Graph colouring

From Rosetta Code
Revision as of 20:39, 17 March 2020 by rosettacode>Craigd (→‎{{header|zkl}}: added code)
Task
Graph colouring
You are encouraged to solve this task according to the task description, using any language you may know.


A Graph is a collection of nodes (or vertices), connected by edges (or not). Nodes directly connected by edges are called neighbours.

In our representation of graphs, nodes are numbered and edges are represented by the two node numbers connected by the edge separated by a dash. Edges define the nodes being connected. Only unconnected nodes need a separate description.

For example,

0-1 1-2 2-0 3

Describes the following graph. Note that node 3 has no neighbours


Example graph
+---+
| 3 |
+---+

  +-------------------+
  |                   |
+---+     +---+     +---+
| 0 | --- | 1 | --- | 2 |
+---+     +---+     +---+

A useful internal datastructure for a graph and for later graph algorithms is as a mapping between each node and the set/list of its neighbours.

In the above example:

0 maps-to 1 and 2
1 maps to 2 and 0
2 maps-to 1 and 0
3 maps-to <nothing>
Graph colouring task

Colour the vertices of a given graph so that no edge is between verticies of the same colour.

  • Integers may be used to denote different colours.
  • Algorithm should do better than just assigning each vertex a separate colour. The idea is to minimise the number of colours used, although no algorithm short of exhaustive search for the minimum is known at present, (and exhaustive search is not a requirement).
  • Show for each edge, the colours assigned on each vertex.
  • Show the total number of nodes, edges, and colours used for each graph.
Use the following graphs
Ex1
       0-1 1-2 2-0 3
+---+
| 3 |
+---+

  +-------------------+
  |                   |
+---+     +---+     +---+
| 0 | --- | 1 | --- | 2 |
+---+     +---+     +---+
Ex2

The wp articles left-side graph

   1-6 1-7 1-8 2-5 2-7 2-8 3-5 3-6 3-8 4-5 4-6 4-7

  +----------------------------------+
  |                                  |
  |                      +---+       |
  |    +-----------------| 3 | ------+----+
  |    |                 +---+       |    |
  |    |                   |         |    |
  |    |                   |         |    |
  |    |                   |         |    |
  |  +---+     +---+     +---+     +---+  |
  |  | 8 | --- | 1 | --- | 6 | --- | 4 |  |
  |  +---+     +---+     +---+     +---+  |
  |    |         |                   |    |
  |    |         |                   |    |
  |    |         |                   |    |
  |    |       +---+     +---+     +---+  |
  +----+------ | 7 | --- | 2 | --- | 5 | -+
       |       +---+     +---+     +---+
       |                   |
       +-------------------+
Ex3

The wp articles right-side graph which is the same graph as Ex2, but with different node orderings and namings.

   1-4 1-6 1-8 3-2 3-6 3-8 5-2 5-4 5-8 7-2 7-4 7-6

  +----------------------------------+
  |                                  |
  |                      +---+       |
  |    +-----------------| 5 | ------+----+
  |    |                 +---+       |    |
  |    |                   |         |    |
  |    |                   |         |    |
  |    |                   |         |    |
  |  +---+     +---+     +---+     +---+  |
  |  | 8 | --- | 1 | --- | 4 | --- | 7 |  |
  |  +---+     +---+     +---+     +---+  |
  |    |         |                   |    |
  |    |         |                   |    |
  |    |         |                   |    |
  |    |       +---+     +---+     +---+  |
  +----+------ | 6 | --- | 3 | --- | 2 | -+
       |       +---+     +---+     +---+
       |                   |
       +-------------------+
Ex4

This is the same graph, node naming, and edge order as Ex2 except some of the edges x-y are flipped to y-x. This might alter the node order used in the greedy algorithm leading to differing numbers of colours.

   1-6 7-1 8-1 5-2 2-7 2-8 3-5 6-3 3-8 4-5 4-6 4-7

                      +-------------------------------------------------+
                      |                                                 |
                      |                                                 |
  +-------------------+---------+                                       |
  |                   |         |                                       |
+---+     +---+     +---+     +---+     +---+     +---+     +---+     +---+
| 4 | --- | 5 | --- | 2 | --- | 7 | --- | 1 | --- | 6 | --- | 3 | --- | 8 |
+---+     +---+     +---+     +---+     +---+     +---+     +---+     +---+
  |         |                             |         |         |         |
  +---------+-----------------------------+---------+         |         |
            |                             |                   |         |
            |                             |                   |         |
            +-----------------------------+-------------------+         |
                                          |                             |
                                          |                             |
                                          +-----------------------------+
References

Go

As mentioned in the task description, there is no known efficient algorithm which can guarantee that a minimum number of colors is used for a given graph. The following uses both the so-called 'greedy' algorithm (as described here) and the Welsh-Powell algorithm (as described here), suitably adjusted to the needs of this task.

The results are exactly the same for both algorithms. Whilst one would normally expect Welsh-Powell to give better results overall, the last three examples are not well suited to it as each node has exactly the same number of neighbors i.e. the valences are equal.

The results agree with the Python entry for examples 1 and 2 but, for example 3, Python gives 2 colors compared to my 4 and, for example 4, Python gives 3 colors compared to my 2. <lang go>package main

import (

   "fmt"
   "sort"

)

type graph struct {

   nn  int     // number of nodes
   st  int     // node numbering starts from
   nbr [][]int // neighbor list for each node

}

type nodeval struct {

   n int // number of node
   v int // valence of node i.e. number of neighbors

}

func contains(s []int, n int) bool {

   for _, e := range s {
       if e == n {
           return true
       }
   }
   return false

}

func newGraph(nn, st int) graph {

   nbr := make([][]int, nn)
   return graph{nn, st, nbr}

}

// Note that this creates a single 'virtual' edge for an isolated node. func (g graph) addEdge(n1, n2 int) {

   n1, n2 = n1-g.st, n2-g.st // adjust to starting node number
   g.nbr[n1] = append(g.nbr[n1], n2)
   if n1 != n2 {
       g.nbr[n2] = append(g.nbr[n2], n1)
   }

}

// Uses 'greedy' algorithm. func (g graph) greedyColoring() []int {

   // create a slice with a color for each node, starting with color 0
   cols := make([]int, g.nn) // all zero by default including the first node
   for i := 1; i < g.nn; i++ {
       cols[i] = -1 // mark all nodes after the first as having no color assigned (-1)
   }
   // create a bool slice to keep track of which colors are available
   available := make([]bool, g.nn) // all false by default
   // assign colors to all nodes after the first
   for i := 1; i < g.nn; i++ {
       // iterate through neighbors and mark their colors as available
       for _, j := range g.nbr[i] {
           if cols[j] != -1 {
               available[cols[j]] = true
           }
       }
       // find the first available color
       c := 0
       for ; c < g.nn; c++ {
           if !available[c] {
               break
           }
       }
       cols[i] = c // assign it to the current node
       // reset the neighbors' colors to unavailable
       // before the next iteration
       for _, j := range g.nbr[i] {
           if cols[j] != -1 {
               available[cols[j]] = false
           }
       }
   }
   return cols

}

// Uses Welsh-Powell algorithm. func (g graph) wpColoring() []int {

   // create nodeval for each node
   nvs := make([]nodeval, g.nn)
   for i := 0; i < g.nn; i++ {
       v := len(g.nbr[i])
       if v == 1 && g.nbr[i][0] == i { // isolated node
           v = 0
       }
       nvs[i] = nodeval{i, v}
   }
   // sort the nodevals in descending order by valence
   sort.Slice(nvs, func(i, j int) bool {
       return nvs[i].v > nvs[j].v
   })
   // create colors slice with entries for each node
   cols := make([]int, g.nn)
   for i := range cols {
       cols[i] = -1 // set all nodes to no color (-1) initially
   }
   currCol := 0 // start with color 0
   for f := 0; f < g.nn-1; f++ {
       h := nvs[f].n
       if cols[h] != -1 { // already assigned a color
           continue
       }
       cols[h] = currCol
       // assign same color to all subsequent uncolored nodes which are
       // not connected to a previous colored one
   outer:
       for i := f + 1; i < g.nn; i++ {
           j := nvs[i].n
           if cols[j] != -1 { // already colored
               continue
           }
           for k := f; k < i; k++ {
               l := nvs[k].n
               if cols[l] == -1 { // not yet colored
                   continue
               }
               if contains(g.nbr[j], l) {
                   continue outer // node j is connected to an earlier colored node
               }
           }
           cols[j] = currCol
       }
       currCol++
   }
   return cols

}

func main() {

   fns := [](func(graph) []int){graph.greedyColoring, graph.wpColoring}
   titles := []string{"'Greedy'", "Welsh-Powell"}
   nns := []int{4, 8, 8, 8}
   starts := []int{0, 1, 1, 1}
   edges1 := [][2]int{{0, 1}, {1, 2}, {2, 0}, {3, 3}}
   edges2 := [][2]int{{1, 6}, {1, 7}, {1, 8}, {2, 5}, {2, 7}, {2, 8},
       {3, 5}, {3, 6}, {3, 8}, {4, 5}, {4, 6}, {4, 7}}
   edges3 := [][2]int{{1, 4}, {1, 6}, {1, 8}, {3, 2}, {3, 6}, {3, 8},
       {5, 2}, {5, 4}, {5, 8}, {7, 2}, {7, 4}, {7, 6}}
   edges4 := [][2]int{{1, 6}, {7, 1}, {8, 1}, {5, 2}, {2, 7}, {2, 8},
       {3, 5}, {6, 3}, {3, 8}, {4, 5}, {4, 6}, {4, 7}}
   for j, fn := range fns {
       fmt.Println("Using the", titles[j], "algorithm:\n")
       for i, edges := range [][][2]int{edges1, edges2, edges3, edges4} {
           fmt.Println("  Example", i+1)
           g := newGraph(nns[i], starts[i])
           for _, e := range edges {
               g.addEdge(e[0], e[1])
           }
           cols := fn(g)
           ecount := 0 // counts edges
           for _, e := range edges {
               if e[0] != e[1] {
                   fmt.Printf("    Edge  %d-%d -> Color %d, %d\n", e[0], e[1],
                       cols[e[0]-g.st], cols[e[1]-g.st])
                   ecount++
               } else {
                   fmt.Printf("    Node  %d   -> Color %d\n", e[0], cols[e[0]-g.st])
               }
           }
           maxCol := 0 // maximum color number used
           for _, col := range cols {
               if col > maxCol {
                   maxCol = col
               }
           }
           fmt.Println("    Number of nodes  :", nns[i])
           fmt.Println("    Number of edges  :", ecount)
           fmt.Println("    Number of colors :", maxCol+1)
           fmt.Println()
       }
   }

}</lang>

Output:
Using the 'Greedy' algorithm:

  Example 1
    Edge  0-1 -> Color 0, 1
    Edge  1-2 -> Color 1, 2
    Edge  2-0 -> Color 2, 0
    Node  3   -> Color 0
    Number of nodes  : 4
    Number of edges  : 3
    Number of colors : 3

  Example 2
    Edge  1-6 -> Color 0, 1
    Edge  1-7 -> Color 0, 1
    Edge  1-8 -> Color 0, 1
    Edge  2-5 -> Color 0, 1
    Edge  2-7 -> Color 0, 1
    Edge  2-8 -> Color 0, 1
    Edge  3-5 -> Color 0, 1
    Edge  3-6 -> Color 0, 1
    Edge  3-8 -> Color 0, 1
    Edge  4-5 -> Color 0, 1
    Edge  4-6 -> Color 0, 1
    Edge  4-7 -> Color 0, 1
    Number of nodes  : 8
    Number of edges  : 12
    Number of colors : 2

  Example 3
    Edge  1-4 -> Color 0, 1
    Edge  1-6 -> Color 0, 2
    Edge  1-8 -> Color 0, 3
    Edge  3-2 -> Color 1, 0
    Edge  3-6 -> Color 1, 2
    Edge  3-8 -> Color 1, 3
    Edge  5-2 -> Color 2, 0
    Edge  5-4 -> Color 2, 1
    Edge  5-8 -> Color 2, 3
    Edge  7-2 -> Color 3, 0
    Edge  7-4 -> Color 3, 1
    Edge  7-6 -> Color 3, 2
    Number of nodes  : 8
    Number of edges  : 12
    Number of colors : 4

  Example 4
    Edge  1-6 -> Color 0, 1
    Edge  7-1 -> Color 1, 0
    Edge  8-1 -> Color 1, 0
    Edge  5-2 -> Color 1, 0
    Edge  2-7 -> Color 0, 1
    Edge  2-8 -> Color 0, 1
    Edge  3-5 -> Color 0, 1
    Edge  6-3 -> Color 1, 0
    Edge  3-8 -> Color 0, 1
    Edge  4-5 -> Color 0, 1
    Edge  4-6 -> Color 0, 1
    Edge  4-7 -> Color 0, 1
    Number of nodes  : 8
    Number of edges  : 12
    Number of colors : 2

Using the Welsh-Powell algorithm:

  Example 1
    Edge  0-1 -> Color 0, 1
    Edge  1-2 -> Color 1, 2
    Edge  2-0 -> Color 2, 0
    Node  3   -> Color 0
    Number of nodes  : 4
    Number of edges  : 3
    Number of colors : 3

  Example 2
    Edge  1-6 -> Color 0, 1
    Edge  1-7 -> Color 0, 1
    Edge  1-8 -> Color 0, 1
    Edge  2-5 -> Color 0, 1
    Edge  2-7 -> Color 0, 1
    Edge  2-8 -> Color 0, 1
    Edge  3-5 -> Color 0, 1
    Edge  3-6 -> Color 0, 1
    Edge  3-8 -> Color 0, 1
    Edge  4-5 -> Color 0, 1
    Edge  4-6 -> Color 0, 1
    Edge  4-7 -> Color 0, 1
    Number of nodes  : 8
    Number of edges  : 12
    Number of colors : 2

  Example 3
    Edge  1-4 -> Color 0, 1
    Edge  1-6 -> Color 0, 2
    Edge  1-8 -> Color 0, 3
    Edge  3-2 -> Color 1, 0
    Edge  3-6 -> Color 1, 2
    Edge  3-8 -> Color 1, 3
    Edge  5-2 -> Color 2, 0
    Edge  5-4 -> Color 2, 1
    Edge  5-8 -> Color 2, 3
    Edge  7-2 -> Color 3, 0
    Edge  7-4 -> Color 3, 1
    Edge  7-6 -> Color 3, 2
    Number of nodes  : 8
    Number of edges  : 12
    Number of colors : 4

  Example 4
    Edge  1-6 -> Color 0, 1
    Edge  7-1 -> Color 1, 0
    Edge  8-1 -> Color 1, 0
    Edge  5-2 -> Color 1, 0
    Edge  2-7 -> Color 0, 1
    Edge  2-8 -> Color 0, 1
    Edge  3-5 -> Color 0, 1
    Edge  6-3 -> Color 1, 0
    Edge  3-8 -> Color 0, 1
    Edge  4-5 -> Color 0, 1
    Edge  4-6 -> Color 0, 1
    Edge  4-7 -> Color 0, 1
    Number of nodes  : 8
    Number of edges  : 12
    Number of colors : 2

Julia

Uses a repeated randomization of node color ordering to seek a minimum number of colors needed. <lang julia>using Random

"""Useful constants for the colors to be selected for nodes of the graph""" const colors4 = ["blue", "red", "green", "yellow"] const badcolor = "black" @assert(!(badcolor in colors4))

"""

   struct graph

undirected simple graph constructed from its name and a string listing of point to point connections """ mutable struct Graph

   name::String
   g::Dict{Int, Vector{Int}}
   nodecolor::Dict{Int, String}
   function Graph(nam::String, s::String)
       gdic = Dict{Int, Vector{Int}}()
       for p in eachmatch(r"(\d+)-(\d+)|(\d+)(?!\s*-)" , s)
           if p != nothing
               if p[3] != nothing
                   n3 = parse(Int, p[3])
                   get!(gdic, n3, [])
               else
                   n1, n2 = parse(Int, p[1]), parse(Int, p[2])
                   p1vec = get!(gdic, n1, [])
                   !(n2 in p1vec) && push!(p1vec, n2)
                   p2vec = get!(gdic, n2, [])
                   !(n1 in p2vec) && push!(p2vec, n1)
               end
           end
       end
       new(nam, gdic, Dict{Int, String}())
   end

end

"""

   tryNcolors!(gr::Graph, N, maxtrials)

Try up to maxtrials to get a coloring with <= N colors """ function tryNcolors!(gr::Graph, N, maxtrials)

   t, mintrial, minord = N, N + 1, Dict()
   for _ in 1:maxtrials
       empty!(gr.nodecolor)
       ordering = shuffle(collect(keys(gr.g)))
       for node in ordering
           usedneighborcolors = [gr.nodecolor[c] for c in gr.g[node] if haskey(gr.nodecolor, c)]
           gr.nodecolor[node] = badcolor
           for c in colors4[1:N]
               if !(c in usedneighborcolors)
                   gr.nodecolor[node] = c
                   break
               end
           end
       end
       t = length(unique(values(gr.nodecolor)))
       if t < mintrial
           mintrial = t
           minord = deepcopy(gr.nodecolor)
       end
   end
   if length(minord) > 0
       gr.nodecolor = minord
   end

end


"""

   prettyprintcolors(gr::graph)

print out the colored nodes in graph """ function prettyprintcolors(gr::Graph)

   println("\nColors for the graph named ", gr.name, ":")
   edgesdone = Vector{Vector{Int}}()
   for (node, neighbors) in gr.g
       if !isempty(neighbors)
           for n in neighbors
               edge = node < n ? [node, n] : [n, node]
               if !(edge in edgesdone)
                   println("    ", edge[1], "-", edge[2], " Color: ",
                       gr.nodecolor[edge[1]], ", ", gr.nodecolor[edge[2]])
                   push!(edgesdone, edge)
               end
           end
       else
           println("    ", node, ": ", gr.nodecolor[node])
       end
   end
   println("\n", length(unique(keys(gr.nodecolor))), " nodes, ",
       length(edgesdone), " edges, ",
       length(unique(values(gr.nodecolor))), " colors.")

end

for (name, txt) in [("Ex1", "0-1 1-2 2-0 3"),

   ("Ex2", "1-6 1-7 1-8 2-5 2-7 2-8 3-5 3-6 3-8 4-5 4-6 4-7"),
   ("Ex3", "1-4 1-6 1-8 3-2 3-6 3-8 5-2 5-4 5-8 7-2 7-4 7-6"),
   ("Ex4", "1-6 7-1 8-1 5-2 2-7 2-8 3-5 6-3 3-8 4-5 4-6 4-7")]
   exgraph = Graph(name, txt)
   tryNcolors!(exgraph, 4, 100)
   prettyprintcolors(exgraph)

end

</lang>

Output:
Colors for the graph named Ex1:
    0-1 Color: red, blue
    0-2 Color: red, green
    1-2 Color: blue, green
    3: blue

4 nodes, 3 edges, 3 colors.

Colors for the graph named Ex2:
    1-7 Color: blue, red
    2-7 Color: blue, red
    4-7 Color: blue, red
    4-5 Color: blue, red
    4-6 Color: blue, red
    2-5 Color: blue, red
    2-8 Color: blue, red
    3-5 Color: blue, red
    3-6 Color: blue, red
    3-8 Color: blue, red
    1-8 Color: blue, red
    1-6 Color: blue, red

8 nodes, 12 edges, 2 colors.

Colors for the graph named Ex3:
    2-7 Color: red, blue
    4-7 Color: red, blue
    6-7 Color: red, blue
    1-4 Color: blue, red
    4-5 Color: red, blue
    2-3 Color: red, blue
    2-5 Color: red, blue
    3-6 Color: blue, red
    3-8 Color: blue, red
    1-8 Color: blue, red
    5-8 Color: blue, red
    1-6 Color: blue, red

8 nodes, 12 edges, 2 colors.

Colors for the graph named Ex4:
    1-7 Color: blue, red
    2-7 Color: blue, red
    4-7 Color: blue, red
    4-5 Color: blue, red
    4-6 Color: blue, red
    2-5 Color: blue, red
    2-8 Color: blue, red
    3-5 Color: blue, red
    3-6 Color: blue, red
    3-8 Color: blue, red
    1-8 Color: blue, red
    1-6 Color: blue, red

8 nodes, 12 edges, 2 colors.

Phix

Exhaustive search, trims search space to < best so far, newused improves on unique().
Many more examples/testing would be needed before I would trust this the tiniest bit. <lang Phix>-- demo\rosetta\Graph_colouring.exw constant tests = split(""" 0-1 1-2 2-0 3 1-6 1-7 1-8 2-5 2-7 2-8 3-5 3-6 3-8 4-5 4-6 4-7 1-4 1-6 1-8 3-2 3-6 3-8 5-2 5-4 5-8 7-2 7-4 7-6 1-6 7-1 8-1 5-2 2-7 2-8 3-5 6-3 3-8 4-5 4-6 4-7 ""","\n",true)

function colour(sequence nodes, links, colours, soln, integer best, next, used=0) -- fill/try each colours[next], recursing as rqd and saving any improvements. -- nodes/links are read-only here, colours is the main workspace, soln/best are -- the results, next is 1..length(nodes), and used is length(unique(colours)). -- On really big graphs I might consider making nodes..best static, esp colours, -- in which case you will probably also want a "colours[next] = 0" reset below.

   integer c = 1
   while c<best do
       bool avail = true
       for i=1 to length(links[next]) do
           if colours[links[next][i]]==c then
               avail = false
               exit
           end if
       end for
       if avail then
           colours[next] = c
           integer newused = used + (find(c,colours)==next)
           if next<length(nodes) then
               {best,soln} = colour(nodes,links,colours,soln,best,next+1,newused)
           elsif newused<best then
               {best,soln} = {newused,colours}
           end if
       end if
       c += 1
   end while
   return {best,soln}

end function

function add_node(sequence nodes, links, string n)

   integer rdx = find(n,nodes)
   if rdx=0 then
       nodes = append(nodes,n)
       links = append(links,{})
       rdx = length(nodes)
   end if
   return {nodes, links, rdx}

end function

for t=1 to length(tests) do

   string tt = tests[t]
   sequence lt = split(tt," "),
            nodes = {},
            links = {}
   integer linkcount = 0, left, right
   for l=1 to length(lt) do
       sequence ll = split(lt[l],"-")
       {nodes, links, left} = add_node(nodes,links,ll[1])
       if length(ll)=2 then
           {nodes, links, right} = add_node(nodes,links,ll[2])
           links[left] &= right
           links[right] &= left
           linkcount += 1
       end if
   end for
   integer ln = length(nodes)
   printf(1,"test%d: %d nodes, %d edges, ",{t,ln,linkcount})
   sequence colours = repeat(0,ln),
            soln = tagset(ln) -- fallback solution
   integer next = 1, best = ln
   printf(1,"%d colours:%v\n",colour(nodes,links,colours,soln,best,next))

end for</lang>

Output:
test1: 4 nodes, 3 edges, 3 colours:{1,2,3,1}
test2: 8 nodes, 12 edges, 2 colours:{1,2,2,2,1,2,1,1}
test3: 8 nodes, 12 edges, 2 colours:{1,2,2,2,1,2,1,1}
test4: 8 nodes, 12 edges, 2 colours:{1,2,2,2,2,1,1,1}

Python

<lang python>import re from collections import defaultdict from itertools import count


connection_re = r"""

   (?: (?P<N1>\d+) - (?P<N2>\d+) | (?P<N>\d+) (?!\s*-))
   """

class Graph:

   def __init__(self, name, connections):
       self.name = name
       self.connections = connections
       g = self.graph = defaultdict(list)  # maps vertex to direct connections
       matches = re.finditer(connection_re, connections,
                             re.MULTILINE | re.VERBOSE)
       for match in matches:
           n1, n2, n = match.groups()
           if n:
               g[n] += []
           else:
               g[n1].append(n2)    # Each the neighbour of the other
               g[n2].append(n1)
   def greedy_colour(self, order=None):
       "Greedy colourisation algo."
       if order is None:
           order = self.graph      # Choose something
       colour = self.colour = {}
       neighbours = self.graph
       for node in order:
           used_neighbour_colours = (colour[nbr] for nbr in neighbours[node]
                                     if nbr in colour)
           colour[node] = first_avail_int(used_neighbour_colours)
       self.pp_colours()
       return colour
   def pp_colours(self):
       print(f"\n{self.name}")
       c = self.colour
       e = canonical_edges = set()
       for n1, neighbours in sorted(self.graph.items()):
           if neighbours:
               for n2 in neighbours:
                   edge = tuple(sorted([n1, n2]))
                   if edge not in canonical_edges:
                       print(f"       {n1}-{n2}: Colour: {c[n1]}, {c[n2]}")
                       canonical_edges.add(edge)
           else:
               print(f"         {n1}: Colour: {c[n1]}")
       lc = len(set(c.values()))
       print(f"    #Nodes: {len(c)}\n    #Edges: {len(e)}\n  #Colours: {lc}")


def first_avail_int(data):

   "return lowest int 0... not in data"
   d = set(data)
   for i in count():
       if i not in d:
           return i


if __name__ == '__main__':

   for name, connections in [
           ('Ex1', "0-1 1-2 2-0 3"),
           ('Ex2', "1-6 1-7 1-8 2-5 2-7 2-8 3-5 3-6 3-8 4-5 4-6 4-7"),
           ('Ex3', "1-4 1-6 1-8 3-2 3-6 3-8 5-2 5-4 5-8 7-2 7-4 7-6"),
           ('Ex4', "1-6 7-1 8-1 5-2 2-7 2-8 3-5 6-3 3-8 4-5 4-6 4-7"),
           ]:
       g = Graph(name, connections)
       g.greedy_colour()</lang>
Output:
Ex1
       0-1: Colour: 0, 1
       0-2: Colour: 0, 2
       1-2: Colour: 1, 2
         3: Colour: 0
    #Nodes: 4
    #Edges: 3
  #Colours: 3

Ex2
       1-6: Colour: 0, 1
       1-7: Colour: 0, 1
       1-8: Colour: 0, 1
       2-5: Colour: 0, 1
       2-7: Colour: 0, 1
       2-8: Colour: 0, 1
       3-5: Colour: 0, 1
       3-6: Colour: 0, 1
       3-8: Colour: 0, 1
       4-5: Colour: 0, 1
       4-6: Colour: 0, 1
       4-7: Colour: 0, 1
    #Nodes: 8
    #Edges: 12
  #Colours: 2

Ex3
       1-4: Colour: 0, 1
       1-6: Colour: 0, 1
       1-8: Colour: 0, 1
       2-3: Colour: 1, 0
       2-5: Colour: 1, 0
       2-7: Colour: 1, 0
       3-6: Colour: 0, 1
       3-8: Colour: 0, 1
       4-5: Colour: 1, 0
       4-7: Colour: 1, 0
       5-8: Colour: 0, 1
       6-7: Colour: 1, 0
    #Nodes: 8
    #Edges: 12
  #Colours: 2

Ex4
       1-6: Colour: 0, 1
       1-7: Colour: 0, 1
       1-8: Colour: 0, 1
       2-5: Colour: 2, 0
       2-7: Colour: 2, 1
       2-8: Colour: 2, 1
       3-5: Colour: 2, 0
       3-6: Colour: 2, 1
       3-8: Colour: 2, 1
       4-5: Colour: 2, 0
       4-6: Colour: 2, 1
       4-7: Colour: 2, 1
    #Nodes: 8
    #Edges: 12
  #Colours: 3

Python dicts preserve insertion order and Ex2/Ex3 edges are traced in a similar way which could be the cause of exactly the same colours used for Ex2 and Ex3. The wp article must use an earlier version of Python/different ordering of edge definitions.

Ex4 changes the order of nodes enough to affect the number of colours used.

Raku

(formerly Perl 6) <lang perl6>#!/usr/bin/env perl6

sub GraphNodeColor(@RAW) {

  my %OneMany = my %NodeColor;
  for @RAW { %OneMany{$_[0]}.push: $_[1] ; %OneMany{$_[1]}.push: $_[0] }
  my @ColorPool = "0", "1" … ^+%OneMany.elems; # as string
  my %NodePool  = %OneMany.BagHash; # this DWIM is nice
  if %OneMany<NaN>:exists { %NodePool{$_}:delete for %OneMany<NaN>, NaN } # pending
  while %NodePool.Bool {
     my $color = @ColorPool.shift;
     my %TempPool = %NodePool;
     while (my \n = %TempPool.keys.sort.first) {
        %NodeColor{n} = $color;
        %TempPool{n}:delete;
        %TempPool{$_}:delete for @(%OneMany{n}) ; # skip neighbors as well
        %NodePool{n}:delete;
     }
  }
  if %OneMany<NaN>:exists { # islanders use an existing color
     %NodeColor{$_} = %NodeColor.values.sort.first for @(%OneMany<NaN>)
  }
  return %NodeColor

}

my \DATA = [

  [<0 1>,<1 2>,<2 0>,<3 NaN>,<4 NaN>,<5 NaN>],
  [<1 6>,<1 7>,<1 8>,<2 5>,<2 7>,<2 8>,<3 5>,<3 6>,<3 8>,<4 5>,<4 6>,<4 7>],
  [<1 4>,<1 6>,<1 8>,<3 2>,<3 6>,<3 8>,<5 2>,<5 4>,<5 8>,<7 2>,<7 4>,<7 6>],
  [<1 6>,<7 1>,<8 1>,<5 2>,<2 7>,<2 8>,<3 5>,<6 3>,<3 8>,<4 5>,<4 6>,<4 7>],

];

for DATA {

  say "DATA   : ", $_;
  say "Result : ";
  my %out = GraphNodeColor $_;
  say "$_[0]-$_[1]:\t Color %out{$_[0]} ",$_[1].isNaN??!!%out{$_[1]} for @$_;
  say "Nodes  : ", %out.keys.elems;
  say "Edges  : ", $_.elems;
  say "Colors : ", %out.values.Set.elems;

}</lang>

Output:
DATA   : [(0 1) (1 2) (2 0) (3 NaN) (4 NaN) (5 NaN)]
Result :
0-1:     Color 0 1
1-2:     Color 1 2
2-0:     Color 2 0
3-NaN:   Color 0
4-NaN:   Color 0
5-NaN:   Color 0
Nodes  : 6
Edges  : 6
Colors : 3
DATA   : [(1 6) (1 7) (1 8) (2 5) (2 7) (2 8) (3 5) (3 6) (3 8) (4 5) (4 6) (4 7)]
Result :
1-6:     Color 0 1
1-7:     Color 0 1
1-8:     Color 0 1
2-5:     Color 0 1
2-7:     Color 0 1
2-8:     Color 0 1
3-5:     Color 0 1
3-6:     Color 0 1
3-8:     Color 0 1
4-5:     Color 0 1
4-6:     Color 0 1
4-7:     Color 0 1
Nodes  : 8
Edges  : 12
Colors : 2
DATA   : [(1 4) (1 6) (1 8) (3 2) (3 6) (3 8) (5 2) (5 4) (5 8) (7 2) (7 4) (7 6)]
Result :
1-4:     Color 0 1
1-6:     Color 0 2
1-8:     Color 0 3
3-2:     Color 1 0
3-6:     Color 1 2
3-8:     Color 1 3
5-2:     Color 2 0
5-4:     Color 2 1
5-8:     Color 2 3
7-2:     Color 3 0
7-4:     Color 3 1
7-6:     Color 3 2
Nodes  : 8
Edges  : 12
Colors : 4
DATA   : [(1 6) (7 1) (8 1) (5 2) (2 7) (2 8) (3 5) (6 3) (3 8) (4 5) (4 6) (4 7)]
Result :
1-6:     Color 0 1
7-1:     Color 1 0
8-1:     Color 1 0
5-2:     Color 1 0
2-7:     Color 0 1
2-8:     Color 0 1
3-5:     Color 0 1
6-3:     Color 1 0
3-8:     Color 0 1
4-5:     Color 0 1
4-6:     Color 0 1
4-7:     Color 0 1
Nodes  : 8
Edges  : 12
Colors : 2

zkl

<lang zkl>fcn colorGraph(nodeStr){ // "0-1 1-2 2-0 3"

  numEdges,graph := 0,Dictionary();  // ( 0:(1,2), 1:L(0,2), 2:(1,0), 3:() )
  foreach n in (nodeStr.split(" ")){ // parse string to graph
     n=n - " ";
     if(n.holds("-")){

a,b := n.split("-"); // keep as string graph.appendV(a,b); graph.appendV(b,a); numEdges+=1;

     }
     else graph[n]=T;		// island
  }
  colors,colorPool := Dictionary(), ["A".."Z"].walk();
  graph.pump(Void,'wrap([(node,nbrs)]){  // ( "1",(0,2), "3",() )
     clrs:=colorPool.copy();	// all colors are available, then remove neighbours
     foreach i in (nbrs){ clrs.remove(colors.find(i)) }  // if nbr has color, color not available
     colors[node] = clrs[0];	// first available remaining color
  });
  return(graph,colors,numEdges)

}</lang> <lang zkl>fcn printColoredGraph(graphStr){

  graph,colors,numEdges := colorGraph(graphStr);
  nodes:=graph.keys.sort();
  println("Graph: ",graphStr);
  println("Node/color: ",
      nodes.pump(List,'wrap(v){ String(v,"/",colors[v]) }).concat(", "));
  println("Node : neighbours --> colors:");
  foreach node in (nodes){
     ns:=graph[node];
     println(node," : ",ns.concat(" "),"  -->  ",
             colors[node]," : ",ns.apply(colors.get).concat(" "));
  }
  println("Number nodes:  ",nodes.len());
  println("Number edges:  ",numEdges);
  println("Number colors: ",
      colors.values.pump(Dictionary().add.fp1(Void)).len());	// create set, count
  println();

}</lang>

Output:
Graph: 0-1 1-2 2-0 3
Node/color: 0/A, 1/B, 2/C, 3/A
Node : neighbours --> colors:
0 : 1 2  -->  A : B C
1 : 0 2  -->  B : A C
2 : 1 0  -->  C : B A
3 :   -->  A : 
Number nodes:  4
Number edges:  3
Number colors: 3

Graph: 1-6 1-7 1-8 2-5 2-7 2-8 3-5 3-6 3-8 4-5 4-6 4-7
Node/color: 1/A, 2/A, 3/A, 4/A, 5/B, 6/B, 7/B, 8/B
Node : neighbours --> colors:
1 : 6 7 8  -->  A : B B B
2 : 5 7 8  -->  A : B B B
3 : 5 6 8  -->  A : B B B
4 : 5 6 7  -->  A : B B B
5 : 2 3 4  -->  B : A A A
6 : 1 3 4  -->  B : A A A
7 : 1 2 4  -->  B : A A A
8 : 1 2 3  -->  B : A A A
Number nodes:  8
Number edges:  12
Number colors: 2

Graph: 1-4 1-6 1-8 3-2 3-6 3-8 5-2 5-4 5-8 7-2 7-4 7-6
Node/color: 1/A, 2/A, 3/B, 4/B, 5/C, 6/C, 7/D, 8/D
Node : neighbours --> colors:
1 : 4 6 8  -->  A : B C D
2 : 3 5 7  -->  A : B C D
3 : 2 6 8  -->  B : A C D
4 : 1 5 7  -->  B : A C D
5 : 2 4 8  -->  C : A B D
6 : 1 3 7  -->  C : A B D
7 : 2 4 6  -->  D : A B C
8 : 1 3 5  -->  D : A B C
Number nodes:  8
Number edges:  12
Number colors: 4

Graph: 1-6 7-1 8-1 5-2 2-7 2-8 3-5 6-3 3-8 4-5 4-6 4-7
Node/color: 1/A, 2/A, 3/A, 4/A, 5/B, 6/B, 7/B, 8/B
Node : neighbours --> colors:
1 : 6 7 8  -->  A : B B B
2 : 5 7 8  -->  A : B B B
3 : 5 6 8  -->  A : B B B
4 : 5 6 7  -->  A : B B B
5 : 2 3 4  -->  B : A A A
6 : 1 3 4  -->  B : A A A
7 : 1 2 4  -->  B : A A A
8 : 1 2 3  -->  B : A A A
Number nodes:  8
Number edges:  12
Number colors: 2