
Line 2,589: Line 2,589:
=={{header|J}}==
=={{header|J}}==
Complex numbers are a native numeric data type in J. Although the examples shown here are performed on scalars, all numeric operations naturally apply to arrays of complex numbers.
Complex numbers are a native numeric data type in J. Although the examples shown here are performed on scalars, all numeric operations naturally apply to arrays of complex numbers.
<syntaxhighlight lang=j> x=: 1j1
<syntaxhighlight lang="j"> x=: 1j1
y=: 3.14159j1.2
y=: 3.14159j1.2
x+y NB. addition
x+y NB. addition
Line 2,604: Line 2,604:


=={{header|Java}}==
=={{header|Java}}==
<syntaxhighlight lang=java>public class Complex {
<syntaxhighlight lang="java">public class Complex {
public final double real;
public final double real;
public final double imag;
public final double imag;
Line 2,658: Line 2,658:


=={{header|JavaScript}}==
=={{header|JavaScript}}==
<syntaxhighlight lang=javascript>function Complex(r, i) {
<syntaxhighlight lang="javascript">function Complex(r, i) {
this.r = r;
this.r = r;
this.i = i;
this.i = i;
Line 2,717: Line 2,717:
For speed and for conformance with the complex plane interpretation, x+iy is represented as [x,y]; for flexibility, all the functions defined here will accept both real and complex numbers; and for uniformity, they are implemented as functions that ignore their input.
For speed and for conformance with the complex plane interpretation, x+iy is represented as [x,y]; for flexibility, all the functions defined here will accept both real and complex numbers; and for uniformity, they are implemented as functions that ignore their input.


Recent versions of jq support modules, so these functions could all be placed in a module to avoid name conflicts, and thus no special prefix is used here.<syntaxhighlight lang=jq>def real(z): if (z|type) == "number" then z else z[0] end;
Recent versions of jq support modules, so these functions could all be placed in a module to avoid name conflicts, and thus no special prefix is used here.<syntaxhighlight lang="jq">def real(z): if (z|type) == "number" then z else z[0] end;


def imag(z): if (z|type) == "number" then 0 else z[1] end;
def imag(z): if (z|type) == "number" then 0 else z[1] end;
Line 2,782: Line 2,782:
test( [1,1]; [0,1] )</syntaxhighlight>
test( [1,1]; [0,1] )</syntaxhighlight>
{{Out}}
{{Out}}
<syntaxhighlight lang=jq>$ jq -n -f complex.jq
<syntaxhighlight lang="jq">$ jq -n -f complex.jq
"x = [1,1]"
"x = [1,1]"
"y = [0,1]"
"y = [0,1]"
Line 2,795: Line 2,795:
=={{header|Julia}}==
=={{header|Julia}}==
Julia has built-in support for complex arithmetic with arbitrary real types.
Julia has built-in support for complex arithmetic with arbitrary real types.
<syntaxhighlight lang=julia>julia> z1 = 1.5 + 3im
<syntaxhighlight lang="julia">julia> z1 = 1.5 + 3im
julia> z2 = 1.5 + 1.5im
julia> z2 = 1.5 + 1.5im
julia> z1 + z2
julia> z1 + z2
Line 2,819: Line 2,819:


=={{header|Kotlin}}==
=={{header|Kotlin}}==
<syntaxhighlight lang=scala>class Complex(private val real: Double, private val imag: Double) {
<syntaxhighlight lang="scala">class Complex(private val real: Double, private val imag: Double) {
operator fun plus(other: Complex) = Complex(real + other.real, imag + other.imag)
operator fun plus(other: Complex) = Complex(real + other.real, imag + other.imag)


Line 2,873: Line 2,873:


=={{header|Lambdatalk}}==
=={{header|Lambdatalk}}==
<syntaxhighlight lang=scheme>
<syntaxhighlight lang="scheme">
{require lib_complex}
{require lib_complex}


Line 2,904: Line 2,904:


A convenient data structure for a complex number is the record:
A convenient data structure for a complex number is the record:
<syntaxhighlight lang=lisp>
<syntaxhighlight lang="lisp">
(defrecord complex
(defrecord complex
real
real
Line 2,912: Line 2,912:
Here are the required functions:
Here are the required functions:


<syntaxhighlight lang=lisp>
<syntaxhighlight lang="lisp">
(defun add
(defun add
(((match-complex real r1 img i1)
(((match-complex real r1 img i1)
Line 2,934: Line 2,934:
Bonus:
Bonus:


<syntaxhighlight lang=lisp>
<syntaxhighlight lang="lisp">
(defun conj
(defun conj
(((match-complex real r img i))
(((match-complex real r img i))
Line 2,942: Line 2,942:
The functions above are built using the following supporting functions:
The functions above are built using the following supporting functions:


<syntaxhighlight lang=lisp>
<syntaxhighlight lang="lisp">
(defun new (r i)
(defun new (r i)
(make-complex real r img i))
(make-complex real r img i))
Line 2,959: Line 2,959:
Finally, we have some functions for use in the conversion and display of our complex number data structure:
Finally, we have some functions for use in the conversion and display of our complex number data structure:


<syntaxhighlight lang=lisp>
<syntaxhighlight lang="lisp">
(defun ->str
(defun ->str
(((match-complex real r img i)) (when (>= i 0))
(((match-complex real r img i)) (when (>= i 0))
Line 2,998: Line 2,998:


=={{header|Liberty BASIC}}==
=={{header|Liberty BASIC}}==
<syntaxhighlight lang=lb>mainwin 50 10
<syntaxhighlight lang="lb">mainwin 50 10


print " Adding"
print " Adding"
Line 3,051: Line 3,051:


=={{header|Lua}}==
=={{header|Lua}}==
<syntaxhighlight lang=lua>
<syntaxhighlight lang="lua">


--defines addition, subtraction, negation, multiplication, division, conjugation, norms, and a conversion to strgs.
--defines addition, subtraction, negation, multiplication, division, conjugation, norms, and a conversion to strgs.
Line 3,090: Line 3,090:
Maple has <code>I</code> (the square root of -1) built-in. Thus:
Maple has <code>I</code> (the square root of -1) built-in. Thus:


<syntaxhighlight lang=maple>x := 1+I;
<syntaxhighlight lang="maple">x := 1+I;
y := Pi+I*1.2;</syntaxhighlight>
y := Pi+I*1.2;</syntaxhighlight>


By itself, it will perform mathematical operations symbolically, i.e. it will not try to perform computational evaluation unless specifically asked to do so. Thus:
By itself, it will perform mathematical operations symbolically, i.e. it will not try to perform computational evaluation unless specifically asked to do so. Thus:


<syntaxhighlight lang=maple>x*y;
<syntaxhighlight lang="maple">x*y;
==> (1 + I) (Pi + 1.2 I)
==> (1 + I) (Pi + 1.2 I)
simplify(x*y);
simplify(x*y);
Line 3,102: Line 3,102:
Other than that, the task merely asks for
Other than that, the task merely asks for


<syntaxhighlight lang=maple>x+y;
<syntaxhighlight lang="maple">x+y;
x*y;
x*y;
-x;
-x;
Line 3,109: Line 3,109:
=={{header|Mathematica}} / {{header|Wolfram Language}}==
=={{header|Mathematica}} / {{header|Wolfram Language}}==
Mathematica has fully implemented support for complex numbers throughout the software. Addition, subtraction, division, multiplications and powering need no further syntax than for real numbers:
Mathematica has fully implemented support for complex numbers throughout the software. Addition, subtraction, division, multiplications and powering need no further syntax than for real numbers:
<syntaxhighlight lang=Mathematica>x=1+2I
<syntaxhighlight lang="mathematica">x=1+2I
y=3+4I
y=3+4I


Line 3,122: Line 3,122:
Powering to a complex power can in general not be written shorter, so Mathematica leaves it unevaluated if the numbers are exact. An approximation can be acquired using the function N.
Powering to a complex power can in general not be written shorter, so Mathematica leaves it unevaluated if the numbers are exact. An approximation can be acquired using the function N.
However Mathematica goes much further, basically all functions can handle complex numbers to arbitrary precision, including (but not limited to!):
However Mathematica goes much further, basically all functions can handle complex numbers to arbitrary precision, including (but not limited to!):
<syntaxhighlight lang=Mathematica>Exp Log
<syntaxhighlight lang="mathematica">Exp Log
Sin Cos Tan Csc Sec Cot
Sin Cos Tan Csc Sec Cot
ArcSin ArcCos ArcTan ArcCsc ArcSec ArcCot
ArcSin ArcCos ArcTan ArcCsc ArcSec ArcCot
Line 3,138: Line 3,138:
Complex numbers are a primitive data type in MATLAB. All the typical complex operations can be performed. There are two keywords that specify a number as complex: "i" and "j".
Complex numbers are a primitive data type in MATLAB. All the typical complex operations can be performed. There are two keywords that specify a number as complex: "i" and "j".


<syntaxhighlight lang=MATLAB>>> a = 1+i
<syntaxhighlight lang="matlab">>> a = 1+i


a =
a =
Line 3,199: Line 3,199:


=={{header|Maxima}}==
=={{header|Maxima}}==
<syntaxhighlight lang=maxima>z1: 5 + 2 * %i;
<syntaxhighlight lang="maxima">z1: 5 + 2 * %i;
2*%i+5
2*%i+5


Line 3,253: Line 3,253:
Division: С/П; multiplication: БП 36 С/П; addition: БП 54 С/П; subtraction: БП 63 С/П.
Division: С/П; multiplication: БП 36 С/П; addition: БП 54 С/П; subtraction: БП 63 С/П.


<lang>ПA С/П ПB С/П ПC С/П ПD С/П ИПC x^2
<syntaxhighlight lang="text">ПA С/П ПB С/П ПC С/П ПD С/П ИПC x^2
ИПD x^2 + П3 ИПA ИПC * ИПB ИПD *
ИПD x^2 + П3 ИПA ИПC * ИПB ИПD *
+ ИП3 / П1 ИПB ИПC * ИПA ИПD *
+ ИП3 / П1 ИПB ИПC * ИПA ИПD *
Line 3,263: Line 3,263:


=={{header|Modula-2}}==
=={{header|Modula-2}}==
<syntaxhighlight lang=modula2>MODULE complex;
<syntaxhighlight lang="modula2">MODULE complex;


IMPORT InOut;
IMPORT InOut;
Line 3,343: Line 3,343:
{{trans|Java}}
{{trans|Java}}
This is a translation of the Java version, but it uses operator redefinition where possible.
This is a translation of the Java version, but it uses operator redefinition where possible.
<syntaxhighlight lang=nanoquery>import math
<syntaxhighlight lang="nanoquery">import math


class Complex
class Complex
Line 3,401: Line 3,401:


=={{header|Nemerle}}==
=={{header|Nemerle}}==
<syntaxhighlight lang=Nemerle>using System;
<syntaxhighlight lang="nemerle">using System;
using System.Console;
using System.Console;
using System.Numerics;
using System.Numerics;
Line 3,435: Line 3,435:


=={{header|Nim}}==
=={{header|Nim}}==
<syntaxhighlight lang=nim>
<syntaxhighlight lang="nim">
import complex
import complex
var a: Complex = (1.0,1.0)
var a: Complex = (1.0,1.0)
Line 3,460: Line 3,460:
=={{header|Oberon-2}}==
=={{header|Oberon-2}}==
Oxford Oberon Compiler
Oxford Oberon Compiler
<syntaxhighlight lang=oberon2>
<syntaxhighlight lang="oberon2">
MODULE Complex;
MODULE Complex;
IMPORT Files,Out;
IMPORT Files,Out;
Line 3,561: Line 3,561:
=={{header|OCaml}}==
=={{header|OCaml}}==
The [http://caml.inria.fr/pub/docs/manual-ocaml/libref/Complex.html Complex] module from the standard library provides the functionality of complex numbers:
The [http://caml.inria.fr/pub/docs/manual-ocaml/libref/Complex.html Complex] module from the standard library provides the functionality of complex numbers:
<syntaxhighlight lang=ocaml>open Complex
<syntaxhighlight lang="ocaml">open Complex


let print_complex z =
let print_complex z =
Line 3,576: Line 3,576:


Using [http://forge.ocamlcore.org/projects/pa-do/ Delimited Overloading], the syntax can be made closer to the usual one:
Using [http://forge.ocamlcore.org/projects/pa-do/ Delimited Overloading], the syntax can be made closer to the usual one:
<syntaxhighlight lang=ocaml>let () =
<syntaxhighlight lang="ocaml">let () =
Complex.(
Complex.(
let print txt z = Printf.printf "%s = %s\n" txt (to_string z) in
let print txt z = Printf.printf "%s = %s\n" txt (to_string z) in
Line 3,593: Line 3,593:
=={{header|Octave}}==
=={{header|Octave}}==
GNU Octave handles naturally complex numbers:
GNU Octave handles naturally complex numbers:
<syntaxhighlight lang=octave>z1 = 1.5 + 3i;
<syntaxhighlight lang="octave">z1 = 1.5 + 3i;
z2 = 1.5 + 1.5i;
z2 = 1.5 + 1.5i;
disp(z1 + z2); % 3.0 + 4.5i
disp(z1 + z2); % 3.0 + 4.5i
Line 3,610: Line 3,610:
=={{header|Oforth}}==
=={{header|Oforth}}==


<syntaxhighlight lang=Oforth>Object Class new: Complex(re, im)
<syntaxhighlight lang="oforth">Object Class new: Complex(re, im)
Complex method: re @re ;
Complex method: re @re ;
Line 3,652: Line 3,652:
Usage :
Usage :


<syntaxhighlight lang=Oforth>3.2 >complex I * 2 >complex + .cr
<syntaxhighlight lang="oforth">3.2 >complex I * 2 >complex + .cr
2 3 Complex new 1.2 >complex + .cr
2 3 Complex new 1.2 >complex + .cr
2 3 Complex new 1.2 >complex * .cr
2 3 Complex new 1.2 >complex * .cr
Line 3,668: Line 3,668:
Ol supports complex numbers by default. Numbers must be entered manually in form A+Bi without spaces between elements, where A and B - numbers (can be rational), i - imaginary unit; or in functional form using function `complex`.
Ol supports complex numbers by default. Numbers must be entered manually in form A+Bi without spaces between elements, where A and B - numbers (can be rational), i - imaginary unit; or in functional form using function `complex`.


<syntaxhighlight lang=scheme>
<syntaxhighlight lang="scheme">
(define A 0+1i) ; manually entered numbers
(define A 0+1i) ; manually entered numbers
(define B 1+0i)
(define B 1+0i)
Line 3,695: Line 3,695:


=={{header|ooRexx}}==
=={{header|ooRexx}}==
<syntaxhighlight lang=ooRexx>c1 = .complex~new(1, 2)
<syntaxhighlight lang="oorexx">c1 = .complex~new(1, 2)
c2 = .complex~new(3, 4)
c2 = .complex~new(3, 4)
r = 7
r = 7
Line 3,852: Line 3,852:
=={{header|OxygenBasic}}==
=={{header|OxygenBasic}}==
Implementation of a complex numbers class with arithmetical operations, and powers using DeMoivre's theorem (polar conversion).
Implementation of a complex numbers class with arithmetical operations, and powers using DeMoivre's theorem (polar conversion).
<syntaxhighlight lang=oxygenbasic>
<syntaxhighlight lang="oxygenbasic">
'COMPLEX OPERATIONS
'COMPLEX OPERATIONS
'=================
'=================
Line 3,989: Line 3,989:
=={{header|PARI/GP}}==
=={{header|PARI/GP}}==
To use, type, e.g., inv(3 + 7*I).
To use, type, e.g., inv(3 + 7*I).
<syntaxhighlight lang=parigp>add(a,b)=a+b;
<syntaxhighlight lang="parigp">add(a,b)=a+b;
mult(a,b)=a*b;
mult(a,b)=a*b;
neg(a)=-a;
neg(a)=-a;
Line 3,997: Line 3,997:
{{works with|Extended Pascal}}
{{works with|Extended Pascal}}
The simple data type <tt>complex</tt> is part of Extended Pascal, ISO standard 10206.
The simple data type <tt>complex</tt> is part of Extended Pascal, ISO standard 10206.
<syntaxhighlight lang=pascal>program complexDemo(output);
<syntaxhighlight lang="pascal">program complexDemo(output);


const
const
Line 4,077: Line 4,077:
=={{header|Perl}}==
=={{header|Perl}}==
The <code>Math::Complex</code> module implements complex arithmetic.
The <code>Math::Complex</code> module implements complex arithmetic.
<syntaxhighlight lang=perl>use Math::Complex;
<syntaxhighlight lang="perl">use Math::Complex;
my $a = 1 + 1*i;
my $a = 1 + 1*i;
my $b = 3.14159 + 1.25*i;
my $b = 3.14159 + 1.25*i;
Line 4,089: Line 4,089:


=={{header|Phix}}==
=={{header|Phix}}==
<!--<syntaxhighlight lang=Phix>(phixonline)-->
<!--<syntaxhighlight lang="phix">(phixonline)-->
<span style="color: #000080;font-style:italic;">-- demo\rosetta\ArithComplex.exw</span>
<span style="color: #000080;font-style:italic;">-- demo\rosetta\ArithComplex.exw</span>
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
Line 4,127: Line 4,127:


=={{header|PicoLisp}}==
=={{header|PicoLisp}}==
<syntaxhighlight lang=PicoLisp>(load "@lib/math.l")
<syntaxhighlight lang="picolisp">(load "@lib/math.l")


(de addComplex (A B)
(de addComplex (A B)
Line 4,178: Line 4,178:


=={{header|PL/I}}==
=={{header|PL/I}}==
<syntaxhighlight lang=pli>/* PL/I complex numbers may be integer or floating-point. */
<syntaxhighlight lang="pli">/* PL/I complex numbers may be integer or floating-point. */
/* In this example, the variables are floating-pint. */
/* In this example, the variables are floating-pint. */
/* For integer variables, change 'float' to 'fixed binary' */
/* For integer variables, change 'float' to 'fixed binary' */
Line 4,211: Line 4,211:
'1 -: 3' is '1 - 3i' in mathematical notation.
'1 -: 3' is '1 - 3i' in mathematical notation.


<syntaxhighlight lang=pop11>lvars a = 1.0 +: 1.0, b = 2.0 +: 5.0 ;
<syntaxhighlight lang="pop11">lvars a = 1.0 +: 1.0, b = 2.0 +: 5.0 ;
a+b =>
a+b =>
a*b =>
a*b =>
Line 4,233: Line 4,233:
=={{header|PostScript}}==
=={{header|PostScript}}==
Complex numbers can be represented as 2 element vectors ( arrays ). Thus, a+bi can be written as [a b] in PostScript.
Complex numbers can be represented as 2 element vectors ( arrays ). Thus, a+bi can be written as [a b] in PostScript.
<lang>
<syntaxhighlight lang="text">
%Adding two complex numbers
%Adding two complex numbers
/addcomp{
/addcomp{
Line 4,286: Line 4,286:
=={{header|PowerShell}}==
=={{header|PowerShell}}==
===Implementation===
===Implementation===
<syntaxhighlight lang=PowerShell>
<syntaxhighlight lang="powershell">
class Complex {
class Complex {
[Double]$x
[Double]$x
Line 4,338: Line 4,338:
</pre>
</pre>
===Library===
===Library===
<syntaxhighlight lang=PowerShell>
<syntaxhighlight lang="powershell">
function show([System.Numerics.Complex]$c) {
function show([System.Numerics.Complex]$c) {
if(0 -le $c.Imaginary) {
if(0 -le $c.Imaginary) {
Line 4,368: Line 4,368:


=={{header|PureBasic}}==
=={{header|PureBasic}}==
<syntaxhighlight lang=PureBasic>Structure Complex
<syntaxhighlight lang="purebasic">Structure Complex
real.d
real.d
imag.d
imag.d
Line 4,436: Line 4,436:
=={{header|Python}}==
=={{header|Python}}==


<syntaxhighlight lang=python>>>> z1 = 1.5 + 3j
<syntaxhighlight lang="python">>>> z1 = 1.5 + 3j
>>> z2 = 1.5 + 1.5j
>>> z2 = 1.5 + 1.5j
>>> z1 + z2
>>> z1 + z2
Line 4,463: Line 4,463:
{{trans|Octave}}
{{trans|Octave}}


<syntaxhighlight lang=rsplus>z1 <- 1.5 + 3i
<syntaxhighlight lang="rsplus">z1 <- 1.5 + 3i
z2 <- 1.5 + 1.5i
z2 <- 1.5 + 1.5i
print(z1 + z2) # 3+4.5i
print(z1 + z2) # 3+4.5i
Line 4,479: Line 4,479:
=={{header|Racket}}==
=={{header|Racket}}==


<syntaxhighlight lang=racket>
<syntaxhighlight lang="racket">
#lang racket
#lang racket


Line 4,498: Line 4,498:
{{works with|Rakudo|2015.12}}
{{works with|Rakudo|2015.12}}


<syntaxhighlight lang=perl6>my $a = 1 + i;
<syntaxhighlight lang="raku" line>my $a = 1 + i;
my $b = pi + 1.25i;
my $b = pi + 1.25i;


Line 4,518: Line 4,518:
=={{header|REXX}}==
=={{header|REXX}}==
The REXX language has no complex type numbers, but most complex arithmetic functions can easily be written.
The REXX language has no complex type numbers, but most complex arithmetic functions can easily be written.
<syntaxhighlight lang=rexx>/*REXX program demonstrates how to support some math functions for complex numbers. */
<syntaxhighlight lang="rexx">/*REXX program demonstrates how to support some math functions for complex numbers. */
x = '(5,3i)' /*define X ─── can use I i J or j */
x = '(5,3i)' /*define X ─── can use I i J or j */
y = "( .5, 6j)" /*define Y " " " " " " " */
y = "( .5, 6j)" /*define Y " " " " " " " */
Line 4,554: Line 4,554:
=={{header|RLaB}}==
=={{header|RLaB}}==


<syntaxhighlight lang=RLaB>
<syntaxhighlight lang="rlab">
>> x = sqrt(-1)
>> x = sqrt(-1)
0 + 1i
0 + 1i
Line 4,566: Line 4,566:


=={{header|Ruby}}==
=={{header|Ruby}}==
<syntaxhighlight lang=ruby>
<syntaxhighlight lang="ruby">
# Four ways to write complex numbers:
# Four ways to write complex numbers:
a = Complex(1, 1) # 1. call Kernel#Complex
a = Complex(1, 1) # 1. call Kernel#Complex
Line 4,585: Line 4,585:
* All of these operations are safe with other numeric types. For example, <code>42.conjugate</code> returns 42.
* All of these operations are safe with other numeric types. For example, <code>42.conjugate</code> returns 42.


<syntaxhighlight lang=ruby># Other ways to find the multiplicative inverse:
<syntaxhighlight lang="ruby"># Other ways to find the multiplicative inverse:
puts 1.quo a # always works
puts 1.quo a # always works
puts 1.0 / a # works, but forces floating-point math
puts 1.0 / a # works, but forces floating-point math
Line 4,591: Line 4,591:


=={{header|Rust}}==
=={{header|Rust}}==
<syntaxhighlight lang=rust>extern crate num;
<syntaxhighlight lang="rust">extern crate num;
use num::complex::Complex;
use num::complex::Complex;


Line 4,612: Line 4,612:
Scala doesn't come with a Complex library, but one can be made:
Scala doesn't come with a Complex library, but one can be made:


<syntaxhighlight lang=scala>package org.rosettacode
<syntaxhighlight lang="scala">package org.rosettacode


package object ArithmeticComplex {
package object ArithmeticComplex {
Line 4,650: Line 4,650:
Usage example:
Usage example:


<syntaxhighlight lang=scala>scala> import org.rosettacode.ArithmeticComplex._
<syntaxhighlight lang="scala">scala> import org.rosettacode.ArithmeticComplex._
import org.rosettacode.ArithmeticComplex._
import org.rosettacode.ArithmeticComplex._


Line 4,682: Line 4,682:
* rectangular coordinates: <code>''real''+''imag''i</code> (or <code>''real''-''imag''i</code>), where ''real'' is the real part and ''imag'' is the imaginary part. For a pure-imaginary number, the real part may be omitted but the sign of the imaginary part is mandatory (even if it is "+"): <code>+''imag''i</code> (or <code>-''imag''i</code>). If the imaginary part is 1 or -1, the imaginary part can be omitted, leaving only the <code>+i</code> or <code>-i</code> at the end.
* rectangular coordinates: <code>''real''+''imag''i</code> (or <code>''real''-''imag''i</code>), where ''real'' is the real part and ''imag'' is the imaginary part. For a pure-imaginary number, the real part may be omitted but the sign of the imaginary part is mandatory (even if it is "+"): <code>+''imag''i</code> (or <code>-''imag''i</code>). If the imaginary part is 1 or -1, the imaginary part can be omitted, leaving only the <code>+i</code> or <code>-i</code> at the end.
* polar coordinates: <code>''r''@''theta''</code>, where ''r'' is the absolute value (magnitude) and ''theta'' is the angle
* polar coordinates: <code>''r''@''theta''</code>, where ''r'' is the absolute value (magnitude) and ''theta'' is the angle
<syntaxhighlight lang=scheme>(define a 1+i)
<syntaxhighlight lang="scheme">(define a 1+i)
(define b 3.14159+1.25i)
(define b 3.14159+1.25i)


Line 4,692: Line 4,692:
=={{header|Seed7}}==
=={{header|Seed7}}==


<syntaxhighlight lang=seed7>$ include "seed7_05.s7i";
<syntaxhighlight lang="seed7">$ include "seed7_05.s7i";
include "float.s7i";
include "float.s7i";
include "complex.s7i";
include "complex.s7i";
Line 4,714: Line 4,714:


=={{header|Sidef}}==
=={{header|Sidef}}==
<syntaxhighlight lang=ruby>var a = 1:1 # Complex(1, 1)
<syntaxhighlight lang="ruby">var a = 1:1 # Complex(1, 1)
var b = 3.14159:1.25 # Complex(3.14159, 1.25)
var b = 3.14159:1.25 # Complex(3.14159, 1.25)
Line 4,740: Line 4,740:
=={{header|Slate}}==
=={{header|Slate}}==


<syntaxhighlight lang=slate>[| a b |
<syntaxhighlight lang="slate">[| a b |
a: 1 + 1 i.
a: 1 + 1 i.
b: Pi + 1.2 i.
b: Pi + 1.2 i.
Line 4,754: Line 4,754:
=={{header|Smalltalk}}==
=={{header|Smalltalk}}==
{{works with|GNU Smalltalk}}
{{works with|GNU Smalltalk}}
<syntaxhighlight lang=smalltalk>PackageLoader fileInPackage: 'Complex'.
<syntaxhighlight lang="smalltalk">PackageLoader fileInPackage: 'Complex'.
|a b|
|a b|
a := 1 + 1 i.
a := 1 + 1 i.
Line 4,769: Line 4,769:
{{works with|Smalltalk/X}}
{{works with|Smalltalk/X}}
Complex is already in the basic class library. Multiples of imaginary are created by sending an "i" message to a number, which can be added to another number. Thus 5i => (0+5i), 1+(1/3)I => (1+1/3i) and (1.0+2i) => (1.0+2i). Notice that the real and imaginary components can be arbitrary integers, fractions or floating point numbers. And the results will be exact (i.e. have fractions or integer) if possible.
Complex is already in the basic class library. Multiples of imaginary are created by sending an "i" message to a number, which can be added to another number. Thus 5i => (0+5i), 1+(1/3)I => (1+1/3i) and (1.0+2i) => (1.0+2i). Notice that the real and imaginary components can be arbitrary integers, fractions or floating point numbers. And the results will be exact (i.e. have fractions or integer) if possible.
<syntaxhighlight lang=smalltalk>
<syntaxhighlight lang="smalltalk">
|a b|
|a b|
a := 1 + 1i.
a := 1 + 1i.
Line 4,817: Line 4,817:
<b>Original author unknown {:o(</b>
<b>Original author unknown {:o(</b>


<syntaxhighlight lang=qbasic>' complex numbers are native for "smart BASIC"
<syntaxhighlight lang="qbasic">' complex numbers are native for "smart BASIC"
A=1+2i
A=1+2i
B=3-5i
B=3-5i
Line 4,841: Line 4,841:
{{works with|CSnobol}}
{{works with|CSnobol}}


<syntaxhighlight lang=SNOBOL4>* # Define complex datatype
<syntaxhighlight lang="snobol4">* # Define complex datatype
data('complex(r,i)')
data('complex(r,i)')


Line 4,889: Line 4,889:


=={{header|Standard ML}}==
=={{header|Standard ML}}==
<syntaxhighlight lang=Standard ML>
<syntaxhighlight lang="standard ml">
(* Signature for complex numbers *)
(* Signature for complex numbers *)
signature COMPLEX = sig
signature COMPLEX = sig
Line 4,937: Line 4,937:
=={{header|Stata}}==
=={{header|Stata}}==


<syntaxhighlight lang=stata>mata
<syntaxhighlight lang="stata">mata
C(2,3)
C(2,3)
2 + 3i
2 + 3i
Line 4,985: Line 4,985:
Use a struct to create a complex number type in Swift. Math Operations can be added using operator overloading
Use a struct to create a complex number type in Swift. Math Operations can be added using operator overloading


<syntaxhighlight lang=swift>
<syntaxhighlight lang="swift">
public struct Complex {
public struct Complex {
Line 5,036: Line 5,036:
Make the Complex Number struct printable and easier to debug by adding making it conform to CustomStringConvertible
Make the Complex Number struct printable and easier to debug by adding making it conform to CustomStringConvertible


<syntaxhighlight lang=swift>
<syntaxhighlight lang="swift">


extension Complex : CustomStringConvertible {
extension Complex : CustomStringConvertible {
Line 5,067: Line 5,067:
Explicitly support subtraction and division
Explicitly support subtraction and division


<syntaxhighlight lang=swift>
<syntaxhighlight lang="swift">
public func - (left:Complex, right:Complex) -> Complex {
public func - (left:Complex, right:Complex) -> Complex {
return left + -right
return left + -right
Line 5,082: Line 5,082:
=={{header|Tcl}}==
=={{header|Tcl}}==
{{tcllib|math::complexnumbers}}
{{tcllib|math::complexnumbers}}
<syntaxhighlight lang=tcl>package require math::complexnumbers
<syntaxhighlight lang="tcl">package require math::complexnumbers
namespace import math::complexnumbers::*
namespace import math::complexnumbers::*


Line 5,128: Line 5,128:
=={{header|UNIX Shell}}==
=={{header|UNIX Shell}}==
{{works with|ksh93}}
{{works with|ksh93}}
<syntaxhighlight lang=bash>typeset -T Complex_t=(
<syntaxhighlight lang="bash">typeset -T Complex_t=(
float real=0
float real=0
float imag=0
float imag=0
Line 5,212: Line 5,212:
c..add or ..csin). Real operands are promoted to complex.
c..add or ..csin). Real operands are promoted to complex.


<syntaxhighlight lang=Ursala>u = 3.785e+00-1.969e+00i
<syntaxhighlight lang="ursala">u = 3.785e+00-1.969e+00i
v = 9.545e-01-3.305e+00j
v = 9.545e-01-3.305e+00j


Line 5,233: Line 5,233:


=={{header|VBA}}==
=={{header|VBA}}==
<syntaxhighlight lang=VBA>
<syntaxhighlight lang="vba">
Public Type Complex
Public Type Complex
re As Double
re As Double
Line 5,339: Line 5,339:


=={{header|Vlang}}==
=={{header|Vlang}}==
<syntaxhighlight lang=vlang>import math.complex
<syntaxhighlight lang="vlang">import math.complex
fn main() {
fn main() {
a := complex.complex(1, 1)
a := complex.complex(1, 1)
Line 5,363: Line 5,363:
=={{header|Wortel}}==
=={{header|Wortel}}==
{{trans|CoffeeScript}}
{{trans|CoffeeScript}}
<syntaxhighlight lang=wortel>@class Complex {
<syntaxhighlight lang="wortel">@class Complex {
&[r i] @: {
&[r i] @: {
^r || r 0
^r || r 0
Line 5,403: Line 5,403:
=={{header|Wren}}==
=={{header|Wren}}==
{{libheader|Wren-complex}}
{{libheader|Wren-complex}}
<syntaxhighlight lang=ecmascript>import "/complex" for Complex
<syntaxhighlight lang="ecmascript">import "/complex" for Complex


var x = Complex.new(1, 3)
var x = Complex.new(1, 3)
Line 5,431: Line 5,431:


=={{header|XPL0}}==
=={{header|XPL0}}==
<syntaxhighlight lang=XPL0>include c:\cxpl\codes;
<syntaxhighlight lang="xpl0">include c:\cxpl\codes;


func real CAdd(A, B, C); \Return complex sum of two complex numbers
func real CAdd(A, B, C); \Return complex sum of two complex numbers
Line 5,499: Line 5,499:


=={{header|Yabasic}}==
=={{header|Yabasic}}==
<syntaxhighlight lang=Yabasic>rem ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
<syntaxhighlight lang="yabasic">rem ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
rem CADDI/CADDR addition of complex numbers Z1 + Z2 with Z1 = a1 + b1 *i Z2 = a2 + b2*i
rem CADDI/CADDR addition of complex numbers Z1 + Z2 with Z1 = a1 + b1 *i Z2 = a2 + b2*i
rem CADDI returns imaginary part and CADDR the real part
rem CADDI returns imaginary part and CADDR the real part
Line 5,549: Line 5,549:


=={{header|zkl}}==
=={{header|zkl}}==
<syntaxhighlight lang=zkl>var [const] GSL=Import("zklGSL"); // libGSL (GNU Scientific Library)
<syntaxhighlight lang="zkl">var [const] GSL=Import("zklGSL"); // libGSL (GNU Scientific Library)
(GSL.Z(3,4) + GSL.Z(1,2)).println(); // (4.00+6.00i)
(GSL.Z(3,4) + GSL.Z(1,2)).println(); // (4.00+6.00i)
(GSL.Z(3,4) - GSL.Z(1,2)).println(); // (2.00+2.00i)
(GSL.Z(3,4) - GSL.Z(1,2)).println(); // (2.00+2.00i)
Line 5,569: Line 5,569:


=={{header|zonnon}}==
=={{header|zonnon}}==
<syntaxhighlight lang=zonnon>
<syntaxhighlight lang="zonnon">
module Numbers;
module Numbers;
type
type
Line 5,677: Line 5,677:
=={{header|ZX Spectrum Basic}}==
=={{header|ZX Spectrum Basic}}==
{{trans|BBC BASIC}}
{{trans|BBC BASIC}}
<syntaxhighlight lang=zxbasic>5 LET complex=2: LET r=1: LET i=2
<syntaxhighlight lang="zxbasic">5 LET complex=2: LET r=1: LET i=2
10 DIM a(complex): LET a(r)=1.0: LET a(i)=1.0
10 DIM a(complex): LET a(r)=1.0: LET a(i)=1.0
20 DIM b(complex): LET b(r)=PI: LET b(i)=1.2
20 DIM b(complex): LET b(r)=PI: LET b(i)=1.2