Pandigital prime: Difference between revisions

From Rosetta Code
Content added Content deleted
(→‎{{header|Wren}}: Now uses Wren-perm.)
m (syntax highlighting fixup automation)
Line 18: Line 18:
=={{header|ALGOL 68}}==
=={{header|ALGOL 68}}==
Uses the observations in the Factor sample - the prime we are looking for can only have 7 or 4 digits.
Uses the observations in the Factor sample - the prime we are looking for can only have 7 or 4 digits.
<lang algol68>BEGIN # Find the largest n-digit prime that contains all the digits 1..n #
<syntaxhighlight lang="algol68">BEGIN # Find the largest n-digit prime that contains all the digits 1..n #
# As noted in the Factor sample, only 7 and 4 digit primes need be #
# As noted in the Factor sample, only 7 and 4 digit primes need be #
# considered: 1 is not prime, all 2, 3, 5, 6, 8 and 9 digit #
# considered: 1 is not prime, all 2, 3, 5, 6, 8 and 9 digit #
Line 128: Line 128:
find pd prime( 1, "pandigital" );
find pd prime( 1, "pandigital" );
find pd prime( 0, "pandigital0" )
find pd prime( 0, "pandigital0" )
END</lang>
END</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 136: Line 136:


=={{header|C#|CSharp}}==
=={{header|C#|CSharp}}==
<lang csharp>using System;
<syntaxhighlight lang="csharp">using System;
class Program {
class Program {
Line 174: Line 174:
fun('0');
fun('0');
}
}
}</lang>
}</syntaxhighlight>
{{out|Output @ Tio.run}}
{{out|Output @ Tio.run}}
<pre>1..7: 7,652,413 21 μs
<pre>1..7: 7,652,413 21 μs
Line 180: Line 180:


=={{header|Delphi|Delphi}}==
=={{header|Delphi|Delphi}}==
<lang pascal>
<syntaxhighlight lang="pascal">
uses System.SysUtils, System.Classes, System.Math;
uses System.SysUtils, System.Classes, System.Math;
label nxt;
label nxt;
Line 197: Line 197:
end;
end;
end.
end.
</syntaxhighlight>
</lang>
{{out}}
{{out}}
<pre>
<pre>
Line 206: Line 206:
=={{header|Factor}}==
=={{header|Factor}}==
{{works with|Factor|0.99 2021-06-02}}
{{works with|Factor|0.99 2021-06-02}}
<lang factor>USING: io kernel math math.combinatorics math.functions
<syntaxhighlight lang="factor">USING: io kernel math math.combinatorics math.functions
math.primes math.ranges present sequences sequences.cords ;
math.primes math.ranges present sequences sequences.cords ;


Line 218: Line 218:
[ reverse 0 [ 10^ * + ] reduce-index prime? ] find-last nip
[ reverse 0 [ 10^ * + ] reduce-index prime? ] find-last nip
"The largest pandigital decimal prime is: " print
"The largest pandigital decimal prime is: " print
[ present write ] each nl</lang>
[ present write ] each nl</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 228: Line 228:
=={{header|FreeBASIC}}==
=={{header|FreeBASIC}}==
{{trans|Ring}}
{{trans|Ring}}
<lang freebasic>Function isPrime(Byval n As Integer) As Boolean
<syntaxhighlight lang="freebasic">Function isPrime(Byval n As Integer) As Boolean
If n Mod 3 = 0 Then Return False
If n Mod 3 = 0 Then Return False
Dim As Integer i = 5
Dim As Integer i = 5
Line 258: Line 258:
digits = digits * 10 - 9
digits = digits * 10 - 9
Next z
Next z
Sleep</lang>
Sleep</syntaxhighlight>
{{out}}
{{out}}
<pre>The largest 1..7 pandigital prime is 7652413. 6.32 ms
<pre>The largest 1..7 pandigital prime is 7652413. 6.32 ms
Line 267: Line 267:
{{trans|Wren}}
{{trans|Wren}}
{{libheader|Go-rcu}}
{{libheader|Go-rcu}}
<lang go>package main
<syntaxhighlight lang="go">package main


import (
import (
Line 342: Line 342:
}
}
}
}
}</lang>
}</syntaxhighlight>


{{out}}
{{out}}
Line 358: Line 358:


See e.g. [[Erd%C5%91s-primes#jq]] for a suitable implementation of `is_prime`.
See e.g. [[Erd%C5%91s-primes#jq]] for a suitable implementation of `is_prime`.
<lang jq># Output: a stream of strings of pandigital numbers
<syntaxhighlight lang="jq"># Output: a stream of strings of pandigital numbers
# drawing from the digits in the input array,
# drawing from the digits in the input array,
# in descending numerical order
# in descending numerical order
Line 377: Line 377:
| select(is_prime);
| select(is_prime);


first(pandigital_primes)</lang>
first(pandigital_primes)</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 384: Line 384:


=={{header|Julia}}==
=={{header|Julia}}==
<lang julia>using Primes
<syntaxhighlight lang="julia">using Primes


function pandigitals(firstdig, lastdig)
function pandigitals(firstdig, lastdig)
Line 405: Line 405:
println("Max pandigital prime over [$firstdigit, 9] is ", pandigitals(firstdigit, 9))
println("Max pandigital prime over [$firstdigit, 9] is ", pandigitals(firstdigit, 9))
end
end
</lang>{{out}}
</syntaxhighlight>{{out}}
<pre>
<pre>
Max pandigital prime over [1, 9] is 7652413
Max pandigital prime over [1, 9] is 7652413
Line 413: Line 413:
=={{header|Perl}}==
=={{header|Perl}}==
{{libheader|ntheory}}
{{libheader|ntheory}}
<lang perl>#!/usr/bin/perl
<syntaxhighlight lang="perl">#!/usr/bin/perl


use strict; # https://rosettacode.org/wiki/Pandigital_prime
use strict; # https://rosettacode.org/wiki/Pandigital_prime
Line 426: Line 426:
is_prime($n) and exit ! print "$n\n";
is_prime($n) and exit ! print "$n\n";
} $digits;
} $digits;
}</lang>
}</syntaxhighlight>
{{out}}
{{out}}
<pre>7652413</pre>
<pre>7652413</pre>
Line 432: Line 432:
Slightly different approach for optional portion of task.
Slightly different approach for optional portion of task.


<lang perl>use strict;
<syntaxhighlight lang="perl">use strict;
use warnings;
use warnings;
use ntheory <forperm is_prime vecmax>;
use ntheory <forperm is_prime vecmax>;
Line 443: Line 443:
} @{[0..$c]};
} @{[0..$c]};
}
}
print vecmax(@p) . "\n";</lang>
print vecmax(@p) . "\n";</syntaxhighlight>
{{out}}
{{out}}
<pre>76540231</pre>
<pre>76540231</pre>


=={{header|Phix}}==
=={{header|Phix}}==
<!--<lang Phix>(phixonline)-->
<!--<syntaxhighlight lang="phix">(phixonline)-->
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #004080;">sequence</span> <span style="color: #000000;">avail</span>
<span style="color: #004080;">sequence</span> <span style="color: #000000;">avail</span>
Line 476: Line 476:
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<!--</lang>-->
<!--</syntaxhighlight>-->
{{out}}
{{out}}
With full inner workings (the second "1" is really "01", a failing pandigital0), obviously removing the "?n" on the fourth line above will reduce the output to just four lines.<br>
With full inner workings (the second "1" is really "01", a failing pandigital0), obviously removing the "?n" on the fourth line above will reduce the output to just four lines.<br>
Line 532: Line 532:


=={{header|Raku}}==
=={{header|Raku}}==
<lang perl6>for 1, 0 -> $i {
<syntaxhighlight lang="raku" line>for 1, 0 -> $i {
say max ($i..7).map: -> $size {
say max ($i..7).map: -> $size {
|($i..$size).permutations».join.grep(&is-prime);
|($i..$size).permutations».join.grep(&is-prime);
}
}
}</lang>
}</syntaxhighlight>
{{out}}
{{out}}
<pre>7652413
<pre>7652413
Line 545: Line 545:


Essentially, the CPU time was displayed as using 0.00 seconds &nbsp; (rounded to two fractional decimal digits).
Essentially, the CPU time was displayed as using 0.00 seconds &nbsp; (rounded to two fractional decimal digits).
<lang rexx>/*REXX program finds and displays the largest prime pandigital number. */
<syntaxhighlight lang="rexx">/*REXX program finds and displays the largest prime pandigital number. */
pand = reverse(123456789) /*get a big 9-digit pandigital number. */
pand = reverse(123456789) /*get a big 9-digit pandigital number. */
gp= 0 /*indicate that primes not generated. */
gp= 0 /*indicate that primes not generated. */
Line 582: Line 582:
end /*k*/ /* [↓] a prime (J) has been found. */
end /*k*/ /* [↓] a prime (J) has been found. */
#= #+1; @.#= j; sq.#= j*j; !.j= 1 /*bump #Ps; P──►@.assign P; P^2; P flag*/
#= #+1; @.#= j; sq.#= j*j; !.j= 1 /*bump #Ps; P──►@.assign P; P^2; P flag*/
end /*j*/; gp= 1; return</lang>
end /*j*/; gp= 1; return</syntaxhighlight>
{{out|output|text=&nbsp; when using the internal default input:}}
{{out|output|text=&nbsp; when using the internal default input:}}
<pre>
<pre>
Line 589: Line 589:


=={{header|Ring}}==
=={{header|Ring}}==
<lang ring>? "working..."
<syntaxhighlight lang="ring">? "working..."
hi = 7654321
hi = 7654321
for z in ['1', '0']
for z in ['1', '0']
Line 620: Line 620:
if n % i = 0 return 0 ok i += 4
if n % i = 0 return 0 ok i += 4
end
end
return 1</lang>
return 1</syntaxhighlight>
{{out|Output @ Tio.run}}
{{out|Output @ Tio.run}}
<pre>working...
<pre>working...
Line 629: Line 629:
=={{header|Ruby}}==
=={{header|Ruby}}==
Using the observations from the Factor code:
Using the observations from the Factor code:
<lang ruby>require "prime"
<syntaxhighlight lang="ruby">require "prime"
def find_pan(ar) = ar.permutation(ar.size).find{|perm| perm.join.to_i.prime? }.join.to_i
def find_pan(ar) = ar.permutation(ar.size).find{|perm| perm.join.to_i.prime? }.join.to_i
Line 636: Line 636:
puts find_pan(digits)
puts find_pan(digits)
digits << 0
digits << 0
puts find_pan(digits)</lang>
puts find_pan(digits)</syntaxhighlight>
{{out}}
{{out}}
<pre>7652413
<pre>7652413
Line 643: Line 643:


=={{header|Sidef}}==
=={{header|Sidef}}==
<lang ruby>func largest_pandigital_prime(base = 10, a = 1, b = base-1) {
<syntaxhighlight lang="ruby">func largest_pandigital_prime(base = 10, a = 1, b = base-1) {


for n in (b `downto` 1) {
for n in (b `downto` 1) {
Line 663: Line 663:


say ("Max pandigital prime over [1, 9] is: ", largest_pandigital_prime(a: 1))
say ("Max pandigital prime over [1, 9] is: ", largest_pandigital_prime(a: 1))
say ("Max pandigital prime over [0, 9] is: ", largest_pandigital_prime(a: 0))</lang>
say ("Max pandigital prime over [0, 9] is: ", largest_pandigital_prime(a: 0))</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 676: Line 676:
<br>
<br>
This makes use of the optimization strategy in the Factor entry to do both the basic and optional tasks.
This makes use of the optimization strategy in the Factor entry to do both the basic and optional tasks.
<lang ecmascript>import "./perm" for Perm
<syntaxhighlight lang="ecmascript">import "./perm" for Perm
import "./math" for Int
import "./math" for Int
import "./fmt" for Fmt
import "./fmt" for Fmt
Line 696: Line 696:
if (outer) break
if (outer) break
}
}
}</lang>
}</syntaxhighlight>


{{out}}
{{out}}

Revision as of 00:47, 28 August 2022

Pandigital prime is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.
Task

The following problem is taken from Project Euler problem 41.

We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once. For example, 2143 is a 4-digit pandigital and is also prime.

What is the largest pandigital prime that exists?

Optional

Further say that an n+1-digit number is pandigital0 if it makes use of all the digits 0 to n exactly once. For example 10243 is a 5-digit pandigital0 and is also prime.

What is the largest pandigital0 prime that exists?

Assume that the problem is talking about decimal numbers.

ALGOL 68

Uses the observations in the Factor sample - the prime we are looking for can only have 7 or 4 digits.

BEGIN # Find the largest n-digit prime that contains all the digits 1..n #
      # As noted in the Factor sample, only 7 and 4 digit primes need be #
      # considered: 1 is not prime, all 2, 3, 5, 6, 8 and 9 digit        #
      # pandigital numbers are divisible by 3                            #
      # Also find the largest n+1 digit prime that contains all the      #
      # digits 0..n (only 5 and 8 digit numbers need be considered as    #
      # the 0 digit does not affect divisibility by 3)                   #
    # permutation code from the Algol 68 Permutations by swapping task   #
    # entry - uses Heap's algorithm - based on the pseudo code on the    #
    # Wikipedia page for Heap's Algorithm                                #
    # generate permutations of a, the results are stored in p #
    PROC generate = ( INT k, REF[]INT a, REF[]INT p, REF INT p pos )VOID:
         IF k = 1 THEN
            INT last digit = a[ UPB a ];
            IF ODD last digit AND last digit /= 5 THEN
                # the number doesn't end in 2 or 5 so might be prime     #
                INT a value := a[ 0 ];
                FOR d TO UPB a DO
                   a value *:= 10 +:= a[ d ]
                OD;
                p[ p pos +:= 1 ] := a value
             FI
         ELSE
            # Generate permutations with kth unaltered #
            # Initially k = length a #
            generate( k - 1, a, p, p pos );
            # Generate permutations for kth swapped with each k-1 initial #
            FOR i FROM 0 TO k - 2 DO
                # Swap choice dependent on parity of k (even or odd) #
                INT swap item = IF ODD k THEN 0 ELSE i FI;
                INT t           = a[ swap item ];
                a[ swap item ] := a[ k - 1 ];
                a[ k - 1     ] := t;
                generate( k - 1, a, p, p pos )
            OD
         FI # generate # ;
    # generate permutations of a, p is used to hold the output #
    # returns the number of permutations stored #
    PROC permute digits = ( REF[]INT a, REF[]INT p )INT:
         BEGIN
            INT p pos := -1;
            generate( ( UPB a + 1 ) - LWB a, a[ AT 0 ], p[ AT 0 ], p pos );
            p pos
         END # permute digits # ;
    # Quicksorts in-place the array of integers a, from lb to ub #
    PROC quicksort = ( REF[]INT a, INT lb, ub )VOID:
         IF ub > lb THEN
            # more than one element, so must sort #
            INT left   := lb;
            INT right  := ub;
            # choosing the middle element of the array as the pivot #
            INT pivot  := a[ left + ( ( right + 1 ) - left ) OVER 2 ];
            WHILE
                WHILE IF left  <= ub THEN a[ left  ] < pivot ELSE FALSE FI DO left  +:= 1 OD;
                WHILE IF right >= lb THEN a[ right ] > pivot ELSE FALSE FI DO right -:= 1 OD;
                left <= right
            DO
                INT t      := a[ left  ];
                a[ left  ] := a[ right ];
                a[ right ] := t;
                left      +:= 1;
                right     -:= 1
            OD;
            quicksort( a, lb,   right );
            quicksort( a, left, ub    )
         FI # quicksort # ;
    # attenmpt to find the maximum pandigital prime with digits f..n, return it if found, 0 otherwise #
    PROC try pd prime = ( INT f, INT n )INT:
         BEGIN
            # array of digits to permute for the numbers #
            [ f : n ]INT digits; FOR i FROM LWB digits TO UPB digits DO digits[ i ] := i OD;
            # array to hold the permuted digits, there will be ( ( n + 1 ) - f)! elements #
            INT factorial n := 1; FOR i FROM 2 TO ( n + 1 ) - f DO factorial n *:= i OD;
            [ 0 : factorial n - 1 ]INT permuted digits;
            # permute the digits #
            INT p count = permute digits( digits, permuted digits );
            # sort the permuted numbers, assuming the prime is near the high end #
            quicksort( permuted digits, LWB permuted digits, p count );
            # try finding a prime - use trial division to test for primality #
            INT pd prime := 0;
            FOR p pos FROM p count BY -1 TO LWB permuted digits WHILE pd prime = 0 DO
                INT p = permuted digits[ p pos ];
                # we have onlt stored the odd numbers that don't end in 5 #
                # and we know they are not divisible by 3 #
                BOOL prime := TRUE;
                FOR i FROM 7 BY 2 TO ENTIER sqrt(p) WHILE prime := p MOD i /= 0 DO SKIP OD;
                IF prime THEN
                    # found a pandigital prime #
                    pd prime := p
                FI
            OD;
            pd prime
         END # try pd prime # ;
    # trys to find the maximem pandigital/pandigital0 prime #
    PROC find pd prime = ( INT first digit, STRING title )VOID:
         IF   # first try digits up to 7 then up to 4 if we can't find one with pt to 7 #
              INT pd prime := try pd prime( first digit, 7 );
              pd prime > 0
         THEN
            print( ( "max ", title, " prime: ", whole( pd prime, 0 ), newline ) )
         ELIF pd prime := try pd prime( first digit, 4 );
              pd prime > 0
         THEN
            print( ( "max ", title, " prime: ", whole( pd prime, 0 ), newline ) )
         ELSE
            print( ( "Can't find a ", title, " prime", newline ) )
         FI # find pd prime # ;
    # task #
    find pd prime( 1, "pandigital"  );
    find pd prime( 0, "pandigital0" )
END
Output:
max pandigital prime: 7652413
max pandigital0 prime: 76540231

C#

using System;
 
class Program {
  // Find the highest pandigital number in base 10, excluding or including the digit zero.
 
  // Since the sum-of-digits of the pandigital numbers 0..9 and 0..8 are respectively 45 and 36, (both
  // divisible by 3 and therefore always composite), we will only be looking at pandigital numbers 0..7
 
  static void fun(char sp) {
    var sw = System.Diagnostics.Stopwatch.StartNew();
    // The difference between every permutation is a multiple of 9.  To check odds only,
    // start at XXXXXX1 or XXXXXX01 and decrement by 18.
    // It's slightly faster to check pan-digitality before the multi-factor test.
 
    for (int x = sp == '1' ? 7654321 : 76543201; ; x -= 18) {
 
      // Tests for pan-digitality of x
      // Check for digits sp through 7.  If a duplicate occurs, at least one of the
      // other required digits sp..7 will be missing, and therefore rejected.
      var s = x.ToString();
      for (var ch = sp; ch < '8'; ch++) if (s.IndexOf(ch) < 0) goto nxt;
 
      // Multi-factor test
      // There is no check for even numbers since starting on an odd number and stepping by an even number
      if (x % 3 == 0) continue;
      for (int i = 1; i * i < x; ) {
        if (x % (i += 4) == 0) goto nxt;
        if (x % (i += 2) == 0) goto nxt;
      }
      sw.Stop(); Console.WriteLine("{0}..7: {1,10:n0} {2} μs", sp, x, sw.Elapsed.TotalMilliseconds * 1000); break;
      nxt: ;
    }
  }

static void Main(string[] args) {
    fun('1');
    fun('0');
  }
}
Output @ Tio.run:
1..7:  7,652,413 21 μs
0..7: 76,540,231 24.5 μs

Delphi

uses System.SysUtils, System.Classes, System.Math;
label nxt;
begin
  for var sp := '0' to '1' do for var x := IfThen(sp = '1', 7654321, 76543210) downto 0 do
  begin
    var s := x.ToString;
    for var ch := sp to '7' do if not s.Contains(ch) then goto nxt;
    if x mod 3 = 0 then goto nxt;
    var i := 1;
    repeat
      if x mod (i + 4) = 0 then goto nxt; Inc(i, 4);
      if x mod (i + 2) = 0 then goto nxt; Inc(i, 2);
    until i * i >= x;
    Writeln(Format('%s..7: %d', [sp, x])); Break; nxt:;
  end;
end.
Output:
0..7: 76541302
1..7: 7654312

Factor

Works with: Factor version 0.99 2021-06-02
USING: io kernel math math.combinatorics math.functions
math.primes math.ranges present sequences sequences.cords ;

! If the digit-sum of a number is divisible by 3, so too is the number.
! The digit-sum of all n-digit pandigitals is the same.
! The digit sums for 9-, 8-, 6-, 5-, and 3-digit pandigitals are all divisible by 3.
! 1, 12, and 21 are not prime so 1- and 2-digit pandigitals don't need checked.
! Hence, we only need to check 4- and 7-digit pandigitals from biggest to smallest.

{ 4 7 } [ [1,b] <permutations> ] [ cord-append ] map-reduce
[ reverse 0 [ 10^ * + ] reduce-index prime? ] find-last nip
"The largest pandigital decimal prime is: " print
[ present write ] each nl
Output:
The largest pandigital decimal prime is: 
7652413


FreeBASIC

Translation of: Ring
Function isPrime(Byval n As Integer) As Boolean
    If n Mod 3 = 0 Then Return False
    Dim As Integer i = 5
    While i * i < n
        If n Mod i = 0 Then Return False : End If : i += 2
        If n Mod i = 0 Then Return False : End If : i += 4
    Wend
    Return True
End Function

Dim As Integer digits = 7654321
For z As Integer = 1 To 0 Step -1
    Print "The largest"; z; "..7 pandigital prime is ";
    Dim As Double start = Timer
    For n As Integer = digits To 0 Step -18
        Dim As String cadena = Str(n)
        Dim As Boolean flag = True
        For i As Integer = z To 7
            If Instr(cadena, Str(i)) = 0 Then
                flag = False
                Exit For
            End If
        Next i
        If flag And isPrime(n) Then
            Print Using "########.  ##.## ms"; n; (Timer - start) * 10000
            Exit For
        End If
    Next n
    digits = digits * 10 - 9
Next z
Sleep
Output:
The largest 1..7 pandigital prime is  7652413.   6.32 ms
The largest 0..7 pandigital prime is 76540231.  13.95 ms


Go

Translation of: Wren
Library: Go-rcu
package main

import (
    "fmt"
    "rcu"
)

// only small factorials needed
func factorial(n int) int {
    fact := 1
    for i := 2; i <= n; i++ {
        fact *= i
    }
    return fact
}

// generates all permutations in lexicographical order
func permutations(input []int) [][]int {
    perms := [][]int{input}
    a := make([]int, len(input))
    copy(a, input)
    var n = len(input) - 1
    for c := 1; c < factorial(n+1); c++ {
        i := n - 1
        j := n
        for a[i] > a[i+1] {
            i--
        }
        for a[j] < a[i] {
            j--
        }
        a[i], a[j] = a[j], a[i]
        j = n
        i += 1
        for i < j {
            a[i], a[j] = a[j], a[i]
            i++
            j--
        }
        b := make([]int, len(input))
        copy(b, a)
        perms = append(perms, b)
    }
    return perms
}

func main() {
outer:
    for _, start := range []int{1, 0} {
        fmt.Printf("The largest pandigital decimal prime which uses all the digits %d..n once is:\n", start)
        for _, n := range []int{7, 4} {
            m := n + 1 - start
            list := make([]int, m)
            for i := 0; i < m; i++ {
                list[i] = i + start
            }
            perms := permutations(list)
            for i := len(perms) - 1; i >= 0; i-- {
                le := len(perms[i])
                if perms[i][le-1]%2 == 0 || perms[i][le-1] == 5 || (start == 0 && perms[i][0] == 0) {
                    continue
                }
                p := 0
                pow := 1
                for j := le - 1; j >= 0; j-- {
                    p += perms[i][j] * pow
                    pow *= 10
                }
                if rcu.IsPrime(p) {
                    fmt.Println(rcu.Commatize(p) + "\n")
                    continue outer
                }
            }
        }
    }
}
Output:
The largest pandigital decimal prime which uses all the digits 1..n once is:
7,652,413

The largest pandigital decimal prime which uses all the digits 0..n once is:
76,540,231

jq

Works with: jq

Works with gojq, the Go implementation of jq

See e.g. Erdős-primes#jq for a suitable implementation of `is_prime`.

# Output: a stream of strings of pandigital numbers 
# drawing from the digits in the input array,
# in descending numerical order
def candidates:
  . as $use
  | if . == [] then ""
    else .[] as $i
    | ($use - [$i] | candidates) as $j
    | "\($i)\($j)"
    end;

# Output: a stream in descending numerical order
def pandigital_primes:
  range(9; 0; -1)
  | [range(.; 0; -1)]
  | candidates
  | tonumber
  | select(is_prime);

first(pandigital_primes)
Output:
7652413

Julia

using Primes

function pandigitals(firstdig, lastdig)
    mask = primesmask(10^(lastdig - firstdig + 1))
    for j in lastdig:-1:firstdig
        n = j - firstdig + 1
        for i in evalpoly(10, firstdig:j):-1:evalpoly(10, j:-1:firstdig)
            if mask[i]
                d = digits(i)
                if length(d) == n && all(x -> count(y -> y == x, d) == 1, firstdig:j)
                    return i
                end
            end
        end
    end
    return 0
end

for firstdigit in [1, 0]
    println("Max pandigital prime over [$firstdigit, 9] is ", pandigitals(firstdigit, 9))
end
Output:
Max pandigital prime over [1, 9] is 7652413
Max pandigital prime over [0, 9] is 76540231

Perl

Library: ntheory
#!/usr/bin/perl

use strict; # https://rosettacode.org/wiki/Pandigital_prime
use warnings;
use ntheory qw( forperm is_prime );

for my $digits ( reverse 1 .. 9 )
  {
  forperm
    {
    my $n = join '', map $digits - $_, @_;
    is_prime($n) and exit ! print "$n\n";
    } $digits;
  }
Output:
7652413

Slightly different approach for optional portion of task.

use strict;
use warnings;
use ntheory <forperm is_prime vecmax>;

my @p;
for my $c (0..7) {
    forperm {
        my $n = join '', @_;
        push @p, $n if $n !~ /^0/ and is_prime($n);
    } @{[0..$c]};
}
print vecmax(@p) . "\n";
Output:
76540231

Phix

with javascript_semantics
sequence avail
function pandigital(bool bZero, integer i, n=0)
    if i=0 then ?n return iff(is_prime(n)?n:0) end if
    for d=length(avail) to 1 by -1 do
        if avail[d] then
            avail[d] = false
            integer r = pandigital(bZero,i-1,n*10+d-bZero)
            if r then return r end if
            avail[d] = true
        end if
    end for
    return 0
end function

constant fmt = "Largest decimal pandigital%s prime with %d digits:%,d\n"
for i=1 to 9 do
    sequence digits = tagset(i)
    if remainder(sum(digits),3)!=0 then
        avail = repeat(true,i)
        integer r = pandigital(false,i)
        if r then printf(1,fmt,{"",i,r}) end if
        avail = repeat(true,i+1)
        r = pandigital(true,i+1)
        if r then printf(1,fmt,{"0",i+1,r}) end if
    end if
end for
Output:

With full inner workings (the second "1" is really "01", a failing pandigital0), obviously removing the "?n" on the fourth line above will reduce the output to just four lines.
As you can see it does not have to generate and test many candidates for primality before it finds the (or no) answer.
You could of course easily change the main loop to go from 9 down to 1 and quit once any answer is found.

1
10
1
4321
4312
4231
Largest decimal pandigital prime with 4 digits:4,231
43210
43201
Largest decimal pandigital0 prime with 5 digits:43,201
7654321
7654312
7654231
7654213
7654132
7654123
7653421
7653412
7653241
7653214
7653142
7653124
7652431
7652413
Largest decimal pandigital prime with 7 digits:7,652,413
76543210
76543201
76543120
76543102
76543021
76543012
76542310
76542301
76542130
76542103
76542031
76542013
76541320
76541302
76541230
76541203
76541032
76541023
76540321
76540312
76540231
Largest decimal pandigital0 prime with 8 digits:76,540,231

Raku

for 1, 0 -> $i {
    say max ($i..7).map: -> $size {
        |($i..$size).permutations».join.grep(&is-prime);
    }
}
Output:
7652413
76540231

REXX

The longest part of the program execution time was the generating of 402 primes.

Essentially, the CPU time was displayed as using 0.00 seconds   (rounded to two fractional decimal digits).

/*REXX program  finds and displays  the  largest  prime pandigital  number.             */
pand = reverse(123456789)                        /*get a big 9-digit pandigital number. */
gp= 0                                            /*indicate that primes not generated.  */
     do j=9  by -1  for 9;  $= right(pand, j)    /*get largest pandigital # of length=J.*/
     if sumDigs($)//3==0  then iterate           /*Is sumDigs($) ÷ by 3?   Then skip it.*/
     if \gp  then do                             /*if not generated primes, then do so. */
                  call genP  iSqrt($)            /*gen primes up to  $  (pandigital #). */
                  end
        do k=$  by -2  for $%2                   /*start with  $  and search downwards. */
        if verify($, k)>0  then iterate          /*$ pandigital? No, skip.       _____  */
           do d=1  for #;  p= @.d                /*divide by all the primes  ≤  √  K    */
           if p*p>k        then iterate k        /*Is prime squared>K?  Then try next K.*/
           if k//p==0      then iterate k        /*Is K ÷ by this prime?  "   "    "  " */
           end
        leave j
        end     /*k*/
     end        /*j*/
say 'the largest prime pandigital number is: '     commas(k)
exit 0                                           /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
commas: parse arg ?;  do jc=length(?)-3  to 1  by -3; ?=insert(',', ?, jc); end;  return ?
sumDigs:procedure;parse arg x 1 s 2;do j=2 for length(x)-1;s=s+substr(x,j,1);end; return s
/*──────────────────────────────────────────────────────────────────────────────────────*/
iSqrt: procedure; parse arg x;  r=0;  q=1;             do while q<=x;  q=q*4;     end
         do while q>1; q= q%4; _= x-r-q; r= r%2; if _>=0  then do; x= _; r= r+q;  end; end
       return r
/*──────────────────────────────────────────────────────────────────────────────────────*/
genP: @.1=2; @.2=3; @.3=5; @.4=7; @.5=11; @.6=13          /*assign low primes; # primes.*/
      !.= 0; !.2=1; !.3=1; !.5=1; !.7=1; !.11=1; !.13=1   /*   "   semaphores to   "    */
      parse arg hp;        #= 6;  sq.#= @.# ** 2          /*# primes so far;  P squared.*/
        do j=@.#+4  by 2  to hp;  parse var j '' -1 _;  if _==5  then iterate  /*÷ by 5?*/
        if j// 3==0  then iterate;   if j// 7==0  then iterate    /*÷ by 3?;     ÷ by 7?*/
        if j//11==0  then iterate                                 /*"  " 11?     " " 13?*/
                do k=6  while sq.k<=j            /*divide by some generated odd primes. */
                if j//@.k==0  then iterate j     /*Is J divisible by  P?  Then not prime*/
                end   /*k*/                      /* [↓]  a prime  (J)  has been found.  */
        #= #+1;   @.#= j;   sq.#= j*j;   !.j= 1  /*bump #Ps; P──►@.assign P; P^2; P flag*/
        end     /*j*/;      gp= 1;       return
output   when using the internal default input:
the largest prime pandigital number is:  7,652,413

Ring

? "working..."
hi = 7654321
for z in ['1', '0']
    see "The largest " + z + "..7 pandigital prime is "
    st = clock()
    for n = hi to 0 step -18
        strn = string(n)
        pandig = true
        for i in z:'7'
            if substr(strn, i) = 0
                pandig = 0
                exit
            ok
        next
        if pandig and isprime(n)
            et = clock()
            ? "" + n + " " + (et - st) / clockspersecond() * 1000 + " ms"
            exit
        ok
    next
    hi = hi * 10 - 9
next
put "done..."
 
func isprime(n)
    if n % 3 = 0 return 0 ok
    i = 5
    while i * i < n
        if n % i = 0 return 0 ok i += 2
        if n % i = 0 return 0 ok i += 4
    end
    return 1
Output @ Tio.run:
working...
The largest 1..7 pandigital prime is 7652413 9.84 ms
The largest 0..7 pandigital prime is 76540231 20.30 ms
done...

Ruby

Using the observations from the Factor code:

require "prime"
    
def find_pan(ar) = ar.permutation(ar.size).find{|perm| perm.join.to_i.prime? }.join.to_i
  
digits = [7,6,5,4,3,2,1]
puts find_pan(digits)
digits << 0
puts find_pan(digits)
Output:
7652413
76540231

Sidef

func largest_pandigital_prime(base = 10, a = 1, b = base-1) {

    for n in (b `downto` 1) {

        var digits = @(a..n -> flip)

        if (base == 10) {   # check for divisibility by 3
            digits.sum % 3 == 0 && next
        }

        digits.permutations { |*p|
            var v = p.flip.digits2num(base)
            return v if v.is_prime
        }
    }

    return nil
}

say ("Max pandigital prime over [1, 9] is: ", largest_pandigital_prime(a: 1))
say ("Max pandigital prime over [0, 9] is: ", largest_pandigital_prime(a: 0))
Output:
Max pandigital prime over [1, 9] is: 7652413
Max pandigital prime over [0, 9] is: 76540231

Wren

Library: Wren-perm
Library: Wren-math
Library: Wren-fmt


This makes use of the optimization strategy in the Factor entry to do both the basic and optional tasks.

import "./perm" for Perm
import "./math" for Int
import "./fmt" for Fmt
  
for (start in 1..0) {
    var outer = false
    System.print("The largest pandigital decimal prime which uses all the digits %(start)..n once is:")
    for (n in [7, 4]) {
        var perms = Perm.listLex((start..n).toList)
        for (i in perms.count - 1..0) {
            if (perms[i][-1] % 2 == 0 || perms[i][-1] == 5 || (start == 0 && perms[i][0] == "0")) continue
            var p = Num.fromString(perms[i].join())
            if (Int.isPrime(p)) {
                Fmt.print("$,d\n", p)
                outer = true
                break
            }
        }
        if (outer) break
    }
}
Output:
The largest pandigital decimal prime which uses all the digits 1..n once is:
7,652,413

The largest pandigital decimal prime which uses all the digits 0..n once is:
76,540,231