Proof

From Rosetta Code
Revision as of 18:31, 16 March 2008 by rosettacode>Mwn3d (Undo revision 14326 by Sparre (Talk) Just use GeSHi highlighting)
Task
Proof
You are encouraged to solve this task according to the task description, using any language you may know.

Define a type for natural numbers (0, 1, 2, 3, ...) and addition on them. Define a type of even numbers (0, 2, 4, 6, ...) then prove that the addition of any two even numbers is even.

Ada

This is technically not a proof that even numbers sum to even numbers.

Natural is a pre-defined subtype for Ada. <ada> package Evens is

   type Even_Number is private;
   function "+"(Left, Right : Even_Number) return Even_Number;
   function "-"(Left, Right : Even_Number) return Even_Number;
   function "*"(Left, Right : Even_Number) return Even_Number;
   function "/"(Left, Right : Even_Number) return Natural;
   function Image(Item : Even_Number) return String;
   function To_Even(Item : Natural) return Even_Number;
   function To_Natural(Item : Even_Number) return Natural;
private
   type Even_Number is record
      Value : Natural;
   end record;
end Evens;
package body Evens is

   ---------
   -- "+" --
   ---------

   function "+" (Left, Right : Even_Number) return Even_Number is
   begin
      return (Value => Left.Value + Right.Value);
   end "+"; 

   ---------
   -- "-" --
   ---------

   function "-" (Left, Right : Even_Number) return Even_Number is
   begin
      return (Value => Left.Value - Right.Value);
   end "-";

   ---------
   -- "*" --
   ---------

   function "*" (Left, Right : Even_Number) return Even_Number is
   begin
      return (Value => Left.Value * Right.Value);
   end "*";

   ---------
   -- "/" --
   ---------

   function "/" (Left, Right : Even_Number) return Natural is
   begin
      return Left.Value / Right.Value;
   end "/"; 

   -----------
   -- Image --
   ----------- 

   function Image (Item : Even_Number) return String is
   begin
      return Natural'Image (Item.Value);
   end Image;

   -------------
   -- To_Even --
   -------------

   function To_Even (Item : Natural) return Even_Number is
   begin
      if Item mod 2 = 0 then
         return (Value => Item);
      else
         raise Constraint_Error;
      end if;
   end To_Even;

   ----------------
   -- To_Natural --
   ----------------

   function To_Natural (Item : Even_Number) return Natural is
   begin
      return Item.Value;
   end To_Natural; 

end Evens;</ada>

Agda2

module Arith where


data Nat : Set where
  zero : Nat
  suc  : Nat -> Nat

_+_ : Nat -> Nat -> Nat
zero  + n = n
suc m + n = suc (m + n)


data Even : Nat -> Set where
  even_zero    : Even zero
  even_suc_suc : {n : Nat} -> Even n -> Even (suc (suc n))

_even+_ : {m n : Nat} -> Even m -> Even n -> Even (m + n)
even_zero       even+ en = en
even_suc_suc em even+ en = even_suc_suc (em even+ en)

Coq

Inductive nat : Set :=
  | O : nat
  | S : nat -> nat.

Fixpoint plus (n m:nat) {struct n} : nat :=
  match n with
    | O => m
    | S p => S (p + m)
  end

where "n + m" := (plus n m) : nat_scope.


Inductive even : nat -> Set :=
  | even_O : even O
  | even_SSn : forall n:nat,
                even n -> even (S (S n)).


Theorem even_plus_even : forall n m:nat,
  even n -> even m -> even (n + m).
Proof.
  intros n m H H0.

  elim H.
  trivial.

  intros.
  simpl.

  case even_SSn.
  intros.
  apply even_SSn; assumption.

  assumption.
Qed.

Omega

 data Even :: Nat ~> *0 where
    EZ:: Even Z
    ES:: Even n -> Even (S (S n))
 
 plus:: Nat ~> Nat ~> Nat
 {plus Z m} = m
 {plus (S n) m} = S {plus n m}
 
 even_plus:: Even m -> Even n -> Even {plus m n}
 even_plus EZ en = en
 even_plus (ES em) en = ES (even_plus em en)

Twelf

nat : type.
z   : nat.
s   : nat -> nat.


plus   : nat -> nat -> nat -> type.
plus-z : plus z N2 N2.
plus-s : plus (s N1) N2 (s N3)
          <- plus N1 N2 N3.


%% declare totality assertion
%mode plus +N1 +N2 -N3.
%worlds () (plus _ _ _).

%% check totality assertion
%total N1 (plus N1 _ _).



even   : nat -> type.
even-z : even z.
even-s : even (s (s N))
          <- even N.


sum-evens : even N1 -> even N2 -> plus N1 N2 N3 -> even N3 -> type.
%mode sum-evens +D1 +D2 +Dplus -D3.

sez : sum-evens
       even-z
       (DevenN2 : even N2)
       (plus-z : plus z N2 N2)
       DevenN2.

ses : sum-evens
       ( (even-s DevenN1') : even (s (s N1')))
       (DevenN2 : even N2)
       ( (plus-s (plus-s Dplus)) : plus (s (s N1')) N2 (s (s N3')))
       (even-s DevenN3')
       <- sum-evens DevenN1' DevenN2 Dplus DevenN3'.

%worlds () (sum-evens _ _ _ _).
%total D (sum-evens D _ _ _).