Tree traversal: Difference between revisions

From Rosetta Code
Content added Content deleted
(add Ruby)
(Ada)
Line 17: Line 17:
postorder: 7 4 5 2 8 9 6 3 1
postorder: 7 4 5 2 8 9 6 3 1
level-order: 1 2 3 4 5 6 7 8 9
level-order: 1 2 3 4 5 6 7 8 9

=={{header|Ada}}==
<lang Ada>
with Ada.Text_Io; use Ada.Text_Io;
with Ada.Unchecked_Deallocation;
with Ada.Containers.Doubly_Linked_Lists;

procedure Tree_Traversal is
type Node;
type Node_Access is access Node;
type Node is record
Left : Node_Access := null;
Right : Node_Access := null;
Data : Integer;
end record;
procedure Destroy_Tree(N : in out Node_Access) is
procedure free is new Ada.Unchecked_Deallocation(Node, Node_Access);
begin
if N.Left /= null then
Destroy_Tree(N.Left);
end if;
if N.Right /= null then
Destroy_Tree(N.Right);
end if;
Free(N);
end Destroy_Tree;
function Tree(Value : Integer; Left : Node_Access; Right : Node_Access) return Node_Access is
Temp : Node_Access := new Node;
begin
Temp.Data := Value;
Temp.Left := Left;
Temp.Right := Right;
return Temp;
end Tree;
procedure Preorder(N : Node_Access) is
begin
Put(Integer'Image(N.Data));
if N.Left /= null then
Preorder(N.Left);
end if;
if N.Right /= null then
Preorder(N.Right);
end if;
end Preorder;
procedure Inorder(N : Node_Access) is
begin
if N.Left /= null then
Inorder(N.Left);
end if;
Put(Integer'Image(N.Data));
if N.Right /= null then
Inorder(N.Right);
end if;
end Inorder;
procedure Postorder(N : Node_Access) is
begin
if N.Left /= null then
Postorder(N.Left);
end if;
if N.Right /= null then
Postorder(N.Right);
end if;
Put(Integer'Image(N.Data));
end Postorder;
procedure Levelorder(N : Node_Access) is
package Queues is new Ada.Containers.Doubly_Linked_Lists(Node_Access);
use Queues;
Node_Queue : List;
Next : Node_Access;
begin
Node_Queue.Append(N);
while not Is_Empty(Node_Queue) loop
Next := First_Element(Node_Queue);
Delete_First(Node_Queue);
Put(Integer'Image(Next.Data));
if Next.Left /= null then
Node_Queue.Append(Next.Left);
end if;
if Next.Right /= null then
Node_Queue.Append(Next.Right);
end if;
end loop;
end Levelorder;
N : Node_Access;
begin
N := Tree(1,
Tree(2,
Tree(4,
Tree(7, null, null),
null),
Tree(5, null, null)),
Tree(3,
Tree(6,
Tree(8, null, null),
Tree(9, null, null)),
null));
Put("preorder: ");
Preorder(N);
New_Line;
Put("inorder: ");
Inorder(N);
New_Line;
Put("postorder: ");
Postorder(N);
New_Line;
Put("level order: ");
Levelorder(N);
New_Line;
Destroy_Tree(N);
end Tree_traversal;
</lang>


=={{header|C}}==
=={{header|C}}==

Revision as of 01:50, 9 July 2009

Task
Tree traversal
You are encouraged to solve this task according to the task description, using any language you may know.

Implement a binary tree where each node carries an integer, and implement preoder, inorder, postorder and level-order traversal. Use those traversals to output the following tree:

         1
        / \
       /   \
      /     \
     2       3
    / \     /
   4   5   6
  /       / \
 7       8   9

The correct output should look like this:

preorder:    1 2 4 7 5 3 6 8 9
inorder:     7 4 2 5 1 8 6 9 3
postorder:   7 4 5 2 8 9 6 3 1
level-order: 1 2 3 4 5 6 7 8 9

Ada

<lang Ada> with Ada.Text_Io; use Ada.Text_Io; with Ada.Unchecked_Deallocation; with Ada.Containers.Doubly_Linked_Lists;

procedure Tree_Traversal is

  type Node;
  type Node_Access is access Node;
  type Node is record
     Left : Node_Access := null;
     Right : Node_Access := null;
     Data : Integer;
  end record;
  procedure Destroy_Tree(N : in out Node_Access) is
     procedure free is new Ada.Unchecked_Deallocation(Node, Node_Access);
  begin
     if N.Left /= null then
        Destroy_Tree(N.Left);
     end if;
     if N.Right /= null then 
        Destroy_Tree(N.Right);
     end if;
     Free(N);
  end Destroy_Tree;
  function Tree(Value : Integer; Left : Node_Access; Right : Node_Access) return Node_Access is
     Temp : Node_Access := new Node;
  begin
     Temp.Data := Value;
     Temp.Left := Left;
     Temp.Right := Right;
     return Temp;
  end Tree;
  procedure Preorder(N : Node_Access) is
  begin
     Put(Integer'Image(N.Data));
     if N.Left /= null then
        Preorder(N.Left);
     end if;
     if N.Right /= null then
        Preorder(N.Right);
     end if;
  end Preorder;
  procedure Inorder(N : Node_Access) is
  begin
     if N.Left /= null then
        Inorder(N.Left);
     end if;
     Put(Integer'Image(N.Data));
     if N.Right /= null then
        Inorder(N.Right);
     end if;
  end Inorder;
  procedure Postorder(N : Node_Access) is
  begin
     if N.Left /= null then
        Postorder(N.Left);
     end if;
     if N.Right /= null then
        Postorder(N.Right);
     end if;
     Put(Integer'Image(N.Data));
  end Postorder;
  procedure Levelorder(N : Node_Access) is
     package Queues is new Ada.Containers.Doubly_Linked_Lists(Node_Access);
     use Queues;
     Node_Queue : List;
     Next : Node_Access;
  begin
     Node_Queue.Append(N);
     while not Is_Empty(Node_Queue) loop
        Next := First_Element(Node_Queue);
        Delete_First(Node_Queue);
        Put(Integer'Image(Next.Data));
        if Next.Left /= null then
           Node_Queue.Append(Next.Left);
        end if;
        if Next.Right /= null then
           Node_Queue.Append(Next.Right);
        end if;
     end loop;
  end Levelorder;
  N : Node_Access;

begin

  N := Tree(1, 
     Tree(2,
        Tree(4,
           Tree(7, null, null),
           null),
        Tree(5, null, null)),
     Tree(3,
        Tree(6,
           Tree(8, null, null),
           Tree(9, null, null)),
        null));
        
  Put("preorder:    ");
  Preorder(N);
  New_Line;
  Put("inorder:     ");
  Inorder(N);
  New_Line;
  Put("postorder:   ");
  Postorder(N);
  New_Line;
  Put("level order: ");
  Levelorder(N);
  New_Line;
  Destroy_Tree(N);

end Tree_traversal; </lang>

C

<lang c>

  1. include <stdlib.h>
  2. include <stdio.h>

typedef struct node_s {

 int value;
 struct node_s* left;
 struct node_s* right;

} *node;

node tree(int v, node l, node r) {

 node n = malloc(sizeof(struct node_s));
 n->value = v;
 n->left  = l;
 n->right = r;
 return n;

}

void destroy_tree(node n) {

 if (n->left)
   destroy_tree(n->left);
 if (n->right)
   destroy_tree(n->right);
 free(n);

}

void preorder(node n, void (*f)(int)) {

 f(n->value);
 if (n->left)
   preorder(n->left, f);
 if (n->right)
   preorder(n->right, f);

}

void inorder(node n, void (*f)(int)) {

 if (n->left)
   inorder(n->left, f);
 f(n->value);
 if (n->right)
   inorder(n->right, f);

}

void postorder(node n, void (*f)(int)) {

 if (n->left)
   postorder(n->left, f);
 if (n->right)
   postorder(n->right, f);
 f(n->value);

}

/* helper queue for levelorder */ typedef struct qnode_s {

 struct qnode_s* next;
 node value;

} *qnode;

typedef struct { qnode begin, end; } queue;

void enqueue(queue* q, node n) {

 qnode node = malloc(sizeof(struct qnode_s));
 node->value = n;
 node->next = 0;
 if (q->end)
   q->end->next = node;
 else
   q->begin = node;
 q->end = node;

}

node dequeue(queue* q) {

 node tmp = q->begin->value;
 qnode second = q->begin->next;
 free(q->begin);
 q->begin = second;
 if (!q->begin)
   q->end = 0;
 return tmp;

}

int queue_empty(queue* q) {

 return !q->begin;

}

void levelorder(node n, void(*f)(int)) {

 queue nodequeue = {};
 enqueue(&nodequeue, n);
 while (!queue_empty(&nodequeue))
 {
   node next = dequeue(&nodequeue);
   f(next->value);
   if (next->left)
     enqueue(&nodequeue, next->left);
   if (next->right)
     enqueue(&nodequeue, next->right);
 }

}

void print(int n) {

 printf("%d ", n);

}

int main() {

 node n = tree(1,
               tree(2,
                    tree(4,
                         tree(7, 0, 0),
                         0),
                    tree(5, 0, 0)),
               tree(3,
                    tree(6,
                         tree(8, 0, 0),
                         tree(9, 0, 0)),
                    0));
 printf("preorder:    ");
 preorder(n, print);
 printf("\n");
 printf("inorder:     ");
 inorder(n, print);
 printf("\n");
 printf("postorder:   ");
 postorder(n, print);
 printf("\n");
 printf("level-order: ");
 levelorder(n, print);
 printf("\n");
 destroy_tree(n);
 return 0;

} </lang>

Java

Works with: Java version 1.5+

<lang java5>import java.util.LinkedList; public class TreeTraverse {

   private static class Node{
       public Node left;
       public Node right;
       public int data;
       
       public Node(int data){
           this.data = data;
       }
       public Node getLeft() {
           return left;
       }
       public void setLeft(Node left) {
           this.left = left;
       }
       public Node getRight() {
           return right;
       }
       public void setRight(Node right) {
           this.right = right;
       }
   }
   public static void preorder(Node n){
       System.out.print(n.data);
       if(n.getLeft()!= null){
           preorder(n.getLeft());
       }
       if(n.getRight()!= null){
           preorder(n.getRight());
       }
   }
   
   public static void inorder(Node n){
       if(n.getLeft()!= null){
           inorder(n.getLeft());
       }
       System.out.print(n.data);
       if(n.getRight()!= null){
           inorder(n.getRight());
       }
   }
   
   public static void postorder(Node n){
       if(n.getLeft()!= null){
           postorder(n.getLeft());
       }
       if(n.getRight()!= null){
           postorder(n.getRight());
       }
       System.out.print(n.data);
   }
   
   public static void levelorder(Node n) {
       LinkedList<Node> nodequeue = new LinkedList<Node>();
       nodequeue.addLast(n);
       while (!nodequeue.isEmpty()) {
           Node next = nodequeue.removeFirst();
           System.out.print(next.data);
           if (next.getLeft() != null) {
               nodequeue.addLast(next.getLeft());
           }
           if (next.getRight() != null) {
               nodequeue.addLast(next.getRight());
           }
       }
   }
   
   public static void main(String[] args){
       Node one = new Node(1);
       Node two = new Node(2);
       Node three = new Node(3);
       Node four = new Node(4);
       Node five = new Node(5);
       Node six = new Node(6);
       Node seven = new Node(7);
       Node eight = new Node(8);
       Node nine = new Node(9);
       one.setLeft(two);
       one.setRight(three);
       two.setLeft(four);
       two.setRight(five);
       three.setLeft(six);
       four.setLeft(seven);
       six.setLeft(eight);
       six.setRight(nine);
       
       preorder(one);
       System.out.println();
       inorder(one);
       System.out.println();
       postorder(one);
       System.out.println();
       levelorder(one);
   }

}</lang> Output:

124753689
742518693
745289631
123456789

Ruby

<lang ruby>class BinaryTreeNode

 def initialize(value, left=nil, right=nil)
   @value = value
   @left = left
   @right = right
 end
 attr_reader :value, :left, :right
 def each_preorder(&block)
   yield self
   left.each_preorder(&block) if left
   right.each_preorder(&block) if right
 end
 def each_inorder(&block)
   left.each_inorder(&block) if left
   yield self
   right.each_inorder(&block) if right
 end
 def each_postorder(&block)
   left.each_postorder(&block) if left
   right.each_postorder(&block) if right
   yield self
 end
 def each_levelorder(&block)
   queue = [self]
   until queue.empty?
     node = queue.shift
     yield node
     queue << node.left if node.left
     queue << node.right if node.right
   end
 end

end

root = BinaryTreeNode.new(1,

         BinaryTreeNode.new(2,
           BinaryTreeNode.new(4,
             BinaryTreeNode.new(7)
           ),
           BinaryTreeNode.new(5)
         ),
         BinaryTreeNode.new(3,
           BinaryTreeNode.new(6,
             BinaryTreeNode.new(8),
             BinaryTreeNode.new(9)
           )
         )
       )

print "preorder: " root.each_preorder {|node| print "#{node.value} "} puts print "inorder: " root.each_inorder {|node| print "#{node.value} "} puts print "postorder: " root.each_postorder {|node| print "#{node.value} "} puts print "levelorder: " root.each_levelorder {|node| print "#{node.value} "} puts</lang> Output:

preorder:   1 2 4 7 5 3 6 8 9
inorder:    7 4 2 5 1 8 6 9 3
postorder:  7 4 5 2 8 9 6 3 1
levelorder: 1 2 3 4 5 6 7 8 9