Numbers which are not the sum of distinct squares

From Rosetta Code
Numbers which are not the sum of distinct squares is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.


Integer squares are the set of integers multiplied by themselves: 1 x 1 = 1, 2 × 2 = 4, 3 × 3 = 9, etc. ( 1, 4, 9, 16 ... )

Most positive integers can be generated as the sum of 1 or more distinct integer squares.

     1 == 1
     5 == 4 + 1
    25 == 16 + 9
    77 == 36 + 25 + 16
   103 == 49 + 25 + 16 + 9 + 4

Many can be generated in multiple ways:

    90 == 36 + 25 + 16 + 9 + 4 == 64 + 16 + 9 + 1 == 49 + 25 + 16 == 64 + 25 + 1 == 81 + 9
   130 == 64 + 36 + 16 + 9 + 4 + 1 == 49 + 36 + 25 + 16 + 4 == 100 + 16 + 9 + 4 + 1 == 81 + 36 + 9 + 4 == 64 + 49 + 16 + 1 == 100 + 25 + 4 + 1 == 81 + 49 == 121 + 9    

A finite number can not be generated by any combination of distinct squares:

   2, 3, 6, 7, etc.


Task

Find and show here, on this page, every positive integer than can not be generated as the sum of distinct squares.

Do not use magic numbers or pre-determined limits. Justify your answer mathematically.


See also

Julia

A true proof of the sketch below would require formal mathematical induction. <lang julia>#= Here we show all the 128 < numbers < 400 can be expressed as a sum of distinct squares. Now 11 * 11 < 128 < 12 * 12. It is also true that we need no square less than 144 (12 * 12) to reduce via subtraction of squares all the numbers above 400 to a number > 128 and < 400 by subtracting discrete squares of numbers over 12, since the interval between such squares can be well below 128: for example, 14^2 - 15^2 is 29. So, we can always find a serial subtraction of discrete integer squares from any number > 400 that targets the interval between 129 and 400. Once we get to that interval, we already have shown in the program below that we can use the remaining squares under 400 to complete the remaining sum. =#

using Combinatorics

@show squares = [n * n for n in 1:20]

possibles = [n for n in 1:500 if all(combo -> sum(combo) != n,

  combinations(squares))]

println(possibles)

</lang>

Output:
[2, 3, 6, 7, 8, 11, 12, 15, 18, 19, 22, 23, 24, 27, 28, 31, 32, 33, 43, 44, 47, 48, 60, 67, 72, 76, 92, 96, 108, 112, 128]

Raku

Try it online!

Spoiler: (highlight to read)
Once the longest run of consecutive generated sums is longer the the next square, every number after can be generated by adding the next square to every number in the run. Find the new longest run, add the next square, etc. <lang perl6>my @squares = ^∞ .map: *²; # Infinite series of squares

for 1..∞ -> $sq { # for every combination of all squares

   my @sums = @squares[^$sq].combinations».sum.unique.sort;
   my @run;
   for @sums {
       @run.push($_) and next unless @run.elems;
       if $_ == @run.tail + 1 { @run.push: $_ } else { last if @run.elems > @squares[$sq]; @run = () }
   }
   put grep * ∉ @sums, 1..@run.tail and last if @run.elems > @squares[$sq];

}</lang>

Output:
2 3 6 7 8 11 12 15 18 19 22 23 24 27 28 31 32 33 43 44 47 48 60 67 72 76 92 96 108 112 128