Numbers whose binary and ternary digit sums are prime

From Rosetta Code
Revision as of 18:20, 29 November 2021 by rosettacode>Amarok (Added solution for Action!)
Numbers whose binary and ternary digit sums are prime is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.
Task

Show positive integers   n   whose binary and ternary digits sum are prime,   where   n   <   200.

Action!

<lang Action!>INCLUDE "H6:SIEVE.ACT"

BYTE Func IsPrime(INT i BYTE base BYTE ARRAY primes)

 BYTE sum,d
 sum=0
 WHILE i#0
 DO
   d=i MOD base
   sum==+d
   i==/base
 OD

RETURN (primes(sum))

PROC Main()

 DEFINE MAX="199"
 BYTE ARRAY primes(MAX+1)
 INT i,count=[0]
 Put(125) PutE() ;clear the screen
 Sieve(primes,MAX+1)
 FOR i=1 TO MAX
 DO
   IF IsPrime(i,2,primes)=1 AND IsPrime(i,3,primes)=1 THEN
     PrintI(i) Put(32)
     count==+1
   FI
 OD
 PrintF("%E%EThere are %I numbers",count)

RETURN</lang>

Output:

Screenshot from Atari 8-bit computer

5 6 7 10 11 12 13 17 18 19 21 25 28 31 33 35 36 37 41 47 49 55 59 61 65 67 69 73 79 82 84 87 91 93 97
103 107 109 115 117 121 127 129 131 133 137 143 14 5 151 155 157 162 167 171 173 179 181 185 191 193 199

There are 61 numbers

ALGOL 68

<lang algol68>BEGIN # find numbers whose digit sums in binary and ternary are prime #

   # returns the digit sum of n in base b #
   PRIO DIGITSUM = 9;
   OP   DIGITSUM = ( INT n, b )INT:
        BEGIN
           INT d sum := 0;
           INT v     := ABS n;
           WHILE v > 0 DO
               d sum +:= v MOD b;
               v  OVERAB b
           OD;
           d sum
        END # DIGITSUM # ;
   INT max number = 200;
   PR read "primes.incl.a68" PR
   []BOOL prime    = PRIMESIEVE 200;
   INT    n count := 0;
   FOR n TO UPB prime DO
       INT d sum 2 = n DIGITSUM 2;
       IF prime[ d sum 2 ] THEN
           INT d sum 3 = n DIGITSUM 3;
           IF prime[ d sum 3 ] THEN
               # the base 2 and base 3 digit sums of n are both prime #
               print( ( " ", whole( n, -3 ), IF prime[ n ] THEN "*" ELSE " " FI ) );
               n count +:= 1;
               IF n count MOD 14 = 0 THEN print( ( newline ) ) FI
           FI
       FI
   OD;
   print( ( newline ) );
   print( ( "Found ", whole( n count, 0 ), " numbers whose binary and ternary digit sums are prime", newline ) );
   print( ( "    those that are themselves prime are suffixed with a ""*""", newline ) )

END</lang>

Output:
   5*   6    7*  10   11*  12   13*  17*  18   19*  21   25   28   31*
  33   35   36   37*  41*  47*  49   55   59*  61*  65   67*  69   73*
  79*  82   84   87   91   93   97* 103* 107* 109* 115  117  121  127*
 129  131* 133  137* 143  145  151* 155  157* 162  167* 171  173* 179*
 181* 185  191* 193* 199*
Found 61 numbers whose binary and ternary digit sums are prime
    those that are themselves prime are suffixed with a "*"

ALGOL-M

<lang algolm>begin integer function mod(a,b); integer a,b; mod := a-(a/b)*b;

integer function digitsum(n,base); integer n,base; digitsum := if n=0 then 0 else mod(n,base)+digitsum(n/base,base);

integer function isprime(n); integer n; begin

   integer i;
   isprime := 0;
   if n < 2 then go to stop;
   for i := 2 step 1 until n-1 do
   begin
       if mod(n,i) = 0 then go to stop;
   end;
   isprime := 1;

stop:

   i := i;

end;

integer i,d2,d3,n; n := 0; for i := 0 step 1 until 199 do begin

   d2 := digitsum(i,2);
   d3 := digitsum(i,3);
   if isprime(d2) <> 0 and isprime(d3) <> 0 then
   begin
       if n/10 <> (n-1)/10 then write(i) else writeon(i);
       n := n + 1;
   end;

end; end</lang>

Output:
     5     6     7    10    11    12    13    17    18    19
    21    25    28    31    33    35    36    37    41    47
    49    55    59    61    65    67    69    73    79    82
    84    87    91    93    97   103   107   109   115   117
   121   127   129   131   133   137   143   145   151   155
   157   162   167   171   173   179   181   185   191   193
   199

ALGOL W

<lang algolw>begin % find numbers whose binary and ternary digit sums are prime %

   % returns the digit sum of n in base b %
   integer procedure digitSum( integer value n, base ) ;
   begin
       integer v, dSum;
       v    := abs n;
       dSum := 0;
       while v > 0 do begin
           dSum := dSum + v rem base;
           v    :=        v div base
       end while_v_gt_0 ;
       dSum
   end digitSum ;
   integer MAX_PRIME, MAX_NUMBER;
   MAX_PRIME := 199;
   begin
       logical array prime( 1 :: MAX_PRIME );
       integer       nCount;
       % sieve the primes to MAX_PRIME %
       prime( 1 ) := false; prime( 2 ) := true;
       for i := 3 step 2 until MAX_PRIME do prime( i ) := true;
       for i := 4 step 2 until MAX_PRIME do prime( i ) := false;
       for i := 3 step 2 until truncate( sqrt( MAX_PRIME ) ) do begin
           integer ii; ii := i + i;
           if prime( i ) then for np := i * i step ii until MAX_PRIME do prime( np ) := false
       end for_i ;
       % find the numbers %
       nCount := 0;
       for i := 1 until MAX_PRIME do begin
           if prime( digitSum( i, 2 ) ) and prime( digitSum( i, 3 ) ) then begin
               % have another matching number %
               writeon( i_w := 3, s_w := 0, " ", i );
               nCount := nCount + 1;
               if nCount rem 14 = 0 then write()
           end if_have_a_suitable_number
       end for_i ;
       write( i_w := 1, s_w := 0, "Found ", nCount, " numbers with prime binary and ternary digit sums up to ", MAX_PRIME )
   end

end.</lang>

Output:
   5   6   7  10  11  12  13  17  18  19  21  25  28  31
  33  35  36  37  41  47  49  55  59  61  65  67  69  73
  79  82  84  87  91  93  97 103 107 109 115 117 121 127
 129 131 133 137 143 145 151 155 157 162 167 171 173 179
 181 185 191 193 199
Found 61 numbers with prime binary and ternary digit sums up to 199

APL

Works with: Dyalog APL

<lang APL>(⊢(/⍨)(∧/((2=0+.=⍳|⊢)¨2 3(+/⊥⍣¯1)¨⊢))¨) ⍳200</lang>

Output:
5 6 7 10 11 12 13 17 18 19 21 25 28 31 33 35 36 37 41 47 49 55 59 61 65 67 69 73 79 82 84 87 91 93 97 103 107 109 115 117
      121 127 129 131 133 137 143 145 151 155 157 162 167 171 173 179 181 185 191 193 199

Arturo

<lang rebol>loop split.every: 10

   select 1..199 'n [ and? prime? sum digits.base: 2 n
                           prime? sum digits.base: 3 n ] 'a -> 
       print map a => [pad to :string & 4]</lang>
Output:
   5    6    7   10   11   12   13   17   18   19 
  21   25   28   31   33   35   36   37   41   47 
  49   55   59   61   65   67   69   73   79   82 
  84   87   91   93   97  103  107  109  115  117 
 121  127  129  131  133  137  143  145  151  155 
 157  162  167  171  173  179  181  185  191  193 
 199

AWK

<lang AWK>

  1. syntax: GAWK -f NUMBERS_WHICH_BINARY_AND_TERNARY_DIGIT_SUM_ARE_PRIME.AWK
  2. converted from C

BEGIN {

   start = 0
   stop = 199
   for (i=start; i<=stop; i++) {
     if (is_prime(sum_digits(i,2)) && is_prime(sum_digits(i,3))) {
       printf("%4d%1s",i,++count%10?"":"\n")
     }
   }
   printf("\nBinary and ternary digit sums are both prime %d-%d: %d\n",start,stop,count)
   exit(0)

} function sum_digits(n,base, sum) {

   do {
     sum += n % base
   } while (n = int(n/base))
   return(sum)

} function is_prime(x, i) {

   if (x <= 1) {
     return(0)
   }
   for (i=2; i<=int(sqrt(x)); i++) {
     if (x % i == 0) {
       return(0)
     }
   }
   return(1)

} </lang>

Output:
   5    6    7   10   11   12   13   17   18   19
  21   25   28   31   33   35   36   37   41   47
  49   55   59   61   65   67   69   73   79   82
  84   87   91   93   97  103  107  109  115  117
 121  127  129  131  133  137  143  145  151  155
 157  162  167  171  173  179  181  185  191  193
 199
Binary and ternary digit sums are both prime 0-199: 61

BASIC

None of the digit sums are higher than 9, so the easiest thing to do is to hardcode which ones are prime.

<lang BASIC>10 DEFINT I,J,K,P 20 DIM P(9): DATA 0,1,1,0,1,0,1,0,0 30 FOR I=1 TO 9: READ P(I): NEXT 40 FOR I=0 TO 199 50 J=0: K=I 60 IF K>0 THEN J=J+K MOD 2: K=K\2: GOTO 60 ELSE IF P(J)=0 THEN 90 70 J=0: K=I 80 IF K>0 THEN J=J+K MOD 3: K=K\3: GOTO 80 ELSE IF P(J) THEN PRINT I, 90 NEXT I</lang>

Output:
 5             6             7             10            11
 12            13            17            18            19
 21            25            28            31            33
 35            36            37            41            47
 49            55            59            61            65
 67            69            73            79            82
 84            87            91            93            97
 103           107           109           115           117
 121           127           129           131           133
 137           143           145           151           155
 157           162           167           171           173
 179           181           185           191           193
 199

BCPL

<lang bcpl>get "libhdr"

let digitsum(n, base) =

   n=0 -> 0, n rem base + digitsum(n/base, base)

let isprime(n) = valof $( if n<2 then resultis false

   for i=2 to n-1 do
       if n rem i = 0 then resultis false
   resultis true

$)

let accept(n) =

   isprime(digitsum(n,2)) & isprime(digitsum(n,3))

let start() be $( let c = 0

   for i=0 to 199 do
       if accept(i) do
       $(  writef("%I4",i)
           c := c + 1
           if c rem 10 = 0 then wrch('*N')
       $)
   wrch('*N')

$)</lang>

Output:
   5   6   7  10  11  12  13  17  18  19
  21  25  28  31  33  35  36  37  41  47
  49  55  59  61  65  67  69  73  79  82
  84  87  91  93  97 103 107 109 115 117
 121 127 129 131 133 137 143 145 151 155
 157 162 167 171 173 179 181 185 191 193
 199

C

<lang c>#include <stdio.h>

  1. include <stdint.h>

/* good enough for small numbers */ uint8_t prime(uint8_t n) {

   uint8_t f;
   if (n < 2) return 0;
   for (f = 2; f < n; f++) {
       if (n % f == 0) return 0;
   }
   return 1;

}

/* digit sum in given base */ uint8_t digit_sum(uint8_t n, uint8_t base) {

   uint8_t s = 0;
   do {s += n % base;} while (n /= base);
   return s;

}

int main() {

   uint8_t n, s = 0;
   for (n = 0; n < 200; n++) {
       if (prime(digit_sum(n,2)) && prime(digit_sum(n,3))) {
           printf("%4d",n);
           if (++s>=10) {
               printf("\n");
               s=0;
           }
       }
   }
   printf("\n");
   return 0;

}</lang>

Output:
   5   6   7  10  11  12  13  17  18  19
  21  25  28  31  33  35  36  37  41  47
  49  55  59  61  65  67  69  73  79  82
  84  87  91  93  97 103 107 109 115 117
 121 127 129 131 133 137 143 145 151 155
 157 162 167 171 173 179 181 185 191 193
 199

Cowgol

<lang cowgol>include "cowgol.coh";

sub prime(n: uint8): (p: uint8) is

   p := 0;
   if n >= 2 then
       var f: uint8 := 2;
       while f < n loop
           if n % f == 0 then
               return;
           end if;
           f := f + 1;
       end loop;
       p := 1;
   end if;

end sub;

sub digit_sum(n: uint8, base: uint8): (sum: uint8) is

   sum := 0;
   while n > 0 loop
       sum := sum + n % base;
       n := n / base;
   end loop;

end sub;

var n: uint8 := 0; while n < 200 loop;

   if prime(digit_sum(n,2)) != 0 and prime(digit_sum(n,3)) != 0 then
       print_i8(n);
       print_nl();
   end if;
   n := n + 1;

end loop;</lang>

Output:
5
6
7
10
11
12
13
17
18
19
21
25
28
31
33
35
36
37
41
47
49
55
59
61
65
67
69
73
79
82
84
87
91
93
97
103
107
109
115
117
121
127
129
131
133
137
143
145
151
155
157
162
167
171
173
179
181
185
191
193
199

F#

This task uses Extensible Prime Generator (F#) <lang fsharp> // binary and ternary digit sums are prime: Nigel Galloway. April 16th., 2021 let fN2,fN3=let rec fG n g=function l when l<n->l+g |l->fG n (g+l%n)(l/n) in (fG 2 0, fG 3 0) {0..200}|>Seq.filter(fun n->isPrime(fN2 n) && isPrime(fN3 n))|>Seq.iter(printf "%d "); printfn "" </lang>

Output:
5 6 7 10 11 12 13 17 18 19 21 25 28 31 33 35 36 37 41 47 49 55 59 61 65 67 69 73 79 82 84 87 91 93 97 103 107 109 115 117 121 127 129 131 133 137 143 145 151 155 157 162 167 171 173 179 181 185 191 193 199
Real: 00:00:00.005

Factor

Works with: Factor version 0.99 2021-02-05

<lang factor>USING: combinators combinators.short-circuit formatting io lists lists.lazy math math.parser math.primes sequences ;

dsum ( n base -- sum ) >base [ digit> ] map-sum ;
dprime? ( n base -- ? ) dsum prime? ;
23prime? ( n -- ? ) { [ 2 dprime? ] [ 3 dprime? ] } 1&& ;
l23primes ( -- list ) 1 lfrom [ 23prime? ] lfilter ;
23prime. ( n -- )
   {
       [ ]
       [ >bin ]
       [ 2 dsum ]
       [ 3 >base ]
       [ 3 dsum ]
   } cleave
   "%-8d %-9s %-6d %-7s %d\n" printf ;

"Base 10 Base 2 (sum) Base 3 (sum)" print l23primes [ 200 < ] lwhile [ 23prime. ] leach</lang>

Output:
Base 10  Base 2    (sum)  Base 3  (sum)
5        101       2      12      3
6        110       2      20      2
7        111       3      21      3
10       1010      2      101     2
11       1011      3      102     3
12       1100      2      110     2
13       1101      3      111     3
17       10001     2      122     5
18       10010     2      200     2
19       10011     3      201     3
21       10101     3      210     3
25       11001     3      221     5
28       11100     3      1001    2
31       11111     5      1011    3
33       100001    2      1020    3
35       100011    3      1022    5
36       100100    2      1100    2
37       100101    3      1101    3
41       101001    3      1112    5
47       101111    5      1202    5
49       110001    3      1211    5
55       110111    5      2001    3
59       111011    5      2012    5
61       111101    5      2021    5
65       1000001   2      2102    5
67       1000011   3      2111    5
69       1000101   3      2120    5
73       1001001   3      2201    5
79       1001111   5      2221    7
82       1010010   3      10001   2
84       1010100   3      10010   2
87       1010111   5      10020   3
91       1011011   5      10101   3
93       1011101   5      10110   3
97       1100001   3      10121   5
103      1100111   5      10211   5
107      1101011   5      10222   7
109      1101101   5      11001   3
115      1110011   5      11021   5
117      1110101   5      11100   3
121      1111001   5      11111   5
127      1111111   7      11201   5
129      10000001  2      11210   5
131      10000011  3      11212   7
133      10000101  3      11221   7
137      10001001  3      12002   5
143      10001111  5      12022   7
145      10010001  3      12101   5
151      10010111  5      12121   7
155      10011011  5      12202   7
157      10011101  5      12211   7
162      10100010  3      20000   2
167      10100111  5      20012   5
171      10101011  5      20100   3
173      10101101  5      20102   5
179      10110011  5      20122   7
181      10110101  5      20201   5
185      10111001  5      20212   7
191      10111111  7      21002   5
193      11000001  3      21011   5
199      11000111  5      21101   5

Fermat

<lang fermat>Function Digsum(n, b) =

   digsum := 0;
   while n>0 do
       digsum := digsum + n|b;
       n:=n\b;
   od;
   digsum.;

for p=1 to 200 do

   if Isprime(Digsum(p,3)) and Isprime(Digsum(p,2)) then
      !(p,'  ');
      nadd := nadd+1;
   fi od;</lang>
Output:
5   6   7   10   11   12   13   17   18   19   21   25   28   31   33   35   36   37   41   47   49   55   59   61   65   67   69   73   79   82   84   87   91   93   97   103   107   109   115   117   121   127   129   131   133   137   143   145   151   155   157   162   167   171   173   179   181   185   191   193   199

FOCAL

<lang focal>01.10 S P(2)=1;S P(3)=1;S P(5)=1;S P(7)=1 01.20 S V=10 01.30 F N=0,199;D 3 01.40 T ! 01.50 Q

02.10 S A=0 02.20 S M=N 02.30 S T=FITR(M/B) 02.40 S A=A+M-T*B 02.50 S M=T 02.60 I (-M)2.3

03.10 S B=2;D 2;S X=A 03.20 S B=3;D 2;S Y=A 03.30 I (-P(X)*P(Y))3.4;R 03.40 T %4,N 03.50 S V=V-1 03.60 I (-V)3.7;T !;S V=10 03.70 R</lang>

Output:
=    5=    6=    7=   10=   11=   12=   13=   17=   18=   19
=   21=   25=   28=   31=   33=   35=   36=   37=   41=   47
=   49=   55=   59=   61=   65=   67=   69=   73=   79=   82
=   84=   87=   91=   93=   97=  103=  107=  109=  115=  117
=  121=  127=  129=  131=  133=  137=  143=  145=  151=  155
=  157=  162=  167=  171=  173=  179=  181=  185=  191=  193
=  199

Fōrmulæ

Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text. Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for storage and transfer purposes more than visualization and edition.

Programs in Fōrmulæ are created/edited online in its website, However they run on execution servers. By default remote servers are used, but they are limited in memory and processing power, since they are intended for demonstration and casual use. A local server can be downloaded and installed, it has no limitations (it runs in your own computer). Because of that, example programs can be fully visualized and edited, but some of them will not run if they require a moderate or heavy computation/memory resources, and no local server is being used.

In this page you can see the program(s) related to this task and their results.

FreeBASIC

<lang freebasic>#include"isprime.bas"

function digsum( byval n as uinteger, b as const uinteger ) as uinteger

   'finds the digit sum of n in base b
   dim as uinteger sum = 0
   while n
       sum+=n mod b
       n\=b
   wend
   return sum

end function

for n as uinteger = 1 to 200

   if isprime(digsum(n,2)) and isprime(digsum(n,3)) then print n;"  ";

next n : print</lang>

Output:
5  6  7  10  11  12  13  17  18  19  21  25  28  31  33  35  36  37  41  47  49  55  59  61  65  67  69  73  79  82  84  87  91  93  97  103  107  109  115  117  121  127  129  131  133  137  143  145  151  155  157  162  167  171  173  179  181  185  191  193  199

Go

Translation of: Wren
Library: Go-rcu

<lang go>package main

import (

   "fmt"
   "rcu"

)

func main() {

   var numbers []int
   for i := 2; i < 200; i++ {
       bds := rcu.DigitSum(i, 2)
       if rcu.IsPrime(bds) {
           tds := rcu.DigitSum(i, 3)
           if rcu.IsPrime(tds) {
               numbers = append(numbers, i)
           }
       }
   }
   fmt.Println("Numbers < 200 whose binary and ternary digit sums are prime:")
   for i, n := range numbers {
       fmt.Printf("%4d", n)
       if (i+1)%14 == 0 {
           fmt.Println()
       }
   }
   fmt.Printf("\n\n%d such numbers found\n", len(numbers))

}</lang>

Output:
Numbers < 200 whose binary and ternary digit sums are prime:
   5   6   7  10  11  12  13  17  18  19  21  25  28  31
  33  35  36  37  41  47  49  55  59  61  65  67  69  73
  79  82  84  87  91  93  97 103 107 109 115 117 121 127
 129 131 133 137 143 145 151 155 157 162 167 171 173 179
 181 185 191 193 199

61 such numbers found

GW-BASIC

<lang gwbasic>10 FOR N = 2 TO 200 20 B = 2 30 GOSUB 220 : GOSUB 110 40 IF Q = 0 THEN GOTO 80 50 B = 3 60 GOSUB 220: GOSUB 110 70 IF Q = 1 THEN PRINT N;" "; 80 NEXT N 90 PRINT 100 END 110 REM tests if a number is prime 120 Q=0 130 IF P=3 THEN Q=1:RETURN 140 IF P=1 THEN Q=0:RETURN 150 IF P=2 THEN Q=1:RETURN 160 I=1 170 I=I+1 180 IF INT(P/I)*I = P THEN RETURN 190 IF I*I<=P THEN GOTO 170 200 Q = 1 210 RETURN 220 REM finds the digit sum of N in base B, returns P 230 P = 0 240 XN = N 250 IF XN = 0 THEN RETURN 260 P = P + XN MOD B 270 XN = XN\B 280 GOTO 250</lang>

Output:
 5    6    7    10    11    12    13    17    18    19    21    25    28    31    33    35    36    37    41    47    49    55    59    61    65    67    69    73    79    82    84    87    91    93    97    103    107    109    115    117    121    127    129    131    133    137    143    145    151    155    157    162    167    171    173    179    181    185    191    193    199

Haskell

<lang haskell>import Data.Bifunctor (first) import Data.List.Split (chunksOf) import Data.Numbers.Primes (isPrime)


BINARY AND TERNARY DIGIT SUMS BOTH PRIME -------

digitSumsPrime :: Int -> [Int] -> Bool digitSumsPrime n = all (isPrime . digitSum n)

digitSum :: Int -> Int -> Int digitSum n base = go n

 where
   go 0 = 0
   go n = uncurry (+) (first go $ quotRem n base)

TEST -------------------------

main :: IO () main =

 putStrLn $
   show (length xs)
     <> " matches in [1..199]\n\n"
     <> table xs
 where
   xs =
     [1 .. 199]
       >>= \x -> [show x | digitSumsPrime x [2, 3]]

DISPLAY -----------------------

table :: [String] -> String table xs =

 let w = length (last xs)
  in unlines $
       unwords
         <$> chunksOf
           10
           (justifyRight w ' ' <$> xs)

justifyRight :: Int -> Char -> String -> String justifyRight n c = (drop . length) <*> (replicate n c <>)</lang>

61 matches in [1..199]

  5   6   7  10  11  12  13  17  18  19
 21  25  28  31  33  35  36  37  41  47
 49  55  59  61  65  67  69  73  79  82
 84  87  91  93  97 103 107 109 115 117
121 127 129 131 133 137 143 145 151 155
157 162 167 171 173 179 181 185 191 193
199

J

<lang J>((1*./@p:2 3+/@(#.^:_1)"0])"0#]) i.200</lang>

Output:
5 6 7 10 11 12 13 17 18 19 21 25 28 31 33 35 36 37 41 47 49 55 59 61 65 67 69 73 79 82 84 87 91 93 97 103 107 109 115 117 121 127 129 131 133 137 143 145 151 155 157 162 167 171 173 179 181 185 191 193 199

Julia

<lang julia>using Primes

btsumsareprime(n) = isprime(sum(digits(n, base=2))) && isprime(sum(digits(n, base=3)))

foreach(p -> print(rpad(p[2], 4), p[1] % 20 == 0 ? "\n" : ""), enumerate(filter(btsumsareprime, 1:199)))

</lang>

Output:
5   6   7   10  11  12  13  17  18  19  21  25  28  31  33  35  36  37  41  47  
49  55  59  61  65  67  69  73  79  82  84  87  91  93  97  103 107 109 115 117
121 127 129 131 133 137 143 145 151 155 157 162 167 171 173 179 181 185 191 193
199

MAD

<lang mad> NORMAL MODE IS INTEGER

           INTERNAL FUNCTION(P)
           ENTRY TO PRIME.
           WHENEVER P.L.2, FUNCTION RETURN 0B
           THROUGH TEST, FOR DV=2, 1, DV.G.SQRT.(P)

TEST WHENEVER P-P/DV*DV.E.0, FUNCTION RETURN 0B

           FUNCTION RETURN 1B
           END OF FUNCTION
           
           INTERNAL FUNCTION(N,BASE)
           ENTRY TO DGTSUM.
           SUM = 0
           DN = N

DIGIT NX = DN/BASE

           SUM = SUM + DN-NX*BASE
           DN = NX
           WHENEVER DN.G.0, TRANSFER TO DIGIT
           FUNCTION RETURN SUM
           END OF FUNCTION
           
           THROUGH NBR, FOR I=0, 1, I.GE.200
           WHENEVER PRIME.(DGTSUM.(I,2)) .AND. PRIME.(DGTSUM.(I,3))
               PRINT FORMAT FMT, I
           END OF CONDITIONAL

NBR CONTINUE

           VECTOR VALUES FMT = $I3*$
           END OF PROGRAM </lang>
Output:
  5
  6
  7
 10
 11
 12
 13
 17
 18
 19
 21
 25
 28
 31
 33
 35
 36
 37
 41
 47
 49
 55
 59
 61
 65
 67
 69
 73
 79
 82
 84
 87
 91
 93
 97
103
107
109
115
117
121
127
129
131
133
137
143
145
151
155
157
162
167
171
173
179
181
185
191
193
199

Nim

<lang Nim>import strutils

func isPrime(n: Positive): bool =

 if n == 1: return false
 if n mod 2 == 0: return n == 2
 if n mod 3 == 0: return n == 3
 var d = 5
 while d * d <= n:
   if n mod d == 0: return false
   inc d, 2
   if n mod d == 0: return false
   inc d, 4
 return true

func digitSum(n, b: Natural): int =

 var n = n
 while n != 0:
   result += n mod b
   n = n div b

var count = 0 for n in 2..<200:

 if digitSum(n, 2).isPrime and digitSum(n, 3).isPrime:
   inc count
   stdout.write ($n).align(3), if count mod 16 == 0: '\n' else: ' '

echo() echo "Found ", count, " numbers."</lang>

Output:
  5   6   7  10  11  12  13  17  18  19  21  25  28  31  33  35
 36  37  41  47  49  55  59  61  65  67  69  73  79  82  84  87
 91  93  97 103 107 109 115 117 121 127 129 131 133 137 143 145
151 155 157 162 167 171 173 179 181 185 191 193 199 
Found 61 numbers.

Perl

Library: ntheory

<lang perl>use strict; use warnings; use feature 'say'; use List::Util 'sum'; use ntheory <is_prime todigitstring>;

sub test_digits { 0 != is_prime sum split , todigitstring(shift, shift) }

my @p; test_digits($_,2) and test_digits($_,3) and push @p, $_ for 1..199; say my $result = @p . " matching numbers:\n" . (sprintf "@{['%4d' x @p]}", @p) =~ s/(.{40})/$1\n/gr;</lang>

Output:
61 matching numbers:
   5   6   7  10  11  12  13  17  18  19
  21  25  28  31  33  35  36  37  41  47
  49  55  59  61  65  67  69  73  79  82
  84  87  91  93  97 103 107 109 115 117
 121 127 129 131 133 137 143 145 151 155
 157 162 167 171 173 179 181 185 191 193
 199

PL/M

<lang plm>100H: /* CP/M CALLS */ BDOS: PROCEDURE (FN, ARG); DECLARE FN BYTE, ARG ADDRESS; GO TO 5; END BDOS; EXIT: PROCEDURE; CALL BDOS(0,0); END EXIT; PRINT: PROCEDURE (S); DECLARE S ADDRESS; CALL BDOS(9,S); END PRINT;

/* PRINT NUMBER */ PRINT$NUMBER: PROCEDURE (N);

   DECLARE S (8) BYTE INITIAL ('.....',13,10,'$');
   DECLARE (N, P) ADDRESS, C BASED P BYTE;
   P = .S(5);

DIGIT:

   P = P - 1;
   C = N MOD 10 + '0';
   N = N / 10;
   IF N > 0 THEN GO TO DIGIT;
   CALL PRINT(P);

END PRINT$NUMBER;

/* SIMPLE PRIMALITY TEST */ PRIME: PROCEDURE (N) BYTE;

   DECLARE (N, I) BYTE;
   IF N < 2 THEN RETURN 0;
   DO I=2 TO N-1;
       IF N MOD I = 0 THEN RETURN 0;
   END;
   RETURN 1;

END PRIME;

/* SUM OF DIGITS */ DIGIT$SUM: PROCEDURE (N, BASE) BYTE;

   DECLARE (N, BASE, SUM) BYTE;
   SUM = 0;
   DO WHILE N > 0;
       SUM = SUM + N MOD BASE;
       N = N / BASE;
   END;
   RETURN SUM;

END DIGIT$SUM;

/* TEST NUMBERS 0 .. 199 */ DECLARE I BYTE; DO I=0 TO 199;

   IF PRIME(DIGIT$SUM(I,2)) AND PRIME(DIGIT$SUM(I,3)) THEN
       CALL PRINT$NUMBER(I);

END;

CALL EXIT; EOF</lang>

Output:
5
6
7
10
11
12
13
17
18
19
21
25
28
31
33
35
36
37
41
47
49
55
59
61
65
67
69
73
79
82
84
87
91
93
97
103
107
109
115
117
121
127
129
131
133
137
143
145
151
155
157
162
167
171
173
179
181
185
191
193
199

Plain English

<lang plainenglish>To run: Start up. Loop. If a counter is past 200, break. If the counter has prime digit sums in binary and ternary, write the counter then " " on the console without advancing. Repeat. Wait for the escape key. Shut down.

A sum is a number.

A base is a number.

To find a digit sum of a number given a base: Privatize the number. Loop. Divide the number by the base giving a quotient and a remainder. Add the remainder to the digit sum. Put the quotient into the number. If the number is 0, exit. Repeat.

To decide if a number has prime digit sums in binary and ternary: Find a digit sum of the number given 2. If the digit sum is not prime, say no. Find another digit sum of the number given 3. If the other digit sum is not prime, say no. Say yes.</lang>

Output:
5 6 7 10 11 12 13 17 18 19 21 25 28 31 33 35 36 37 41 47 49 55 59 61 65 67 69 73 79 82 84 87 91 93 97 103 107 109 115 117 121 127 129 131 133 137 143 145 151 155 157 162 167 171 173 179 181 185 191 193 199 

Phix

function to_base(atom n, integer base)
    string result = ""
    while true do
        result &= remainder(n,base)
        n = floor(n/base)
        if n=0 then exit end if
    end while
    return result
end function

function prime23(integer n)
    return is_prime(sum(to_base(n,2)))
       and is_prime(sum(to_base(n,3)))
end function

sequence res = filter(tagset(199),prime23)
printf(1,"%d numbers found: %V\n",{length(res),shorten(res,"",5)})
Output:
61 numbers found: {5,6,7,10,11,"...",181,185,191,193,199}

Python

<lang python>Binary and Ternary digit sums both prime


  1. digitSumsPrime :: Int -> [Int] -> Bool

def digitSumsPrime(n):

   True if the digits of n in each
      given base have prime sums.
   
   def go(bases):
       return all(
           isPrime(digitSum(b)(n))
           for b in bases
       )
   return go


  1. digitSum :: Int -> Int -> Int

def digitSum(base):

   The sum of the digits of n in a given base.
   
   def go(n):
       q, r = divmod(n, base)
       return go(q) + r if n else 0
   return go


  1. ------------------------- TEST -------------------------
  2. main :: IO ()

def main():

   Matching integers in the range [1..199]
   xs = [
       str(n) for n in range(1, 200)
       if digitSumsPrime(n)([2, 3])
   ]
   print(f'{len(xs)} matches in [1..199]\n')
   print(table(10)(xs))


  1. ----------------------- GENERIC ------------------------
  1. chunksOf :: Int -> [a] -> a

def chunksOf(n):

   A series of lists of length n, subdividing the
      contents of xs. Where the length of xs is not evenly
      divible, the final list will be shorter than n.
   
   def go(xs):
       return (
           xs[i:n + i] for i in range(0, len(xs), n)
       ) if 0 < n else None
   return go


  1. isPrime :: Int -> Bool

def isPrime(n):

   True if n is prime.
   if n in (2, 3):
       return True
   if 2 > n or 0 == n % 2:
       return False
   if 9 > n:
       return True
   if 0 == n % 3:
       return False
   def p(x):
       return 0 == n % x or 0 == n % (2 + x)
   return not any(map(p, range(5, 1 + int(n ** 0.5), 6)))


  1. table :: Int -> [String] -> String

def table(n):

   A list of strings formatted as
      rows of n (right justified) columns.
   
   def go(xs):
       w = len(xs[-1])
       return '\n'.join(
           ' '.join(row) for row in chunksOf(n)([
               s.rjust(w, ' ') for s in xs
           ])
       )
   return go


  1. MAIN ---

if __name__ == '__main__':

   main()

</lang>

61 matches in [1..199]

  5   6   7  10  11  12  13  17  18  19
 21  25  28  31  33  35  36  37  41  47
 49  55  59  61  65  67  69  73  79  82
 84  87  91  93  97 103 107 109 115 117
121 127 129 131 133 137 143 145 151 155
157 162 167 171 173 179 181 185 191 193
199

Raku

<lang perl6>say (^200).grep(-> $n {all (2,3).map({$n.base($_).comb.sum.is-prime}) }).batch(10)».fmt('%3d').join: "\n";</lang>

Output:
  5   6   7  10  11  12  13  17  18  19
 21  25  28  31  33  35  36  37  41  47
 49  55  59  61  65  67  69  73  79  82
 84  87  91  93  97 103 107 109 115 117
121 127 129 131 133 137 143 145 151 155
157 162 167 171 173 179 181 185 191 193
199

REXX

<lang rexx>/*REXX program finds and displays integers whose base 2 and base 3 digit sums are prime.*/ parse arg n cols . /*obtain optional argument from the CL.*/ if n== | n=="," then n= 200 /*Not specified? Then use the default.*/ if cols== | cols=="," then cols= 10 /* " " " " " " */ call genP /*build array of semaphores for primes.*/ w= 10 /*width of a number in any column. */ title= ' positive integers whose binary and ternary digit sums are prime, N < ' commas(n) if cols>0 then say ' index │'center(title, 1 + cols*(w+1) ) /*maybe show title.*/ if cols>0 then say '───────┼'center("" , 1 + cols*(w+1), '─') /*maybe show sep. */ found= 0; idx= 1 /*initialize # of finds and the index. */ $= /*a list of numbers found (so far). */

  do j=1  for n-1                               /*find #s whose B2 & B3 sums are prime.*/
  b2= sumDig( tBase(j, 2) );   if \!.b2  then iterate   /*convert to base2, sum digits.*/      /* ◄■■■■■■■■ a filter. */
  b3= sumDig( tBase(j, 3) );   if \!.b3  then iterate   /*   "     " base3   "    "    */      /* ◄■■■■■■■■ a filter. */
  found= found + 1                              /*bump the number of  found integers.  */
  if cols<1            then iterate             /*Only showing the summary?  Then skip.*/
  $= $  right( commas(j), w)                    /*add a commatized integer ───► $ list.*/
  if found//cols\==0   then iterate             /*have we populated a line of output?  */
  say center(idx, 7)'│'  substr($, 2);   $=     /*display what we have so far  (cols). */
  idx= idx + cols                               /*bump the  index  count for the output*/
  end   /*j*/

if $\== then say center(idx, 7)"│" substr($, 2) /*possible display residual output.*/ if cols>0 then say '───────┴'center("" , 1 + cols*(w+1), '─') /*show foot sep ? */ say say 'Found ' commas(found) title /*show summary. */ exit 0 /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ commas: parse arg ?; do jc=length(?)-3 to 1 by -3; ?=insert(',', ?, jc); end; return ? sumDig: procedure; parse arg x 1 s 2;do j=2 for length(x)-1;s=s+substr(x,j,1);end;return s /*──────────────────────────────────────────────────────────────────────────────────────*/ genP: @= 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103

       !.=0;        do p=1  for words(@);   _= word(@, p);   !._= 1;   end;      return

/*──────────────────────────────────────────────────────────────────────────────────────*/ tBase: procedure; parse arg x,toBase; y=; $= 0123456789

                    do  while x>=toBase;   y= substr($, x//toBase+1, 1)y;   x= x % toBase
                    end   /*while*/
       return substr($, x+1, 1)y</lang>
output   when using the default inputs:
 index │                   positive integers whose binary and ternary digit sums are prime, N  <  200
───────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────
   1   │          5          6          7         10         11         12         13         17         18         19
  11   │         21         25         28         31         33         35         36         37         41         47
  21   │         49         55         59         61         65         67         69         73         79         82
  31   │         84         87         91         93         97        103        107        109        115        117
  41   │        121        127        129        131        133        137        143        145        151        155
  51   │        157        162        167        171        173        179        181        185        191        193
  61   │        199
───────┴───────────────────────────────────────────────────────────────────────────────────────────────────────────────

Found  61  positive integers whose binary and ternary digit sums are prime, N  <  200

Ring

<lang ring> load "stdlib.ring"

see "working..." + nl see "Numbers < 200 whose binary and ternary digit sums are prime:" + nl

decList = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] baseList = ["0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F"]

num = 0 limit = 200

for n = 1 to limit

   strBin = decimaltobase(n,2)
   strTer = decimaltobase(n,3)
   sumBin = 0
   for m = 1 to len(strBin)
       sumBin = sumBin + number(strBin[m])
   next
   sumTer = 0
   for m = 1 to len(strTer)
       sumTer = sumTer + number(strTer[m])
   next
   if isprime(sumBin) and isprime(sumTer)
      num = num + 1
      see "" + num + ". {" + n + "," + strBin + ":" + sumBin + "," + strTer + ":" + sumTer + "}" + nl
   ok

next

see "Found " + num + " such numbers" + nl see "done..." + nl

func decimaltobase(nr,base)

    binList = [] 
    binary = 0
    remainder = 1
    while(nr != 0)
         remainder = nr % base
         ind = find(decList,remainder)
         rem = baseList[ind]
         add(binList,rem)
         nr = floor(nr/base) 
    end
    binlist = reverse(binList)
    binList = list2str(binList)
    binList = substr(binList,nl,"")  
    return binList

</lang>

Output:
working...
Numbers < 200 whose binary and ternary digit sums are prime:
1. {5,101:2,12:3}
2. {6,110:2,20:2}
3. {7,111:3,21:3}
4. {10,1010:2,101:2}
5. {11,1011:3,102:3}
6. {12,1100:2,110:2}
7. {13,1101:3,111:3}
8. {17,10001:2,122:5}
9. {18,10010:2,200:2}
10. {19,10011:3,201:3}
11. {21,10101:3,210:3}
12. {25,11001:3,221:5}
13. {28,11100:3,1001:2}
14. {31,11111:5,1011:3}
15. {33,100001:2,1020:3}
16. {35,100011:3,1022:5}
17. {36,100100:2,1100:2}
18. {37,100101:3,1101:3}
19. {41,101001:3,1112:5}
20. {47,101111:5,1202:5}
21. {49,110001:3,1211:5}
22. {55,110111:5,2001:3}
23. {59,111011:5,2012:5}
24. {61,111101:5,2021:5}
25. {65,1000001:2,2102:5}
26. {67,1000011:3,2111:5}
27. {69,1000101:3,2120:5}
28. {73,1001001:3,2201:5}
29. {79,1001111:5,2221:7}
30. {82,1010010:3,10001:2}
31. {84,1010100:3,10010:2}
32. {87,1010111:5,10020:3}
33. {91,1011011:5,10101:3}
34. {93,1011101:5,10110:3}
35. {97,1100001:3,10121:5}
36. {103,1100111:5,10211:5}
37. {107,1101011:5,10222:7}
38. {109,1101101:5,11001:3}
39. {115,1110011:5,11021:5}
40. {117,1110101:5,11100:3}
41. {121,1111001:5,11111:5}
42. {127,1111111:7,11201:5}
43. {129,10000001:2,11210:5}
44. {131,10000011:3,11212:7}
45. {133,10000101:3,11221:7}
46. {137,10001001:3,12002:5}
47. {143,10001111:5,12022:7}
48. {145,10010001:3,12101:5}
49. {151,10010111:5,12121:7}
50. {155,10011011:5,12202:7}
51. {157,10011101:5,12211:7}
52. {162,10100010:3,20000:2}
53. {167,10100111:5,20012:5}
54. {171,10101011:5,20100:3}
55. {173,10101101:5,20102:5}
56. {179,10110011:5,20122:7}
57. {181,10110101:5,20201:5}
58. {185,10111001:5,20212:7}
59. {191,10111111:7,21002:5}
60. {193,11000001:3,21011:5}
61. {199,11000111:5,21101:5}
Found 61 such numbers
done...

Sidef

<lang ruby>1..^200 -> grep {|n| [2,3].all { n.sumdigits(_).is_prime } }</lang>

Output:
[5, 6, 7, 10, 11, 12, 13, 17, 18, 19, 21, 25, 28, 31, 33, 35, 36, 37, 41, 47, 49, 55, 59, 61, 65, 67, 69, 73, 79, 82, 84, 87, 91, 93, 97, 103, 107, 109, 115, 117, 121, 127, 129, 131, 133, 137, 143, 145, 151, 155, 157, 162, 167, 171, 173, 179, 181, 185, 191, 193, 199]

Tiny BASIC

This isn't a very interesting problem. The most illustrative part of this solution is that it only uses four variables; several have multiple purposes. Efficiency is important when the language has only 26 variable names in total.

<lang tinybasic> REM B digital base input to sumdig, also output of primality routine

   REM N      input to sumdig routine
   REM P      input to primality routine, output of sumdig routine
   REM T      temp variable in sumdig routine, loop var in prime routine
   
   LET N = 1
20 LET N = N + 1
   LET B = 2
   GOSUB 200
   GOSUB 100
   IF B = 0 THEN GOTO 30
   LET B = 3
   GOSUB 200
   GOSUB 100
   IF B = 1 THEN PRINT N
   
30 IF N < 200 THEN GOTO 20
   END

100 REM PRIMALITY BY TRIAL DIVISION

   LET B = 0
   IF P = 1 THEN RETURN
   LET B = 1
   IF P = 2 THEN RETURN
   LET T = 2

110 IF (P/T)*T = P THEN LET B = 0

   IF B = 0 THEN RETURN
   LET T = T + 1
   IF T*T <= P THEN GOTO 110
   RETURN

200 REM digital sum of N in base B

   LET T = N
   LET P = 0

210 IF T = 0 THEN RETURN

   LET P = P + T - (T/B)*B
   LET T = T/B
   GOTO 210 </lang>

Wren

Library: Wren-math
Library: Wren-fmt
Library: Wren-seq

<lang ecmascript>import "/math" for Int import "/fmt" for Fmt import "/seq" for Lst

var numbers = [] for (i in 2..199) {

   var bds = Int.digitSum(i, 2)
   if (Int.isPrime(bds)) {
       var tds = Int.digitSum(i, 3)
       if (Int.isPrime(tds)) numbers.add(i)
   }

} System.print("Numbers < 200 whose binary and ternary digit sums are prime:") for (chunk in Lst.chunks(numbers, 14)) Fmt.print("$4d", chunk) System.print("\nFound %(numbers.count) such numbers.")</lang>

Output:
Numbers < 200 whose binary and ternary digit sums are prime:
   5    6    7   10   11   12   13   17   18   19   21   25   28   31
  33   35   36   37   41   47   49   55   59   61   65   67   69   73
  79   82   84   87   91   93   97  103  107  109  115  117  121  127
 129  131  133  137  143  145  151  155  157  162  167  171  173  179
 181  185  191  193  199

Found 61 such numbers.

XPL0

<lang XPL0>func IsPrime(N); \Return 'true' if N is a prime number int N, I; [if N <= 1 then return false; for I:= 2 to sqrt(N) do

   if rem(N/I) = 0 then return false;

return true; ];

func SumDigits(N, Base); \Return sum of digits in N for Base int N, Base, Sum; [Sum:= 0; repeat N:= N/Base;

       Sum:= Sum + rem(0);

until N=0; return Sum; ];

int Count, N; [Count:= 0; for N:= 0 to 200-1 do

   if IsPrime(SumDigits(N,2)) & IsPrime(SumDigits(N,3)) then
       [IntOut(0, N);
       Count:= Count+1;
       if rem(Count/10) = 0 then CrLf(0) else ChOut(0, 9\tab\);
       ];

CrLf(0); IntOut(0, Count); Text(0, " such numbers found below 200. "); ]</lang>

Output:
5       6       7       10      11      12      13      17      18      19
21      25      28      31      33      35      36      37      41      47
49      55      59      61      65      67      69      73      79      82
84      87      91      93      97      103     107     109     115     117
121     127     129     131     133     137     143     145     151     155
157     162     167     171     173     179     181     185     191     193
199     
61 such numbers found below 200.