Continued fraction: Difference between revisions

From Rosetta Code
Content added Content deleted
(→‎{{header|Factor}}: Add Factor.)
Line 224: Line 224:


=={{header|Python}}==
=={{header|Python}}==
{{works with|Python|2.6+ and 3.x}}
<lang python># The continued Fraction
<lang python>from fractions import Fraction
try:
import itertools
zip = itertools.izip
except: pass

# The continued Fraction
def CF(a, b, t):
def CF(a, b, t):
terms = list(itertools.islice(zip(a, b), t))
if 0 < t:
a1 = next(a)
z = Fraction(1,1)
b1 = next(b)
for a, b in reversed(terms):
z = CF(a, b, t-1)
z = a + b / z
return (a1*z[0] + b1*z[1], z[0])
return z
return (1,1)


# Convert the continued fraction to a string
# Approximates a fraction to a string
def pRes(cf, d):
def pRes(x, d):
res = str(cf[0] // cf[1])
q, x = divmod(x, 1)
res = str(q)
res += "."
res += "."
x = cf[0] % cf[1]
for i in range(d):
while 0 < d:
x *= 10
x *= 10
res += str(x // cf[1])
q, x = divmod(x, 1)
x = x % cf[1]
res += str(q)
d -= 1
return res
return res


Line 248: Line 253:
def sqrt2_a():
def sqrt2_a():
yield 1
yield 1
while (True):
while True:
yield 2
yield 2


def sqrt2_b():
def sqrt2_b():
while (True):
while True:
yield 1
yield 1


Line 264: Line 269:
yield 2
yield 2
n = 1
n = 1
while (True):
while True:
yield n
yield n
n += 1
n += 1
Line 271: Line 276:
n=1
n=1
yield n
yield n
while (True):
while True:
yield n
yield n
n += 1
n += 1
Line 282: Line 287:
def Pi_a():
def Pi_a():
yield 3
yield 3
while (True):
while True:
yield 6
yield 6


def Pi_b():
def Pi_b():
x = 1
x = 1
while (True):
while True:
yield x*x
yield x*x
x += 2
x += 2

Revision as of 12:34, 1 March 2012

Continued fraction is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

A number may be represented as a continued fraction (see Mathworld for more information) as follows:

The task is to write a program which generates such a number and prints a real representation of it. The code should be tested by calculating and printing the square root of 2, Napier's Constant, and Pi.

For the square root of 2, is always . is then is .

For Napier's Constant, is , then is . is then is .

For Pi, is 3 then is always . is .

Ada

<lang Ada>with Ada.Text_IO; use Ada.Text_IO; procedure ContFract is

  type FormType is (Sqrt2, Napier, Pi);
  type Floaty is digits 15;
  package FIO is new Ada.Text_IO.Float_IO (Floaty);
  procedure GetCoefs (form : FormType; n : Natural;
     coefA : out Natural; coefB : out Natural)
  is begin
     case form is
        when Sqrt2 =>
           if n > 0 then coefA := 2; else coefA := 1; end if;
           coefB := 1;
        when Napier =>
           if n > 0 then coefA := n; else coefA := 2; end if;
           if n > 1 then coefB := n - 1; else coefB := 1; end if;
        when Pi =>
           if n > 0 then coefA := 6; else coefA := 3; end if;
           coefB := (2*n - 1)**2;
     end case;
  end GetCoefs;
  function Calc (form : FormType; n : Natural) return Floaty is
     A, B : Natural;
     Temp : Floaty := 0.0;
  begin
     for ni in reverse Natural range 1 .. n loop
        GetCoefs (form, ni, A, B);
        Temp := Floaty (B) / (Floaty (A) + Temp);
     end loop;
     GetCoefs (form, 0, A, B);
     return Floaty (A) + Temp;
  end Calc;

begin

  FIO.Put (Calc (Sqrt2, 200), Exp => 0); New_Line;
  FIO.Put (Calc (Napier, 200), Exp => 0); New_Line;
  FIO.Put (Calc (Pi, 200), Exp => 0); New_Line;

end ContFract; </lang>

Output:
 1.41421356237310
 2.71828182845905
 3.14159262280485

Factor

cfrac-estimate uses rational arithmetic and never truncates the intermediate result. When terms is large, cfrac-estimate runs slow because numerator and denominator grow big.

<lang factor>USING: arrays combinators io kernel locals math math.functions

 math.ranges prettyprint sequences ;

IN: rosetta.cfrac

! Every continued fraction must implement these two words. GENERIC: cfrac-a ( n cfrac -- a ) GENERIC: cfrac-b ( n cfrac -- b )

! square root of 2 SINGLETON: sqrt2 M: sqrt2 cfrac-a

   ! If n is 1, then a_n is 1, else a_n is 2.
   drop { { 1 [ 1 ] } [ drop 2 ] } case ;

M: sqrt2 cfrac-b

   ! Always b_n is 1.
   2drop 1 ;

! Napier's constant SINGLETON: napier M: napier cfrac-a

   ! If n is 1, then a_n is 2, else a_n is n - 1. 
   drop { { 1 [ 2 ] } [ 1 - ] } case ;

M: napier cfrac-b

   ! If n is 1, then b_n is 1, else b_n is n - 1.
   drop { { 1 [ 1 ] } [ 1 - ] } case ;

SINGLETON: pi M: pi cfrac-a

   ! If n is 1, then a_n is 3, else a_n is 6.
   drop { { 1 [ 3 ] } [ drop 6 ] } case ;

M: pi cfrac-b

   ! Always b_n is (n * 2 - 1)^2.
   drop 2 * 1 - 2 ^ ;
cfrac-estimate ( cfrac terms -- number )
   terms cfrac cfrac-a             ! top = last a_n
   terms 1 - 1 [a,b] [ :> n
       n cfrac cfrac-b swap /      ! top = b_n / top
       n cfrac cfrac-a +           ! top = top + a_n
   ] each ;
decimalize ( rational prec -- string )
   rational 1 /mod             ! split whole, fractional parts
   prec 10^ *                  ! multiply fraction by 10 ^ prec
   [ >integer unparse ] bi@    ! convert digits to strings
   :> fraction
   "."                         ! push decimal point
   prec fraction length -
   dup 0 < [ drop 0 ] when
   "0" <repetition> concat     ! push padding zeros
   fraction 4array concat ;

<PRIVATE

main ( -- )
   " Square root of 2: " write
   sqrt2 50 cfrac-estimate 30 decimalize print
   "Napier's constant: " write
   napier 50 cfrac-estimate 30 decimalize print
   "               Pi: " write
   pi 950 cfrac-estimate 10 decimalize print ;

PRIVATE>

MAIN: main</lang>

Output:
 Square root of 2: 1.414213562373095048801688724209
Napier's constant: 2.718281828459045235360287471352
               Pi: 3.1415926538

Go

<lang go>package main

import "fmt"

type cfTerm struct {

   a, b int

}

// follows subscript convention of mathworld and WP where there is no b(0). // cf[0].b is unused in this representation. type cf []cfTerm

func cfSqrt2(nTerms int) cf {

   f := make(cf, nTerms)
   for n := range f {
       f[n] = cfTerm{2, 1}
   }
   f[0].a = 1
   return f

}

func cfNap(nTerms int) cf {

   f := make(cf, nTerms)
   for n := range f {
       f[n] = cfTerm{n, n - 1}
   }
   f[0].a = 2
   f[1].b = 1
   return f

}

func cfPi(nTerms int) cf {

   f := make(cf, nTerms)
   for n := range f {
       g := 2*n - 1
       f[n] = cfTerm{6, g * g}
   }
   f[0].a = 3
   return f

}

func (f cf) real() (r float64) {

   for n := len(f) - 1; n > 0; n-- {
       r = float64(f[n].b) / (float64(f[n].a) + r)
   }
   return r + float64(f[0].a)

}

func main() {

   fmt.Println("sqrt2:", cfSqrt2(20).real())
   fmt.Println("nap:  ", cfNap(20).real())
   fmt.Println("pi:   ", cfPi(20).real())

}</lang>

Output:
sqrt2: 1.4142135623730965
nap:   2.7182818284590455
pi:    3.141623806667839

Haskell

<lang haskell>import Data.List (unfoldr) import Data.Char (intToDigit)

-- continued fraction represented as a (possibly infinite) list of pairs sqrt2, napier, myPi :: [(Integer, Integer)] sqrt2 = zip (1 : [2,2..]) [1,1..] napier = zip (2 : [1..]) (1 : [1..]) myPi = zip (3 : [6,6..]) (map (^2) [1,3..])

-- approximate a continued fraction after certain number of iterations approxCF :: (Integral a, Fractional b) => Int -> [(a, a)] -> b approxCF t =

 foldr (\(a,b) z -> fromIntegral a + fromIntegral b / z) 1 . take t

-- infinite decimal representation of a real number decString :: RealFrac a => a -> String decString frac = show i ++ '.' : decString' f where

 (i,f) = properFraction frac
 decString' = map intToDigit . unfoldr (Just . properFraction . (10*))

main :: IO () main = mapM_ (putStrLn . take 200 . decString .

             (approxCF 950 :: [(Integer, Integer)] -> Rational))
            [sqrt2, napier, myPi]</lang>
Output:
1.414213562373095048801688724209698078569671875376948073176679737990732478462107038850387534327641572735013846230912297024924836055850737212644121497099935831413222665927505592755799950501152782060571
2.718281828459045235360287471352662497757247093699959574966967627724076630353547594571382178525166427427466391932003059921817413596629043572900334295260595630738132328627943490763233829880753195251019
3.141592653297590947683406834261190738869139611505752231394089152890909495973464508817163306557131591579057202097715021166512662872910519439747609829479577279606075707015622200744006783543589980682386

Python

Works with: Python version 2.6+ and 3.x

<lang python>from fractions import Fraction try:

   import itertools
   zip = itertools.izip

except: pass

  1. The continued Fraction

def CF(a, b, t):

 terms = list(itertools.islice(zip(a, b), t))
 z = Fraction(1,1)
 for a, b in reversed(terms):
   z = a + b / z
 return z
  1. Approximates a fraction to a string

def pRes(x, d):

 q, x = divmod(x, 1)
 res = str(q)
 res += "."
 for i in range(d):
   x *= 10
   q, x = divmod(x, 1)
   res += str(q)
 return res
  1. Test the Continued Fraction for sqrt2

def sqrt2_a():

 yield 1
 while True:
   yield 2

def sqrt2_b():

 while True:
   yield 1

cf = CF(sqrt2_a(), sqrt2_b(), 950) print(pRes(cf, 200))

  1. 1.41421356237309504880168872420969807856967187537694807317667973799073247846210703885038753432764157273501384623091229702492483605585073721264412149709993583141322266592750559275579995050115278206057147


  1. Test the Continued Fraction for Napier's Constant

def Napier_a():

 yield 2
 n = 1
 while True:
   yield n
   n += 1

def Napier_b():

 n=1
 yield n
 while True:
   yield n
   n += 1

cf = CF(Napier_a(), Napier_b(), 950) print(pRes(cf, 200))

  1. 2.71828182845904523536028747135266249775724709369995957496696762772407663035354759457138217852516642742746639193200305992181741359662904357290033429526059563073813232862794349076323382988075319525101901
  1. Test the Continued Fraction for Pi

def Pi_a():

 yield 3
 while True:
   yield 6

def Pi_b():

 x = 1
 while True:
   yield x*x
   x += 2

cf = CF(Pi_a(), Pi_b(), 950) print(pRes(cf, 10))

  1. 3.1415926532</lang>