Arithmetic coding/As a generalized change of radix

From Rosetta Code
Revision as of 13:41, 23 January 2016 by Trizen (talk | contribs) (Create new task)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Arithmetic coding/As a generalized change of radix is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

Arithmetic coding is a form of entropy encoding used in lossless data compression. Normally, a string of characters such as the words "hello there" is represented using a fixed number of bits per character, as in the ASCII code. When a string is converted to arithmetic encoding, frequently used characters will be stored with fewer bits and not-so-frequently occurring characters will be stored with more bits, resulting in fewer bits used in total. Arithmetic coding differs from other forms of entropy encoding, such as Huffman coding, in that rather than separating the input into component symbols and replacing each with a code, arithmetic coding encodes the entire message into a single number.

Task

Create a program which implements the arithmetic coding as a generalized change of radix.

Show the results, in base 10, for all the following strings:

  • "DABDDB"
  • "DABDDBBDDBA"
  • "ABRACADABRA"
  • "TOBEORNOTTOBEORTOBEORNOT"


Verify the implementation by decoding the results back into strings and checking for equality with the given strings.

Go

<lang go>package main

import (

   "fmt"
   "math/big"

)

func cumulative_freq(freq map[byte]int64) map[byte]int64 {

   total := int64(0)
   cf := make(map[byte]int64)
   for i := 0; i < 256; i++ {
       b := byte(i)
       if v, ok := freq[b]; ok {
           cf[b] = total
           total += v
       }
   }
   return cf

}

func arithmethic_coding(str string, radix int64) (*big.Int,

                               *big.Int, map[byte]int64) {
   // Convert the string into a slice of bytes
   chars := []byte(str)
   // The frequency characters
   freq := make(map[byte]int64)
   for _, c := range chars {
       freq[c] += 1
   }
   // The cumulative frequency
   cf := cumulative_freq(freq)
   // Base
   base := len(chars)
   // Lower bound
   L := big.NewInt(0)
   // Product of all frequencies
   pf := big.NewInt(1)
   // Each term is multiplied by the product of the
   // frequencies of all previously occurring symbols
   bigBase := big.NewInt(int64(base))
   bigLim := big.NewInt(int64(base - 1))
   for i := 0; i < base; i++ {
       bigI := big.NewInt(int64(i))
       diff := big.NewInt(0)
       diff.Sub(bigLim, bigI)
       pow := big.NewInt(0)
       pow.Exp(bigBase, diff, nil)
       x := big.NewInt(1)
       x.Mul(big.NewInt(cf[chars[i]]), pow)
       L.Add(L, x.Mul(x, pf))
       pf.Mul(pf, big.NewInt(freq[chars[i]]))
   }
   // Upper bound
   U := big.NewInt(0)
   U.Set(L)
   U.Add(U, pf)
   bigOne := big.NewInt(1)
   bigZero := big.NewInt(0)
   bigRadix := big.NewInt(radix)
   tmp := big.NewInt(0).Set(pf)
   powr := big.NewInt(0)
   for {
       tmp.Div(tmp, bigRadix)
       if tmp.Cmp(bigZero) == 0 {
           break
       }
       powr.Add(powr, bigOne)
   }
   diff := big.NewInt(0)
   diff.Sub(U, bigOne)
   diff.Div(diff, big.NewInt(0).Exp(bigRadix, powr, nil))
   return diff, powr, freq

}

func arithmethic_decoding(num *big.Int, radix int64,

         pow *big.Int, freq map[byte]int64) string {
   powr := big.NewInt(radix)
   enc := big.NewInt(0).Set(num)
   enc.Mul(enc, powr.Exp(powr, pow, nil))
   base := int64(0)
   for _, v := range freq {
       base += v
   }
   // Create the cumulative frequency table
   cf := cumulative_freq(freq)
   // Create the dictionary
   dict := make(map[int64]byte)
   for k, v := range cf {
       dict[v] = k
   }
   // Fill the gaps in the dictionary
   lchar := -1
   for i := int64(0); i < base; i++ {
       if v, ok := dict[i]; ok {
           lchar = int(v)
       } else if lchar != -1 {
           dict[i] = byte(lchar)
       }
   }
   // Decode the input number
   decoded := make([]byte, base)
   bigBase := big.NewInt(base)
   for i := base - 1; i >= 0; i-- {
       pow := big.NewInt(0)
       pow.Exp(bigBase, big.NewInt(i), nil)
       div := big.NewInt(0)
       div.Div(enc, pow)
       c := dict[div.Int64()]
       fv := freq[c]
       cv := cf[c]
       prod := big.NewInt(0).Mul(pow, big.NewInt(cv))
       diff := big.NewInt(0).Sub(enc, prod)
       enc.Div(diff, big.NewInt(fv))
       decoded[base-i-1] = c
   }
   // Return the decoded output
   return string(decoded)

}

func main() {

   var radix = int64(10)
   strSlice := []string{
       `DABDDB`,
       `DABDDBBDDBA`,
       `ABRACADABRA`,
       `TOBEORNOTTOBEORTOBEORNOT`,
   }
   for _, str := range strSlice {
       enc, pow, freq := arithmethic_coding(str, radix)
       dec := arithmethic_decoding(enc, radix, pow, freq)
       fmt.Printf("%-25s=> %19s * %d^%s\n", str, enc, radix, pow)
       if str != dec {
           panic("\tHowever that is incorrect!")
       }
   }

}</lang>

Output:
DABDDB                   =>                 251 * 10^2
DABDDBBDDBA              =>              167351 * 10^6
ABRACADABRA              =>             7954170 * 10^4
TOBEORNOTTOBEORTOBEORNOT => 1150764267498783364 * 10^15

Perl

<lang perl>use Math::BigInt (try => 'GMP');

sub cumulative_freq {

   my ($freq) = @_;
   my %cf;
   my $total = Math::BigInt->new(0);
   foreach my $c (map { chr } 0 .. 255) {
       if (exists $freq->{$c}) {
           $cf{$c} = $total;
           $total += $freq->{$c};
       }
   }
   return %cf;

}

sub arithmethic_coding {

   my ($str, $radix) = @_;
   my @chars = split(//, $str);
   # The frequency characters
   my %freq;
   $freq{$_}++ for @chars;
   # The cumulative frequency table
   my %cf = cumulative_freq(\%freq);
   # Limit and base
   my $lim  = Math::BigInt->new($#chars);
   my $base = $lim + 1;
   # Lower bound
   my $L = Math::BigInt->new(0);
   # Product of all frequencies
   my $pf = Math::BigInt->new(1);
   # Each term is multiplied by the product of the
   # frequencies of all previously occurring symbols
   for (my $i = 0 ; $i < $base ; $i++) {
       my $x = $cf{$chars[$i]} * $base**($lim - $i);
       $L->badd($x * $pf);
       $pf->bmul($freq{$chars[$i]});
   }
   # Upper bound
   my $U = $L + $pf;
   my $pow = Math::BigInt->new($pf)->blog($radix);
   my $enc = ($U - 1)->bdiv(Math::BigInt->new($radix)->bpow($pow));
   return ($enc, $pow, \%freq);

}

sub arithmethic_decoding {

   my ($enc, $radix, $pow, $freq) = @_;
   # Multiply enc by 10^pow
   $enc *= $radix**$pow;
   my $base = Math::BigInt->new(0);
   $base += $_ for values %{$freq};
   # Create the cumulative frequency table
   my %cf = cumulative_freq($freq);
   # Create the dictionary
   my %dict;
   while (my ($k, $v) = each %cf) {
       $dict{$v} = $k;
   }
   # Fill the gaps in the dictionary
   my $lchar;
   foreach my $i (0 .. $base - 1) {
       if (exists $dict{$i}) {
           $lchar = $dict{$i};
       }
       elsif (defined $lchar) {
           $dict{$i} = $lchar;
       }
   }
   # Decode the input number
   my $decoded = ;
   for (my $i = $base - 1 ; $i >= 0 ; $i--) {
       my $pow = $base**$i;
       my $div = ($enc / $pow);
       my $c  = $dict{$div};
       my $fv = $freq->{$c};
       my $cv = $cf{$c};
       my $rem = ($enc - $pow * $cv) / $fv;
       $enc = $rem;
       $decoded .= $c;
   }
   # Return the decoded output
   return $decoded;

}

my $radix = 10; # can be any integer greater or equal with 2

foreach my $str (qw(DABDDB DABDDBBDDBA ABRACADABRA TOBEORNOTTOBEORTOBEORNOT)) {

   my ($enc, $pow, $freq) = arithmethic_coding($str, $radix);
   my $dec = arithmethic_decoding($enc, $radix, $pow, $freq);
   printf("%-25s=> %19s * %d^%s\n", $str, $enc, $radix, $pow);
   if ($str ne $dec) {
       die "\tHowever that is incorrect!";
   }

}</lang>

Output:
DABDDB                   =>                 251 * 10^2
DABDDBBDDBA              =>              167351 * 10^6
ABRACADABRA              =>             7954170 * 10^4
TOBEORNOTTOBEORTOBEORNOT => 1150764267498783364 * 10^15

Sidef

<lang ruby>func cumulative_freq(freq) {

   var cf = Hash()
   var total = 0
   256.range.each { |b|
       if (freq.contains(b)) {
           cf{b} = total
           total += freq{b}
       }
   }
   return cf

}

func arithmethic_coding(bytes, radix=10) {

   # The frequency characters
   var freq = Hash()
   bytes.each { |c| freq{c} := 0 ++ }
   # The cumulative frequency table
   var cf = cumulative_freq(freq)
   # Limit and base
   var lim  = bytes.end
   var base = lim+1
   # Lower bound
   var L = 0
   # Product of all frequencies
   var pf = 1
   # Each term is multiplied by the product of the
   # frequencies of all previously occurring symbols
   base.range.each { |i|
       var x = (cf{bytes[i]} * base**(lim - i))
       L += x*pf
       pf *= freq{bytes[i]}
   }
   # Upper bound
   var U = L+pf
   var pow = pf.log(radix).int
   var enc = ((U-1) // radix**pow)
   return (enc, pow, freq)

}

func arithmethic_decoding(enc, radix, pow, freq) {

   # Multiply enc by 10^pow
   enc *= radix**pow;
   var base = 0
   freq.each_value { |v| base += v }
   # Create the cumulative frequency table
   var cf = cumulative_freq(freq);
   # Create the dictionary
   var dict = Hash()
   cf.each_kv { |k,v|
       dict{v} = k
   }
   # Fill the gaps in the dictionary
   var lchar = 
   base.range.each { |i|
       if (dict.contains(i)) {
           lchar = dict{i}
       }
       elsif (!lchar.is_empty) {
           dict{i} = lchar
       }
   }
   # Decode the input number
   var decoded = []
   base.range.reverse.each { |i|
       var pow = base**i;
       var div = enc//pow
       var c  = dict{div}
       var fv = freq{c}
       var cv = cf{c}
       var rem = ((enc - pow*cv) // fv)
       enc = rem
       decoded << c
   }
   # Return the decoded output
   return decoded

}

var radix = 10; # can be any integer greater or equal with 2

%w(DABDDB DABDDBBDDBA ABRACADABRA TOBEORNOTTOBEORTOBEORNOT).each { |str|

   var (enc, pow, freq) = arithmethic_coding(str.bytes, radix)
   var dec = arithmethic_decoding(enc, radix, pow, freq).join_bytes('UTF-8')
   printf("%-25s=> %19s * %d^%s\n", str, enc, radix, pow);
   if (str != dec) {
       die "\tHowever that is incorrect!"
   }

}</lang>

Output:
DABDDB                   =>                 251 * 10^2
DABDDBBDDBA              =>              167351 * 10^6
ABRACADABRA              =>             7954170 * 10^4
TOBEORNOTTOBEORTOBEORNOT => 1150764267498783364 * 10^15