Metallic ratios

From Rosetta Code
Metallic ratios is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

Many people have heard of the Golden ratio, phi (φ). Phi is just one of a series of related ratios that are referred to as the "Metallic ratios".

The Golden ratio was discovered and named by ancient civilizations as it was thought to be the most pure and beautiful (like Gold). The Silver ratio was was also known to the early Greeks, though was not named so until later as a nod to the Golden ratio to which it is closely related. The series has been extended to encompass all of the related ratios and was given the general name Metallic ratios (or Metallic means). Somewhat incongruously as the original Golden ratio referred to the adjective "golden" rather than the metal "gold".

Metallic ratios are the real roots of the general form equation:

   x² - bx - 1 = 0

where the integer b determines which specific one it is.

Using the quadratic equation:

  ( -b ± √(b² - 4ac) ) / 2a = x

Substitute in (from the top equation) 1 for a, -1 for c, and recognising that -b is negated we get:

  ( b ± √(b² + 4) ) ) / 2 = x

We only want the real root:

  ( b + √(b² + 4) ) ) / 2 = x

When we set b to 1, we get an irrational number: the Golden ratio.

   ( 1 + √(1² + 4) ) / 2  =  (1 + √5) / 2 = ~1.618033989...

With b set to 2, we get a different irrational number: the Silver ratio.

   ( 2 + √(2² + 4) ) / 2  =  (2 + √8) / 2 = ~2.414213562...

When the ratio b is 3, it is commonly referred to as the Bronze ratio, 4 and 5 are sometimes called the Copper and Nickel ratios, though they aren't as standard. After that there isn't really any attempt at standardized names. They are given names here on this page, but consider the names fanciful rather than canonical.

Note that technically, b can be 0 for a "smaller" ratio than the Golden ratio. We will refer to it here as the Platinum ratio, though it is kind-of a degenerate case.

Metallic ratios where b > 0 are also defined by the irrational continued fractions:

   [b;b,b,b,b,b,b,b,b,b,b,b,b,b,b,b,b...]


So, The first 10 Metallic ratios are:

Metallic ratios
Name b Equation Value Continued fraction OEIS link
Platinum 0 (0 + √4) / 2 1 - -
Golden 1 (1 + √5) / 2 1.618033988749895... [1;1,1,1,1,1,1,1,1,1,1...] OEIS:A001622
Silver 2 (2 + √8) / 2 2.414213562373095... [2;2,2,2,2,2,2,2,2,2,2...] OEIS:A014176
Bronze 3 (3 + √13) / 2 3.302775637731995... [3;3,3,3,3,3,3,3,3,3,3...] OEIS:A098316
Copper 4 (4 + √20) / 2 4.23606797749979... [4;4,4,4,4,4,4,4,4,4,4...] OEIS:A098317
Nickel 5 (5 + √29) / 2 5.192582403567252... [5;5,5,5,5,5,5,5,5,5,5...] OEIS:A098318
Aluminum 6 (6 + √40) / 2 6.16227766016838... [6;6,6,6,6,6,6,6,6,6,6...] OEIS:A176398
Iron 7 (7 + √53) / 2 7.140054944640259... [7;7,7,7,7,7,7,7,7,7,7...] OEIS:A176439
Tin 8 (8 + √68) / 2 8.123105625617661... [8;8,8,8,8,8,8,8,8,8,8...] OEIS:A176458
Lead 9 (9 + √85) / 2 9.109772228646444... [9;9,9,9,9,9,9,9,9,9,9...] OEIS:A176522


There are other ways to find the Metallic ratios; one, (the focus of this task) is through successive approximations of Lucas sequences.

A Lucas sequence has the form xₙ = b * xₙ₋₁ + c * xₙ₋₂. The metallic ratios use Lucas sequences where c = 1 and where the first two terms are always 1, 1.

So for the Lucas sequence when b = 1:

   xₙ = 1 * xₙ₋₁ + xₙ₋₂.
   1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144...

more commonly known as the Fibonacci sequence.

When b = 2:

   xₙ = 2 * xₙ₋₁ + xₙ₋₂.
   1, 1, 3, 7, 17, 41, 99, 239, 577, 1393...


And so on.


To find the ratio by successive approximations, divide the (n+1)th term by the nth. As n grows larger, the ratio will approach the b metallic ratio.

For b = 1 (Fibonacci sequence):

   1/1   = 1
   2/1   = 2
   3/2   = 1.5
   5/3   = 1.666667
   8/5   = 1.6
   13/8  = 1.625
   21/13 = 1.615385
   34/21 = 1.619048
   55/34 = 1.617647
   89/55 = 1.618182
   etc.

It converges, but pretty slowly. In fact, the Golden ratio has the slowest possible convergence for any irrational number.


Task

For each of the first 10 Metallic ratios; b = 0 through 9:

  • Generate the corresponding Lucas sequence.
  • Show here, on this page, at least the first 15 elements of the Lucas sequence.
  • Using successive approximations, calculate the value of the ratio accurate to 32 decimal places.
  • Show the value of the approximation at the required accuracy.
  • Show the value of n when the approximation reaches the required accuracy (How many iterations did it take?).

Optional, stretch goal - Show the value and number of iterations n, to approximate the Golden ratio to 256 decimal places.

You may assume that the approximation has been reached when the next iteration does not cause the value (to the desired places) to change.


See also


Factor

<lang factor>USING: combinators decimals formatting generalizations io kernel math prettyprint qw sequences ; IN: rosetta-code.metallic-ratios

lucas ( n a b -- n a' b' ) tuck reach * + ;
lucas. ( n -- )
   1 pprint bl 1 1 14 [ lucas over pprint bl ] times 3drop nl ;
approx ( a b -- d ) swap [ 0 <decimal> ] bi@ 32 D/ ;
approximate ( n -- value iter )
   -1 swap 1 1 0 1 [ 2dup = ]
   [ [ 1 + ] 5 ndip [ lucas 2dup approx ] 2dip drop ] until
   4nip decimal>ratio swap ;

qw{

   Platinum Golden Silver Bronze Copper Nickel Aluminum Iron
   Tin Lead

} [

   dup dup approximate {
       [ "Lucas sequence for %s ratio " printf ]
       [ "where b = %d:\n" printf ]
       [ "First 15 elements: " write lucas. ]
       [ "Approximated value: %.32f " printf ]
       [ "- reached after  %d  iteration(s)\n\n" printf ]
   } spread

] each-index</lang>

Output:
Lucas sequence for Platinum ratio where b = 0:
First 15 elements: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
Approximated value: 1.00000000000000000000000000000000 - reached after  1  iteration(s)

Lucas sequence for Golden ratio where b = 1:
First 15 elements: 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 
Approximated value: 1.61803398874989484820458683436563 - reached after  78  iteration(s)

Lucas sequence for Silver ratio where b = 2:
First 15 elements: 1 1 3 7 17 41 99 239 577 1393 3363 8119 19601 47321 114243 
Approximated value: 2.41421356237309504880168872420969 - reached after  44  iteration(s)

Lucas sequence for Bronze ratio where b = 3:
First 15 elements: 1 1 4 13 43 142 469 1549 5116 16897 55807 184318 608761 2010601 6640564 
Approximated value: 3.30277563773199464655961063373524 - reached after  32  iteration(s)

Lucas sequence for Copper ratio where b = 4:
First 15 elements: 1 1 5 21 89 377 1597 6765 28657 121393 514229 2178309 9227465 39088169 165580141 
Approximated value: 4.23606797749978969640917366873127 - reached after  27  iteration(s)

Lucas sequence for Nickel ratio where b = 5:
First 15 elements: 1 1 6 31 161 836 4341 22541 117046 607771 3155901 16387276 85092281 441848681 2294335686 
Approximated value: 5.19258240356725201562535524577016 - reached after  24  iteration(s)

Lucas sequence for Aluminum ratio where b = 6:
First 15 elements: 1 1 7 43 265 1633 10063 62011 382129 2354785 14510839 89419819 551029753 3395598337 20924619775 
Approximated value: 6.16227766016837933199889354443271 - reached after  22  iteration(s)

Lucas sequence for Iron ratio where b = 7:
First 15 elements: 1 1 8 57 407 2906 20749 148149 1057792 7552693 53926643 385039194 2749201001 19629446201 140155324408 
Approximated value: 7.14005494464025913554865124576351 - reached after  20  iteration(s)

Lucas sequence for Tin ratio where b = 8:
First 15 elements: 1 1 9 73 593 4817 39129 317849 2581921 20973217 170367657 1383914473 11241683441 91317382001 741780739449 
Approximated value: 8.12310562561766054982140985597407 - reached after  19  iteration(s)

Lucas sequence for Lead ratio where b = 9:
First 15 elements: 1 1 10 91 829 7552 68797 626725 5709322 52010623 473804929 4316254984 39320099785 358197153049 3263094477226 
Approximated value: 9.10977222864644365500113714088139 - reached after  18  iteration(s)

Go

<lang go>package main

import (

   "fmt"
   "math/big"

)

var names = [10]string{"Platinum", "Golden", "Silver", "Bronze", "Copper",

   "Nickel", "Aluminium", "Iron", "Tin", "Lead"}

func lucas(b int64) {

   fmt.Printf("Lucas sequence for %s ratio, where b = %d:\n", names[b], b)
   fmt.Print("First 15 elements: ")
   var x0, x1 int64 = 1, 1
   fmt.Printf("%d, %d", x0, x1)
   for i := 1; i <= 13; i++ {
       x2 := b*x1 + x0
       fmt.Printf(", %d", x2)
       x0, x1 = x1, x2
   }
   fmt.Println()

}

func metallic(b int64, dp int) {

   x0, x1, x2, bb := big.NewInt(1), big.NewInt(1), big.NewInt(0), big.NewInt(b)
   ratio := big.NewRat(1, 1)
   iters := 0
   prev := ratio.FloatString(dp)
   for {
       iters++
       x2.Mul(bb, x1)
       x2.Add(x2, x0)
       this := ratio.SetFrac(x2, x1).FloatString(dp)
       if prev == this {
           plural := "s"
           if iters == 1 {
               plural = " "
           }
           fmt.Printf("Value to %d dp after %2d iteration%s: %s\n\n", dp, iters, plural, this)
           return
       }
       prev = this
       x0.Set(x1)
       x1.Set(x2)
   }

}

func main() {

   for b := int64(0); b < 10; b++ {
       lucas(b)
       metallic(b, 32)
   }
   fmt.Println("Golden ratio, where b = 1:")
   metallic(1, 256)

}</lang>

Output:
Lucas sequence for Platinum ratio, where b = 0:
First 15 elements: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Value to 32 dp after  1 iteration : 1.00000000000000000000000000000000

Lucas sequence for Golden ratio, where b = 1:
First 15 elements: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610
Value to 32 dp after 78 iterations: 1.61803398874989484820458683436564

Lucas sequence for Silver ratio, where b = 2:
First 15 elements: 1, 1, 3, 7, 17, 41, 99, 239, 577, 1393, 3363, 8119, 19601, 47321, 114243
Value to 32 dp after 44 iterations: 2.41421356237309504880168872420970

Lucas sequence for Bronze ratio, where b = 3:
First 15 elements: 1, 1, 4, 13, 43, 142, 469, 1549, 5116, 16897, 55807, 184318, 608761, 2010601, 6640564
Value to 32 dp after 34 iterations: 3.30277563773199464655961063373525

Lucas sequence for Copper ratio, where b = 4:
First 15 elements: 1, 1, 5, 21, 89, 377, 1597, 6765, 28657, 121393, 514229, 2178309, 9227465, 39088169, 165580141
Value to 32 dp after 28 iterations: 4.23606797749978969640917366873128

Lucas sequence for Nickel ratio, where b = 5:
First 15 elements: 1, 1, 6, 31, 161, 836, 4341, 22541, 117046, 607771, 3155901, 16387276, 85092281, 441848681, 2294335686
Value to 32 dp after 25 iterations: 5.19258240356725201562535524577016

Lucas sequence for Aluminium ratio, where b = 6:
First 15 elements: 1, 1, 7, 43, 265, 1633, 10063, 62011, 382129, 2354785, 14510839, 89419819, 551029753, 3395598337, 20924619775
Value to 32 dp after 23 iterations: 6.16227766016837933199889354443272

Lucas sequence for Iron ratio, where b = 7:
First 15 elements: 1, 1, 8, 57, 407, 2906, 20749, 148149, 1057792, 7552693, 53926643, 385039194, 2749201001, 19629446201, 140155324408
Value to 32 dp after 22 iterations: 7.14005494464025913554865124576352

Lucas sequence for Tin ratio, where b = 8:
First 15 elements: 1, 1, 9, 73, 593, 4817, 39129, 317849, 2581921, 20973217, 170367657, 1383914473, 11241683441, 91317382001, 741780739449
Value to 32 dp after 20 iterations: 8.12310562561766054982140985597408

Lucas sequence for Lead ratio, where b = 9:
First 15 elements: 1, 1, 10, 91, 829, 7552, 68797, 626725, 5709322, 52010623, 473804929, 4316254984, 39320099785, 358197153049, 3263094477226
Value to 32 dp after 20 iterations: 9.10977222864644365500113714088140

Golden ratio, where b = 1:
Value to 256 dp after 615 iterations: 1.6180339887498948482045868343656381177203091798057628621354486227052604628189024497072072041893911374847540880753868917521266338622235369317931800607667263544333890865959395829056383226613199282902678806752087668925017116962070322210432162695486262963136144

Perl 6

Works with: Rakudo version 2019.07.1

Note: Arrays, Lists and Sequences are zero indexed in Perl 6.

<lang perl6>use Rat::Precise; use Lingua::EN::Numbers;

sub lucas ($b) { 1, 1, * + $b * * … * }

sub metallic ($seq, $places = 32) {

   my $n = 0;
   my $last = 0;
   loop {
       my $approx = FatRat.new($seq[$n + 1], $seq[$n]);
       my $this = $approx.precise($places, :z);
       last if $this eq $last;
       $last = $this;
       $n++;
   }
   $last, $n

}

sub display ($value, $n) {

   "Approximated value:", $value, "Reached after {$n} iterations: " ~
   "{ordinal-digit $n}/{ordinal-digit $n - 1} element."

}

for <Platinum Golden Silver Bronze Copper Nickel Aluminum Iron Tin Lead>.kv

 -> \b, $name {
   my $lucas = lucas b;
   print "\nLucas sequence for $name ratio; where b = {b}:\nFirst 15 elements: ";
   say join ', ', $lucas[^15];
   say join ' ', display |metallic($lucas);

}

  1. Stretch goal

say join "\n", "\nGolden ratio to 256 decimal places:", display |metallic lucas(1), 256;</lang>

Output:
Lucas sequence for Platinum ratio; where b = 0:
First 15 elements: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Approximated value: 1.00000000000000000000000000000000 Reached after 1 iterations: 1st/0th element.

Lucas sequence for Golden ratio; where b = 1:
First 15 elements: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610
Approximated value: 1.61803398874989484820458683436564 Reached after 78 iterations: 78th/77th element.

Lucas sequence for Silver ratio; where b = 2:
First 15 elements: 1, 1, 3, 7, 17, 41, 99, 239, 577, 1393, 3363, 8119, 19601, 47321, 114243
Approximated value: 2.41421356237309504880168872420970 Reached after 44 iterations: 44th/43rd element.

Lucas sequence for Bronze ratio; where b = 3:
First 15 elements: 1, 1, 4, 13, 43, 142, 469, 1549, 5116, 16897, 55807, 184318, 608761, 2010601, 6640564
Approximated value: 3.30277563773199464655961063373525 Reached after 34 iterations: 34th/33rd element.

Lucas sequence for Copper ratio; where b = 4:
First 15 elements: 1, 1, 5, 21, 89, 377, 1597, 6765, 28657, 121393, 514229, 2178309, 9227465, 39088169, 165580141
Approximated value: 4.23606797749978969640917366873128 Reached after 28 iterations: 28th/27th element.

Lucas sequence for Nickel ratio; where b = 5:
First 15 elements: 1, 1, 6, 31, 161, 836, 4341, 22541, 117046, 607771, 3155901, 16387276, 85092281, 441848681, 2294335686
Approximated value: 5.19258240356725201562535524577016 Reached after 25 iterations: 25th/24th element.

Lucas sequence for Aluminum ratio; where b = 6:
First 15 elements: 1, 1, 7, 43, 265, 1633, 10063, 62011, 382129, 2354785, 14510839, 89419819, 551029753, 3395598337, 20924619775
Approximated value: 6.16227766016837933199889354443272 Reached after 23 iterations: 23rd/22nd element.

Lucas sequence for Iron ratio; where b = 7:
First 15 elements: 1, 1, 8, 57, 407, 2906, 20749, 148149, 1057792, 7552693, 53926643, 385039194, 2749201001, 19629446201, 140155324408
Approximated value: 7.14005494464025913554865124576352 Reached after 22 iterations: 22nd/21st element.

Lucas sequence for Tin ratio; where b = 8:
First 15 elements: 1, 1, 9, 73, 593, 4817, 39129, 317849, 2581921, 20973217, 170367657, 1383914473, 11241683441, 91317382001, 741780739449
Approximated value: 8.12310562561766054982140985597408 Reached after 20 iterations: 20th/19th element.

Lucas sequence for Lead ratio; where b = 9:
First 15 elements: 1, 1, 10, 91, 829, 7552, 68797, 626725, 5709322, 52010623, 473804929, 4316254984, 39320099785, 358197153049, 3263094477226
Approximated value: 9.10977222864644365500113714088140 Reached after 20 iterations: 20th/19th element.

Golden ratio to 256 decimal places:
Approximated value:
1.6180339887498948482045868343656381177203091798057628621354486227052604628189024497072072041893911374847540880753868917521266338622235369317931800607667263544333890865959395829056383226613199282902678806752087668925017116962070322210432162695486262963136144
Reached after 615 iterations: 615th/614th element.

REXX

For this task,   the elements of the Lucas sequence are zero based. <lang rexx>/*REXX pgm computes the 1st N elements of the Lucas sequence for Metallic ratios 0──►9. */ parse arg n bLO bHI digs . /*obtain optional arguments from the CL*/ if n== | n=="," then n= 15 /*Not specified? Then use the default.*/ if bLO== | bLO=="," then bLO= 0 /* " " " " " " */ if bHI== | bHI=="," then bHI= 9 /* " " " " " " */ if digs== | digs=="," then digs= 32 /* " " " " " " */ numeric digits digs + length(.) /*specify number of decimal digs to use*/ metals= 'platinum golden silver bronze copper nickel aluminum iron tin lead' approx= 'the approximate value reached after ' /*literals that are used for SAYs. */ !.= /*the default name for a metallic ratio*/

        do k=0  to 9;  !.k= word(metals, k+1)   /*assign the (ten) metallic ratio names*/
        end   /*k*/
     do m=bLO   to bHI;  @.= 1;  $=  1  1       /*compute the sequence numbers & ratios*/
     r=.                                        /*the ratio  (so far).                 */
        do #=2  until r=old;     old= r         /*compute sequence numbers & the ratio.*/
                   #_1= #-1;       #_2= #-2     /*use variables for previous numbers.  */
        @.#= m * @.#_1     +     @.#_2          /*calculate a number i the sequence.   */
        if #<n  then $= $  @.#                  /*build a sequence list of  N  numbers.*/
        r= @.#  /  @.#_1                        /*calculate ratio of the last 2 numbers*/
        end   /*#*/
     if words($)<n  then $= subword($ copies('1 ', n), 1, n) /*extend list if too short*/
     L= max(108, length($) )                                 /*ensure width of title.  */
     say center(' Lucas sequence for the'  !.m  "ratio,  where  B  is " m' ',  L,  "═")
     if n>0  then do;   say 'the first '    n    " elements are:";       say $
                  end                           /*if  N  is positive, then show N nums.*/
     say approx #-1  ' iterations with '  digs  " decimal digits past the decimal point:"
     say format(r,,digs);                 say   /*display the ration plus a blank line.*/
     end      /*m*/                             /*stick a fork in it,  we're all done. */</lang>
output   when using the default inputs:
═════════════════════════ Lucas sequence for the platinum ratio,  where  B  is  0 ══════════════════════════
the first  15  elements are:
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
the approximate value reached after  2  iterations with  32  decimal digits past the decimal point:
1.00000000000000000000000000000000

══════════════════════════ Lucas sequence for the golden ratio,  where  B  is  1 ═══════════════════════════
the first  15  elements are:
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610
the approximate value reached after  78  iterations with  32  decimal digits past the decimal point:
1.61803398874989484820458683436564

══════════════════════════ Lucas sequence for the silver ratio,  where  B  is  2 ═══════════════════════════
the first  15  elements are:
1 1 3 7 17 41 99 239 577 1393 3363 8119 19601 47321 114243
the approximate value reached after  44  iterations with  32  decimal digits past the decimal point:
2.41421356237309504880168872420970

══════════════════════════ Lucas sequence for the bronze ratio,  where  B  is  3 ═══════════════════════════
the first  15  elements are:
1 1 4 13 43 142 469 1549 5116 16897 55807 184318 608761 2010601 6640564
the approximate value reached after  34  iterations with  32  decimal digits past the decimal point:
3.30277563773199464655961063373525

══════════════════════════ Lucas sequence for the copper ratio,  where  B  is  4 ═══════════════════════════
the first  15  elements are:
1 1 5 21 89 377 1597 6765 28657 121393 514229 2178309 9227465 39088169 165580141
the approximate value reached after  28  iterations with  32  decimal digits past the decimal point:
4.23606797749978969640917366873128

══════════════════════════ Lucas sequence for the nickel ratio,  where  B  is  5 ═══════════════════════════
the first  15  elements are:
1 1 6 31 161 836 4341 22541 117046 607771 3155901 16387276 85092281 441848681 2294335686
the approximate value reached after  25  iterations with  32  decimal digits past the decimal point:
5.19258240356725201562535524577016

═════════════════════════ Lucas sequence for the aluminum ratio,  where  B  is  6 ══════════════════════════
the first  15  elements are:
1 1 7 43 265 1633 10063 62011 382129 2354785 14510839 89419819 551029753 3395598337 20924619775
the approximate value reached after  23  iterations with  32  decimal digits past the decimal point:
6.16227766016837933199889354443272

═══════════════════════════ Lucas sequence for the iron ratio,  where  B  is  7 ════════════════════════════
the first  15  elements are:
1 1 8 57 407 2906 20749 148149 1057792 7552693 53926643 385039194 2749201001 19629446201 140155324408
the approximate value reached after  22  iterations with  32  decimal digits past the decimal point:
7.14005494464025913554865124576352

════════════════════════════ Lucas sequence for the tin ratio,  where  B  is  8 ════════════════════════════
the first  15  elements are:
1 1 9 73 593 4817 39129 317849 2581921 20973217 170367657 1383914473 11241683441 91317382001 741780739449
the approximate value reached after  20  iterations with  32  decimal digits past the decimal point:
8.12310562561766054982140985597408

═══════════════════════════ Lucas sequence for the lead ratio,  where  B  is  9 ════════════════════════════
the first  15  elements are:
1 1 10 91 829 7552 68797 626725 5709322 52010623 473804929 4316254984 39320099785 358197153049 3263094477226
the approximate value reached after  20  iterations with  32  decimal digits past the decimal point:
9.10977222864644365500113714088140

{{out|output|text=  when using the inputs of:     0   1   1   256

(Shown at three-quarter size.)

══════════════════════════ Lucas sequence for the golden ratio,  where  B  is  1 ═══════════════════════════
the approximate value reached after  615  iterations with  256  decimal digits past the decimal point:
1.6180339887498948482045868343656381177203091798057628621354486227052604628189024497072072041893911374847540880753868917521266338622235369317931800607667263544333890865959395829056383226613199282902678806752087668925017116962070322210432162695486262963136144
output   when using the inputs of:     0   1   1   10000

(Shown at three-quarter size.)

══════════════════════════ Lucas sequence for the golden ratio,  where  B  is  1 ═══════════════════════════
the approximate value reached after  23927  iterations with  10000  decimal digits past the decimal point:
1.61803398874989484820458683436563811772030917980576286213544862270526046281890244970720720418939113748475408807538689175212663386222353693179318006076672635443338908659593958290563832266131992829026788067520876689250171169620703222104321626954862629631361443814975870122034080588795445474924618569536486444924104432077134494704956584678850987433944221254487706647809158846074998871240076521705751797
8834166256249407589069704000281210427621771117778053153171410117046665991466979873176135600670874807101317952368942752194843530567830022878569978297783478458782289110976250030269615617002504643382437764861028383126833037242926752631165339247316711121158818638513316203840052221657912866752946549068113171599343235973494985090409476213222981017261070596116456299098162905552085247903524060201727997471
7534277759277862561943208275051312181562855122248093947123414517022373580577278616008688382952304592647878017889921990270776903895321968198615143780314997411069260886742962267575605231727775203536139362107673893764556060605921658946675955190040055590895022953094231248235521221241544400647034056573479766397239494994658457887303962309037503399385621024236902513868041457799569812244574717803417312645
3220416397232134044449487302315417676893752103068737880344170093954409627955898678723209512426893557309704509595684401755519881921802064052905518934947592600734852282101088194644544222318891319294689622002301443770269923007803085261180754519288770502109684249362713592518760777884665836150238913493333122310533923213624319263728910670503399282265263556209029798642472759772565508615487543574826471814
1451270006023890162077732244994353088999095016803281121943204819643876758633147985719113978153978074761507722117508269458639320456520989698555678141069683728840587461033781054443909436835835813811311689938555769754841491445341509129540700501947754861630754226417293946803673198058618339183285991303960720144559504497792120761247856459161608370594987860069701894098864007644361709334172709191433650137
1576601148038143062623805143211734815100559013456101180079050638142152709308588092875703450507808145458819906336129827981411745339273120809289727922213298064294687824274874017450554067787570832373109759151177629784432847479081765180977872684161176325038612112914368343767023503711163307258698832587103363222381098090121101989917684149175123313401527338438372345009347860497929459915822012581045982309
2552872124137043614910205471855496118087642657651106054588147560443178479858453973128630162544876114852021706440411166076695059775783257039511087823082710647893902111569103927683845386333321565829659773103436032322545743637204124406408882673758433953679593123221343732099574988946995656473600729599983912881031974263125179714143201231127955189477817269141589117799195648125580018455065632952859859100
0908621802977563789259991649946428193022293552346674759326951654214021091363018194722707890122087287361707348649998156255472811373479871656952748900814438405327483781378246691744422963491470815700735254570708977267546934382261954686153312095335792380146092735102101191902183606750973089575289577468142295433943854931553396303807291691758461014609950550648036793041472365720398600735507609023173125016
1320484358364817704848181099160244252327167219018933459637860878752870173935930301335901123710239171265904702634940283076687674363865132710628032317406931733448234356453185058135310854973335075996677871244905836367541328908624063245639535721252426117027802865604323494283730172557440583727826799603173936401328762770124367983114464369476705312724924104716700138247831286565064934341803900410178053395
0587724586655755229391582397084177298337282311525692609299594224000056062667867435792397245408481765197343626526894488855272027477874733598353672776140759171205132693448375299164998093602461784426757277679001919190703805220461232482391326104327191684512306023627893545432461769975753689041763650254785138246314658336383376023577899267298863216185839590363998183845827644912459809370430555596137973432
6134830494949686810895356963482817812886253646084203394653819441945714266682371839491832370908574850266568039897440662105360306400260817112665995419936873160945722888109207788227720363668448153256172841176909792666655223846883113718529919216319052015686312228207155998764684235520592853717578076560503677313097519122397388722468258057159744574048429878073522159842667662578077062019430400542550158312
5030175340941171910192989038447250332988024501436796844169479595453045910313811621870456799786636617460595700034459701135251813460065655352034788811741499412748264152135567763940390710387088182338068033500380468001748082205910968442026446402187705340100318028816644153091393948156403192822785482414510503188825189970074862287942155895742820216657062188090578088050324676991297287210387073697406435667
4589202586565739785608595665341070359978320446336346485489497663885351045527298242290699848853696828046459745762651434359050938321243743333870516657149005907105670248879858043718151261004403814880407252440616429022478227152724112085065788838712493635106806365166743222327767755797399270376231914704732395512060705503992088442603708790843334261838413597078164829553714321961189503797714630007555975379
5703552271449319132172556440128309180504500899218705121186069335731538959350790300736727023314165320423401553741442687154055116479611433230248544040940691145613987302603951828168034482525432673857590056043202453727192912486458133344169852993913574786989579864394980230471169671573622839120181273129165899527599192203183723568272793856373312654799859124632750300605925674549794350881192950568549325935
5318729141801136412187470752628106869830135760524719445593219553596104528303148839117693011965858343144248948985655842508341094295027719758335224429125736493807541711373924376014350682987849327129975122868819604983577515877178041069713196675347719479226365190163397712847390793361111914089983056033610609871717830554354035608952929081846414371392943781356048203894791257450770755751030024207266290018
0904229342494259060666141332287226980690145994511995478016399151412612525728280664331261657469388195106442167387180001100421848302580916543383749236411838885646851431500637319042951481469424314608952547072037405566913069220990804819452975110650464281054177552590951871318883591476599604131796020941530858553323877253802327276329773721431279682167162344211832018028814127474431688472184593927814354740
9999907223320305926297661123832798331698825393126200650370288447828666940447307947104761255865837529862362509998232335971550723383833244081525778193364262630433026589581708004512788731159355877472172564947000516366725771539209840950327451121536873009121996295227659131637093968607271342692623154753304379933165811073696431421719794340563915512108108136262688856974806806011691894175027229874158699179
1453499462444194012197858601373660828690722365147713912687420966513787562059185432888834174292090156313328319357562208971376563097850156315498245644586542479293572282875060848145335135218172958793299117100324762220521946451053624505129884308713444395072442673514628617991832336459836963763272257569159723954383052086647474238151107927349483695239647926899369832491799950278950006045966131346336302494
9951480805329017902975182515875049007435187983511836032722772601717404535571658855578297291061958193517105548257930709100576358699019297217995168731175563144485648100220014254540554292734588371160209947945720823780436871894480563689182580244499631878342027491015335791072733625328906933474123802222011626277119308544850295419132004009998655666517756640953656197897818380451030356510131589458902871861
0869058939471368014845700183664956472032943343742989464274125514359058434840919548701523614031739139036164401984550510491211697920012019996050699496640303508636929039410070194505320162348727632327324494396304808905542513797233147518520709102506368598167953048181007394245317002388047598343234504142584314063612721096022824233782280902797659607771084939151748873168777135223900911711735091860065462009
9024975852779254278165970383495058010626155333691093784659771052975022317307412177834418941184596586102980187787427445638669661277245038458605264151030408982577775447411533207640758816775149755380471162966777100587664615954967769270549623939857092550702740699781408431249653630718665337180605874224259816530705257383454157705429216299811491750861131176577317209561565647869547448927132060806354577946
2414531066983742113798168963823533304477883169339728728918103664083269856988254438516675862289930696434684897514840879039647604203610206021717394470263487633654393195229077383616738981178124248365578105034169451563626043003665743108476654877780128577923645418522447236171374229255841593135612866371670328072171553392646325730673063910854108868085742838588280602303341408550390973538726134511962926415
9952127893113544314601527309025538271043259662267439037455636122861390783194335705900381487008986613153981958574423304419708566967222931427307413848827889755888607997387044702031668348569419909654802982493198176579268298556297230106827772351627407838074318778273182119196952800516087915721288263379682312725628700015001829297577299935790949196407634428615757135444278983830404547027101945800425820212
0234458063034503365814721854920367998997293535391968121331951653797453991114942444518303385884129040181781882137600665928494136775431745160540938711036871521164040582193447120448277596054169486453987832626954801391501903899593130670318661670663719640256928671388714663118919268568269199527645799771827875946096161721886810945465157886912241060981419726861925547878992631535947292282508054251690681401
0781796021885330762305563816316401922454503257656739259976517530801427160714308718862859836037465057134204670083432754230277047793311183666903232885306873879907135900740304907459889513647687608678443238248218930617570319563803230819719363567274196438726258706154330729637038127515170406005057594882723856345156390526577104264594760405569509598408889037620799566388017861855915944111725092313279771138
03

zkl

Library: GMP

GNU Multiple Precision Arithmetic Library

<lang zkl>var [const] BI=Import("zklBigNum"); // libGMP fcn lucasSeq(b){

  Walker.zero().tweak('wrap(xs){
     xm2,xm1 := xs;	// x[n-2], x[n-1]
     xn:=xm1*b + xm2;
     xs.append(xn).del(0);
     xn
  }.fp(L(BI(1),BI(1)))).push(1,1)  // xn can get big so use BigInts

} fcn metallicRatio(lucasSeq){

  const bige="1e33",E=10;  // x[n-1]*bige*b / x[n-2] to get our digits from Ints
  a,b,mr := lucasSeq.next(), lucasSeq.next(), BI(bige).mul(b).div(a);
  do(1000){	// limit iterations
     c,m2 := lucasSeq.next(), BI(bige).mul(c).div(b);
     if((mr - m2).abs()<E) return(mr.div(E),lucasSeq.idx); // idx ignores push(), ie first 2 terms
     a,b,mr = b,c,m2;
  }

}</lang> <lang zkl>metals:="Platinum Golden Silver Bronze Copper Nickel Aluminum Iron Tin Lead"; foreach metal in (metals.split(" ")){ n:=__metalWalker.idx;

  println("\nLucas sequence for %s ratio; where b = %d:".fmt(metal,n));
  println("First 15 elements: ",lucasSeq(n).walk(15).concat(" "));
  mr,i := metallicRatio(lucasSeq(n));
  mr    = mr.toString();
  println("Approximated value: %s.%s - Reached after ~%d iterations."
    .fmt(mr[0],mr.del(0),i));

}</lang>

Output:
Lucas sequence for Platinum ratio; where b = 0:
First 15 elements: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Approximated value: 1.00000000000000000000000000000000 - Reached after ~0 iterations.

Lucas sequence for Golden ratio; where b = 1:
First 15 elements: 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610
Approximated value: 1.61803398874989484820458683436564 - Reached after ~77 iterations.

Lucas sequence for Silver ratio; where b = 2:
First 15 elements: 1 1 3 7 17 41 99 239 577 1393 3363 8119 19601 47321 114243
Approximated value: 2.41421356237309504880168872420970 - Reached after ~43 iterations.

Lucas sequence for Bronze ratio; where b = 3:
First 15 elements: 1 1 4 13 43 142 469 1549 5116 16897 55807 184318 608761 2010601 6640564
Approximated value: 3.30277563773199464655961063373524 - Reached after ~32 iterations.

Lucas sequence for Copper ratio; where b = 4:
First 15 elements: 1 1 5 21 89 377 1597 6765 28657 121393 514229 2178309 9227465 39088169 165580141
Approximated value: 4.23606797749978969640917366873127 - Reached after ~27 iterations.

Lucas sequence for Nickel ratio; where b = 5:
First 15 elements: 1 1 6 31 161 836 4341 22541 117046 607771 3155901 16387276 85092281 441848681 2294335686
Approximated value: 5.19258240356725201562535524577016 - Reached after ~24 iterations.

Lucas sequence for Aluminum ratio; where b = 6:
First 15 elements: 1 1 7 43 265 1633 10063 62011 382129 2354785 14510839 89419819 551029753 3395598337 20924619775
Approximated value: 6.16227766016837933199889354443271 - Reached after ~22 iterations.

Lucas sequence for Iron ratio; where b = 7:
First 15 elements: 1 1 8 57 407 2906 20749 148149 1057792 7552693 53926643 385039194 2749201001 19629446201 140155324408
Approximated value: 7.14005494464025913554865124576351 - Reached after ~20 iterations.

Lucas sequence for Tin ratio; where b = 8:
First 15 elements: 1 1 9 73 593 4817 39129 317849 2581921 20973217 170367657 1383914473 11241683441 91317382001 741780739449
Approximated value: 8.12310562561766054982140985597407 - Reached after ~19 iterations.

Lucas sequence for Lead ratio; where b = 9:
First 15 elements: 1 1 10 91 829 7552 68797 626725 5709322 52010623 473804929 4316254984 39320099785 358197153049 3263094477226
Approximated value: 9.10977222864644365500113714088139 - Reached after ~18 iterations.