Active object: Difference between revisions

m
→‎{{header|Wren}}: Changed to Wren S/H
(→‎{{header|J}}: dedicated thread for integrator object)
m (→‎{{header|Wren}}: Changed to Wren S/H)
 
(3 intermediate revisions by 2 users not shown)
Line 91:
</pre>
 
=={{header|BBC BASICATS}}==
 
No memory management is needed. Everything is done in registers or on the stack, including the closure that is used to connect signal source and integrator.
 
The core code is templates for any floating point type, but, in the end, one must choose a type. Our choice is C '''float''' type.
 
<syntaxhighlight lang="ats">
(*------------------------------------------------------------------*)
(* I will not bother with threads. All we need is the ability to get
the time from the operating system. This is available as
clock(3). *)
 
#define ATS_PACKNAME "rosettacode.activeobject"
#define ATS_EXTERN_PREFIX "rosettacode_activeobject_"
 
#include "share/atspre_staload.hats"
 
(*------------------------------------------------------------------*)
(* Some math functionality, for all the standard floating point
types. The ats2-xprelude package includes this, and more, but one
may wish to avoid the dependency. And there is support for math
functions in libats/libc, but not with typekinds. *)
 
%{^
#include <math.h>
// sinpi(3) would be better than sin(3), but I do not yet have
// sinpi(3).
#define rosettacode_activeobject_pi \
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214L
#define rosettacode_activeobject_sinpi_float(x) \
(sinf (((atstype_float) rosettacode_activeobject_pi) * (x)))
#define rosettacode_activeobject_sinpi_double \
(sin (((atstype_double) rosettacode_activeobject_pi) * (x)))
#define rosettacode_activeobject_sinpi_ldouble \
(sinl (((atstype_ldouble) rosettacode_activeobject_pi) * (x)))
%}
 
extern fn sinpi_float : float -<> float = "mac#%"
extern fn sinpi_double : double -<> double = "mac#%"
extern fn sinpi_ldouble : ldouble -<> ldouble = "mac#%"
extern fn {tk : tkind} g0float_sinpi : g0float tk -<> g0float tk
implement g0float_sinpi<fltknd> x = sinpi_float x
implement g0float_sinpi<dblknd> x = sinpi_double x
implement g0float_sinpi<ldblknd> x = sinpi_ldouble x
 
overload sinpi with g0float_sinpi
 
(*------------------------------------------------------------------*)
(* Some clock(3) functionality for the three standard floating point
types. *)
 
%{^
#include <time.h>
 
typedef clock_t rosettacode_activeobject_clock_t;
 
ATSinline() rosettacode_activeobject_clock_t
rosettacode_activeobject_clock () // C23 drops the need for "void".
{
return clock ();
}
 
ATSinline() rosettacode_activeobject_clock_t
rosettacode_activeobject_clock_difference
(rosettacode_activeobject_clock_t t,
rosettacode_activeobject_clock_t t0)
{
return (t - t0);
}
 
ATSinline() atstype_float
rosettacode_activeobject_clock_scaled2float
(rosettacode_activeobject_clock_t t)
{
return ((atstype_float) t) / CLOCKS_PER_SEC;
}
 
ATSinline() atstype_double
rosettacode_activeobject_clock_scaled2double
(rosettacode_activeobject_clock_t t)
{
return ((atstype_double) t) / CLOCKS_PER_SEC;
}
 
ATSinline() atstype_ldouble
rosettacode_activeobject_clock_scaled2ldouble
(rosettacode_activeobject_clock_t t)
{
return ((atstype_ldouble) t) / CLOCKS_PER_SEC;
}
%}
 
typedef clock_t = $extype"clock_t"
extern fn clock : () -<> clock_t = "mac#%"
extern fn clock_difference : (clock_t, clock_t) -<> clock_t = "mac#%"
extern fn clock_scaled2float : clock_t -<> float = "mac#%"
extern fn clock_scaled2double : clock_t -<> double = "mac#%"
extern fn clock_scaled2ldouble : clock_t -<> ldouble = "mac#%"
 
extern fn {tk : tkind} clock_scaled2g0float : clock_t -<> g0float tk
 
implement clock_scaled2g0float<fltknd> t = clock_scaled2float t
implement clock_scaled2g0float<dblknd> t = clock_scaled2double t
implement clock_scaled2g0float<ldblknd> t = clock_scaled2ldouble t
 
overload - with clock_difference
overload clock2f with clock_scaled2g0float
 
(*------------------------------------------------------------------*)
 
%{^
#if defined __GNUC__ && (defined __i386__ || defined __x86_64__)
// A small, machine-dependent pause, for improved performance of spin
// loops.
#define rosettacode_activeobject_pause() __builtin_ia32_pause ()
#else
// Failure to insert a small, machine-dependent pause may overwork
// your hardware, but the task can be done anyway.
#define rosettacode_activeobject_pause() do{}while(0)
#endif
%}
 
extern fn pause : () -<> void = "mac#%"
 
(*------------------------------------------------------------------*)
 
(* Types such as this can have their internals hidden, but here I will
not bother with such details. *)
vtypedef sinusoidal_generator (tk : tkind) =
@{
phase = g0float tk,
afreq = g0float tk, (* angular frequency IN UNITS OF 2*pi. *)
clock0 = clock_t,
stopped = bool
}
 
fn {tk : tkind}
sinusoidal_generator_Initize
(gen : &sinusoidal_generator tk?
>> sinusoidal_generator tk,
phase : g0float tk,
afreq : g0float tk) : void =
gen := @{phase = phase,
afreq = afreq,
clock0 = clock (),
stopped = true}
 
fn {tk : tkind}
sinusoidal_generator_Start
(gen : &sinusoidal_generator tk) : void =
gen.stopped := false
 
(* IMO changing the integrator's input is bad OO design: akin to
unplugging one generator and plugging in another. What we REALLY
want is to have the generator produce a different signal. So
gen.Stop() will connect the output to a constant
zero. (Alternatively, the channel between the signal source and the
integrator could effect the shutoff.) *)
fn {tk : tkind}
sinusoidal_generator_Stop
(gen : &sinusoidal_generator tk) : void =
gen.stopped := true
 
fn {tk : tkind}
sinusoidal_generator_Sample
(gen : !sinusoidal_generator tk) : g0float tk =
let
val @{phase = phase,
afreq = afreq,
clock0 = clock0,
stopped = stopped} = gen
in
if stopped then
g0i2f 0
else
let
val t = (clock2f (clock () - clock0)) : g0float tk
in
sinpi ((afreq * t) + phase)
end
end
 
overload .Initize with sinusoidal_generator_Initize
overload .Start with sinusoidal_generator_Start
overload .Stop with sinusoidal_generator_Stop
overload .Sample with sinusoidal_generator_Sample
 
(*------------------------------------------------------------------*)
 
vtypedef inputter (tk : tkind, p : addr) =
(* This is a closure type that can reside either in the heap or on
the stack. *)
@((() -<clo1> g0float tk) @ p | ptr p)
 
vtypedef active_integrator (tk : tkind, p : addr) =
@{
inputter = inputter (tk, p),
t_last = clock_t,
sample_last = g0float tk,
integral = g0float tk
}
vtypedef active_integrator (tk : tkind) =
[p : addr] active_integrator (tk, p)
 
fn {tk : tkind}
active_integrator_Input
{p : addr}
(igrator : &active_integrator tk?
>> active_integrator (tk, p),
inputter : inputter (tk, p)) : void =
let
val now = clock ()
in
igrator := @{inputter = inputter,
t_last = now,
sample_last = g0i2f 0,
integral = g0i2f 0}
end
 
fn {tk : tkind}
active_integrator_Output
{p : addr}
(igrator : !active_integrator (tk, p)) : g0float tk =
igrator.integral
 
fn {tk : tkind}
active_integrator_Integrate
{p : addr}
(igrator : &active_integrator (tk, p)) : void =
let
val @{inputter = @(pf | p),
t_last = t_last,
sample_last = sample_last,
integral = integral} = igrator
macdef inputter_closure = !p
 
val t_now = clock ()
val sample_now = inputter_closure ()
 
val integral = integral + ((sample_last + sample_now)
* clock2f (t_last - t_now)
* g0f2f 0.5)
val sample_last = sample_now
val t_last = t_now
 
val () = igrator := @{inputter = @(pf | p),
t_last = t_last,
sample_last = sample_last,
integral = integral}
in
end
 
overload .Input with active_integrator_Input
overload .Output with active_integrator_Output
overload .Integrate with active_integrator_Integrate
 
(*------------------------------------------------------------------*)
 
implement
main () =
let
(* We put on the stack all objects that are not in registers. Thus
we avoid the need for malloc/free. *)
 
vtypedef gen_vt = sinusoidal_generator float_kind
vtypedef igrator_vt = active_integrator float_kind
 
var gen : gen_vt
var igrator : igrator_vt
 
val phase = 0.0f
and afreq = 1.0f (* Frequency of 0.5 Hz. *)
val () = gen.Initize (phase, afreq)
val () = gen.Start ()
 
(* Create a thunk on the stack. This thunk acts as a channel
between the sinusoidal generator and the active integrator. We
could probably work this step into the OO style of most of the
code, but doing that is left as an exercise. The mechanics of
creating a closure on the stack are already enough for a person
to absorb. (Of course, rather than use a closure, we could have
set up a type hierarchy. However, IMO a type hierarchy is
needlessly clumsy. Joining the objects with a closure lets any
thunk of the correct type serve as input.) *)
val p_gen = addr@ gen
var gen_clo_on_stack =
lam@ () : float =<clo1>
let
(* A little unsafeness is needed here. AFAIK there is no way
to SAFELY enclose the stack variable "gen" in the
closure. A negative effect is that (at least without some
elaborate scheme) it becomes POSSIBLE to use this
closure, even after "gen" has been destroyed. But we will
be careful not to do that. *)
extern praxi p2view :
{p : addr} ptr p -<prf>
(gen_vt @ p, gen_vt @ p -<lin,prf> void)
prval @(pf, fpf) = p2view p_gen
macdef gen = !p_gen
val sample = gen.Sample ()
prval () = fpf pf
in
sample
end
val sinusoidal_inputter =
@(view@ gen_clo_on_stack | addr@ gen_clo_on_stack)
 
val () = igrator.Input (sinusoidal_inputter)
 
fn {}
integrate_for_seconds
(igrator : &igrator_vt,
seconds : float) : void =
let
val t0 = clock2f (clock ())
fun
loop (igrator : &igrator_vt) : void =
if clock2f (clock ()) - t0 < seconds then
begin
igrator.Integrate ();
pause ();
loop igrator
end
in
loop igrator
end
 
(* Start the sinusoid and then integrate for 2.0 seconds. *)
val () = gen.Start ()
val () = integrate_for_seconds (igrator, 2.0f)
 
(* Stop the sinusoid and then integrate for 0.5 seconds. *)
val () = gen.Stop ()
val () = integrate_for_seconds (igrator, 0.5f)
 
val () = println! ("integrator output = ", igrator.Output ());
 
(* The following "prval" lines are necessary for type-safety, and
produce no executable code. *)
prval @{inputter = @(pf | _),
t_last = _,
sample_last = _,
integral = _} = igrator
prval () = view@ gen_clo_on_stack := pf
in
0
end
 
(*------------------------------------------------------------------*)
</syntaxhighlight>
 
{{out}}
One will get different results on different runs.
<pre>$ patscc -std=gnu2x -Ofast active_object_task.dats -lm && ./a.out
integrator output = -0.000002</pre>
 
=={{header|BASIC}}==
==={{header|BBC BASIC}}===
{{works with|BBC BASIC for Windows}}
<syntaxhighlight lang="bbcbasic"> INSTALL @lib$+"CLASSLIB"
Line 3,405 ⟶ 3,762:
 
What I've done instead is to pre-compute the number of updates performed on my machine for a given function and time period which is a fairly stable figure (though it will obviously be different on other machines). I've then used this figure to measure elapsed time for each update. On average this gives results of around 0.003 seconds which I consider acceptable in the circumstances.
<syntaxhighlight lang="ecmascriptwren">import "scheduler" for Scheduler
import "timer" for Timer
 
9,485

edits