Nth root
You are encouraged to solve this task according to the task description, using any language you may know.
- Task
Implement the algorithm to compute the principal nth root of a positive real number A, as explained at the Wikipedia page.
11l
<lang 11l>F nthroot(a, n)
V result = a V x = a / n L abs(result - x) > 10e-15 x = result result = (1.0 / n) * (((n - 1) * x) + (a / pow(x, n - 1))) R result
print(nthroot(34.0, 5)) print(nthroot(42.0, 10)) print(nthroot(5.0, 2))</lang>
- Output:
2.0244 1.4532 2.23607
360 Assembly
An example of converting integer floating-point using unnormalized short format. The 'include' file FORMAT, to format a floating point number, can be found in: Include files 360 Assembly. <lang 360asm>* Nth root - x**(1/n) - 29/07/2018 NTHROOT CSECT
USING NTHROOT,R13 base register B 72(R15) skip savearea DC 17F'0' savearea SAVE (14,12) save previous context ST R13,4(R15) link backward ST R15,8(R13) link forward LR R13,R15 set addressability BAL R14,ROOTN call rootn(x,n) LE F0,XN xn=rootn(x,n) LA R0,6 decimals=6 BAL R14,FORMATF edit xn MVC PG(13),0(R1) output xn XPRNT PG,L'PG print buffer L R13,4(0,R13) restore previous savearea pointer RETURN (14,12),RC=0 restore registers from calling sav
ROOTN MVC ZN,=E'0' zn=0 ----------------------------
MVC ZN,N n MVI ZN,X'46' zn=unnormalize(n) LE F0,ZN zn AE F0,=E'0' normalized STE F0,ZN zn=normalize(n) LE F6,=E'0' xm=0 LE F0,X x DE F0,ZN /zn STE F0,XN xn=x/zn
WHILEA LE F0,XN xn
SER F0,F6 xn-xm LPER F0,F0 abs((xn-xm) DE F0,XN /xn CE F0,EPSILON while abs((xn-xm)/xn)>epsilon BNH EWHILEA ~ LE F6,XN xm=xn LE F0,ZN zn SE F0,=E'1' zn-1 MER F0,F6 f0=(zn-1)*xm L R2,N n BCTR R2,0 n-1 LE F2,=E'1' xm
POW MER F2,F6 *xm
BCT R2,POW f2=xm**(n-1) LE F4,X x DER F4,F2 x/xm**(n-1) AER F0,F4 (zn-1)*xm+x/xm**(n-1) DE F0,ZN /zn STE F0,XN xn=((zn-1)*xm+x/xm**(n-1))/zn B WHILEA endwhile
EWHILEA LE F0,XN xn
BR R14 return --------------------------- COPY FORMATF format a float
X DC E'2' x <== input N DC F'2' n <== input EPSILON DC E'1E-6' imprecision XN DS E xn :: output ZN DS E zn=float(n) PG DC CL80' ' buffer
REGEQU END NTHROOT </lang>
- Output:
1.414213
AArch64 Assembly
<lang AArch64 Assembly> /* ARM assembly AARCH64 Raspberry PI 3B */ /* program nroot64.s */ /* link with gcc. Use C function for display float */
/*******************************************/ /* Constantes file */ /*******************************************/ /* for this file see task include a file in language AArch64 assembly*/ .include "../includeConstantesARM64.inc"
/*******************************************/ /* Initialized data */ /*******************************************/ .data szFormat1: .asciz "Root= %+09.15f\n" .align 4 qNumberA: .quad 1024 /*******************************************/ /* UnInitialized data */ /*******************************************/ .bss .align 4 /*******************************************/ /* code section */ /*******************************************/ .text .global main main: // entry of program
/* root 10ieme de 1024 */ ldr x0,qAdriNumberA // number address ldr d0,[x0] // load number in registre d0 scvtf d0,d0 // conversion in float mov x0,#10 // N bl nthRoot ldr x0,qAdrszFormat1 // format bl printf // call C function !!! // Attention register dn lost !!! /* square root of 2 */ fmov d0,2 // conversion 2 in float register d0 mov x0,#2 // N bl nthRoot ldr x0,qAdrszFormat1 // format // d0 contains résult bl printf // call C function !!!
100: // standard end of the program
mov x0, #0 // return code mov x8, #EXIT // request to exit program svc 0 // perform the system call
qAdrszFormat1: .quad szFormat1 qAdriNumberA: .quad qNumberA
/******************************************************************/ /* compute nth root */ /******************************************************************/ /* x0 contains N */ /* d0 contains the value */ /* x0 return result */ nthRoot:
stp x1,lr,[sp,-16]! // save registers stp x2,x3,[sp,-16]! // save registers stp d1,d2,[sp,-16]! // save float registers stp d3,d4,[sp,-16]! // save float registers stp d5,d6,[sp,-16]! // save float registers stp d7,d8,[sp,-16]! // save float registers fmov d6,x0 // scvtf d6,d6 // N conversion in float double précision (64 bits) sub x1,x0,#1 // N - 1 fmov d8,x1 // scvtf d4,d8 //conversion in float double précision fmov d2,d0 // a = A fdiv d3,d0,d6 // b = A/n adr x2,dfPrec // load précision ldr d8,[x2]
1: // begin loop
fmov d2,d3 // a <- b fmul d5,d3,d4 // (N-1)*b
fmov d1,1 // constante 1 -> float mov x2,0 // loop indice
2: // compute pow (n-1)
fmul d1,d1,d3 // add x2,x2,1 cmp x2,x1 // n -1 ? blt 2b // no -> loop fdiv d7,d0,d1 // A / b pow (n-1) fadd d7,d7,d5 // + (N-1)*b fdiv d3,d7,d6 // / N -> new b fsub d1,d3,d2 // compute gap fabs d1,d1 // absolute value fcmp d1,d8 // compare float maj FPSCR bgt 1b // if gap > précision -> loop fmov d0,d3 // end return result in d0
100:
ldp d7,d8,[sp],16 // restaur 2 float registers ldp d5,d6,[sp],16 // restaur 2 float registers ldp d3,d4,[sp],16 // restaur 2 float registers ldp d1,d2,[sp],16 // restaur 2 float registers ldp x2,x3,[sp],16 // restaur 2 registers ldp x1,lr,[sp],16 // restaur 2 registers ret // return to address lr x30
dfPrec: .double 0f1E-10 // précision /********************************************************/ /* File Include fonctions */ /********************************************************/ /* for this file see task include a file in language AArch64 assembly */ .include "../includeARM64.inc" </lang>
- Output:
Root= +2.000000000000000 Root= +1.414213562373095
Ada
The implementation is generic and supposed to work with any floating-point type. There is no result accuracy argument of Nth_Root, because the iteration is supposed to be monotonically descending to the root when starts at A. Thus it should converge when this condition gets violated, i.e. when xk+1≥xk. <lang Ada> with Ada.Text_IO; use Ada.Text_IO;
procedure Test_Nth_Root is
generic type Real is digits <>; function Nth_Root (Value : Real; N : Positive) return Real; function Nth_Root (Value : Real; N : Positive) return Real is type Index is mod 2; X : array (Index) of Real := (Value, Value); K : Index := 0; begin loop X (K + 1) := ( (Real (N) - 1.0) * X (K) + Value / X (K) ** (N-1) ) / Real (N); exit when X (K + 1) >= X (K); K := K + 1; end loop; return X (K + 1); end Nth_Root;
function Long_Nth_Root is new Nth_Root (Long_Float);
begin
Put_Line ("1024.0 10th =" & Long_Float'Image (Long_Nth_Root (1024.0, 10))); Put_Line (" 27.0 3rd =" & Long_Float'Image (Long_Nth_Root (27.0, 3))); Put_Line (" 2.0 2nd =" & Long_Float'Image (Long_Nth_Root (2.0, 2))); Put_Line ("5642.0 125th =" & Long_Float'Image (Long_Nth_Root (5642.0, 125)));
end Test_Nth_Root; </lang> Sample output:
1024.0 10th = 2.00000000000000E+00 27.0 3rd = 3.00000000000000E+00 2.0 2nd = 1.41421356237310E+00 5642.0 125th = 1.07154759194477E+00
ALGOL 68
<lang algol68>REAL default p = 0.001;
PROC nth root = (INT n, LONG REAL a, p)LONG REAL: (
[2]LONG REAL x := (a, a/n); WHILE ABS(x[2] - x[1]) > p DO x := (x[2], ((n-1)*x[2] + a/x[2]**(n-1))/n ) OD; x[2]
);
PRIO ROOT = 8; OP ROOT = (INT n, LONG REAL a)LONG REAL: nth root(n, a, default p); OP ROOT = (INT n, INT a)LONG REAL: nth root(n, a, default p);
main: (
printf(($2(" "gl)$, nth root(10, LONG 7131.5 ** 10, default p), nth root(5, 34, default p))); printf(($2(" "gl)$, 10 ROOT ( LONG 7131.5 ** 10 ), 5 ROOT 34))
)</lang> Output:
+7.131500000000000000001144390e +3 +2.024397462171090138953733623e +0 +7.131500000000000000001144390e +3 +2.024397462171090138953733623e +0
ALGOL W
<lang algolw>begin
% nth root algorithm % % returns the nth root of A, A must be > 0 % % the required precision should be specified in precision % long real procedure nthRoot( long real value A ; integer value n ; long real value precision ) ; begin long real xk, xd; integer n1; n1 := n - 1; xk := A / n; while begin xd := ( ( A / ( xk ** n1 ) ) - xk ) / n; xk := xk + xd; abs( xd ) > precision end do begin end; xk end nthRoot ; % test cases % r_format := "A"; r_w := 15; r_d := 6; % set output format % write( nthRoot( 7131.5 ** 10, 10, 1'-5 ) ); write( nthRoot( 64, 6, 1'-5 ) );
end.</lang>
- Output:
7131.500000 2.000000
ARM Assembly
<lang ARM Assembly> /* ARM assembly Raspberry PI */ /* program nroot.s */ /* compile with option -mfpu=vfpv3 -mfloat-abi=hard */ /* link with gcc. Use C function for display float */
/* Constantes */ .equ EXIT, 1 @ Linux syscall
/* Initialized data */ .data szFormat1: .asciz " %+09.15f\n" .align 4 iNumberA: .int 1024
/* UnInitialized data */ .bss .align 4
/* code section */ .text .global main main: @ entry of program
push {fp,lr} @ saves registers
/* root 10ieme de 1024 */ ldr r0,iAdriNumberA @ number address ldr r0,[r0] vmov s0,r0 @ vcvt.f64.s32 d0, s0 @conversion in float single précision (32 bits) mov r0,#10 @ N bl nthRoot ldr r0,iAdrszFormat1 @ format vmov r2,r3,d0 bl printf @ call C function !!! @ Attention register dn lost !!! /* square root of 2 */ vmov.f64 d1,#2.0 @ conversion 2 in float register d1 mov r0,#2 @ N bl nthRoot ldr r0,iAdrszFormat1 @ format vmov r2,r3,d0 bl printf @ call C function !!!
100: @ standard end of the program
mov r0, #0 @ return code pop {fp,lr} @restaur registers mov r7, #EXIT @ request to exit program swi 0 @ perform the system call
iAdrszFormat1: .int szFormat1 iAdriNumberA: .int iNumberA
/******************************************************************/ /* compute nth root */ /******************************************************************/ /* r0 contains N */ /* d0 contains the value */ /* d0 return result */ nthRoot:
push {r1,r2,lr} @ save registers vpush {d1-d8} @ save float registers FMRX r1,FPSCR @ copy FPSCR into r1 BIC r1,r1,#0x00370000 @ clears STRIDE and LEN FMXR FPSCR,r1 @ copy r1 back into FPSCR
vmov s2,r0 @ vcvt.f64.s32 d6, s2 @ N conversion in float double précision (64 bits) sub r1,r0,#1 @ N - 1 vmov s8,r1 @ vcvt.f64.s32 d4, s8 @conversion in float double précision (64 bits) vmov.f64 d2,d0 @ a = A vdiv.F64 d3,d0,d6 @ b = A/n adr r2,dfPrec @ load précision vldr d8,[r2]
1: @ begin loop
vmov.f64 d2,d3 @ a <- b vmul.f64 d5,d3,d4 @ (N-1)*b
vmov.f64 d1,#1.0 @ constante 1 -> float mov r2,#0 @ loop indice
2: @ compute pow (n-1)
vmul.f64 d1,d1,d3 @ add r2,#1 cmp r2,r1 @ n -1 ? blt 2b @ no -> loop vdiv.f64 d7,d0,d1 @ A / b pow (n-1) vadd.f64 d7,d7,d5 @ + (N-1)*b vdiv.f64 d3,d7,d6 @ / N -> new b vsub.f64 d1,d3,d2 @ compute gap vabs.f64 d1,d1 @ absolute value vcmp.f64 d1,d8 @ compare float maj FPSCR fmstat @ transfert FPSCR -> APSR @ or use VMRS APSR_nzcv, FPSCR bgt 1b @ if gap > précision -> loop vmov.f64 d0,d3 @ end return result in d0
100:
vpop {d1-d8} @ restaur float registers pop {r1,r2,lr} @ restaur arm registers bx lr
dfPrec: .double 0f1E-10 @ précision
</lang>
AutoHotkey
<lang autohotkey>p := 0.000001
MsgBox, % nthRoot( 10, 7131.5**10, p) "`n"
. nthRoot( 5, 34.0 , p) "`n" . nthRoot( 2, 2 , p) "`n" . nthRoot(0.5, 7 , p) "`n"
- ---------------------------------------------------------------------------
nthRoot(n, A, p) { ; http://en.wikipedia.org/wiki/Nth_root_algorithm
- ---------------------------------------------------------------------------
x1 := A x2 := A / n While Abs(x1 - x2) > p { x1 := x2 x2 := ((n-1)*x2+A/x2**(n-1))/n } Return, x2
}</lang> Message box shows:
7131.500000 2.024397 1.414214 49.000000
AutoIt
<lang AutoIt>;AutoIt Version: 3.2.10.0 $A=4913 $n=3 $x=20 ConsoleWrite ($n& " root of "& $A & " is " &nth_root_it($A,$n,$x)) ConsoleWrite ($n& " root of "& $A & " is " &nth_root_rec($A,$n,$x))
- Iterative
Func nth_root_it($A,$n,$x)
$x0="0" While StringCompare(string($x0),string($x)) ConsoleWrite ($x&@CRLF) $x0=$x $x=((($n-1)*$x)+($A/$x^($n-1)))/$n WEnd Return $x
EndFunc
- Recursive
Func nth_root_rec($A,$n,$x)
ConsoleWrite ($x&@CRLF) If $x==((($n-1)*$x)+($A/$x^($n-1)))/$n Then Return $x EndIf Return nth_root_rec($A,$n,((($n-1)*$x)+($A/$x^($n-1)))/$n)
EndFunc</lang> output :
20 17.4275 17.0104009124137 17.0000063582823 17.0000000000024 17 3 root of 4913 is 17
AWK
<lang awk>
- !/usr/bin/awk -f
BEGIN {
# test
print nthroot(8,3) print nthroot(16,2) print nthroot(16,4) print nthroot(125,3) print nthroot(3,3) print nthroot(3,2) }
function nthroot(y,n) {
eps = 1e-15; # relative accuracy x = 1;
do { d = ( y / ( x^(n-1) ) - x ) / n ; x += d; e = eps*x; # absolute accuracy } while ( d < -e || d > e )
return x } </lang>
Sample output:
2 4 2 5 1.44225 1.73205
BASIC
This function is fairly generic MS BASIC. It could likely be used in most modern BASICs with little or no change.
<lang qbasic>FUNCTION RootX (tBase AS DOUBLE, tExp AS DOUBLE, diffLimit AS DOUBLE) AS DOUBLE
DIM tmp1 AS DOUBLE, tmp2 AS DOUBLE ' Initial guess: tmp1 = tBase / tExp DO tmp2 = tmp1 ' 1# tells compiler that "1" is a double, not an integer tmp1 = (((tExp - 1#) * tmp2) + (tBase / (tmp2 ^ (tExp - 1#)))) / tExp LOOP WHILE (ABS(tmp1 - tmp2) > diffLimit) RootX = tmp1
END FUNCTION</lang>
Note that for the above to work in QBasic, the function definition needs to be changed like so: <lang qbasic>FUNCTION RootX# (tBase AS DOUBLE, tExp AS DOUBLE, diffLimit AS DOUBLE)</lang>
The function is called like so:
<lang qbasic>PRINT "The "; e; "th root of "; b; " is "; RootX(b, e, .000001)</lang>
Sample output:
The 4th root of 16 is 2
For BASICs without the ^ operator, it would be trivial to write a function to reproduce it (as is done in the C example below).
See also the Liberty BASIC and PureBasic solutions.
Basic09
<lang Basic09> PROCEDURE nth
PARAM N : INTEGER; A, P : REAL DIM TEMP0, TEMP1 : REAL
TEMP0 := A TEMP1 := A/N WHILE ( abs(TEMP0 - TEMP1) > P) DO
TEMP0 := TEMP1 TEMP1 := (( N - 1.0) * TEMP1 + A / TEMP1 ^ (N - 1.0)) / N
ENDWHILE PRINT "Root Number Precision" PRINT N, A, P PRINT "The Root is: ";TEMP1 END </lang>
BBC BASIC
<lang bbcbasic> *FLOAT 64
@% = &D0D PRINT "Cube root of 5 is "; FNroot(3, 5, 0) PRINT "125th root of 5643 is "; FNroot(125, 5643, 0) END DEF FNroot(n%, a, d) LOCAL x0, x1 : x0 = a / n% : REM Initial guess REPEAT x1 = ((n% - 1)*x0 + a/x0^(n%-1)) / n% SWAP x0, x1 UNTIL ABS (x0 - x1) <= d = x0</lang>
Output:
Cube root of 5 is 1.709975946677 125th root of 5643 is 1.071549111198
bc
<lang bc>/* Take the nth root of 'a' (a positive real number).
* 'n' must be an integer. * Result will have 'd' digits after the decimal point. */
define r(a, n, d) {
auto e, o, x, y, z
if (n == 0) return(1) if (a == 0) return(0)
o = scale scale = d e = 1 / 10 ^ d
if (n < 0) { n = -n a = 1 / a }
x = 1 while (1) { y = ((n - 1) * x + a / x ^ (n - 1)) / n z = x - y if (z < 0) z = -z if (z < e) break x = y } scale = o return(y)
}</lang>
Bracmat
Bracmat does not have floating point numbers as primitive type. Instead we have to use rational numbers. This code is not fast! <lang bracmat>( ( root
= n a d x0 x1 d2 rnd 10-d . ( rnd { For 'rounding' rational numbers = keep number of digits within bounds. } = N r . !arg:(?N.?r) & div$(!N*!r+1/2.1)*!r^-1 ) & !arg:(?n,?a,?d) & !a*!n^-1:?x0 & 10^(-1*!d):?10-d & whl ' ( ( rnd$(((!n+-1)*!x0+!a*!x0^(1+-1*!n))*!n^-1.10^!d) . !x0 ) : (?x0.?x1) & (!x0+-1*!x1)^2:~<!10-d { Exit loop when required precision is reached. } ) & flt$(!x0,!d) { Convert rational number to floating point representation. } )
& ( show
= N A precision . !arg:(?N,?A,?precision) & out$(str$(!A "^(" !N^-1 ")=" root$(!N,!A,!precision))) )
& show$(10,1024,20) & show$(3,27,20) & show$(2,2,100) & show$(125,5642,20) )</lang> Output:
1024^(1/10)=2,00000000000000000000*10E0 27^(1/3)=3,00000000000000000000*10E0 2^(1/2)=1,4142135623730950488016887242096980785696718753769480731766797379907324784621070388503875343276415727*10E0 5642^(1/125)=1,07154759194476751170*10E0
C
Implemented without using math library, because if we were to use pow()
, the whole exercise wouldn't make sense.
<lang c>#include <stdio.h>
- include <float.h>
double pow_ (double x, int e) {
int i; double r = 1; for (i = 0; i < e; i++) { r *= x; } return r;
}
double root (int n, double x) {
double d, r = 1; if (!x) { return 0; } if (n < 1 || (x < 0 && !(n&1))) { return 0.0 / 0.0; /* NaN */ } do { d = (x / pow_(r, n - 1) - r) / n; r += d; } while (d >= DBL_EPSILON * 10 || d <= -DBL_EPSILON * 10); return r;
}
int main () {
int n = 15; double x = pow_(-3.14159, 15); printf("root(%d, %g) = %g\n", n, x, root(n, x)); return 0;
} </lang>
C#
Almost exactly how C works. <lang csharp> static void Main(string[] args) { Console.WriteLine(NthRoot(81,2,.001));
Console.WriteLine(NthRoot(1000,3,.001)); Console.ReadLine();
}
public static double NthRoot(double A,int n, double p) { double _n= (double) n; double[] x = new double[2]; x[0] = A; x[1] = A/_n; while(Math.Abs(x[0] -x[1] ) > p) { x[1] = x[0]; x[0] = (1/_n)*(((_n-1)*x[1]) + (A/Math.Pow(x[1],_n-1)));
} return x[0]; } </lang>
C++
<lang cpp>double NthRoot(double m_nValue, double index, double guess, double pc)
{ double result = guess; double result_next; do { result_next = (1.0/index)*((index-1.0)*result+(m_nValue)/(pow(result,(index-1.0)))); result = result_next; pc--; }while(pc>1); return result; };
</lang>
<lang cpp>double NthRoot(double value, double degree) {
return pow(value, (double)(1 / degree));
}; </lang>
Clojure
<lang clojure> (ns test-project-intellij.core
(:gen-class))
- define abs & power to avoid needing to bring in the clojure Math library
(defn abs [x]
" Absolute value" (if (< x 0) (- x) x))
(defn power [x n]
" x to power n, where n = 0, 1, 2, ... " (apply * (repeat n x)))
(defn calc-delta [A x n]
" nth rooth algorithm delta calculation " (/ (- (/ A (power x (- n 1))) x) n))
(defn nth-root
" nth root of algorithm: A = numer, n = root" ([A n] (nth-root A n 0.5 1.0)) ; Takes only two arguments A, n and calls version which takes A, n, guess-prev, guess-current ([A n guess-prev guess-current] ; version take takes in four arguments (A, n, guess-prev, guess-current) (if (< (abs (- guess-prev guess-current)) 1e-6) guess-current (recur A n guess-current (+ guess-current (calc-delta A guess-current n)))))) ; iterate answer using tail recursion
</lang>
COBOL
IDENTIFICATION DIVISION. PROGRAM-ID. Nth-Root. AUTHOR. Bill Gunshannon. INSTALLATION. DATE-WRITTEN. 4 Feb 2020. ************************************************************ ** Program Abstract: ** Compute the Nth Root of a positive real number. ** ** Takes values from console. If Precision is left ** blank defaults to 0.001. ** ** Enter 0 for first value to terminate program. ************************************************************ ENVIRONMENT DIVISION. INPUT-OUTPUT SECTION. FILE-CONTROL. SELECT Root-File ASSIGN TO "Root-File" ORGANIZATION IS LINE SEQUENTIAL. DATA DIVISION. FILE SECTION. FD Root-File DATA RECORD IS Parameters. 01 Parameters. 05 Root PIC 9(5). 05 Num PIC 9(5)V9(5). 05 Precision PIC 9V9(9).
WORKING-STORAGE SECTION. 01 TEMP0 PIC 9(9)V9(9). 01 TEMP1 PIC 9(9)V9(9). 01 RESULTS. 05 Field1 PIC ZZZZZ.ZZZZZ. 05 FILLER PIC X(5). 05 Field2 PIC ZZZZ9. 05 FILLER PIC X(14). 05 Field3 PIC 9.999999999.
01 HEADER. 05 FILLER PIC X(72) VALUE " Number Root Precision.". 01 Disp-Root PIC ZZZZZ.ZZZZZ. PROCEDURE DIVISION. Main-Program. PERFORM FOREVER PERFORM Get-Input IF Precision = 0.0 THEN MOVE 0.001 to Precision END-IF
PERFORM Compute-Root
MOVE Root TO Field2 MOVE Num TO Field1 MOVE Precision TO Field3 DISPLAY HEADER DISPLAY RESULTS DISPLAY " " MOVE TEMP1 TO Disp-Root DISPLAY "The Root is: " Disp-Root END-PERFORM. Get-Input. DISPLAY "Input Base Number: " WITH NO ADVANCING ACCEPT Num IF Num EQUALS ZERO THEN DISPLAY "Good Bye." STOP RUN END-IF DISPLAY "Input Root: " WITH NO ADVANCING ACCEPT Root DISPLAY "Input Desired Precision: " WITH NO ADVANCING ACCEPT Precision.
Compute-Root. MOVE Root TO TEMP0 DIVIDE Num BY Root GIVING TEMP1
PERFORM UNTIL FUNCTION ABS(TEMP0 - TEMP1) LESS THAN Precision MOVE TEMP1 TO TEMP0 COMPUTE TEMP1 = (( Root - 1.0) * TEMP1 + Num / TEMP1 ** (Root - 1.0)) / Root END-PERFORM. END-PROGRAM.
</lang>
- Output:
Input Base Number: 25.0 Input Root: 2 Input Desired Precision: 0.0001 Root Number Precision. 25.00000 2 0.000100000 The Root is: 5.00000 Input Base Number: 5642.0 Input Root: 125 Input Desired Precision: Root Number Precision. 5642.00000 125 0.001000000 The Root is: 1.07155 Input Base Number: 0 Good Bye.
CoffeeScript
<lang coffeescript> nth_root = (A, n, precision=0.0000000000001) ->
x = 1 while true x_new = (1 / n) * ((n - 1) * x + A / Math.pow(x, n - 1)) return x_new if Math.abs(x_new - x) < precision x = x_new
- tests
do ->
tests = [ [8, 3] [16, 4] [32, 5] [343, 3] [1024, 10] [1000000000, 3] [1000000000, 9] [100, 2] [100, 3] [100, 5] [100, 10] ] for test in tests [x, n] = test root = nth_root x, n console.log "#{x} root #{n} = #{root} (root^#{n} = #{Math.pow root, n})"
</lang> output <lang> > coffee nth_root.coffee 8 root 3 = 2 (root^3 = 8) 16 root 4 = 2 (root^4 = 16) 32 root 5 = 2 (root^5 = 32) 343 root 3 = 7 (root^3 = 343) 1024 root 10 = 2 (root^10 = 1024) 1000000000 root 3 = 1000 (root^3 = 1000000000) 1000000000 root 9 = 10 (root^9 = 1000000000) 100 root 2 = 10 (root^2 = 100) 100 root 3 = 4.641588833612778 (root^3 = 99.99999999999997) 100 root 5 = 2.5118864315095806 (root^5 = 100.0000000000001) 100 root 10 = 1.5848931924611134 (root^10 = 99.99999999999993) </lang>
Common Lisp
This version does not check for cycles in xi and xi+1, but finishes when the difference between them drops below ε. The initial guess can be provided, but defaults to n-1.
<lang lisp>(defun nth-root (n a &optional (epsilon .0001) (guess (1- n)))
(assert (and (> n 1) (> a 0))) (flet ((next (x) (/ (+ (* (1- n) x) (/ a (expt x (1- n)))) n))) (do* ((xi guess xi+1) (xi+1 (next xi) (next xi))) ((< (abs (- xi+1 xi)) epsilon) xi+1))))</lang>
nth-root
may return rationals rather than floating point numbers, so easy checking for correctness may require coercion to floats. For instance,
<lang lisp>(let* ((r (nth-root 3 10))
(rf (coerce r 'float))) (print (* r r r )) (print (* rf rf rf)))</lang>
produces the following output.
1176549099958810982335712173626176/117654909634627320192156007194483 10.0
D
<lang d>import std.stdio, std.math;
real nthroot(in int n, in real A, in real p=0.001) pure nothrow {
real[2] x = [A, A / n]; while (abs(x[1] - x[0]) > p) x = [x[1], ((n - 1) * x[1] + A / (x[1] ^^ (n-1))) / n]; return x[1];
}
void main() {
writeln(nthroot(10, 7131.5 ^^ 10)); writeln(nthroot(6, 64));
}</lang>
- Output:
7131.5 2
Delphi
<lang delphi> USES
Math;
function NthRoot(A, Precision: Double; n: Integer): Double; var
x_p, X: Double;
begin
x_p := Sqrt(A); while Abs(A - Power(x_p, n)) > Precision do begin x := (1/n) * (((n-1) * x_p) + (A/(Power(x_p, n - 1)))); x_p := x; end; Result := x_p;
end; </lang>
E
Rather than choosing an arbitrary precision, this implementation continues until a cycle in the iterated result is found, thus producing an answer almost as precise as the number type.
(Disclaimer: This was not written by a numerics expert; there may be reasons this is a bad idea. Also, it might be that cycles are always of length 2, which would reduce the amount of calculation needed by 2/3.)
<lang e>def nthroot(n, x) {
require(n > 1 && x > 0) def np := n - 1 def iter(g) { return (np*g + x/g**np) / n } var g1 := x var g2 := iter(g1) while (!(g1 <=> g2)) { g1 := iter(g1) g2 := iter(iter(g2)) } return g1
}</lang>
EasyLang
<lang>func power x n . r .
r = 1 for i range n r *= x .
. func nth_root x n . r .
r = 2 repeat call power r n - 1 p d = (x / p - r) / n r += d until abs d < 0.0001 .
. call power 3.1416 10 x call nth_root x 10 r fscale 4 print r</lang>
Elixir
<lang elixir>defmodule RC do
def nth_root(n, x, precision \\ 1.0e-5) do f = fn(prev) -> ((n - 1) * prev + x / :math.pow(prev, (n-1))) / n end fixed_point(f, x, precision, f.(x)) end defp fixed_point(_, guess, tolerance, next) when abs(guess - next) < tolerance, do: next defp fixed_point(f, _, tolerance, next), do: fixed_point(f, next, tolerance, f.(next))
end
Enum.each([{2, 2}, {4, 81}, {10, 1024}, {1/2, 7}], fn {n, x} ->
IO.puts "#{n} root of #{x} is #{RC.nth_root(n, x)}"
end)</lang>
- Output:
2 root of 2 is 1.4142135623746899 4 root of 81 is 3.0 10 root of 1024 is 2.00000000022337 0.5 root of 7 is 48.99999999999993
Erlang
Done by finding the fixed point of a function, which aims to find a value of x for which f(x)=x: <lang erlang>fixed_point(F, Guess, Tolerance) ->
fixed_point(F, Guess, Tolerance, F(Guess)).
fixed_point(_, Guess, Tolerance, Next) when abs(Guess - Next) < Tolerance ->
Next;
fixed_point(F, _, Tolerance, Next) ->
fixed_point(F, Next, Tolerance, F(Next)).</lang>
The nth root function algorithm defined on the wikipedia page linked above can advantage of this: <lang erlang>nth_root(N, X) -> nth_root(N, X, 1.0e-5). nth_root(N, X, Precision) ->
F = fun(Prev) -> ((N - 1) * Prev + X / math:pow(Prev, (N-1))) / N end, fixed_point(F, X, Precision).</lang>
Excel
This will work in any spreadsheet that uses Excel-compatible expressions -- i.e. KOffice's KCells (formerly KSpread), Calligra Tables, and OpenOffice.org Calc.
Beside the obvious; <lang Excel>=A1^(1/B1)</lang>
- Cell A1 is the base.
- Cell B1 is the exponent.
- Cell A2 is the first guess (any non-zero number will do).
In cell A3, enter this formula:
=((($B$1-1)*A2)+($A$1/(A2^($B$1-1))))/$B$1
Copy A3 down until you get 2 cells with the same value. (Once there are two visibly-identical cells, all cells below those two will also be identical.)
For example, here we calculate the cube root of 100:
A | B | |
1 | 100 | 3 |
2 | 7 | (first guess) |
3 | 5.346938776 | |
4 | 4.730544697 | |
5 | 4.643251125 | |
6 | 4.641589429 | |
7 | 4.641588834 | |
8 | 4.641588834 |
Alternately, Excel could use the BASIC example above as VBA code, deleting A2 and replacing A3's formula with something like this:
=RootX(A1,B1,.00000001)
F#
<lang fsharp> let nthroot n A =
let rec f x = let m = n - 1. let x' = (m * x + A/x**m) / n match abs(x' - x) with | t when t < abs(x * 1e-9) -> x' | _ -> f x' f (A / double n)
[<EntryPoint>] let main args =
if args.Length <> 2 then eprintfn "usage: nthroot n A" exit 1 let (b, n) = System.Double.TryParse(args.[0]) let (b', A) = System.Double.TryParse(args.[1]) if (not b) || (not b') then eprintfn "error: parameter must be a number" exit 1 printf "%A" (nthroot n A) 0
</lang>
Compiled using fsc nthroot.fs example output:
nthroot 0.5 7 49.0
Factor
<lang factor>USING: kernel locals math math.functions prettyprint ;
- th-root ( a n -- a^1/n )
a [ a over n 1 - ^ /f over n 1 - * + n /f swap over 1e-5 ~ not ] loop ;
34 5 th-root . ! 2.024397458499888 34 5 recip ^ . ! 2.024397458499888</lang>
Forth
<lang forth>: th-root { F: a F: n -- a^1/n }
a begin a fover n 1e f- f** f/ fover n 1e f- f* f+ n f/ fswap fover 1e-5 f~ until ;
34e 5e th-root f. \ 2.02439745849989 34e 5e 1/f f** f. \ 2.02439745849989</lang>
Fortran
<lang fortran>program NthRootTest
implicit none
print *, nthroot(10, 7131.5**10) print *, nthroot(5, 34.0)
contains
function nthroot(n, A, p) real :: nthroot integer, intent(in) :: n real, intent(in) :: A real, intent(in), optional :: p
real :: rp, x(2)
if ( A < 0 ) then stop "A < 0" ! we handle only real positive numbers elseif ( A == 0 ) then nthroot = 0 return end if
if ( present(p) ) then rp = p else rp = 0.001 end if
x(1) = A x(2) = A/n ! starting "guessed" value...
do while ( abs(x(2) - x(1)) > rp ) x(1) = x(2) x(2) = ((n-1.0)*x(2) + A/(x(2) ** (n-1.0)))/real(n) end do
nthroot = x(2)
end function nthroot
end program NthRootTest</lang>
FreeBASIC
<lang freebasic>' version 14-01-2019 ' compile with: fbc -s console
Function nth_root(n As Integer, number As Double) As Double
Dim As Double a1 = number / n, a2 , a3
Do a3 = Abs(a2 - a1) a2 = ((n -1) * a1 + number / a1 ^ (n -1)) / n Swap a1, a2 Loop Until Abs(a2 - a1) = a3
Return a1
End Function
' ------=< MAIN >=------
Dim As UInteger n Dim As Double tmp
Print Print " n 5643 ^ 1 / n nth_root ^ n" Print " ------------------------------------" For n = 3 To 11 Step 2
tmp = nth_root(n, 5643) Print Using " ### ###.######## ####.########"; n; tmp; tmp ^ n
Next
Print For n = 25 To 125 Step 25
tmp = nth_root(n, 5643) Print Using " ### ###.######## ####.########"; n; tmp; tmp ^ n
Next
' empty keyboard buffer While Inkey <> "" : Wend Print : Print "hit any key to end program" Sleep End</lang>
- Output:
n 5643 ^ 1 / n nth_root ^ n ------------------------------------ 3 17.80341642 5643.00000000 5 5.62732516 5643.00000000 7 3.43502583 5643.00000000 9 2.61116581 5643.00000000 11 2.19303907 5643.00000000 25 1.41273402 5643.00000000 50 1.18858488 5643.00000000 75 1.12207047 5643.00000000 100 1.09022240 5643.00000000 125 1.07154911 5643.00000000
FutureBasic
<lang futurebasic> include "ConsoleWindow"
def tab 8
local fn NthRoot( root as long, a as long, precision as double ) as double dim as double x0, x1
x0 = a : x1 = a /root while ( abs( x1 - x0 ) > precision ) x0 = x1 x1 = ( ( root -1.0 ) * x1 + a / x1 ^ ( root -1.0 ) ) /root wend end fn = x1
print " 125th Root of 5643 Precision .001", using "#.###############"; fn NthRoot( 125, 5642, 0.001 ) print " 125th Root of 5643 Precision .001", using "#.###############"; fn NthRoot( 125, 5642, 0.001 ) print " 125th Root of 5643 Precision .00001", using "#.###############"; fn NthRoot( 125, 5642, 0.00001 ) print " Cube Root of 27 Precision .00001", using "#.###############"; fn NthRoot( 3, 27, 0.00001 ) print "Square Root of 2 Precision .00001", using "#.###############"; fn NthRoot( 2, 2, 0.00001 ) print "Square Root of 2 Precision .00001", using "#.###############"; sqr(2) // Processor floating point calc deviation print " 10th Root of 1024 Precision .00001", using "#.###############"; fn NthRoot( 10, 1024, 0.00001 ) print " 5th Root of 34 Precision .00001", using "#.###############"; fn NthRoot( 5, 34, 0.00001 ) </lang> Output:
125th Root of 5643 Precision .001 1.071559602191682 125th Root of 5643 Precision .001 1.071559602191682 125th Root of 5643 Precision .00001 1.071547591944772 Cube Root of 27 Precision .00001 3.000000000000002 Square Root of 2 Precision .00001 1.414213562374690 Square Root of 2 Precision .00001 1.414213562373095 10th Root of 1024 Precision .00001 2.000000000000000 5th Root of 34 Precision .00001 2.024397458499885
Go
<lang go>func root(a float64, n int) float64 {
n1 := n - 1 n1f, rn := float64(n1), 1/float64(n) x, x0 := 1., 0. for { potx, t2 := 1/x, a for b := n1; b > 0; b >>= 1 { if b&1 == 1 { t2 *= potx } potx *= potx } x0, x = x, rn*(n1f*x+t2) if math.Abs(x-x0)*1e15 < x { break } } return x
}</lang>
The above version is for 64 bit wide floating point numbers. The following uses `math/big` Float to implement this same function with 256 bits of precision.
A set of wrapper functions around the somewhat muddled big math library functions is used to make the main function more readable, and also it was necessary to create a power function (Exp) as the library also lacks this function. The exponent in the limit must be at least one less than the number of bits of precision of the input value or the function will enter an infinite loop!
<lang go> import "math/big"
func Root(a *big.Float, n uint64) *big.Float { limit := Exp(New(2), 256) n1 := n-1 n1f, rn := New(float64(n1)), Div(New(1.0), New(float64(n))) x, x0 := New(1.0), Zero() _ = x0 for { potx, t2 := Div(New(1.0), x), a for b:=n1; b>0; b>>=1 { if b&1 == 1 { t2 = Mul(t2, potx) } potx = Mul(potx, potx) } x0, x = x, Mul(rn, Add(Mul(n1f, x), t2) ) if Lesser(Mul(Abs(Sub(x, x0)), limit), x) { break } } return x }
func Abs(a *big.Float) *big.Float { return Zero().Abs(a) }
func Exp(a *big.Float, e uint64) *big.Float { result := Zero().Copy(a) for i:=uint64(0); i<e-1; i++ { result = Mul(result, a) } return result }
func New(f float64) *big.Float { r := big.NewFloat(f) r.SetPrec(256) return r }
func Div(a, b *big.Float) *big.Float { return Zero().Quo(a, b) }
func Zero() *big.Float { r := big.NewFloat(0.0) r.SetPrec(256) return r }
func Mul(a, b *big.Float) *big.Float { return Zero().Mul(a, b) }
func Add(a, b *big.Float) *big.Float { return Zero().Add(a, b) }
func Sub(a, b *big.Float) *big.Float { return Zero().Sub(a, b) }
func Lesser(x, y *big.Float) bool { return x.Cmp(y) == -1 } </lang>
Groovy
Solution: <lang groovy>import static Constants.tolerance import static java.math.RoundingMode.HALF_UP
def root(double base, double n) {
double xOld = 1 double xNew = 0 while (true) { xNew = ((n - 1) * xOld + base/(xOld)**(n - 1))/n if ((xNew - xOld).abs() < tolerance) { break } xOld = xNew } (xNew as BigDecimal).setScale(7, HALF_UP)
} </lang>
Test: <lang groovy>class Constants {
static final tolerance = 0.00001
}
Base Power Calc'd Root Actual Root
------ ----------- -----------
def testCases = [
[b:32.0, n:5.0, r:2.0], [b:81.0, n:4.0, r:3.0], [b:Math.PI**2, n:4.0, r:Math.PI**(0.5)], [b:7.0, n:0.5, r:49.0],
]
testCases.each {
def r = root(it.b, it.n) printf('%7.4f %6.4f %11.4f %11.4f\n', it.b, it.n, r, it.r) assert (r - it.r).abs() <= tolerance
}</lang>
Output:
Base Power Calc'd Root Actual Root ------- ------ ----------- ----------- 32.0000 5.0000 2.0000 2.0000 81.0000 4.0000 3.0000 3.0000 9.8696 4.0000 1.7725 1.7725 7.0000 0.5000 49.0000 49.0000
Haskell
Function exits when there's no difference between two successive values. <lang Haskell>n `nthRoot` x = fst $ until (uncurry(==)) (\(_,x0) -> (x0,((n-1)*x0+x/x0**(n-1))/n)) (x,x/n)</lang> Use:
*Main> 2 `nthRoot` 2 1.414213562373095 *Main> 5 `nthRoot` 34 2.024397458499885 *Main> 10 `nthRoot` (734^10) 734.0 *Main> 0.5 `nthRoot` 7 49.0
Or, in applicative terms, with formatted output:
<lang haskell>nthRoot :: Double -> Double -> Double nthRoot n x =
fst $ until (uncurry (==)) (((,) <*> ((/ n) . ((+) . (pn *) <*> (x /) . (** pn)))) . snd) (x, x / n) where pn = pred n
TESTS --------------------------
main :: IO () main =
putStrLn $ fTable "Nth roots:" (\(a, b) -> show a ++ " `nthRoot` " ++ show b) show (uncurry nthRoot) [(2, 2), (5, 34), (10, 734 ^ 10), (0.5, 7)]
FORMAT OF RESULTS --------------------
fTable :: String -> (a -> String) -> (b -> String) -> (a -> b) -> [a] -> String fTable s xShow fxShow f xs =
let w = maximum (length . xShow <$> xs) rjust n c = drop . length <*> (replicate n c ++) in unlines $ s : fmap (((++) . rjust w ' ' . xShow) <*> ((" -> " ++) . fxShow . f)) xs</lang>
- Output:
Nth roots: 2.0 `nthRoot` 2.0 -> 1.414213562373095 5.0 `nthRoot` 34.0 -> 2.0243974584998847 10.0 `nthRoot` 4.539004352165717e28 -> 734.0 0.5 `nthRoot` 7.0 -> 49.0
HicEst
<lang HicEst>WRITE(Messagebox) NthRoot(5, 34) WRITE(Messagebox) NthRoot(10, 7131.5^10)
FUNCTION NthRoot(n, A)
REAL :: prec = 0.001
IF( (n > 0) * (A > 0) ) THEN NthRoot = A / n DO i = 1, 1/prec x = ((n-1)*NthRoot + A/(NthRoot^(n-1))) / n IF( ABS(x - NthRoot) <= prec ) THEN RETURN ENDIF NthRoot = x ENDDO ENDIF
WRITE(Messagebox, Name) 'Cannot solve problem for:', prec, n, A
END</lang>
Icon and Unicon
All Icon/Unicon reals are double precision. <lang Icon>procedure main()
showroot(125,3) showroot(27,3) showroot(1024,10) showroot(39.0625,4) showroot(7131.5^10,10)
end
procedure showroot(a,n)
printf("%i-th root of %i = %i\n",n,a,root(a,n))
end
procedure root(a,n,p) #: finds the n-th root of the number a to precision p
if n < 0 | type(n) !== "integer" then runerr(101,n) if a < 0 then runerr(205,a) /p := 1e-14 # precision xn := a / real(n) # initial guess while abs(a - xn^n) > p do xn := ((n - 1) * (xi := xn) + a / (xi ^ (n-1))) / real(n) return xn
end
link printf</lang>
Output:
3-th root of 125 = 5.0 3-th root of 27 = 3.0 10-th root of 1024 = 2.0 4-th root of 39.0625 = 2.5 10-th root of 3.402584077894253e+038 = 7131.5
J
J has a built in Nth root primitive, %:. For example, 7131.5 = 10 %: 7131.5^10. Also, the exponentiation primitive supports exponents < 1, e.g. 7131.5 = (7131.5^10)^(1%10).
But, since the talk page discourages using built-in facilities, here is a reimplementation, using the E algorithm:
<lang j> '`N X NP' =. (0 { [)`(1 { [)`(2 { [)
iter =. N %~ (NP * ]) + X % ] ^ NP nth_root =: (, , _1+[) iter^:_ f. ] 10 nth_root 7131.5^10
7131.5</lang>
Java
<lang java>public static double nthroot(int n, double A) { return nthroot(n, A, .001); } public static double nthroot(int n, double A, double p) { if(A < 0) { System.err.println("A < 0");// we handle only real positive numbers return -1; } else if(A == 0) { return 0; } double x_prev = A; double x = A / n; // starting "guessed" value... while(Math.abs(x - x_prev) > p) { x_prev = x; x = ((n - 1.0) * x + A / Math.pow(x, n - 1.0)) / n; } return x; }</lang>
<lang java>public static double nthroot(int n, double x) {
assert (n > 1 && x > 0); int np = n - 1; double g1 = x; double g2 = iter(g1, np, n, x); while (g1 != g2) { g1 = iter(g1, np, n, x); g2 = iter(iter(g2, np, n, x), np, n, x); } return g1;
}
private static double iter(double g, int np, int n, double x) {
return (np * g + x / Math.pow(g, np)) / n;
}</lang>
JavaScript
Gives the n:nth root of num, with precision prec. (n defaults to 2 [e.g. sqrt], prec defaults to 12.)
<lang javascript>function nthRoot(num, nArg, precArg) {
var n = nArg || 2; var prec = precArg || 12; var x = 1; // Initial guess. for (var i=0; i<prec; i++) { x = 1/n * ((n-1)*x + (num / Math.pow(x, n-1))); } return x;
}</lang>
jq
<lang jq># An iterative algorithm for finding: self ^ (1/n) to the given
- absolute precision if "precision" > 0, or to within the precision
- allowed by IEEE 754 64-bit numbers.
- The following implementation handles underflow caused by poor estimates.
def iterative_nth_root(n; precision):
def abs: if . < 0 then -. else . end; def sq: .*.; def pow(p): . as $in | reduce range(0;p) as $i (1; . * $in); def _iterate: # state: [A, x1, x2, prevdelta] .[0] as $A | .[1] as $x1 | .[2] as $x2 | .[3] as $prevdelta | ( $x2 | pow(n-1)) as $power | if $power <= 2.155094094640383e-309 then [$A, $x1, ($x1 + $x2)/2, n] | _iterate
else (((n-1)*$x2 + ($A/$power))/n) as $x1 | (($x1 - $x2)|abs) as $delta
| if (precision == 0 and $delta == $prevdelta and $delta < 1e-15) or (precision > 0 and $delta <= precision) or $delta == 0 then $x1 else [$A, $x2, $x1, $delta] | _iterate end end ; if n == 1 then . elif . == 0 then 0 elif . < 0 then error("iterative_nth_root: input \(.) < 0") elif n != (n|floor) then error("iterative_nth_root: argument \(n) is not an integer") elif n == 0 then error("iterative_nth_root(0): domain error") elif n < 0 then 1/iterative_nth_root(-n; precision) else [., ., (./n), n, 0] | _iterate end
- </lang>
Example: Compare the results of iterative_nth_root and nth_root implemented using builtins <lang jq>def demo(x):
def nth_root(n): log / n | exp; def lpad(n): tostring | (n - length) * " " + .; . as $in | "\(x)^(1/\(lpad(5))): \(x|nth_root($in)|lpad(18)) vs \(x|iterative_nth_root($in; 1e-10)|lpad(18)) vs \(x|iterative_nth_root($in; 0))"
- 5^m for various values of n:
"5^(1/ n): builtin precision=1e-10 precision=0", ( (1,-5,-3,-1,1,3,5,1000,10000) | demo(5))</lang>
- Output:
<lang sh>$ jq -n -r -f nth_root_machine_precision.jq 5^(1/ n): builtin precision=1e-10 precision=0 5^(1/ 1): 4.999999999999999 vs 5 vs 5 5^(1/ -5): 0.7247796636776955 vs 0.7247796636776956 vs 0.7247796636776955 5^(1/ -3): 0.5848035476425733 vs 0.5848035476425731 vs 0.5848035476425731 5^(1/ -1): 0.2 vs 0.2 vs 0.2 5^(1/ 1): 4.999999999999999 vs 5 vs 5 5^(1/ 3): 1.709975946676697 vs 1.709975946676697 vs 1.709975946676697 5^(1/ 5): 1.3797296614612147 vs 1.3797296614612147 vs 1.379729661461215 5^(1/ 1000): 1.0016107337527294 vs 1.0016107337527294 vs 1.0016107337527294 5^(1/10000): 1.0001609567433902 vs 1.0001609567433902 vs 1.0001609567433902 </lang>
Julia
Julia has a built-in exponentiation function A^(1 / n)
, but the specification calls for us to use Newton's method (which we iterate until the limits of machine precision are reached):
<lang julia>function nthroot(n::Integer, r::Real)
r < 0 || n == 0 && throw(DomainError()) n < 0 && return 1 / nthroot(-n, r) r > 0 || return 0 x = r / n prevdx = r while true y = x ^ (n - 1) dx = (r - y * x) / (n * y) abs(dx) ≥ abs(prevdx) && return x x += dx prevdx = dx end
end
@show nthroot.(-5:2:5, 5.0) @show nthroot.(-5:2:5, 5.0) - 5.0 .^ (1 ./ (-5:2:5))</lang>
- Output:
nthroot.(-5:2:5, 5.0) = [0.7247796636776955, 0.5848035476425731, 0.2, 5.0, 1.709975946676697, 1.379729661461215] nthroot.(-5:2:5, 5.0) - 5.0 .^ (1 ./ (-5:2:5)) = [0.0, -1.1102230246251565e-16, 0.0, 0.0, 0.0, 0.0]
Kotlin
<lang scala>// version 1.0.6
fun nthRoot(x: Double, n: Int): Double {
if (n < 2) throw IllegalArgumentException("n must be more than 1") if (x <= 0.0) throw IllegalArgumentException("x must be positive") val np = n - 1 fun iter(g: Double) = (np * g + x / Math.pow(g, np.toDouble())) / n var g1 = x var g2 = iter(g1) while (g1 != g2) { g1 = iter(g1) g2 = iter(iter(g2)) } return g1
}
fun main(args: Array<String>) {
val numbers = arrayOf(1728.0 to 3, 1024.0 to 10, 2.0 to 2) for (number in numbers) println("${number.first} ^ 1/${number.second}\t = ${nthRoot(number.first, number.second)}")
}</lang>
- Output:
1728.0 ^ 1/3 = 12.0 1024.0 ^ 1/10 = 2.0 2.0 ^ 1/2 = 1.414213562373095
langur
Langur has a root operator. Here, we show use of both the root operator and an nth root function.
<lang langur>writeln "operator" writeln( (7131.5 ^ 10) ^/ 10 ) writeln 64 ^/ 6 writeln()
- To make the example from the D language work, we set a low maximum for the number of digits after a decimal point in division.
mode divMaxScale = 7
val .nthroot = f(.n, .A, .p) {
var .x = [.A, .A / .n] while abs(.x[2]-.x[1]) > .p { .x = [.x[2], ((.n-1) x .x[2] + .A / (.x[2] ^ (.n-1))) / .n] } simplify .x[2]
}
writeln "calculation" writeln .nthroot(10, 7131.5 ^ 10, 0.001) writeln .nthroot(6, 64, 0.001)</lang>
- Output:
operator 7131.5 2 calculation 7131.5 2
Liberty BASIC
<lang lb> print "First estimate is: ", using( "#.###############", NthRoot( 125, 5642, 0.001 )); print " ... and better is: ", using( "#.###############", NthRoot( 125, 5642, 0.00001)) print "125'th root of 5642 by LB's exponentiation operator is "; using( "#.###############", 5642^(1 /125))
print "27^(1 / 3)", using( "#.###############", NthRoot( 3, 27, 0.00001)) print "2^(1 / 2)", using( "#.###############", NthRoot( 2, 2, 0.00001)) print "1024^(1 /10)", using( "#.###############", NthRoot( 10, 1024, 0.00001))
wait
function NthRoot( n, A, p)
x( 0) =A x( 1) =A /n while abs( x( 1) -x( 0)) >p x( 0) =x( 1) x( 1) =( ( n -1.0) *x( 1) +A /x( 1)^( n -1.0)) /n wend NthRoot =x( 1)
end function
end
</lang>
First estimate is: 1.071559602191682 ... and better is: 1.071547591944771 125'th root of 5642 by LB's exponentiation operator is 1.071547591944767 27^(1 / 3) 3.000000000000002 2^(1 / 2) 1.414213562374690 1024^(1 /10) 2.000000000000000
Lingo
<lang lingo>on nthRoot (x, root)
return power(x, 1.0/root)
end</lang> <lang lingo>the floatPrecision = 8 -- only about display/string cast of floats put nthRoot(4, 4) -- 1.41421356</lang>
Logo
<lang logo>to about :a :b
output and [:a - :b < 1e-5] [:a - :b > -1e-5]
end
to root :n :a [:guess :a]
localmake "next ((:n-1) * :guess + :a / power :guess (:n-1)) / n if about :guess :next [output :next] output (root :n :a :next)
end
show root 5 34 ; 2.02439745849989</lang>
Lua
<lang Lua> function nroot(root, num)
return num^(1/root)
end </lang>
M2000 Interpreter
Using stack statements PUSH, READ, OVER, SHIFT, DROP, NUMBER, FLUSH
Flush empty stack Over 2 copy 2nd as new top (so 2nd now is 3rd) Over 2,2 repeat Over 2 two times. Shift 2 send top to 2nd, and 2nd to top (1st) (there is a SHFITBACK to revesre action) Drop drop top Number get top if is number, else raise error Read, read a variable form top. Functions parameters works with a read too Function Root { Read a, n%, d as double=1.e-4 ...... } because we can send any type and number if function, interpreter can make conversions if we declare that, or if it not possible (no conversion done to a numeric variable if a string is in top of stack) we get an error. Also if we send less values, and we didn't initialize variable before, we get error too. Here we need to flush stack for other parameters if from an error anyone put more arguments. (interpreter never count before call a user function, except for calling events by using event object, so there there is a signature to follow) n% is double inside.
<lang M2000 Interpreter>
Module Checkit {
Function Root (a, n%, d as double=1.e-4) { if n%=0 then Error "Division by zero: 1/0" if a<=0 then Error "Negative or zero number" if n%=1 then = a : exit Flush n2=1-1/n%:a/=n%:n%--:Push a { Push 1: For i=1 to n% {Over 2 :Push Number*Number} Over 2 : Push n2*Number + a/Number Shift 2: Over 2, 2 :if Abs(Number-Number)>d Then loop Drop } Read a : = a } Print "square root single" Print root(1.3346767~, 2, 1.e-9) Print "square double" Print root(1.3346767, 2, 1.e-9) Print "square root decimal" Print root(1.3346767@, 2, 1.e-9) Print "internal square root, double" Print 1.3346767^(1/2) Print sqrt(1.3346767)
} Checkit </lang>
Maple
The root
command performs this task.
<lang Maple>
root(1728, 3);
root(1024, 10);
root(2.0, 2); </lang>
Output:
12 2 1.414213562
Mathematica
<lang Mathematica>Root[A,n]</lang>
MATLAB
<lang MATLAB>function answer = nthRoot(number,root)
format long
answer = number / root; guess = number; while not(guess == answer) guess = answer; answer = (1/root)*( ((root - 1)*guess) + ( number/(guess^(root - 1)) ) ); end
end</lang>
Sample Output: <lang MATLAB>>> nthRoot(2,2)
ans =
1.414213562373095</lang>
Maxima
<lang maxima>nth_root(a, n) := block(
[x, y, d, p: fpprec], fpprec: p + 10, x: bfloat(a), eps: 10.0b0^-p, y: do ( d: bfloat((a / x^(n - 1) - x) / n), if abs(d) < eps * x then return(x), x: x + d ), fpprec: p, bfloat(y)
)$</lang>
Metafont
Metafont does not use IEEE floating point and we can't go beyond 0.0001 or it will loop forever. <lang metafont>vardef mnthroot(expr n, A) =
x0 := A / n; m := n - 1; forever: x1 := (m*x0 + A/(x0 ** m)) / n; exitif abs(x1 - x0) < abs(x0 * 0.0001); x0 := x1; endfor; x1
enddef;
primarydef n nthroot A = mnthroot(n, A) enddef;
show 5 nthroot 34; % 2.0244 show 0.5 nthroot 7; % 49.00528
bye</lang>
МК-61/52
<lang>1/x <-> x^y С/П</lang> Instruction: number ^ degree В/О С/П
NetRexx
<lang netrexx> /*NetRexx program to calculate the Nth root of X, with DIGS accuracy. */ class nth_root
method main(args=String[]) static if args.length < 2 then do
say "at least 2 arguments expected" exit
end x = args[0] root = args[1] if args.length > 2 then digs = args[2]
if root== then root=2 if digs = null, digs = then digs=20 numeric digits digs say ' x = ' x say ' root = ' root say 'digits = ' digs say 'answer = ' root(x,root,digs) method root(x,r,digs) static --procedure; parse arg x,R 1 oldR /*assign 2nd arg-->r and rOrig. */ /*this subroutine will use the */ /*digits from the calling prog. */ /*The default digits is 9. */ R = r oldR = r if r=0 then do say say '*** error! ***' say "a root of zero can't be specified." say return '[n/a]' end R=R.abs() /*use absolute value of root. */ if x<0 & (R//2==0) then do say say '*** error! ***' say "an even root can't be calculated for a" - 'negative number,' say 'the result would be complex.' say return '[n/a]' end if x=0 | r=1 then return x/1 /*handle couple of special cases.*/ Rm1=R-1 /*just a fast version of ROOT-1 */ oldDigs=digs /*get the current number of digs.*/ dm=oldDigs+5 /*we need a little guard room. */ ax=x.abs() /*the absolute value of X. */ g=(ax+1)/r**r /*take a good stab at 1st guess. */ -- numeric fuzz 3 /*fuzz digits for higher roots. */ d=5 /*start with only five digits. */ /*each calc doubles precision. */ loop forever d=d+d if d>dm then d = dm /*double the digits, but not>DM. */ numeric digits d /*tell REXX to use D digits. */ old=0 /*assume some kind of old guess. */ loop forever
_=(Rm1*g**R+ax)/R/g**rm1 /*this is the nitty-gritty stuff.*/ if _=g | _=old then leave /*computed close to this before? */ old=g /*now, keep calculation for OLD. */ g=_ /*set calculation to guesstimate.*/
end if d==dm then leave /*found the root for DM digits ? */ end
_=g*x.sign() /*correct the sign (maybe). */ if oldR<0 then return _=1/_ /*root < 0 ? Reciprocal it is.*/ numeric digits oldDigs /*re-instate the original digits.*/ return _/1 /*normalize the number to digs. */
</lang>
NewLISP
<lang NewLISP>(define (nth-root n a)
(let ((x1 a)
(x2 (div a n)))
(until (= x1 x2) (setq x1 x2
x2 (div (add (mul x1 (- n 1)) (div a (pow x1 (- n 1)))) n)))
x2))</lang>
Nim
<lang nim>import math
proc nthRoot(a: float; n: int): float =
var n = float(n) result = a var x = a / n while abs(result-x) > 1e-15: x = result result = (1/n) * (((n-1)*x) + (a / pow(x, n-1)))
echo nthRoot(34.0, 5) echo nthRoot(42.0, 10) echo nthRoot(5.0, 2)</lang> Output:
2.024397458499885 1.453198460282268 2.23606797749979
Objeck
<lang objeck>class NthRoot {
function : Main(args : String[]) ~ Nil { NthRoot(5, 34, .001)->PrintLine(); }
function : NthRoot(n : Int, A: Float, p : Float) ~ Float { x := Float->New[2]; x[0] := A; x[1] := A / n;
while((x[1] - x[0])->Abs() > p) { x[0] := x[1]; x[1] := ((n - 1.0) * x[1] + A / x[1]->Power(n - 1.0)) / n; };
return x[1]; }
}</lang>
OCaml
<lang ocaml>let nthroot ~n ~a ?(tol=0.001) () =
let nf = float n in let nf1 = nf -. 1.0 in let rec iter x = let x' = (nf1 *. x +. a /. (x ** nf1)) /. nf in if tol > abs_float (x -. x') then x' else iter x' in iter 1.0
let () =
Printf.printf "%g\n" (nthroot 10 (7131.5 ** 10.0) ()); Printf.printf "%g\n" (nthroot 5 34.0 ());
- </lang>
Octave
Octave has it's how nthroot function. <lang octave>
r = A.^(1./n)
</lang>
Here it is another implementation (after Tcl)
<lang octave>function r = m_nthroot(n, A)
x0 = A / n; m = n - 1; while(1) x1 = (m*x0 + A./ x0 .^ m) / n; if ( abs(x1-x0) < abs(x0 * 1e-9) ) r = x1; return endif x0 = x1; endwhile
endfunction</lang>
Here is an more elegant way by computing the successive differences in an explicit way: <lang octave>function r = m_nthroot(n, A)
r = A / n; m = n - 1; do d = (A ./ r .^ m - r) / n; r+= d; until (abs(d) < abs(r * 1e-9))
endfunction</lang>
Show its usage and the built-in nthroot function
<lang octave>m_nthroot(10, 7131.5 .^ 10) nthroot(7131.5 .^ 10, 10) m_nthroot(5, 34) nthroot(34, 5) m_nthroot(0.5, 7) nthroot(7, .5)</lang>
Oforth
<lang Oforth>Float method: nthroot(n)
1.0 doWhile: [ self over n 1 - pow / over - n / tuck + swap 0.0 <> ] ;</lang>
- Output:
734 10.0 powf nthroot(10) println 734 2.0 nthroot(2) println 1.41421356237309 34.0 nthroot(5) println 2.02439745849989
Oz
<lang oz>declare
fun {NthRoot NInt A} N = {Int.toFloat NInt}
fun {Next X} ( (N-1.0)*X + A / {Pow X N-1.0} ) / N end in {Until Value.'==' Next A/N} end
fun {Until P F X} case {F X} of NX andthen {P NX X} then X [] NX then {Until P F NX} end end
in
{Show {NthRoot 2 2.0}}</lang>
PARI/GP
<lang parigp>root(n,A)=A^(1/n);</lang>
Pascal
See Delphi
Perl
<lang perl>use strict;
sub nthroot ($$) {
my ( $n, $A ) = @_;
my $x0 = $A / $n; my $m = $n - 1.0; while(1) {
my $x1 = ($m * $x0 + $A / ($x0 ** $m)) / $n; return $x1 if abs($x1 - $x0) < abs($x0 * 1e-9); $x0 = $x1;
}
}</lang>
<lang perl>print nthroot(5, 34), "\n"; print nthroot(10, 7131.5 ** 10), "\n"; print nthroot(0.5, 7), "\n";</lang>
Phix
(main loop)
(use of pow_ instead of power)
<lang Phix>function pow_(atom x, integer e)
atom r = 1 for i=1 to e do r *= x end for return r
end function
function nth_root(atom y,n) atom eps = 1e-15 -- relative accuracy atom x = 1
while 1 do
-- atom d = ( y / power(x,n-1) - x ) / n
atom d = ( y / pow_(x,n-1) - x ) / n x += d atom e = eps*x -- absolute accuracy if d > -e and d < e then exit end if end while return {y,n,x,power(y,1/n)}
end function
?nth_root(1024,10) ?nth_root(27,3) ?nth_root(2,2) ?nth_root(5642,125) --?nth_root(7,0.5) -- needs power(), not pow_() ?nth_root(4913,3) ?nth_root(8,3) ?nth_root(16,2) ?nth_root(16,4) ?nth_root(125,3) ?nth_root(1000000000,3) ?nth_root(1000000000,9)</lang>
- Output:
Shows inputs and both the iterative and builtin results.
{1024,10,2,2} {27,3,3,3} {2,2,1.414213562,1.414213562} {5642,125,1.071547592,1.071547592} {4913,3,17,17.0} {8,3,2,2} {16,2,4,4} {16,4,2,2} {125,3,5,5} {1000000000,3,1000,1000.0} {1000000000,9,10,10.0}
Phixmonti
<lang Phixmonti>def nthroot var n var y 1e-15 var eps /# relative accuracy #/ 1 var x true while y x n 1 - power / x - n / var d x d + var x eps x * var e /# absolute accuracy #/ d 0 e - < d e > or endwhile x enddef
def printList len for get print endfor enddef
10 1024 3 27 2 2 125 5642 4 16 stklen tolist
len 1 swap 2 3 tolist for var i i get swap i 1 + get rot var e var b "The " e "th root of " b " is " b 1 e / power " (" b e nthroot ")" 9 tolist printList drop nl endfor</lang>
PHP
<lang PHP>function nthroot($number, $root, $p = P) {
$x[0] = $number; $x[1] = $number/$root; while(abs($x[1]-$x[0]) > $p) { $x[0] = $x[1]; $x[1] = (($root-1)*$x[1] + $number/pow($x[1], $root-1))/$root; } return $x[1];
}</lang>
PicoLisp
<lang PicoLisp>(load "@lib/math.l")
(de nthRoot (N A)
(let (X1 A X2 (*/ A N)) (until (= X1 X2) (setq X1 X2 X2 (*/ (+ (* X1 (dec N)) (*/ A 1.0 (pow X1 (* (dec N) 1.0))) ) N ) ) ) X2 ) )
(prinl (format (nthRoot 2 2.0) *Scl)) (prinl (format (nthRoot 3 12.3) *Scl)) (prinl (format (nthRoot 4 45.6) *Scl))</lang> Output:
1.414214 2.308350 2.598611
PL/I
<lang PL/I>/* Finds the N-th root of the number A */ root: procedure (A, N) returns (float);
declare A float, N fixed binary; declare (xi, xip1) float;
xi = 1; /* An initial guess */ do forever; xip1 = ((n-1)*xi + A/xi**(n-1) ) / n; if abs(xip1-xi) < 1e-5 then leave; xi = xip1; end; return (xi);
end root;</lang> Results:
The 2-th root of 4.00000E+0000 is 2.00000E+0000 The 5-th root of 3.20000E+0001 is 2.00000E+0000 The 3-th root of 2.70000E+0001 is 3.00000E+0000 The 2-th root of 2.00000E+0000 is 1.41422E+0000 The 3-th root of 1.00000E+0002 is 4.64159E+0000
PowerShell
This sample implementation does not use [System.Math]
classes.
<lang powershell>#NoTeS: This sample code does not validate inputs
- Thus, if there are errors the 'scary' red-text
- error messages will appear.
- This code will not work properly in floating point values of n,
- and negative values of A.
- Supports negative values of n by reciprocating the root.
$epsilon=1E-10 #Sample Epsilon (Precision)
function power($x,$e){ #As I said in the comment $ret=1 for($i=1;$i -le $e;$i++){ $ret*=$x } return $ret } function root($y,$n){ #The main Function if (0+$n -lt 0){$tmp=-$n} else {$tmp=$n} #This checks if n is negative. $ans=1
do{ $d = ($y/(power $ans ($tmp-1)) - $ans)/$tmp $ans+=$d } while ($d -lt -$epsilon -or $d -gt $epsilon)
if (0+$n -lt 0){return 1/$ans} else {return $ans} }
- Sample Inputs
root 625 2 root 2401 4 root 2 -2 root 1.23456789E-20 34 root 9.87654321E20 10 #Quite slow here, I admit...
((root 5 2)+1)/2 #Extra: Computes the golden ratio ((root 5 2)-1)/2</lang>
- Output:
PS> .\NTH.PS1 25 7 0.707106781186548 0.259690655650288 125.736248016373 1.61803398874989 0.618033988749895 PS>
Prolog
Uses integer math, though via scaling, it can approximate non-integral roots to arbitrary precision. <lang Prolog> iroot(_, 0, 0) :- !. iroot(M, N, R) :-
M > 1, (N > 0 -> irootpos(M, N, R) ; N /\ 1 =:= 1, NegN is -N, irootpos(M, NegN, R0), R is -R0).
irootpos(N, A, R) :-
X0 is 1 << (msb(A) div N), % initial guess is 2^(log2(A) / N) newton(N, A, X0, X1), iroot_loop(A, X1, N, A, R).
iroot_loop(X1, X2, _, _, X1) :- X1 =< X2, !. iroot_loop(_, X1, N, A, R) :-
newton(N, A, X1, X2), iroot_loop(X1, X2, N, A, R).
newton(2, A, X0, X1) :- X1 is (X0 + A div X0) >> 1, !. % fast special case newton(N, A, X0, X1) :- X1 is ((N - 1)*X0 + A div X0**(N - 1)) div N. </lang>
- Output:
?- iroot(3, 10000, X). X = 21. ?- A is 2**(1/12). % 12-root of 2 via built-in A = 1.0594630943592953. ?- A is 2 * 10**(12 * 15), iroot(12, A, R), format("~15d", [R]). % 12-root of 2 via scaled int 1.059463094359295 A = 2000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, R = 1059463094359295. ?- iroot(2, 81, X). X = 9. ?- iroot(4, -256, X). % fails for negative even roots false. ?- iroot(3, -27, X). % succeeds for negative odd roots X = -3.
PureBasic
<lang PureBasic>#Def_p=0.001
Procedure.d Nth_root(n.i, A.d, p.d=#Def_p)
Protected Dim x.d(1) x(0)=A: x(1)=A/n While Abs(x(1)-x(0))>p x(0)=x(1) x(1)=((n-1.0)*x(1)+A/Pow(x(1),n-1.0))/n Wend ProcedureReturn x(1)
EndProcedure
- //////////////////////////////
Debug "125'th root of 5642 is" Debug Pow(5642,1/125) Debug "First estimate is:" Debug Nth_root(125,5642) Debug "And better:" Debug Nth_root(125,5642,0.00001)</lang> Outputs
125'th root of 5642 is 1.0715475919447675 First estimate is: 1.0715596021916822 And better: 1.0715475919447714
Python
<lang python>from decimal import Decimal, getcontext
def nthroot (n, A, precision):
getcontext().prec = precision n = Decimal(n) x_0 = A / n #step 1: make a while guess. x_1 = 1 #need it to exist before step 2 while True: #step 2: x_0, x_1 = x_1, (1 / n)*((n - 1)*x_0 + (A / (x_0 ** (n - 1)))) if x_0 == x_1: return x_1</lang>
<lang python>print nthroot(5, 34, 10) print nthroot(10,42, 20) print nthroot(2, 5, 400)</lang>
Or, in terms of a general until function:
<lang python>Nth Root
from decimal import Decimal, getcontext from operator import eq
- nthRoot :: Int -> Int -> Int -> Real
def nthRoot(precision):
The nth root of x at the given precision. def go(n, x): getcontext().prec = precision dcn = Decimal(n)
def same(ab): return eq(*ab)
def step(ab): a, b = ab predn = pred(dcn) return ( b, reciprocal(dcn) * ( predn * a + ( x / (a ** predn) ) ) ) return until(same)(step)( (x / dcn, 1) )[0] return lambda n: lambda x: go(n, x)
- --------------------------TEST---------------------------
def main():
Nth roots at various precisions
def xShow(tpl): p, n, x = tpl return rootName(n) + ( ' of ' + str(x) + ' at precision ' + str(p) )
def f(tpl): p, n, x = tpl return nthRoot(p)(n)(x)
print( fTable(main.__doc__ + ':\n')(xShow)(str)(f)( [(10, 5, 34), (20, 10, 42), (30, 2, 5)] ) )
- -------------------------DISPLAY-------------------------
- fTable :: String -> (a -> String) ->
- (b -> String) -> (a -> b) -> [a] -> String
def fTable(s):
Heading -> x display function -> fx display function -> f -> xs -> tabular string. def go(xShow, fxShow, f, xs): ys = [xShow(x) for x in xs] w = max(map(len, ys)) return s + '\n' + '\n'.join(map( lambda x, y: y.rjust(w, ' ') + ' -> ' + fxShow(f(x)), xs, ys )) return lambda xShow: lambda fxShow: lambda f: lambda xs: go( xShow, fxShow, f, xs )
- -------------------------GENERIC-------------------------
- rootName :: Int -> String
def rootName(n):
English ordinal suffix. return ['identity', 'square root', 'cube root'][n - 1] if ( 4 > n or 1 > n ) else (str(n) + 'th root')
- pred :: Enum a => a -> a
def pred(x):
The predecessor of a value. For numeric types, (- 1). return x - 1
- reciprocal :: Num -> Num
def reciprocal(x):
Arithmetic reciprocal of x. return 1 / x
- until :: (a -> Bool) -> (a -> a) -> a -> a
def until(p):
The result of repeatedly applying f until p holds. The initial seed value is x. def go(f, x): v = x while not p(v): v = f(v) return v return lambda f: lambda x: go(f, x)
if __name__ == '__main__':
main()</lang>
- Output:
Nth roots at various precisions: 5th root of 34 at precision 10 -> 2.024397458 10th root of 42 at precision 20 -> 1.4531984602822678165 square root of 5 at precision 30 -> 2.23606797749978969640917366873
R
<lang R>nthroot <- function(A, n, tol=sqrt(.Machine$double.eps)) {
ifelse(A < 1, x0 <- A * n, x0 <- A / n) repeat { x1 <- ((n-1)*x0 + A / x0^(n-1))/n if(abs(x1 - x0) > tol) x0 <- x1 else break } x1
} nthroot(7131.5^10, 10) # 7131.5 nthroot(7, 0.5) # 49</lang>
Racket
<lang Racket>#lang racket
(define (nth-root number root (tolerance 0.001))
(define (acceptable? next current) (< (abs (- next current)) tolerance)) (define (improve current) (/ (+ (* (- root 1) current) (/ number (expt current (- root 1)))) root)) (define (loop current) (define next-guess (improve current)) (if (acceptable? next-guess current) next-guess (loop next-guess))) (loop 1.0))</lang>
Raku
(formerly Perl 6)
<lang perl6>sub nth-root ($n, $A, $p=1e-9) {
my $x0 = $A / $n; loop { my $x1 = (($n-1) * $x0 + $A / ($x0 ** ($n-1))) / $n; return $x1 if abs($x1-$x0) < abs($x0 * $p); $x0 = $x1; }
}
say nth-root(3,8);</lang>
RATFOR
<lang RATFOR> program nth
integer root real number, precision real temp0, temp1
1 format('Enter the base number: ') 2 format('Enter the desired root: ') 3 format('Enter the desired precision: ') 4 format(F12.6) 5 format(I6) write(6,1) read(5,4)number write(6,2) read(5,5)root write(6,3) read(5,4)precision
temp0 = number temp1 = number/root
while ( abs(temp0 - temp1) > precision )
{ temp0 = temp1 temp1 = ((root - 1.0) * temp1 + number / temp1 ** (root - 1.0)) / root }
6 format(' number root precision') write(6,6) 7 format(f12.6,i6,f12.6) write (6,7)number,root,precision 8 format('The root is: ',F12.6) write (6,8)temp1
end </lang>
Results: Enter the base number: 25.0 Enter the desired root: 2 Enter the desired precision: .0001 number root precision 25.000000 2 0.000100 The root is: 5.000000 Enter the base number: 65536.0 Enter the desired root: 16 Enter the desired precision: .0001 number root precision 65536.000000 16 0.000100 The root is: 2.000000
REXX
<lang rexx>/*REXX program calculates the Nth root of X, with DIGS (decimal digits) accuracy. */ parse arg x root digs . /*obtain optional arguments from the CL*/ if x== | x=="," then x= 2 /*Not specified? Then use the default.*/ if root== | root=="," then root= 2 /* " " " " " " */ if digs== | digs=="," then digs=65 /* " " " " " " */ numeric digits digs /*set the decimal digits to DIGS. */ say ' x = ' x /*echo the value of X. */ say ' root = ' root /* " " " " ROOT. */ say ' digits = ' digs /* " " " " DIGS. */ say ' answer = ' root(x, root) /*show the value of ANSWER. */ exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ root: procedure; parse arg x 1 Ox, r 1 Or /*arg1 ──► x & Ox, 2nd ──► r & Or*/
if r== then r=2 /*Was root specified? Assume √. */ if r=0 then return '[n/a]' /*oops-ay! Can't do zeroth root.*/ complex= x<0 & R//2==0 /*will the result be complex? */ oDigs=digits() /*get the current number of digs.*/ if x=0 | r=1 then return x/1 /*handle couple of special cases.*/ dm=oDigs+5 /*we need a little guard room. */ r=abs(r); x=abs(x) /*the absolute values of R and X.*/ rm=r-1 /*just a fast version of ROOT -1*/ numeric form /*take a good guess at the root─┐*/ parse value format(x,2,1,,0) 'E0' with ? 'E' _ . /* ◄────────────────────────────┘*/ g= (? / r'E'_ % r) + (x>1) /*kinda uses a crude "logarithm".*/ d=5 /*start with five decimal digits.*/ do until d==dm; d=min(d+d,dm) /*each time, precision doubles. */ numeric digits d /*tell REXX to use D digits. */ old=-1 /*assume some kind of old guess. */ do until old=g; old=g /*where da rubber meets da road─┐*/ g=format((rm*g**r+x)/r/g**rm,, d-2) /* ◄────── the root computation─┘*/ end /*until old=g*/ /*maybe until the cows come home.*/ end /*until d==dm*/ /*and wait for more cows to come.*/
if g=0 then return 0 /*in case the jillionth root = 0.*/ if Or<0 then g=1/g /*root < 0 ? Reciprocal it is! */ if \complex then g=g*sign(Ox) /*adjust the sign (maybe). */ numeric digits oDigs /*reinstate the original digits. */ return (g/1) || left('j', complex) /*normalize # to digs, append j ?*/</lang>
output when using the default inputs:
x = 2 root = 2 digits = 65 answer = 1.414213562373095048801688724209698078569671875376948073176679738
output when using for input: 10 3
x = 10 root = 3 digits = 65 answer = 2.1544346900318837217592935665193504952593449421921085824892355063
output when using for input: 625 -4
x = 625 root = -4 digits = 65 answer = 0.2
output when using for input: 100.666 47
x = 100.666 root = 47 digits = 65 answer = 1.1030990940616109102886569991014966919115206420386192403152621652
output when using for input: -256 8
x = -256 root = 8 digits = 65 answer = 2j
output when using for input: 12345678900098765432100.00987654321000123456789e333 19
x = 12345678900098765432100.00987654321000123456789e333 root = 19 digits = 65 answer = 4886828567991886455.3257854108687610458584138783288904955196401434
Ring
<lang ring> decimals(12) see "cube root of 5 is : " + root(3, 5, 0) + nl
func root n, a, d y = 0 x = a / n while fabs (x - y) > d
y = ((n - 1)*x + a/pow(x,(n-1))) / n temp = x x = y y = temp
end return x </lang> Output:
cube root of 5 is : 1.709975946677
Ruby
<lang ruby>def nthroot(n, a, precision = 1e-5)
x = Float(a) begin prev = x x = ((n - 1) * prev + a / (prev ** (n - 1))) / n end while (prev - x).abs > precision x
end
p nthroot(5,34) # => 2.02439745849989</lang>
Run BASIC
<lang runbasic>print "Root 125th Root of 5643 Precision .001 ";using( "#.###############", NthRoot( 125, 5642, 0.001 )) print "125th Root of 5643 Precision .001 ";using( "#.###############", NthRoot( 125, 5642, 0.001 )) print "125th Root of 5643 Precision .00001 ";using( "#.###############", NthRoot( 125, 5642, 0.00001)) print " 3rd Root of 27 Precision .00001 ";using( "#.###############", NthRoot( 3, 27, 0.00001)) print " 2nd Root of 2 Precision .00001 ";using( "#.###############", NthRoot( 2, 2, 0.00001)) print " 10th Root of 1024 Precision .00001 ";using( "#.###############", NthRoot( 10, 1024, 0.00001))
wait
function NthRoot( root, A, precision)
x0 = A x1 = A /root while abs( x1 -x0) >precision x0 = x1 x1 = x1 / 1.0 ' force float x1 = (( root -1.0) *x1 +A /x1^( root -1.0)) /root wend NthRoot =x1
end function
end</lang>
125th Root of 5643 Precision .001 1.071559602456735 125th Root of 5643 Precision .00001 1.071547591944771 3rd Root of 27 Precision .00001 3.000000000000001 2nd Root of 2 Precision .00001 1.414213562374690 10th Root of 1024 Precision .00001 2.000000000000000
Rust
<lang rust>// 20210212 Rust programming solution
fn nthRoot(n: f64, A: f64) -> f64 {
let p = 1e-9_f64 ; let mut x0 = A / n ;
loop { let mut x1 = ( (n-1.0) * x0 + A / f64::powf(x0, n-1.0) ) / n; if (x1-x0).abs() < (x0*p).abs() { return x1 }; x0 = x1 }
}
fn main() {
println!("{}", nthRoot(3. , 8. ));
}</lang>
Sather
<lang sather>class MATH is
nthroot(n:INT, a:FLT):FLT pre n > 0 is x0 ::= a / n.flt; m ::= n - 1; loop x1 ::= (m.flt * x0 + a/(x0^(m.flt))) / n.flt; if (x1 - x0).abs < (x0 * 1.0e-9).abs then return x1; end; x0 := x1; end; end;
end;</lang>
<lang sather>class MAIN is
main is a:FLT := 2.5 ^ 10.0; #OUT + MATH::nthroot(10, a) + "\n"; end;
end;</lang>
Scala
Using tail recursion: <lang Scala>def nroot(n: Int, a: Double): Double = {
@tailrec def rec(x0: Double) : Double = { val x1 = ((n - 1) * x0 + a/math.pow(x0, n-1))/n if (x0 <= x1) x0 else rec(x1) } rec(a)
}</lang>
Alternatively, you can implement the iteration with an iterator like so: <lang scala>def fallPrefix(itr: Iterator[Double]): Iterator[Double] = itr.sliding(2).dropWhile(p => p(0) > p(1)).map(_.head) def nrootLazy(n: Int)(a: Double): Double = fallPrefix(Iterator.iterate(a){r => (((n - 1)*r) + (a/math.pow(r, n - 1)))/n}).next</lang>
Scheme
<lang scheme>(define (root number degree tolerance)
(define (good-enough? next guess) (< (abs (- next guess)) tolerance)) (define (improve guess) (/ (+ (* (- degree 1) guess) (/ number (expt guess (- degree 1)))) degree)) (define (*root guess) (let ((next (improve guess))) (if (good-enough? next guess) guess (*root next)))) (*root 1.0))
(display (root (expt 2 10) 10 0.1)) (newline) (display (root (expt 2 10) 10 0.01)) (newline) (display (root (expt 2 10) 10 0.001)) (newline)</lang> Output:
2.04732932236839 2.00463204835482 2.00004786858167
Seed7
The nth root of the number 'a' can be computed with the exponentiation operator: 'a ** (1 / n)'. An alternate function which uses Newton's method is:
<lang seed7>const func float: nthRoot (in integer: n, in float: a) is func
result var float: x1 is 0.0; local var float: x0 is 0.0; begin x0 := a; x1 := a / flt(n); while abs(x1 - x0) >= abs(x0 * 1.0E-9) do x0 := x1; x1 := (flt(pred(n)) * x0 + a / x0 ** pred(n)) / flt(n); end while; end func;</lang>
Original source: [1]
Sidef
<lang ruby>func nthroot(n, a, precision=1e-5) {
var x = 1.float var prev = 0.float while ((prev-x).abs > precision) { prev = x; x = (((n-1)*prev + a/(prev**(n-1))) / n) } return x
}
say nthroot(5, 34) # => 2.024397458501034082599817835297912829678314204</lang>
A minor optimization would be to calculate the successive int(n-1) square roots of a number, then raise the result to the power of 2**(int(n-1) / n).
<lang ruby>func nthroot_fast(n, a, precision=1e-5) {
{ a = nthroot(2, a, precision) } * int(n-1) a ** (2**int(n-1) / n)
}
say nthroot_fast(5, 34, 1e-64) # => 2.02439745849988504251081724554193741911462170107</lang>
Smalltalk
<lang smalltalk>Number extend [
nthRoot: n [
|x0 m x1| x0 := (self / n) asFloatD. m := n - 1. [true] whileTrue: [ x1 := ( (m * x0) + (self/(x0 raisedTo: m))) / n. ((x1 - x0) abs) < ((x0 * 1e-9) abs) ifTrue: [ ^ x1 ]. x0 := x1 ]
]
].</lang>
<lang smalltalk>(34 nthRoot: 5) displayNl. ((7131.5 raisedTo: 10) nthRoot: 10) displayNl. (7 nthRoot: 0.5) displayNl.</lang>
SPL
<lang spl>nthr(n,r) <= n^(1/r)
nthroot(n,r)=
a = n/r g = n > g!=a g = a a = (1/r)*(((r-1)*g)+(n/(g^(r-1)))) < <= a
.
- .output(nthr(2,2))
- .output(nthroot(2,2))</lang>
- Output:
1.4142135623731 1.41421356237309
Swift
<lang swift>extension FloatingPoint where Self: ExpressibleByFloatLiteral {
@inlinable public func power(_ e: Int) -> Self { var res = Self(1)
for _ in 0..<e { res *= self }
return res }
@inlinable public func root(n: Int, epsilon: Self = 2.220446049250313e-16) -> Self { var d = Self(0) var res = Self(1)
guard self != 0 else { return 0 }
guard n >= 1 else { return .nan }
repeat { d = (self / res.power(n - 1) - res) / Self(n) res += d } while d >= epsilon * 10 || d <= -epsilon * 10
return res }
}
print(81.root(n: 4)) print(13.root(n: 5))</lang>
- Output:
3.0 1.6702776523348104
Tcl
The easiest way is to just use the pow
function (or exponentiation operator) like this:
<lang tcl>proc nthroot {n A} {
expr {pow($A, 1.0/$n)}
}</lang>
However that's hardly tackling the problem itself. So here's how to do it using Newton-Raphson and a self-tuning termination test.
<lang tcl>proc nthroot {n A} {
set x0 [expr {$A / double($n)}] set m [expr {$n - 1.0}] while 1 { set x1 [expr {($m*$x0 + $A/$x0**$m) / $n}] if {abs($x1 - $x0) < abs($x0 * 1e-9)} { return $x1 } set x0 $x1 }
}</lang> Demo: <lang tcl>puts [nthroot 2 2] puts [nthroot 5 34] puts [nthroot 5 [expr {34**5}]] puts [nthroot 10 [expr 7131.5**10]] puts [nthroot 0.5 7]; # Squaring!</lang> Output:
1.414213562373095 2.0243974584998847 34.0 7131.5 49.0
Ursala
The nthroot function defined below takes a natural number n to the function that returns the n-th root of its floating point argument. Error is on the order of machine precision because the stopping criterion is either a fixed point or a repeating cycle. <lang Ursala>#import nat
- import flo
nthroot =
-+
("n","n-1"). "A". ("x". div\"n" plus/times("n-1","x") div("A",pow("x","n-1")))^== 1., float^~/~& predecessor+-</lang>
This implementation is unnecessary in practice due to the availability of the library function pow, which performs exponentiation and allows fractional exponents. Here is a test program. <lang Ursala>#cast %eL
examples =
<
nthroot2 2., nthroot5 34., nthroot5 pow(34.,5.), nthroot10 pow(7131.5,10.)></lang>
output:
< 1.414214e+00, 2.024397e+00, 3.400000e+01, 7.131500e+03>
VBA
The internal power operator "^" is used in stead of an auxiliary pow_ function and the accuracy has been reduced. <lang vb>Private Function nth_root(y As Double, n As Double)
Dim eps As Double: eps = 0.00000000000001 '-- relative accuracy Dim x As Variant: x = 1 Do While True d = (y / x ^ (n - 1) - x) / n x = x + d e = eps * x '-- absolute accuracy If d > -e And d < e Then Exit Do End If Loop Debug.Print y; n; x; y ^ (1 / n)
End Function Public Sub main()
nth_root 1024, 10 nth_root 27, 3 nth_root 2, 2 nth_root 5642, 125 nth_root 7, 0.5 nth_root 4913, 3 nth_root 8, 3 nth_root 16, 2 nth_root 16, 4 nth_root 125, 3 nth_root 1000000000, 3 nth_root 1000000000, 9
End Sub</lang>
- Output:
1024 10 2 2 27 3 3 3 2 2 1,41421356237309 1,4142135623731 5642 125 1,07154759194477 1,07154759194477 7 0,5 49 49 4913 3 17 17 8 3 2 2 16 2 4 4 16 4 2 2 125 3 5 5 1000000000 3 1000 1000 1000000000 9 10 10
Wren
<lang ecmascript>var nthRoot = Fn.new { |x, n|
if (n < 2) Fiber.abort("n must be more than 1") if (x <= 0) Fiber.abort("x must be positive") var np = n - 1 var iter = Fn.new { |g| (np*g + x/g.pow(np))/n } var g1 = x var g2 = iter.call(g1) while (g1 != g2) { g1 = iter.call(g1) g2 = iter.call(iter.call(g2)) } return g1
}
var trios = [ [1728, 3, 2], [1024, 10, 1], [2, 2, 5] ] for (trio in trios) {
System.print("%(trio[0]) ^ 1/%(trio[1])%(" "*trio[2]) = %(nthRoot.call(trio[0], trio[1]))")
}</lang>
- Output:
1728 ^ 1/3 = 12 1024 ^ 1/10 = 2 2 ^ 1/2 = 1.4142135623731
XPL0
<lang XPL0>include c:\cxpl\stdlib;
func real NRoot(A, N); \Return the Nth root of A real A, N; real X, X0, Y; int I; [X:= 1.0; \initial guess repeat X0:= X;
Y:= 1.0; for I:= 1 to fix(N)-1 do Y:= Y*X0; X:= ((N-1.0)*X0 + A/Y) / N;
until abs(X-X0) < 1.0E-15; \(until X=X0 doesn't always work) return X; ];
[Format(5, 15); RlOut(0, NRoot( 2., 2.)); CrLf(0); RlOut(0, Power( 2., 0.5)); CrLf(0); \for comparison RlOut(0, NRoot(27., 3.)); CrLf(0); RlOut(0, NRoot(1024.,10.)); CrLf(0); ]</lang>
Output:
1.414213562373100 1.414213562373100 3.000000000000000 2.000000000000000
Yabasic
<lang Yabasic>data 10, 1024, 3, 27, 2, 2, 125, 5642, 4, 16, 0, 0
do
read e, b if e = 0 break print "The ", e, "th root of ", b, " is ", b^(1/e), " (", nthroot(b, e), ")"
loop
sub nthroot(y, n)
local eps, x, d, e eps = 1e-15 // relative accuracy x = 1 repeat d = ( y / ( x^(n-1) ) - x ) / n x = x + d e = eps * x // absolute accuracy until(not(d < -e or d > e )) return x
end sub</lang>
zkl
<lang zkl>fcn nthroot(nth,a,precision=1.0e-5){
x:=prev:=a=a.toFloat(); n1:=nth-1; do{ prev=x; x=( prev*n1 + a/prev.pow(n1) ) / nth; } while( not prev.closeTo(x,precision) ); x
}
nthroot(5,34) : "%.20f".fmt(_).println() # => 2.02439745849988828041</lang>
- Programming Tasks
- Classic CS problems and programs
- Simple
- 11l
- 360 Assembly
- AArch64 Assembly
- Ada
- ALGOL 68
- ALGOL W
- ARM Assembly
- AutoHotkey
- AutoIt
- AWK
- BASIC
- Basic09
- BBC BASIC
- Bc
- Bracmat
- C
- C sharp
- C++
- Clojure
- COBOL
- CoffeeScript
- Common Lisp
- D
- Delphi
- E
- EasyLang
- Elixir
- Erlang
- Excel
- F Sharp
- Factor
- Forth
- Fortran
- FreeBASIC
- FutureBasic
- Go
- Groovy
- Haskell
- HicEst
- Icon
- Unicon
- J
- Java
- JavaScript
- Jq
- Julia
- Kotlin
- Langur
- Liberty BASIC
- Lingo
- Logo
- Lua
- M2000 Interpreter
- Maple
- Mathematica
- MATLAB
- Maxima
- Metafont
- МК-61/52
- NetRexx
- NewLISP
- Nim
- Objeck
- OCaml
- Octave
- Oforth
- Oz
- PARI/GP
- Pascal
- Perl
- Phix
- Phixmonti
- PHP
- PicoLisp
- PL/I
- PowerShell
- Prolog
- PureBasic
- Python
- R
- Racket
- Raku
- RATFOR
- REXX
- Ring
- Ruby
- Run BASIC
- Rust
- Sather
- Scala
- Scheme
- Seed7
- Sidef
- Smalltalk
- SPL
- Swift
- Tcl
- Ursala
- VBA
- Wren
- XPL0
- Yabasic
- Zkl
- M4/Omit