Multidimensional Newton-Raphson method: Difference between revisions

From Rosetta Code
Content added Content deleted
(Rename Perl 6 -> Raku, alphabetize, minor clean-up)
m (→‎{{header|Raku}}: Fix code: Perl 6 --> Raku)
Line 687: Line 687:
=={{header|Raku}}==
=={{header|Raku}}==
(formerly Perl 6)
(formerly Perl 6)
<lang perl6>#!/usr/bin/env perl6
<lang perl6># Reference:

# Reference:
# https://github.com/pierre-vigier/Perl6-Math-Matrix
# https://github.com/pierre-vigier/Perl6-Math-Matrix
# Mastering Algorithms with Perl
# Mastering Algorithms with Perl

Revision as of 12:51, 19 March 2020

Multidimensional Newton-Raphson method is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.
Task

Create a program that finds and outputs the root of a system of nonlinear equations using Newton-Raphson method.

C#

For matrix inversion and matrix and vector definitions - see C# source from Gaussian elimination <lang csharp> using System;

namespace Rosetta {

   internal interface IFun
   {
       double F(int index, Vector x);
       double df(int index, int derivative, Vector x);
       double[] weights();
   }
   class Newton
   {                
       internal Vector Do(int size, IFun fun, Vector start)
       {
           Vector X = start.Clone();
           Vector F = new Vector(size);
           Matrix J = new Matrix(size, size);
           Vector D;
           do
           {
               for (int i = 0; i < size; i++)
                   F[i] = fun.F(i, X);
               for (int i = 0; i < size; i++)
                   for (int j = 0; j < size; j++)
                       J[i, j] = fun.df(i, j, X);
               J.ElimPartial(F);
               X -= F;
               //need weight vector because different coordinates can diffs by order of magnitudes
           } while (F.norm(fun.weights()) > 1e-12);
           return X;
       }       
   }

} </lang> <lang csharp> using System;

//example from https://eti.pg.edu.pl/documents/176593/26763380/Wykl_AlgorOblicz_7.pdf namespace Rosetta {

   class Program
   {
       class Fun: IFun
       {
           private double[] w = new double[] { 1,1 };
           public double F(int index, Vector x)
           {
               switch (index)
               {
                   case 0: return Math.Atan(x[0]) - x[1] * x[1] * x[1];
                   case 1: return 4 * x[0] * x[0] + 9 * x[1] * x[1] - 36;
               }
               throw new Exception("bad index");
           }
           public double df(int index, int derivative, Vector x)
           {
               switch (index)
               {
                   case 0:
                       switch (derivative)
                       {
                           case 0: return 1 / (1 + x[0] * x[0]);
                           case 1: return -3*x[1]*x[1];
                       }
                       break;
                   case 1:
                       switch (derivative)
                       {
                           case 0: return 8 * x[0];
                           case 1: return 18 * x[1];
                       }
                       break;
               }
               throw new Exception("bad index");
           }
           public double[] weights() { return w; }
       }
       static void Main(string[] args)
       {
           Fun fun = new Fun();
           Newton newton = new Newton();
           Vector start = new Vector(new double[] { 2.75, 1.25 });
           Vector X = newton.Do(2, fun, start);
           X.print();
       }
   }

} </lang>

Output:

2.54258545959024 1.06149981539336

Go

Translation of: Kotlin


We follow the Kotlin example of coding our own matrix methods rather than using a third party library. <lang go>package main

import (

   "fmt"
   "math"

)

type vector = []float64 type matrix []vector type fun = func(vector) float64 type funs = []fun type jacobian = []funs

func (m1 matrix) mul(m2 matrix) matrix {

   rows1, cols1 := len(m1), len(m1[0])
   rows2, cols2 := len(m2), len(m2[0])
   if cols1 != rows2 {
       panic("Matrices cannot be multiplied.")
   }
   result := make(matrix, rows1)
   for i := 0; i < rows1; i++ {
       result[i] = make(vector, cols2)
       for j := 0; j < cols2; j++ {
           for k := 0; k < rows2; k++ {
               result[i][j] += m1[i][k] * m2[k][j]
           }
       }
   }
   return result

}

func (m1 matrix) sub(m2 matrix) matrix {

   rows, cols := len(m1), len(m1[0])
   if rows != len(m2) || cols != len(m2[0]) {
       panic("Matrices cannot be subtracted.")
   }
   result := make(matrix, rows)
   for i := 0; i < rows; i++ {
       result[i] = make(vector, cols)
       for j := 0; j < cols; j++ {
           result[i][j] = m1[i][j] - m2[i][j]
       }
   }
   return result

}

func (m matrix) transpose() matrix {

   rows, cols := len(m), len(m[0])
   trans := make(matrix, cols)
   for i := 0; i < cols; i++ {
       trans[i] = make(vector, rows)
       for j := 0; j < rows; j++ {
           trans[i][j] = m[j][i]
       }
   }
   return trans

}

func (m matrix) inverse() matrix {

   le := len(m)
   for _, v := range m {
       if len(v) != le {
           panic("Not a square matrix")
       }
   }
   aug := make(matrix, le)
   for i := 0; i < le; i++ {
       aug[i] = make(vector, 2*le)
       copy(aug[i], m[i])
       // augment by identity matrix to right
       aug[i][i+le] = 1
   }
   aug.toReducedRowEchelonForm()
   inv := make(matrix, le)
   // remove identity matrix to left
   for i := 0; i < le; i++ {
       inv[i] = make(vector, le)
       copy(inv[i], aug[i][le:])
   }
   return inv

}

// note: this mutates the matrix in place func (m matrix) toReducedRowEchelonForm() {

   lead := 0
   rowCount, colCount := len(m), len(m[0])
   for r := 0; r < rowCount; r++ {
       if colCount <= lead {
           return
       }
       i := r
       for m[i][lead] == 0 {
           i++
           if rowCount == i {
               i = r
               lead++
               if colCount == lead {
                   return
               }
           }
       }
       m[i], m[r] = m[r], m[i]
       if div := m[r][lead]; div != 0 {
           for j := 0; j < colCount; j++ {
               m[r][j] /= div
           }
       }
       for k := 0; k < rowCount; k++ {
           if k != r {
               mult := m[k][lead]
               for j := 0; j < colCount; j++ {
                   m[k][j] -= m[r][j] * mult
               }
           }
       }
       lead++
   }

}

func solve(fs funs, jacob jacobian, guesses vector) vector {

   size := len(fs)
   var gu1 vector
   gu2 := make(vector, len(guesses))
   copy(gu2, guesses)
   jac := make(matrix, size)
   for i := 0; i < size; i++ {
       jac[i] = make(vector, size)
   }
   tol := 1e-8
   maxIter := 12
   iter := 0
   for {
       gu1 = gu2
       g := matrix{gu1}.transpose()
       t := make(vector, size)
       for i := 0; i < size; i++ {
           t[i] = fs[i](gu1)
       }
       f := matrix{t}.transpose()
       for i := 0; i < size; i++ {
           for j := 0; j < size; j++ {
               jac[i][j] = jacob[i][j](gu1)
           }
       }
       g1 := g.sub(jac.inverse().mul(f))
       gu2 = make(vector, size)
       for i := 0; i < size; i++ {
           gu2[i] = g1[i][0]
       }
       iter++
       any := false
       for i, v := range gu2 {
           if math.Abs(v)-gu1[i] > tol {
               any = true
               break
           }
       }
       if !any || iter >= maxIter {
           break
       }
   }
   return gu2

}

func main() {

   /*
      solve the two non-linear equations:
      y = -x^2 + x + 0.5
      y + 5xy = x^2
      given initial guesses of x = y = 1.2
      Example taken from:
      http://www.fixoncloud.com/Home/LoginValidate/OneProblemComplete_Detailed.php?problemid=286
      Expected results: x = 1.23332, y = 0.2122
   */
   f1 := func(x vector) float64 { return -x[0]*x[0] + x[0] + 0.5 - x[1] }
   f2 := func(x vector) float64 { return x[1] + 5*x[0]*x[1] - x[0]*x[0] }
   fs := funs{f1, f2}
   jacob := jacobian{
       funs{
           func(x vector) float64 { return -2*x[0] + 1 },
           func(x vector) float64 { return -1 },
       },
       funs{
           func(x vector) float64 { return 5*x[1] - 2*x[0] },
           func(x vector) float64 { return 1 + 5*x[0] },
       },
   }
   guesses := vector{1.2, 1.2}
   sol := solve(fs, jacob, guesses)
   fmt.Printf("Approximate solutions are x = %.7f,  y = %.7f\n", sol[0], sol[1])
   /*
      solve the three non-linear equations:
      9x^2 + 36y^2 + 4z^2 - 36 = 0
      x^2 - 2y^2 - 20z = 0
      x^2 - y^2 + z^2 = 0
      given initial guesses of x = y = 1.0 and z = 0.0
      Example taken from:
      http://mathfaculty.fullerton.edu/mathews/n2003/FixPointNewtonMod.html (exercise 5)
      Expected results: x = 0.893628, y = 0.894527, z = -0.0400893
   */
   fmt.Println()
   f3 := func(x vector) float64 { return 9*x[0]*x[0] + 36*x[1]*x[1] + 4*x[2]*x[2] - 36 }
   f4 := func(x vector) float64 { return x[0]*x[0] - 2*x[1]*x[1] - 20*x[2] }
   f5 := func(x vector) float64 { return x[0]*x[0] - x[1]*x[1] + x[2]*x[2] }
   fs = funs{f3, f4, f5}
   jacob = jacobian{
       funs{
           func(x vector) float64 { return 18 * x[0] },
           func(x vector) float64 { return 72 * x[1] },
           func(x vector) float64 { return 8 * x[2] },
       },
       funs{
           func(x vector) float64 { return 2 * x[0] },
           func(x vector) float64 { return -4 * x[1] },
           func(x vector) float64 { return -20 },
       },
       funs{
           func(x vector) float64 { return 2 * x[0] },
           func(x vector) float64 { return -2 * x[1] },
           func(x vector) float64 { return 2 * x[2] },
       },
   }
   guesses = vector{1, 1, 0}
   sol = solve(fs, jacob, guesses)
   fmt.Printf("Approximate solutions are x = %.7f,  y = %.7f,  z = %.7f\n", sol[0], sol[1], sol[2])

}</lang>

Output:
Approximate solutions are x = 1.2333178,  y = 0.2122450

Approximate solutions are x = 0.8936282,  y = 0.8945270,  z = -0.0400893

Julia

NLsolve is a Julia package for nonlinear systems of equations, with the Newton-Raphson method one of the choices for solvers. <lang julia># from the NLSolve documentation: to solve

  1. (x, y) -> ((x+3)*(y^3-7)+18, sin(y*exp(x)-1))

using NLsolve

function f!(F, x)

   F[1] = (x[1]+3)*(x[2]^3-7)+18
   F[2] = sin(x[2]*exp(x[1])-1)

end

function j!(J, x)

   J[1, 1] = x[2]^3-7
   J[1, 2] = 3*x[2]^2*(x[1]+3)
   u = exp(x[1])*cos(x[2]*exp(x[1])-1)
   J[2, 1] = x[2]*u
   J[2, 2] = u

end

println(nlsolve(f!, j!, [ 0.1; 1.2], method = :newton))

</lang>

Output:
Results of Nonlinear Solver Algorithm
 * Algorithm: Newton with line-search
 * Starting Point: [0.1, 1.2]
 * Zero: [-3.7818e-16, 1.0]
 * Inf-norm of residuals: 0.000000
 * Iterations: 4
 * Convergence: true
   * |x - x'| < 0.0e+00: false
   * |f(x)| < 1.0e-08: true
 * Function Calls (f): 5
 * Jacobian Calls (df/dx): 4

Kotlin

A straightforward approach multiplying by the inverse of the Jacobian, rather than dividing by f'(x) as one would do in the single dimensional case, which is quick enough here.

As neither the JDK nor the Kotlin Standard Library have matrix functions built in, most of the functions used have been taken from other tasks. <lang scala>// Version 1.2.31

import kotlin.math.abs

typealias Vector = DoubleArray typealias Matrix = Array<Vector> typealias Func = (Vector) -> Double typealias Funcs = List<Func> typealias Jacobian = List<Funcs>

operator fun Matrix.times(other: Matrix): Matrix {

   val rows1 = this.size
   val cols1 = this[0].size
   val rows2 = other.size
   val cols2 = other[0].size
   require(cols1 == rows2)
   val result = Matrix(rows1) { Vector(cols2) }
   for (i in 0 until rows1) {
       for (j in 0 until cols2) {
           for (k in 0 until rows2) {
               result[i][j] += this[i][k] * other[k][j]
           }
       }
   }
   return result

}

operator fun Matrix.minus(other: Matrix): Matrix {

   val rows = this.size
   val cols = this[0].size
   require(rows == other.size && cols == other[0].size)
   val result = Matrix(rows) { Vector(cols) }
   for (i in 0 until rows) {
       for (j in 0 until cols) {
           result[i][j] = this[i][j] - other[i][j]
       }
   }
   return result

}

fun Matrix.transpose(): Matrix {

   val rows = this.size
   val cols = this[0].size
   val trans = Matrix(cols) { Vector(rows) }
   for (i in 0 until cols) {
       for (j in 0 until rows) trans[i][j] = this[j][i]
   }
   return trans

}

fun Matrix.inverse(): Matrix {

   val len = this.size
   require(this.all { it.size == len }) { "Not a square matrix" }
   val aug = Array(len) { DoubleArray(2 * len) }
   for (i in 0 until len) {
       for (j in 0 until len) aug[i][j] = this[i][j]
       // augment by identity matrix to right
       aug[i][i + len] = 1.0
   }
   aug.toReducedRowEchelonForm()
   val inv = Array(len) { DoubleArray(len) }
   // remove identity matrix to left
   for (i in 0 until len) {
       for (j in len until 2 * len) inv[i][j - len] = aug[i][j]
   }
   return inv

}

fun Matrix.toReducedRowEchelonForm() {

   var lead = 0
   val rowCount = this.size
   val colCount = this[0].size
   for (r in 0 until rowCount) {
       if (colCount <= lead) return
       var i = r
       while (this[i][lead] == 0.0) {
           i++
           if (rowCount == i) {
               i = r
               lead++
               if (colCount == lead) return
           }
       }
       val temp = this[i]
       this[i] = this[r]
       this[r] = temp
       if (this[r][lead] != 0.0) {
          val div = this[r][lead]
          for (j in 0 until colCount) this[r][j] /= div
       }
       for (k in 0 until rowCount) {
           if (k != r) {
               val mult = this[k][lead]
               for (j in 0 until colCount) this[k][j] -= this[r][j] * mult
           }
       }
       lead++
   }

}

fun solve(funcs: Funcs, jacobian: Jacobian, guesses: Vector): Vector {

   val size = funcs.size
   var gu1: Vector
   var gu2 = guesses.copyOf()
   val jac = Matrix(size) { Vector(size) }
   val tol = 1.0e-8
   val maxIter = 12
   var iter = 0
   do {
       gu1 = gu2
       val g = arrayOf(gu1).transpose()
       val f = arrayOf(Vector(size) { funcs[it](gu1) }).transpose()
       for (i in 0 until size) {
           for (j in 0 until size) {
               jac[i][j] = jacobian[i][j](gu1)
           }
       }
       val g1 = g - jac.inverse() * f
       gu2 = Vector(size) { g1[it][0] }
       iter++
   }
   while (gu2.withIndex().any { iv -> abs(iv.value - gu1[iv.index]) > tol } && iter < maxIter)
   return gu2

}

fun main(args: Array<String>) {

   /* solve the two non-linear equations:
      y = -x^2 + x + 0.5
      y + 5xy = x^2
      given initial guesses of x = y = 1.2
      Example taken from:
      http://www.fixoncloud.com/Home/LoginValidate/OneProblemComplete_Detailed.php?problemid=286
      Expected results: x = 1.23332, y = 0.2122
   */
   val f1: Func = { x -> -x[0] * x[0] + x[0] + 0.5 - x[1] }
   val f2: Func = { x -> x[1] + 5 * x[0] * x[1] - x[0] * x[0] }
   val funcs = listOf(f1, f2)
   val jacobian = listOf(
       listOf<Func>({ x -> - 2.0 * x[0] + 1.0 }, { _ -> -1.0 }),
       listOf<Func>({ x -> 5.0 * x[1] - 2.0 * x[0] }, { x -> 1.0 + 5.0 * x[0] })
   )
   val guesses = doubleArrayOf(1.2, 1.2)
   val (xx, yy) = solve(funcs, jacobian, guesses)
   System.out.printf("Approximate solutions are x = %.7f,  y = %.7f\n", xx, yy)
   /* solve the three non-linear equations:
      9x^2 + 36y^2 + 4z^2 - 36 = 0
      x^2 - 2y^2 - 20z = 0
      x^2 - y^2 + z^2 = 0
      given initial guesses of x = y = 1.0 and z = 0.0
      Example taken from:
      http://mathfaculty.fullerton.edu/mathews/n2003/FixPointNewtonMod.html (exercise 5)
      Expected results: x = 0.893628, y = 0.894527, z = -0.0400893
   */
   println()
   val f3: Func = { x -> 9.0 * x[0] * x[0] + 36.0 * x[1] * x[1] + 4.0 * x[2] * x[2] - 36.0 }
   val f4: Func = { x -> x[0] * x[0] - 2.0 * x[1] * x[1] - 20.0 * x[2] }
   val f5: Func = { x -> x[0] * x[0] - x[1] * x[1] + x[2] * x[2] }
   val funcs2 = listOf(f3, f4, f5)
   val jacobian2 = listOf(
       listOf<Func>({ x -> 18.0 * x[0] }, { x -> 72.0 * x[1] }, { x -> 8.0 * x[2] }),
       listOf<Func>({ x -> 2.0 * x[0] }, { x -> -4.0 * x[1] }, { _ -> -20.0 }),
       listOf<Func>({ x -> 2.0 * x[0] }, { x -> -2.0 * x[1] }, { x -> 2.0 * x[2] })
   )
   val guesses2 = doubleArrayOf(1.0, 1.0, 0.0)
   val (xx2, yy2, zz2) = solve(funcs2, jacobian2, guesses2)
   System.out.printf("Approximate solutions are x = %.7f,  y = %.7f,  z = %.7f\n", xx2, yy2, zz2)

}</lang>

Output:
Approximate solutions are x = 1.2333178,  y = 0.2122450

Approximate solutions are x = 0.8936282,  y = 0.8945270,  z = -0.0400893

Phix

Translation of: Go

Uses code from Reduced_row_echelon_form#Phix, Gauss-Jordan_matrix_inversion#Phix, Matrix_transposition#Phix, and Matrix_multiplication#Phix
See std distro for a complete runnable version. <lang Phix>-- demo\rosetta\Multidimensional_Newton-Raphson_method.exw function solve(sequence fs, jacob, guesses)

   integer size := length(fs),
           maxIter := 12,
           iter := 0
   sequence gu1, g, t, f, g1,
            gu2 := guesses,
            jac := repeat(repeat(0,size),size)
   atom tol := 1e-8
   while true do
       gu1 := gu2
       g := matrix_transpose({gu1})
       t := repeat(0, size)
       for i=1 to size do
           t[i] := call_func(fs[i],{gu1})
       end for
       f := matrix_transpose({t})
       for i=1 to size do
           for j=1 to size do
               jac[i][j] := call_func(jacob[i][j],{gu1})
           end for
       end for
       g1 := sq_sub(g,matrix_mul(inverse(jac),f))
       gu2 := vslice(g1,1)
       iter += 1
       bool any := find(true,sq_gt(sq_sub(sq_abs(gu2),gu1),tol))!=0
       if not any or iter >= maxIter then exit end if
   end while
   return gu2

end function

function f1(sequence v) atom {x,y} = v return -x*x+x+0.5-y end function function f2(sequence v) atom {x,y} = v return y+5*x*y-x*x end function function f3(sequence v) atom {x,y,z} = v return 9*x*x+36*y*y+4*z*z-36 end function function f4(sequence v) atom {x,y,z} = v return x*x-2*y*y-20*z end function function f5(sequence v) atom {x,y,z} = v return x*x-y*y+z*z end function

function j1(sequence v) atom {x} = v return -2*x+1 end function function j2(sequence /*v*/) return -1 end function function j3(sequence v) atom {x,y} = v return 5*y-2*x end function function j4(sequence v) atom {x} = v return 1+5*x end function function j11(sequence v) atom {x} = v return 18*x end function function j12(sequence v) atom {?,y} = v return 72*y end function function j13(sequence v) atom {?,?,z} = v return 8*z end function function j21(sequence v) atom {x} = v return 2*x end function function j22(sequence v) atom {?,y} = v return -4*y end function function j23(sequence /*v*/) return -20 end function function j31(sequence v) atom {x} = v return 2*x end function function j32(sequence v) atom {?,y} = v return -2*y end function function j33(sequence v) atom {?,?,z} = v return 2*z end function

procedure main() sequence fs, jacob, guesses

   /*
      solve the two non-linear equations:
      y = -x^2 + x + 0.5
      y + 5xy = x^2
      given initial guesses of x = y = 1.2

      Example taken from:
      http://www.fixoncloud.com/Home/LoginValidate/OneProblemComplete_Detailed.php?problemid=286

      Expected results: x = 1.23332, y = 0.2122
   */
   fs = {routine_id("f1"),routine_id("f2")}
   jacob = {{routine_id("j1"),routine_id("j2")},
            {routine_id("j3"),routine_id("j4")}}
   guesses := {1.2, 1.2}
   printf(1,"Approximate solutions are x = %.7f,  y = %.7f\n\n", solve(fs, jacob, guesses))

   /*
      solve the three non-linear equations:
      9x^2 + 36y^2 + 4z^2 - 36 = 0
      x^2 - 2y^2 - 20z = 0
      x^2 - y^2 + z^2 = 0
      given initial guesses of x = y = 1.0 and z = 0.0

      Example taken from:
      http://mathfaculty.fullerton.edu/mathews/n2003/FixPointNewtonMod.html (exercise 5)

      Expected results: x = 0.893628, y = 0.894527, z = -0.0400893
   */

   fs = {routine_id("f3"), routine_id("f4"), routine_id("f5")}
   jacob = {{routine_id("j11"),routine_id("j12"),routine_id("j13")},
            {routine_id("j21"),routine_id("j22"),routine_id("j23")},
            {routine_id("j31"),routine_id("j32"),routine_id("j33")}}
   guesses = {1, 1, 0}
   printf(1,"Approximate solutions are x = %.7f,  y = %.7f,  z = %.7f\n", solve(fs, jacob, guesses))

end procedure main()</lang>

Output:
Approximate solutions are x = 1.2333178,  y = 0.2122450

Approximate solutions are x = 0.8936282,  y = 0.8945270,  z = -0.04008929

Raku

(formerly Perl 6) <lang perl6># Reference:

  1. https://github.com/pierre-vigier/Perl6-Math-Matrix
  2. Mastering Algorithms with Perl
  3. By Jarkko Hietaniemi, John Macdonald, Jon Orwant
  4. Publisher: O'Reilly Media, ISBN-10: 1565923987
  5. https://resources.oreilly.com/examples/9781565923980/blob/master/ch16/solve

use v6;

sub solve_funcs ($funcs, @guesses, $iterations, $epsilon) {

  my ($error_value, @values, @delta, @jacobian); my \ε = $epsilon;
  for 1 .. $iterations {
     for ^+$funcs { @values[$^i] = $funcs[$^i](|@guesses); }
     $error_value = 0;
     for ^+$funcs { $error_value += @values[$^i].abs }
     return @guesses if $error_value ≤ ε;
     for ^+$funcs { @delta[$^i] = -@values[$^i] }
     @jacobian = jacobian $funcs, @guesses, ε;
     @delta = solve_matrix @jacobian, @delta;
     loop (my $j = 0, $error_value = 0; $j < +$funcs; $j++) {
        $error_value += @delta[$j].abs ;
        @guesses[$j] += @delta[$j];
     }
     return @guesses if $error_value ≤ ε;
  }
  return @guesses;

}

sub jacobian ($funcs is copy, @points is copy, $epsilon is copy) {

  my ($Δ, @P, @M, @plusΔ, @minusΔ);
  my Array @jacobian; my \ε = $epsilon;
  for ^+@points -> $i {
     @plusΔ = @minusΔ = @points;
     $Δ = (ε * @points[$i].abs) || ε;
     @plusΔ[$i] = @points[$i] + $Δ;
     @minusΔ[$i] = @points[$i] - $Δ;
     for ^+$funcs { @P[$^k] = $funcs[$^k](|@plusΔ); }
     for ^+$funcs { @M[$^k] = $funcs[$^k](|@minusΔ); }
     for ^+$funcs -> $j {
        @jacobian[$j][$i] = (@P[$j] - @M[$j]) / (2 * $Δ);
     }
  }
  return @jacobian;

}

sub solve_matrix (@matrix_array is copy, @delta is copy) {

  # https://github.com/pierre-vigier/Perl6-Math-Matrix/issues/56
  { use Math::Matrix;
     my $matrix = Math::Matrix.new(@matrix_array);
     my $vector = Math::Matrix.new(@delta.map({.list}));
     die "Matrix is not invertible" unless $matrix.is-invertible;
     my @result = ( $matrix.inverted dot $vector ).transposed;
     return @result.split(" ");
  }

}

my $funcs = [

  { 9*$^x² + 36*$^y² + 4*$^z² - 36 }
  { $^x² - 2*$^y² - 20*$^z }
  { $^x² - $^y² + $^z² }

];

my @guesses = (1,1,0);

my @solution = solve_funcs $funcs, @guesses, 20, 1e-8;

say "Solution: ", @solution; </lang>

Output:
Solution: [0.8936282344764825 0.8945270103905782 -0.04008928615915281]

zkl

This doesn't use Newton-Raphson (with derivatives) but a hybrid algorithm. <lang zkl>var [const] GSL=Import.lib("zklGSL"); // libGSL (GNU Scientific Library)

  // two functions of two variables: f(x,y)=0

fs:=T(fcn(x,y){ x.atan() - y*y*y }, fcn(x,y){ 4.0*x*x + 9*y*y - 36 }); v=GSL.VectorFromData(2.75, 1.25); // an initial guess at the solution GSL.multiroot_fsolver(fs,v); v.format(11,8).println(); // answer overwrites initial guess

fs.run(True,v.toList().xplode()).println(); // deltas from zero</lang>

Output:
 2.59807621, 1.06365371
L(2.13651e-09,2.94321e-10)

A condensed solver (for a different set of functions): <lang zkl>v:=GSL.VectorFromData(-10.0, -15.0); GSL.multiroot_fsolver(T( fcn(x,y){ 1.0 - x }, fcn(x,y){ 10.0*(y - x*x) }),v) .format().println(); // --> (1,1)</lang>

Output:
1.00,1.00

Another example: <lang zkl>v:=GSL.VectorFromData(1.0, 1.0, 0.0); // initial guess fxyzs:=T(

  fcn(x,y,z){ x*x*9 + y*y*36 + z*z*4 - 36 }, // 9x^2 + 36y^2 + 4z^2 - 36 = 0
  fcn(x,y,z){ x*x - y*y*2 - z*20 },	      // x^2 - 2y^2 - 20z = 0
  fcn(x,y,z){ x*x - y*y + z*z });	      // x^2 - y^2 + z^2 = 0

(v=GSL.multiroot_fsolver(fxyzs,v)).format(12,8).println();

fxyzs.run(True,v.toList().xplode()).println(); // deltas from zero</lang>

Output:
  0.89362824,  0.89452701, -0.04008929
L(6.00672e-08,1.0472e-08,9.84017e-09)