Birthday problem

From Rosetta Code
Revision as of 04:50, 4 June 2013 by rosettacode>NevilleDNZ (initial draft task)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

This page uses content from Wikipedia. The current wikipedia article is at Birthday Problem. The original RosettaCode article was extracted from the wikipedia article № 296054030 of 21:44, 12 June 2009 . The list of authors can be seen in the page history. As with Rosetta Code, the pre 5 June 2009 text of Wikipedia is available under the GNU FDL. (See links for details on variance)

Birthday problem is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.
Birthday problem is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

In probability theory, the birthday problem, or birthday paradox This is not a paradox in the sense of leading to a logical contradiction, but is called a paradox because the mathematical truth contradicts naïve intuition: most people estimate that the chance is much lower than 50%. pertains to the probability that in a set of randomly chosen people some pair of them will have the same birthday. In a group of at least 23 randomly chosen people, there is more than 50% probability that some pair of them will both have been born on the same day. For 57 or more people, the probability is more than 99%, and it reaches 100% when the number of people reaches 366 (by the pigeon hole principle, ignoring leap years). The mathematics behind this problem leads to a well-known cryptographic attack called the birthday attack.

Task:

Using simulation, estimate the number of independent people required in a groups before we can expect a better then even chance that at least 2 independent people in a group share a common birthday. Furthermore: Simulate and thus estimate when we can expect a better then even chance that at least 3, 4 & 5 independent people of the group share a common birthday. For simplicity assume that all of the people are alive...