Continued fraction/Arithmetic/Construct from rational number

You are encouraged to solve this task according to the task description, using any language you may know.
To understand this task in context please see Continued fraction arithmetic
The purpose of this task is to write a function , or , which will output a continued fraction assuming:
- is the numerator
- is the denominator
The function should output its results one digit at a time each time it is called, in a manner sometimes described as lazy evaluation.
To achieve this it must determine: the integer part; and remainder part, of divided by . It then sets to and to the determined remainder part. It then outputs the determined integer part. It does this until is zero.
Demonstrate the function by outputing the continued fraction for:
- 1/2
- 3
- 23/8
- 13/11
- 22/7
- -151/77
should approach try ever closer rational approximations until boredom gets the better of you:
- 14142,10000
- 141421,100000
- 1414214,1000000
- 14142136,10000000
Try :
- 31,10
- 314,100
- 3142,1000
- 31428,10000
- 314285,100000
- 3142857,1000000
- 31428571,10000000
- 314285714,100000000
Observe how this rational number behaves differently to and convince yourself that, in the same way as may be represented as when an extra decimal place is required, may be represented as when an extra term is required.
11l
F r2cf(=n1, =n2)
[Int] r
L n2 != 0
(n1, V t1_n2) = (n2, divmod(n1, n2))
n2 = t1_n2[1]
r [+]= t1_n2[0]
R r
print(r2cf(1, 2))
print(r2cf(3, 1))
print(r2cf(23, 8))
print(r2cf(13, 11))
print(r2cf(22, 7))
print(r2cf(14142, 10000))
print(r2cf(141421, 100000))
print(r2cf(1414214, 1000000))
print(r2cf(14142136, 10000000))
- Output:
[0, 2] [3] [2, 1, 7] [1, 5, 2] [3, 7] [1, 2, 2, 2, 2, 2, 1, 1, 29] [1, 2, 2, 2, 2, 2, 2, 3, 1, 1, 3, 1, 7, 2] [1, 2, 2, 2, 2, 2, 2, 2, 3, 6, 1, 2, 1, 12] [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 1, 2, 4, 1, 1, 2]
ALGOL 68
...with code from the Arithmetic/Rational task.
The continued fraction expansion of -151/77 is sensitive to whether the language modulo operator follows the mathematical definition or the C definition.
Algol 68's MOD operator uses the mathematical definition (rounds towards -infinity), so the results for -157//77 agree with the EDSAC, J and a few other sdamples. Most other samples calculate the remainder using the C definotion.
BEGIN # construct continued fraction representations of rational numbers #
# Translated from the C sample #
# Uses code from the Arithmetic/Rational task #
# Code from the Arithmetic/Rational task #
# ============================================================== #
MODE FRAC = STRUCT( INT num #erator#, den #ominator#);
PROC gcd = (INT a, b) INT: # greatest common divisor #
(a = 0 | b |: b = 0 | a |: ABS a > ABS b | gcd(b, a MOD b) | gcd(a, b MOD a));
PROC lcm = (INT a, b)INT: # least common multiple #
a OVER gcd(a, b) * b;
PRIO // = 9; # higher then the ** operator #
OP // = (INT num, den)FRAC: ( # initialise and normalise #
INT common = gcd(num, den);
IF den < 0 THEN
( -num OVER common, -den OVER common)
ELSE
( num OVER common, den OVER common)
FI
);
OP + = (FRAC a, b)FRAC: (
INT common = lcm(den OF a, den OF b);
FRAC result := ( common OVER den OF a * num OF a + common OVER den OF b * num OF b, common );
num OF result//den OF result
);
OP - = (FRAC a, b)FRAC: a + -b,
* = (FRAC a, b)FRAC: (
INT num = num OF a * num OF b,
den = den OF a * den OF b;
INT common = gcd(num, den);
(num OVER common) // (den OVER common)
);
OP - = (FRAC frac)FRAC: (-num OF frac, den OF frac);
# ============================================================== #
# end code from the Arithmetic/Rational task #
[]FRAC examples = ( 1//2, 3//1, 23//8, 13//11, 22//7, -151//77 );
[]FRAC sqrt2 = ( 14142//10000, 141421//100000, 1414214//1000000, 14142136//10000000 );
[]FRAC pi = ( 31//10, 314//100, 3142//1000, 31428//10000
, 314285//100000, 3142857//1000000, 31428571//10000000, 314285714//100000000
);
# returns the quotient of numerator over denominator and sets #
# numerator and denominator to the next values for #
# the continued fraction #
PROC r2cf = ( REF INT numerator, REF INT denominator )INT:
IF denominator = 0
THEN 0
ELSE INT quotient := numerator OVER denominator;
INT prev numerator = numerator;
numerator := denominator;
denominator := prev numerator MOD denominator;
quotient
FI # r2cf # ;
# shows the continued fractions for the elements of f seq #
PROC show r2cf = ( STRING legend, []FRAC f seq )VOID:
BEGIN
print( ( legend ) );
FOR i FROM LWB f seq TO UPB f seq DO
INT num := num OF f seq[ i ];
INT den := den OF f seq[ i ];
print( ( newline, "For N = ", whole( num , 0 ), ", D = ", whole( den , 0 ), " :" ) );
WHILE den /= 0 DO
print( ( " ", whole( r2cf( num, den ), 0 ) ) )
OD
OD
END # show r2cf # ;
BEGIN # task #
show r2cf( "Running the examples :", examples );
print( ( newline, newline ) );
show r2cf( "Running for root2 :", sqrt2 );
print( ( newline, newline ) );
show r2cf( "Running for pi :", pi )
END
END
- Output:
Running the examples : For N = 1, D = 2 : 0 2 For N = 3, D = 1 : 3 For N = 23, D = 8 : 2 1 7 For N = 13, D = 11 : 1 5 2 For N = 22, D = 7 : 3 7 For N = -151, D = 77 : -1 25 1 2 Running for root2 : For N = 7071, D = 5000 : 1 2 2 2 2 2 1 1 29 For N = 141421, D = 100000 : 1 2 2 2 2 2 2 3 1 1 3 1 7 2 For N = 707107, D = 500000 : 1 2 2 2 2 2 2 2 3 6 1 2 1 12 For N = 1767767, D = 1250000 : 1 2 2 2 2 2 2 2 2 2 6 1 2 4 1 1 2 Running for pi : For N = 31, D = 10 : 3 10 For N = 157, D = 50 : 3 7 7 For N = 1571, D = 500 : 3 7 23 1 2 For N = 7857, D = 2500 : 3 7 357 For N = 62857, D = 20000 : 3 7 2857 For N = 3142857, D = 1000000 : 3 7 142857 For N = 31428571, D = 10000000 : 3 7 476190 3 For N = 157142857, D = 50000000 : 3 7 7142857
ATS
The task is vague about how the "lazy evaluation" works, and it seems to me a function with side effects suffices. Nevertheless, what I did was write such a function that has side effects, and then wrap that function in a thunk (a closure taking no arguments). One might wish to go farther and produce a lazy stream, but I did not do that.
I hope the point is not that one must use lazy evaluation to do this algorithm! Rather, it should be that, at each step, you are performing the same process, merely with a different starting point. If the function returned the next N1 and N2, along with the next digit, you would have a purely functional version.
I demonstrate concretely that the method of integer division matters. I use 'Euclidean division' (see ACM Transactions on Programming Languages and Systems, Volume 14, Issue 2, pp 127–144. https://doi.org/10.1145/128861.128862) and show that you get a different continued fraction if you start with (-151)/77 than if you start with 151/(-77). I verified that both continued fractions do equal -(151/77).
(*------------------------------------------------------------------*)
#include "share/atspre_staload.hats"
(*------------------------------------------------------------------*)
(* First, let us implement a proper method of division of signed
integers, in which the remainder is always non-negative. (I
implement such division in my ats2-xprelude package at
https://sourceforge.net/p/chemoelectric/ats2-xprelude and have
copied the implementation from there.) *)
extern fn {tk : tkind}
g0int_eucliddivrem :
(g0int tk, g0int tk) -<> @(g0int tk, g0int tk)
implement {tk}
g0int_eucliddivrem (n, d) =
let
(* The C optimizer most likely will reduce these these two
divisions to just one. They are simply synonyms for C '/' and
'%', and perform division that rounds the quotient towards
zero. *)
val q0 = g0int_div (n, d)
val r0 = g0int_mod (n, d)
in
(* The following calculation results in 'floor division', if the
divisor is positive, or 'ceiling division', if the divisor is
negative. This choice of method results in the remainder never
being negative. *)
if isgtez n then
@(q0, r0)
else if iseqz r0 then
@(q0, r0)
else if isltz d then
@(succ q0, r0 - d)
else
@(pred q0, r0 + d)
end
(*------------------------------------------------------------------*)
(* I implement the lazy evaluation by having r2cf explicitly create
a thunk that returns the digits. *)
fn {tk : tkind}
step (N1 : ref (g0int tk),
N2 : ref (g0int tk))
: g0int tk =
let
val @(q, r) = g0int_eucliddivrem (!N1, !N2)
in
!N1 := !N2;
!N2 := r;
q
end
fn {tk : tkind}
r2cf (N1 : g0int tk,
N2 : g0int tk)
: () -<cloref1> Option (g0int tk) =
let
val N1 = ref<g0int tk> N1
and N2 = ref<g0int tk> N2
in
lam () =>
if iseqz !N2 then
None ()
else
Some (step (N1, N2))
end
(*------------------------------------------------------------------*)
fn {tk : tkind}
print_digits (f : () -<cloref1> Option (g0int tk))
: void =
let
fun
loop (sep : string)
: void =
case+ f () of
| None () => println! ("]")
| Some d =>
begin
print! sep;
fprint_val<g0int tk> (stdout_ref, d);
if sep = "[" then
loop "; "
else
loop ", "
end
in
loop "["
end
fn {tk : tkind}
print_continued_fraction
(ratnum : @(g0int tk, g0int tk))
: void =
let
val @(N1, N2) = ratnum
in
fprint_val<g0int tk> (stdout_ref, N1);
print! "/";
fprint_val<g0int tk> (stdout_ref, N2);
print! " => ";
print_digits (r2cf<tk> (N1, N2))
end
(*------------------------------------------------------------------*)
val test_cases =
$list (@(1LL, 2LL),
@(3LL, 1LL),
@(23LL, 8LL),
@(13LL, 11LL),
@(22LL, 7LL),
@(~151LL, 77LL), (* The numerator is negative. *)
@(151LL, ~77LL), (* The denominator is negative. *)
@(14142LL, 10000LL),
@(141421LL, 100000LL),
@(1414214LL, 1000000LL),
@(14142136LL, 10000000LL),
@(1414213562373095049LL, 1000000000000000000LL),
@(31LL, 10LL),
@(314LL, 100LL),
@(3142LL, 1000LL),
@(31428LL, 10000LL),
@(314285LL, 100000LL),
@(3142857LL, 1000000LL),
@(31428571LL, 10000000LL),
@(314285714LL, 100000000LL),
@(3142857142857143LL, 1000000000000000LL),
@(2200000000000000000LL, 700000000000000000LL),
@(2200000000000000001LL, 700000000000000000LL),
@(2200000000000000000LL, 700000000000000001LL))
implement
main0 () =
let
var p : List0 @(llint, llint)
in
println! ();
print! ("The continued fractions shown here are calculated by ");
println! ("'Euclidean division',");
println! ("where the remainder is always non-negative:");
println! ();
for (p := test_cases; ~list_is_nil p; p := list_tail p)
print_continued_fraction<llintknd> (list_head p);
println! ();
println! ("Note that [3; 6, 1] is equal to [3; 7].");
println! ()
end
(*------------------------------------------------------------------*)
- Output:
$ patscc -DATS_MEMALLOC_GCBDW -O2 -std=gnu2x continued-fraction-from-rational.dats -lgc && ./a.out The continued fractions shown here are calculated by 'Euclidean division', where the remainder is always non-negative: 1/2 => [0; 2] 3/1 => [3] 23/8 => [2; 1, 7] 13/11 => [1; 5, 2] 22/7 => [3; 7] -151/77 => [-2; 25, 1, 2] 151/-77 => [-1; -2, 1, 23, 1, 2] 14142/10000 => [1; 2, 2, 2, 2, 2, 1, 1, 29] 141421/100000 => [1; 2, 2, 2, 2, 2, 2, 3, 1, 1, 3, 1, 7, 2] 1414214/1000000 => [1; 2, 2, 2, 2, 2, 2, 2, 3, 6, 1, 2, 1, 12] 14142136/10000000 => [1; 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 1, 2, 4, 1, 1, 2] 1414213562373095049/1000000000000000000 => [1; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 39, 1, 5, 1, 3, 61, 1, 1, 8, 1, 2, 1, 7, 1, 1, 6] 31/10 => [3; 10] 314/100 => [3; 7, 7] 3142/1000 => [3; 7, 23, 1, 2] 31428/10000 => [3; 7, 357] 314285/100000 => [3; 7, 2857] 3142857/1000000 => [3; 7, 142857] 31428571/10000000 => [3; 7, 476190, 3] 314285714/100000000 => [3; 7, 7142857] 3142857142857143/1000000000000000 => [3; 6, 1, 142857142857142] 2200000000000000000/700000000000000000 => [3; 7] 2200000000000000001/700000000000000000 => [3; 6, 1, 14285714285714284, 1, 6] 2200000000000000000/700000000000000001 => [3; 7, 4545454545454545, 3, 7] Note that [3; 6, 1] is equal to [3; 7].
Using multiple precision numbers
For this you need the ats2-xprelude package. I start with octuple precision (IEEE binary256) approximations to the square root of 2 and 22/7.
(*------------------------------------------------------------------*)
(* A version that uses the ats2-xprelude package
https://sourceforge.net/p/chemoelectric/ats2-xprelude
With ats2-xprelude installed, you can run the program with
something like:
patscc -DATS_MEMALLOC_GCBDW `pkg-config --variable=PATSCCFLAGS ats2-xprelude` \
`pkg-config --cflags ats2-xprelude` -O2 -std=gnu2x \
continued-fraction-from-rational-2.dats \
`pkg-config --libs ats2-xprelude` -lgc && ./a.out
*)
#include "share/atspre_staload.hats"
#include "xprelude/HATS/xprelude.hats"
staload "xprelude/SATS/exrat.sats"
staload _ = "xprelude/DATS/exrat.dats"
staload "xprelude/SATS/mpfr.sats"
staload _ = "xprelude/DATS/mpfr.dats"
(*------------------------------------------------------------------*)
fn
step (ratnum : ref exrat,
done : ref bool)
: exrat =
let
(* Effectively we are doing the same thing as if we used integer
floor division and the denominator were kept positive. *)
val q = floor !ratnum
val diff = !ratnum - q
in
if iseqz diff then
begin
!done := true;
q
end
else
begin
!ratnum := reciprocal diff;
q
end
end
fn
r2cf (ratnum : exrat)
: () -<cloref1> Option exrat =
let
val ratnum = ref<exrat> ratnum
and done = ref<bool> false
in
lam () =>
if !done then
None ()
else
Some (step (ratnum, done))
end
(*------------------------------------------------------------------*)
fn
print_digits (f : () -<cloref1> Option exrat)
: void =
let
fun
loop (sep : string)
: void =
case+ f () of
| None () => println! ("]")
| Some d =>
begin
print! (sep, d);
if sep = "[" then
loop "; "
else
loop ", "
end
in
loop "["
end
fn {tk : tkind}
print_continued_fraction
(ratnum : exrat)
: void =
begin
print! (ratnum, " => ");
print_digits (r2cf ratnum)
end
(*------------------------------------------------------------------*)
(* The number of bits in the significand of an IEEE binary256
floating point number. *)
#define OCTUPLE_PREC 237
implement
main0 () =
begin
print_continued_fraction (exrat_make (1, 2));
print_continued_fraction (exrat_make (3, 1));
print_continued_fraction (exrat_make (23, 8));
print_continued_fraction (exrat_make (13, 11));
print_continued_fraction (exrat_make (22, 7));
print_continued_fraction (exrat_make (~151, 77));
let
val sqrt2 : mpfr = mpfr_SQRT2 OCTUPLE_PREC
val sqrt2 : exrat = g0f2f sqrt2
in
println! ("Octuple precision sqrt2:");
print_continued_fraction sqrt2
end;
let
val val_22_7 : mpfr =
mpfr_make ("22", OCTUPLE_PREC) / mpfr_make ("7", OCTUPLE_PREC)
val val_22_7 : exrat = g0f2f val_22_7
in
println! ("Octuple precision 22/7:");
print_continued_fraction val_22_7
end;
end
(*------------------------------------------------------------------*)
- Output:
$ patscc -DATS_MEMALLOC_GCBDW `pkg-config --variable=PATSCCFLAGS ats2-xprelude` `pkg-config --cflags ats2-xprelude` -O2 -std=gnu2x continued-fraction-from-rational-2.dats `pkg-config --libs ats2-xprelude` -lgc -lm && ./a.out 1/2 => [0; 2] 3 => [3] 23/8 => [2; 1, 7] 13/11 => [1; 5, 2] 22/7 => [3; 7] -151/77 => [-2; 25, 1, 2] Octuple precision sqrt2: 78084346301521422975112153571109417254931862326853978216001371002918963/55213970774324510299478046898216203619608871777363092441300193790394368 => [1; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 6, 1, 38, 2, 1, 9, 3, 16, 2, 1, 10, 2, 2, 1, 1, 18, 1, 2, 1, 3, 4, 1, 1, 2, 6, 6, 4, 3, 2, 1, 2, 4, 2, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 2, 4, 1, 7, 10, 2, 1, 4, 3, 40, 1, 1, 5, 1, 2, 2, 1, 1, 7, 7, 6, 7, 1, 1, 2, 2] Octuple precision 22/7: 86764811216795659042036930840054034259385369935856288122043161670619721/27606985387162255149739023449108101809804435888681546220650096895197184 => [3; 7, 3943855055308893592819860492729728829972062269811649460092870985028169]
C
C does not implement Lazy evaluation and it is this particular feature which is the real challenge of this particular example. It can however be simulated. The following example uses pointers. It seems that the same data is being passed but since the function accepts pointers, the variables are being changed. One other way to simulate laziness would be to use global variables. Then although it would seem that the same values are being passed even as constants, the job is actually getting done. In my view, that would be plain cheating.
#include<stdio.h>
typedef struct{
int num,den;
}fraction;
fraction examples[] = {{1,2}, {3,1}, {23,8}, {13,11}, {22,7}, {-151,77}};
fraction sqrt2[] = {{14142,10000}, {141421,100000}, {1414214,1000000}, {14142136,10000000}};
fraction pi[] = {{31,10}, {314,100}, {3142,1000}, {31428,10000}, {314285,100000}, {3142857,1000000}, {31428571,10000000}, {314285714,100000000}};
int r2cf(int *numerator,int *denominator)
{
int quotient=0,temp;
if(denominator != 0)
{
quotient = *numerator / *denominator;
temp = *numerator;
*numerator = *denominator;
*denominator = temp % *denominator;
}
return quotient;
}
int main()
{
int i;
printf("Running the examples :");
for(i=0;i<sizeof(examples)/sizeof(fraction);i++)
{
printf("\nFor N = %d, D = %d :",examples[i].num,examples[i].den);
while(examples[i].den != 0){
printf(" %d ",r2cf(&examples[i].num,&examples[i].den));
}
}
printf("\n\nRunning for %c2 :",251); /* 251 is the ASCII code for the square root symbol */
for(i=0;i<sizeof(sqrt2)/sizeof(fraction);i++)
{
printf("\nFor N = %d, D = %d :",sqrt2[i].num,sqrt2[i].den);
while(sqrt2[i].den != 0){
printf(" %d ",r2cf(&sqrt2[i].num,&sqrt2[i].den));
}
}
printf("\n\nRunning for %c :",227); /* 227 is the ASCII code for Pi's symbol */
for(i=0;i<sizeof(pi)/sizeof(fraction);i++)
{
printf("\nFor N = %d, D = %d :",pi[i].num,pi[i].den);
while(pi[i].den != 0){
printf(" %d ",r2cf(&pi[i].num,&pi[i].den));
}
}
return 0;
}
And the run gives :
Running the examples : For N = 1, D = 2 : 0 2 For N = 3, D = 1 : 3 For N = 23, D = 8 : 2 1 7 For N = 13, D = 11 : 1 5 2 For N = 22, D = 7 : 3 7 For N = -151, D = 77 : -1 -1 -24 -1 -2 Running for √2 : For N = 14142, D = 10000 : 1 2 2 2 2 2 1 1 29 For N = 141421, D = 100000 : 1 2 2 2 2 2 2 3 1 1 3 1 7 2 For N = 1414214, D = 1000000 : 1 2 2 2 2 2 2 2 3 6 1 2 1 12 For N = 14142136, D = 10000000 : 1 2 2 2 2 2 2 2 2 2 6 1 2 4 1 1 2 Running for π : For N = 31, D = 10 : 3 10 For N = 314, D = 100 : 3 7 7 For N = 3142, D = 1000 : 3 7 23 1 2 For N = 31428, D = 10000 : 3 7 357 For N = 314285, D = 100000 : 3 7 2857 For N = 3142857, D = 1000000 : 3 7 142857 For N = 31428571, D = 10000000 : 3 7 476190 3 For N = 314285714, D = 100000000 : 3 7 7142857
C#
using System;
using System.Collections.Generic;
class Program
{
static IEnumerable<int> r2cf(int n1, int n2)
{
while (Math.Abs(n2) > 0)
{
int t1 = n1 / n2;
int t2 = n2;
n2 = n1 - t1 * n2;
n1 = t2;
yield return t1;
}
}
static void spit(IEnumerable<int> f)
{
foreach (int n in f) Console.Write(" {0}", n);
Console.WriteLine();
}
static void Main(string[] args)
{
spit(r2cf(1, 2));
spit(r2cf(3, 1));
spit(r2cf(23, 8));
spit(r2cf(13, 11));
spit(r2cf(22, 7));
spit(r2cf(-151, 77));
for (int scale = 10; scale <= 10000000; scale *= 10)
{
spit(r2cf((int)(Math.Sqrt(2) * scale), scale));
}
spit(r2cf(31, 10));
spit(r2cf(314, 100));
spit(r2cf(3142, 1000));
spit(r2cf(31428, 10000));
spit(r2cf(314285, 100000));
spit(r2cf(3142857, 1000000));
spit(r2cf(31428571, 10000000));
spit(r2cf(314285714, 100000000));
}
}
Output
0 2 3 2 1 7 1 5 2 3 7 -1 -1 -24 -1 -2 1 2 2 1 2 2 3 1 1 2 1 2 2 2 2 5 3 1 2 2 2 2 2 1 1 29 1 2 2 2 2 2 2 3 1 1 3 1 7 2 1 2 2 2 2 2 2 2 1 1 4 1 1 1 1 1 2 1 6 1 2 2 2 2 2 2 2 2 2 1 594 3 10 3 7 7 3 7 23 1 2 3 7 357 3 7 2857 3 7 142857 3 7 476190 3 3 7 7142857
C++
#include <iostream>
/* Interface for all Continued Fractions
Nigel Galloway, February 9th., 2013.
*/
class ContinuedFraction {
public:
virtual const int nextTerm(){};
virtual const bool moreTerms(){};
};
/* Create a continued fraction from a rational number
Nigel Galloway, February 9th., 2013.
*/
class r2cf : public ContinuedFraction {
private: int n1, n2;
public:
r2cf(const int numerator, const int denominator): n1(numerator), n2(denominator){}
const int nextTerm() {
const int thisTerm = n1/n2;
const int t2 = n2; n2 = n1 - thisTerm * n2; n1 = t2;
return thisTerm;
}
const bool moreTerms() {return fabs(n2) > 0;}
};
/* Generate a continued fraction for sqrt of 2
Nigel Galloway, February 9th., 2013.
*/
class SQRT2 : public ContinuedFraction {
private: bool first=true;
public:
const int nextTerm() {if (first) {first = false; return 1;} else return 2;}
const bool moreTerms() {return true;}
};
Testing
1/2 3 23/8 13/11 22/7 -151/77
int main() {
for(r2cf n(1,2); n.moreTerms(); std::cout << n.nextTerm() << " ");
std::cout << std::endl;
for(r2cf n(3,1); n.moreTerms(); std::cout << n.nextTerm() << " ");
std::cout << std::endl;
for(r2cf n(23,8); n.moreTerms(); std::cout << n.nextTerm() << " ");
std::cout << std::endl;
for(r2cf n(13,11); n.moreTerms(); std::cout << n.nextTerm() << " ");
std::cout << std::endl;
for(r2cf n(22,7); n.moreTerms(); std::cout << n.nextTerm() << " ");
std::cout << std::endl;
for(r2cf cf(-151,77); cf.moreTerms(); std::cout << cf.nextTerm() << " ");
std::cout << std::endl;
return 0;
}
- Output:
0 2 3 2 1 7 1 5 2 3 7 -1 -1 -24 -1 -2
int main() {
int i = 0;
for(SQRT2 n; i++ < 20; std::cout << n.nextTerm() << " ");
std::cout << std::endl;
for(r2cf n(14142,10000); n.moreTerms(); std::cout << n.nextTerm() << " ");
std::cout << std::endl;
for(r2cf n(14142136,10000000); n.moreTerms(); std::cout << n.nextTerm() << " ");
std::cout << std::endl;
return 0;
}
- Output:
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 1 1 29 1 2 2 2 2 2 2 2 2 2 6 1 2 4 1 1 2
Real approximations of a rational number
int main() {
for(r2cf n(31,10); n.moreTerms(); std::cout << n.nextTerm() << " ");
std::cout << std::endl;
for(r2cf n(314,100); n.moreTerms(); std::cout << n.nextTerm() << " ");
std::cout << std::endl;
for(r2cf n(3142,1000); n.moreTerms(); std::cout << n.nextTerm() << " ");
std::cout << std::endl;
for(r2cf n(31428,10000); n.moreTerms(); std::cout << n.nextTerm() << " ");
std::cout << std::endl;
for(r2cf n(314285,100000); n.moreTerms(); std::cout << n.nextTerm() << " ");
std::cout << std::endl;
for(r2cf n(3142857,1000000); n.moreTerms(); std::cout << n.nextTerm() << " ");
std::cout << std::endl;
for(r2cf n(31428571,10000000); n.moreTerms(); std::cout << n.nextTerm() << " ");
std::cout << std::endl;
for(r2cf n(314285714,100000000); n.moreTerms(); std::cout << n.nextTerm() << " ");
std::cout << std::endl;
return 0;
}
- Output:
3 10 3 7 7 3 7 23 1 2 3 7 357 3 7 2857 3 7 142857 3 7 476190 3 3 7 7142857
Clojure
(defn r2cf [n d]
(if-not (= d 0) (cons (quot n d) (lazy-seq (r2cf d (rem n d))))))
; Example usage
(def demo '((1 2)
(3 1)
(23 8)
(13 11)
(22 7)
(-151 77)
(14142 10000)
(141421 100000)
(1414214 1000000)
(14142136 10000000)
(31 10)
(314 100)
(3142 1000)
(31428 10000)
(314285 100000)
(3142857 1000000)
(31428571 10000000)
(314285714 100000000)
(3141592653589793 1000000000000000)))
(doseq [inputs demo
:let [outputs (r2cf (first inputs) (last inputs))]]
(println inputs ";" outputs))
- Output:
(1 2) ; (0 2) (3 1) ; (3) (23 8) ; (2 1 7) (13 11) ; (1 5 2) (22 7) ; (3 7) (-151 77) ; (-1 -1 -24 -1 -2) (14142 10000) ; (1 2 2 2 2 2 1 1 29) (141421 100000) ; (1 2 2 2 2 2 2 3 1 1 3 1 7 2) (1414214 1000000) ; (1 2 2 2 2 2 2 2 3 6 1 2 1 12) (14142136 10000000) ; (1 2 2 2 2 2 2 2 2 2 6 1 2 4 1 1 2) (31 10) ; (3 10) (314 100) ; (3 7 7) (3142 1000) ; (3 7 23 1 2) (31428 10000) ; (3 7 357) (314285 100000) ; (3 7 2857) (3142857 1000000) ; (3 7 142857) (31428571 10000000) ; (3 7 476190 3) (314285714 100000000) ; (3 7 7142857) (3141592653589793 1000000000000000) ; (3 7 15 1 292 1 1 1 2 1 3 1 14 4 2 3 1 12 5 1 5 20 1 11 1 1 1 2)
Common Lisp
(defun r2cf (n1 n2)
(lambda ()
(unless (zerop n2)
(multiple-value-bind (t1 r)
(floor n1 n2)
(setf n1 n2 n2 r)
t1))))
;; Example usage
(defun demo-generator (numbers)
(let* ((n1 (car numbers))
(n2 (cadr numbers))
(gen (r2cf n1 n2)))
(format t "~S ; ~S~%"
`(r2cf ,n1 ,n2)
(loop
:for r = (funcall gen)
:until (null r)
:collect r))))
(mapcar #'demo-generator
'((1 2)
(3 1)
(23 8)
(13 11)
(22 7)
(-151 77)
(14142 10000)
(141421 100000)
(1414214 1000000)
(14142136 10000000)
(31 10)
(314 100)
(3142 1000)
(31428 10000)
(314285 100000)
(3142857 1000000)
(31428571 10000000)
(314285714 100000000)
(3141592653589793 1000000000000000)))
Output:
(R2CF 3 1) ; (3) (R2CF 23 8) ; (2 1 7) (R2CF 13 11) ; (1 5 2) (R2CF 22 7) ; (3 7) (R2CF -151 77) ; (-2 25 1 2) (R2CF 14142 10000) ; (1 2 2 2 2 2 1 1 29) (R2CF 141421 100000) ; (1 2 2 2 2 2 2 3 1 1 3 1 7 2) (R2CF 1414214 1000000) ; (1 2 2 2 2 2 2 2 3 6 1 2 1 12) (R2CF 14142136 10000000) ; (1 2 2 2 2 2 2 2 2 2 6 1 2 4 1 1 2) (R2CF 31 10) ; (3 10) (R2CF 314 100) ; (3 7 7) (R2CF 3142 1000) ; (3 7 23 1 2) (R2CF 31428 10000) ; (3 7 357) (R2CF 314285 100000) ; (3 7 2857) (R2CF 3142857 1000000) ; (3 7 142857) (R2CF 31428571 10000000) ; (3 7 476190 3) (R2CF 314285714 100000000) ; (3 7 7142857) (R2CF 3141592653589793 1000000000000000) ; (3 7 15 1 292 1 1 1 2 1 3 1 14 4 2 3 1 12 5 1 5 20 1 11 1 1 1 2)
D
import std.concurrency;
import std.stdio;
struct Pair {
int first, second;
}
auto r2cf(Pair frac) {
return new Generator!int({
auto num = frac.first;
auto den = frac.second;
while (den != 0) {
auto div = num / den;
auto rem = num % den;
num = den;
den = rem;
div.yield();
}
});
}
void iterate(Generator!int seq) {
foreach(i; seq) {
write(i, " ");
}
writeln();
}
void main() {
auto fracs = [
Pair( 1, 2),
Pair( 3, 1),
Pair( 23, 8),
Pair( 13, 11),
Pair( 22, 7),
Pair(-151, 77),
];
foreach(frac; fracs) {
writef("%4d / %-2d = ", frac.first, frac.second);
frac.r2cf.iterate;
}
writeln;
auto root2 = [
Pair( 14_142, 10_000),
Pair( 141_421, 100_000),
Pair( 1_414_214, 1_000_000),
Pair(14_142_136, 10_000_000),
];
writeln("Sqrt(2) ->");
foreach(frac; root2) {
writef("%8d / %-8d = ", frac.first, frac.second);
frac.r2cf.iterate;
}
writeln;
auto pi = [
Pair( 31, 10),
Pair( 314, 100),
Pair( 3_142, 1_000),
Pair( 31_428, 10_000),
Pair( 314_285, 100_000),
Pair( 3_142_857, 1_000_000),
Pair( 31_428_571, 10_000_000),
Pair(314_285_714, 100_000_000),
];
writeln("Pi ->");
foreach(frac; pi) {
writef("%9d / %-9d = ", frac.first, frac.second);
frac.r2cf.iterate;
}
}
- Output:
1 / 2 = 0 2 3 / 1 = 3 23 / 8 = 2 1 7 13 / 11 = 1 5 2 22 / 7 = 3 7 -151 / 77 = -1 -1 -24 -1 -2 Sqrt(2) -> 14142 / 10000 = 1 2 2 2 2 2 1 1 29 141421 / 100000 = 1 2 2 2 2 2 2 3 1 1 3 1 7 2 1414214 / 1000000 = 1 2 2 2 2 2 2 2 3 6 1 2 1 12 14142136 / 10000000 = 1 2 2 2 2 2 2 2 2 2 6 1 2 4 1 1 2 Pi -> 31 / 10 = 3 10 314 / 100 = 3 7 7 3142 / 1000 = 3 7 23 1 2 31428 / 10000 = 3 7 357 314285 / 100000 = 3 7 2857 3142857 / 1000000 = 3 7 142857 31428571 / 10000000 = 3 7 476190 3 314285714 / 100000000 = 3 7 7142857
EDSAC order code
Besides the assigned task, this program demonstrates a division subroutine for 35-bit positive integers, returning quotient and remainder.
[Continued fractions from rationals.
EDSAC program, Initial Orders 2.]
[Memory usage:
56..109 Print subroutine, modified from the EDSAC library
110..146 Division subroutine for long positive integers
148..196 Continued fraction subroutine, as specified by Rosetta Code
200..260 Main routine
262.. List of rationals, variable number of items]
[Define where to store the list of rationals.]
T 45 K [store address in location 45;
values are then accessed by code letter H (*)]
P 262 F [<------ address here]
[(*) Arbitrary choice. We could equally well use 46 and N, 47 and M, etc.]
[Library subroutine R2. Reads positive integers during input of orders,
and is then overwritten (so doesn't take up any memory).
Negative numbers can be input by adding 2^35.
Each integer is followed by 'F', except the last is followed by '#TZ'.]
GKT20FVDL8FA40DUDTFI40FA40FS39FG@S2FG23FA5@T5@E4@E13Z
T #H [Tell R2 the storage location defined above]
[Rationals to be read by R2. First item is count, then num/den pairs.]
8F 1F2F 3F1F 33F8F 13F11F 22F7F 34359738217F77F
141421356F100000000F 314285714F100000000#TZ
[----------------------------------------------------------------------
Modification of library subroutine P7.
Prints signed integer up to 10 digits, left-justified.
54 storage locations; working position 4D.
Must be loaded at an even address.
Input: Number is at 0D.]
T 56 K
GKA3FT42@A49@T31@ADE10@T31@A48@T31@SDTDH44#@NDYFLDT4DS43@TF
H17@S17@A43@G23@UFS43@T1FV4DAFG50@SFLDUFXFOFFFSFL4FT4DA49@
T31@A1FA43@G20@XFP1024FP610D@524D!FO46@O26@XFSFL8FT4DE39@
[----------------------------------------------------------------------
Division subroutine for long positive integers.
35-bit dividend and divisor (max 2^34 - 1)
returning quotient and remainder.
Input: dividend at 4D, divisor at 6D
Output: remainder at 4D, quotient at 6D.
Working locations 0D, 8D.]
T 110 K
G K
A 3 F [plant link]
T 35 @
A 6 D [load divisor]
U 8 D [save at 8D (6D is required for quotient)]
[4] T D [initialize shifted divisor]
A 4 D [load dividend]
R D [shift 1 right]
S D [shifted divisor > dividend/2 yet?]
G 13 @ [yes, start subtraction]
T 36 @ [no, clear acc]
A D [shift divisor 1 more]
L D
E 4 @ [loop back (always, since acc >= 0)]
[13] T 36 @ [clear acc]
T 6 D [initialize quotient to 0]
[15] A 4 D [load remainder (initially = dividend)]
S D [trial subtraction]
G 23 @ [skip if can't subtract]
T 4 D [update remainder]
A 6 D [load quotient]
Y F [add 1 by rounding twice (*)]
Y F
T 6 D
[23] T 36 @ [clear acc]
A 8 D [load original divisor]
S D [is shifted divisor back to original?]
E 35 @ [yes, exit (with accumulator = 0,
in accordance with EDSAC convention)]
T 36 @ [no, clear acc]
A D [shift divisor 1 right]
R D
T D
A 6 D [shift quotient 1 left]
L D
T 6 D
E 15 @ [loop back (always, since acc = 0)]
[35] E F [return; order set up at runtime]
[36] P F [junk word, to clear accumulator]
[(*) This saves the bother of defining a double-word constant 1
and making sure that it's at an even address.]
[----------------------------------------------------------------------
Subroutine for lazy evaluation of continued fraction.
Must be loaded at an even address.
Locations relative to start of subroutine:
0: Entry point
1: Flag, < 0 if c.f. is finished, >= 0 if there's another term
2, 3: Next term of c.f., provided the flag (location 1) is >= 0
4, 5: Caller places numerator here before first call
6, 7: Caller places denominator here before first call; must be > 0
After setting up the numerator and denominator of the rational number,
the caller should repeatedly call location 0, reading the result
from location 1 and double location 2.
Locations 4..7 are maintained by the subroutine and should not be changed
by the caller until a new continued fraction is required.]
T 46 K [place address of subroutine in location 46]
P 148 F
E 25 K [load the code below to that address (WWG page 18)]
T N
G K
[0] G 8 @ [entry point]
[1] P F [flag returned here]
[2] P F P F [term returned here, if flag >= 0;
also used as temporary store]
[4] P F P F [caller puts numerator here]
[6] P F P F [caller puts denominator here]
[8] A 3 F [plant link]
T 28 @
S 6#@ [load negative of denominator]
E 44 @ [if denom <= 0, no more terms]
T F [clear acc]
A 4#@ [load numerator]
T 2#@ [save before overwriting]
A 6#@ [load denominator]
U 4#@ [make it numerator for next call]
T 6 D [also to 6D for division]
A 2#@ [load numerator]
G 29 @ [special action if negative]
T 4 D [to 4D for division]
[21] A 21 @ [for return from next]
G 110 F [call the above division subroutine]
A 4 D [load remainder]
T 6#@ [make it denominator for next call]
A 6 D [load quotient]
[26] T 2#@ [return it as next term]
[27] T 1 @ [flag >= 0 means term is valid]
[28] E F [exit with acc = 0]
[Here if rational = -n/d where n, d > 0. Principle is:
if n + d - 1 = qd + r then -n = -qd + (d - 1 - r)]
[29] T 4 D [save numerator in 4D]
S 6 D [acc := -den]
Y F [add 1 by rounding twice]
Y F
T 2#@ [save (1 - den) for later]
S 4 D [load abs(num)]
S 2#@ [add (den - 1)]
T 4 D [to 4D for division]
[37] A 37 @ [for return from next]
G 110 F [call the above division subroutine]
S 2#@ [load (den - 1)]
S 4 D [subtract remainder]
T 6#@ [result is new denominator]
S 6 D [load negated quotient]
G 26 @ [join common code]
[Here if there are no more terms of the c.f.]
[44] T F [clear acc]
A 8 @ [this is negative since 'A' = -4]
G 27 @ [exit with negative flag]
[----------------------------------------------------------------------
Main routine]
T 200 K
G K
[Variables]
[0] P F [negative counter of continued fractions]
[1] P F [character before term, first '=' then ',']
[Constants]
[2] P D [single-word 1]
[3] A 2#H [order to load first numerator]
[4] P 2 F [to inc addresses by 2]
[5] # F [teleprinter figures shift]
[6] X F [slash (in figures mode)]
[7] V F [equals sign (in figures mode)]
[8] N F [comma (in figures mode)]
[9] ! F [space]
[10] @ F [carriage return]
[11] & F [line feed]
[12] K4096 F [teleprinter null]
[Enter with acc = 0]
[13] O 5 @ [set teleprinter to figures]
S H [negative of number of c.f.s]
T @ [initialize counter]
A 3 @ [initial load order]
[17] U 22 @ [plant order to load numerator]
A 4 @ [inc address by 2]
T 28 @ [plant order to load denominator]
A 7 @ [set to print '=' before first term]
T 1 @
[Demonstrate the subroutine above.
Since its address was placed in location 46,
we can use code letter N to refer to it.]
[22] A #H [load numerator (order set up at runtime)]
U 4#N [pass to subroutine]
T D [also to 0D for printing]
[25] A 25 @ [for return from print subroutine]
G 56 F [print numerator]
O 6 @ [followed by slash]
[28] A #H [load denominator (order set up at runtime)]
U 6#N [pass to subroutine]
T D [also to 0D for printing]
[31] A 31 @ [for return from print subroutine]
G 56 F [print denominator]
O 9 @ [followed by space]
[34] A 34 @ [for return from subroutine]
G N [call subroutine for next term]
A 1 N [load flag]
G 48 @ [if < 0, c.f. is finished, jump out]
O 1 @ [print equals or comma]
O 9 @ [print space]
T F [clear acc]
A 2#N [load term]
T D [to 0D for printing]
[43] A 43 @ [for return from print subroutine]
G 56 F [print term; clears acc]
A 8 @ [set to print ',' before subsequent terms]
T 1 @
E 34 @ [loop back for next term]
[On to next continued fraction]
[48] O 10 @ [print new line]
O 11 @
T F [clear acc]
A @ [load negative count of c.f.s]
A 2 @ [add 1]
E 59 @ [exit if count = 0]
T @ [store back]
A 22 @ [order to load numerator]
A 4 @ [inc address by 4 for next c.f.]
A 4 @
G 17 @ [loop back (always, since 'A' < 0)]
[59] O 12 @ [print null to flush teleprinter buffer]
Z F [stop]
E 13 Z [define entry point]
P F [acc = 0 on entry]
- Output:
1/2 = 0, 2 3/1 = 3 33/8 = 4, 8 13/11 = 1, 5, 2 22/7 = 3, 7 -151/77 = -2, 25, 1, 2 141421356/100000000 = 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 1, 1, 2, 6, 8 314285714/100000000 = 3, 7, 7142857
F#
let rec r2cf n d =
if d = LanguagePrimitives.GenericZero then []
else let q = n / d in q :: (r2cf d (n - q * d))
[<EntryPoint>]
let main argv =
printfn "%A" (r2cf 1 2)
printfn "%A" (r2cf 3 1)
printfn "%A" (r2cf 23 8)
printfn "%A" (r2cf 13 11)
printfn "%A" (r2cf 22 7)
printfn "%A" (r2cf -151 77)
printfn "%A" (r2cf 141 100)
printfn "%A" (r2cf 1414 1000)
printfn "%A" (r2cf 14142 10000)
printfn "%A" (r2cf 141421 100000)
printfn "%A" (r2cf 1414214 1000000)
printfn "%A" (r2cf 14142136 10000000)
0
Output
[0; 2] [3] [2; 1; 7] [1; 5; 2] [3; 7] [-1; -1; -24; -1; -2] [1; 2; 2; 3; 1; 1; 2] [1; 2; 2; 2; 2; 5; 3] [1; 2; 2; 2; 2; 2; 1; 1; 29] [1; 2; 2; 2; 2; 2; 2; 3; 1; 1; 3; 1; 7; 2] [1; 2; 2; 2; 2; 2; 2; 2; 3; 6; 1; 2; 1; 12] [1; 2; 2; 2; 2; 2; 2; 2; 2; 2; 6; 1; 2; 4; 1; 1; 2]
- A version for larger numerators and denominators.
let rec rI2cf n d =
if d = 0I then []
else let q = n / d in (decimal)q :: (rI2cf d (n - q * d))
Factor
Note that the input values are stored as strings and converted to numbers before being fed to r2cf
. This is because ratios automatically reduce themselves to the lowest-terms mixed number, which would make for confusing output in this instance.
USING: formatting kernel lists lists.lazy math math.parser qw
sequences ;
IN: rosetta-code.cf-arithmetic
: r2cf ( x -- lazy )
[ >fraction [ /mod ] keep swap [ ] [ / ] if-zero nip ]
lfrom-by [ integer? ] luntil [ >fraction /i ] lmap-lazy ;
: main ( -- )
qw{
1/2
3
23/8
13/11
22/7
-151/77
14142/10000
141421/100000
1414214/1000000
14142136/10000000
31/10
314/100
3142/1000
31428/10000
314285/100000
3142857/1000000
31428571/10000000
314285714/100000000
}
[ dup string>number r2cf list>array "%19s -> %u\n" printf ]
each ;
MAIN: main
- Output:
1/2 -> { 0 2 } 3 -> { 3 } 23/8 -> { 2 1 7 } 13/11 -> { 1 5 2 } 22/7 -> { 3 7 } -151/77 -> { -1 -1 -24 -1 -2 } 14142/10000 -> { 1 2 2 2 2 2 1 1 29 } 141421/100000 -> { 1 2 2 2 2 2 2 3 1 1 3 1 7 2 } 1414214/1000000 -> { 1 2 2 2 2 2 2 2 3 6 1 2 1 12 } 14142136/10000000 -> { 1 2 2 2 2 2 2 2 2 2 6 1 2 4 1 1 2 } 31/10 -> { 3 10 } 314/100 -> { 3 7 7 } 3142/1000 -> { 3 7 23 1 2 } 31428/10000 -> { 3 7 357 } 314285/100000 -> { 3 7 2857 } 3142857/1000000 -> { 3 7 142857 } 31428571/10000000 -> { 3 7 476190 3 } 314285714/100000000 -> { 3 7 7142857 }
Forth
: r2cf ( num1 den1 -- num2 den2 ) swap over >r s>d r> sm/rem . ;
: .r2cf ( num den -- )
cr 2dup swap . ." / " . ." : "
begin
r2cf dup 0<> while
repeat 2drop ;
: r2cf-demo
1 2 .r2cf
3 1 .r2cf
23 8 .r2cf
13 11 .r2cf
22 7 .r2cf
-151 77 .r2cf
14142 10000 .r2cf
141421 100000 .r2cf
1414214 1000000 .r2cf
14142136 10000000 .r2cf
31 10 .r2cf
314 100 .r2cf
3142 1000 .r2cf
31428 10000 .r2cf
314285 100000 .r2cf
3142857 1000000 .r2cf
31428571 10000000 .r2cf
314285714 100000000 .r2cf
3141592653589793 1000000000000000 .r2cf ;
r2cf-demo
- Output:
1 / 2 : 0 2 3 / 1 : 3 23 / 8 : 2 1 7 13 / 11 : 1 5 2 22 / 7 : 3 7 -151 / 77 : -1 -1 -24 -1 -2 14142 / 10000 : 1 2 2 2 2 2 1 1 29 141421 / 100000 : 1 2 2 2 2 2 2 3 1 1 3 1 7 2 1414214 / 1000000 : 1 2 2 2 2 2 2 2 3 6 1 2 1 12 14142136 / 10000000 : 1 2 2 2 2 2 2 2 2 2 6 1 2 4 1 1 2 31 / 10 : 3 10 314 / 100 : 3 7 7 3142 / 1000 : 3 7 23 1 2 31428 / 10000 : 3 7 357 314285 / 100000 : 3 7 2857 3142857 / 1000000 : 3 7 142857 31428571 / 10000000 : 3 7 476190 3 314285714 / 100000000 : 3 7 7142857 3141592653589793 / 1000000000000000 : 3 7 15 1 292 1 1 1 2 1 3 1 14 4 2 3 1 12 5 1 5 20 1 11 1 1 1 2 ok
FreeBASIC
'with some other constants
data 1,2, 21,7, 21,-7, 7,21, -7,21
data 23,8, 13,11, 22,7, 3035,5258, -151,-77
data -151,77, 77,151, 77,-151, -832040,1346269
data 63018038201,44560482149, 14142,10000
data 31,10, 314,100, 3142,1000, 31428,10000, 314285,100000
data 3142857,1000000, 31428571,10000000, 314285714,100000000
data 139755218526789,44485467702853
data 534625820200,196677847971, 0,0
const Inf = -(clngint(1) shl 63)
type frc
declare sub init (byval a as longint, byval b as longint)
declare function digit () as longint
as longint n, d
end type
'member functions
sub frc.init (byval a as longint, byval b as longint)
if b < 0 then b = -b: a = -a
n = a: d = b
end sub
function frc.digit as longint
dim as longint q, r
digit = Inf
if d then
q = n \ d
r = n - q * d
'floordiv
if r < 0 then q -= 1: r += d
n = d: d = r
digit = q
end if
end function
'main
dim as longint a, b
dim r2cf as frc
do
print
read a, b
if b = 0 then exit do
r2cf.init(a, b)
do
'lazy evaluation
a = r2cf.digit
if a = Inf then exit do
print a;
loop
loop
sleep
system
- Output:
0 2 3 -3 0 3 -1 1 2 2 1 7 1 5 2 3 7 0 1 1 2 1 2 1 4 3 13 1 1 24 1 2 -2 25 1 2 0 1 1 24 1 2 -1 2 24 1 2 -1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 1 1 29 3 10 3 7 7 3 7 23 1 2 3 7 357 3 7 2857 3 7 142857 3 7 476190 3 3 7 7142857 3 7 15 1 292 1 1 1 2 1 3 1 14 2 1 1 2 2 2 2 1 84 2 1 1 15 2 1 2 1 1 4 1 1 6 1 1 8 1 1 10 1 1 12 1 1 14 1 1 16 1 1 18
Go
(Note, the files making up this package are re-used as presented here for for the Continued_fraction/Arithmetic/G(matrix_NG,_Contined_Fraction_N)#Go and Continued_fraction/Arithmetic/G(matrix_NG,_Contined_Fraction_N1,_Contined_Fraction_N2)#Go tasks.)
File cf.go
:
package cf
import (
"fmt"
"strings"
)
// ContinuedFraction is a regular continued fraction.
type ContinuedFraction func() NextFn
// NextFn is a function/closure that can return
// a posibly infinite sequence of values.
type NextFn func() (term int64, ok bool)
// String implements fmt.Stringer.
// It formats a maximum of 20 values, ending the
// sequence with ", ..." if the sequence is longer.
func (cf ContinuedFraction) String() string {
var buf strings.Builder
buf.WriteByte('[')
sep := "; "
const maxTerms = 20
next := cf()
for n := 0; ; n++ {
t, ok := next()
if !ok {
break
}
if n > 0 {
buf.WriteString(sep)
sep = ", "
}
if n >= maxTerms {
buf.WriteString("...")
break
}
fmt.Fprint(&buf, t)
}
buf.WriteByte(']')
return buf.String()
}
// Sqrt2 is the continued fraction for √2, [1; 2, 2, 2, ...].
func Sqrt2() NextFn {
first := true
return func() (int64, bool) {
if first {
first = false
return 1, true
}
return 2, true
}
}
// Phi is the continued fraction for ϕ, [1; 1, 1, 1, ...].
func Phi() NextFn {
return func() (int64, bool) { return 1, true }
}
// E is the continued fraction for e,
// [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, ...].
func E() NextFn {
var i int
return func() (int64, bool) {
i++
switch {
case i == 1:
return 2, true
case i%3 == 0:
return int64(i/3) * 2, true
default:
return 1, true
}
}
}
File rat.go
:
package cf
import "fmt"
// A Rat represents a quotient N/D.
type Rat struct {
N, D int64
}
// String implements fmt.Stringer and returns a string
// representation of `r` in the form "N/D" (even if D == 1).
func (r Rat) String() string {
return fmt.Sprintf("%d/%d", r.N, r.D)
}
// As ContinuedFraction returns a contined fraction representation of `r`.
func (r Rat) AsContinuedFraction() ContinuedFraction { return r.CFTerms }
func (r Rat) CFTerms() NextFn {
return func() (int64, bool) {
if r.D == 0 {
return 0, false
}
q := r.N / r.D
r.N, r.D = r.D, r.N-q*r.D
return q, true
}
}
// Rosetta Code task explicitly asked for this function,
// so here it is. We'll just use the types above instead.
func r2cf(n1, n2 int64) ContinuedFraction { return Rat{n1, n2}.CFTerms }
File rat_test.go
:
package cf
import (
"fmt"
"math"
)
func Example_ConstructFromRational() {
cases := [...]Rat{
{1, 2},
{3, 1},
{23, 8},
{13, 11},
{22, 7},
{-151, 77},
}
for _, r := range cases {
fmt.Printf("%7s = %s\n", r, r.AsContinuedFraction())
}
for _, tc := range [...]struct {
name string
approx float64
cf ContinuedFraction
d1, d2 int64
}{
{"√2", math.Sqrt2, Sqrt2, 1e4, 1e8},
{"π", math.Pi, nil, 10, 1e10},
{"ϕ", math.Phi, Phi, 10, 1e5},
{"e", math.E, E, 1e5, 1e9},
} {
fmt.Printf("\nApproximating %s ≅ %v:\n", tc.name, tc.approx)
for d := tc.d1; d < tc.d2; d *= 10 {
n := int64(math.Round(tc.approx * float64(d)))
r := Rat{n, d}
fmt.Println(r, "=", r.AsContinuedFraction())
}
if tc.cf != nil {
wid := int(math.Log10(float64(tc.d2)))*2 + 2 // ick
fmt.Printf("%*s: %v\n", wid, "Actual", tc.cf)
}
}
// Output:
// [… commented output used by go test omitted for
// Rosetta Code listing; it is the same as below …]
}
- Output:
1/2 = [0; 2] 3/1 = [3] 23/8 = [2; 1, 7] 13/11 = [1; 5, 2] 22/7 = [3; 7] -151/77 = [-1; -1, -24, -1, -2] Approximating √2 ≅ 1.4142135623730951: 14142/10000 = [1; 2, 2, 2, 2, 2, 1, 1, 29] 141421/100000 = [1; 2, 2, 2, 2, 2, 2, 3, 1, 1, 3, 1, 7, 2] 1414214/1000000 = [1; 2, 2, 2, 2, 2, 2, 2, 3, 6, 1, 2, 1, 12] 14142136/10000000 = [1; 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 1, 2, 4, 1, 1, 2] Actual: [1; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...] Approximating π ≅ 3.141592653589793: 31/10 = [3; 10] 314/100 = [3; 7, 7] 3142/1000 = [3; 7, 23, 1, 2] 31416/10000 = [3; 7, 16, 11] 314159/100000 = [3; 7, 15, 1, 25, 1, 7, 4] 3141593/1000000 = [3; 7, 16, 983, 4, 2] 31415927/10000000 = [3; 7, 15, 1, 354, 2, 6, 1, 4, 1, 2] 314159265/100000000 = [3; 7, 15, 1, 288, 1, 2, 1, 3, 1, 7, 4] 3141592654/1000000000 = [3; 7, 15, 1, 293, 11, 1, 1, 7, 2, 1, 3, 3, 2] Approximating ϕ ≅ 1.618033988749895: 16/10 = [1; 1, 1, 2] 162/100 = [1; 1, 1, 1, 1, 1, 2, 2] 1618/1000 = [1; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5] 16180/10000 = [1; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5] Actual: [1; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...] Approximating e ≅ 2.718281828459045: 271828/100000 = [2; 1, 2, 1, 1, 4, 1, 1, 6, 10, 1, 1, 2] 2718282/1000000 = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 3, 141] 27182818/10000000 = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 11, 1, 2, 10, 6, 2] 271828183/100000000 = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 2, 1, 1, 17, 6, 1, 1, 1, ...] Actual: [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, ...]
Haskell
This more general version generates a continued fraction from any real number (with rationals as a special case):
import Data.Ratio ((%))
real2cf :: (RealFrac a, Integral b) => a -> [b]
real2cf x =
let (i, f) = properFraction x
in i :
if f == 0
then []
else real2cf (1 / f)
main :: IO ()
main =
mapM_
print
[ real2cf (13 % 11)
, take 20 $ real2cf (sqrt 2)
]
- Output:
[1,5,2] [1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]
Icon
- Output:
$ icon continued-fraction-from-rational.icn 1/2 => [0; 2] 3/1 => [3] 23/8 => [2; 1, 7] 13/11 => [1; 5, 2] 22/7 => [3; 7] -151/77 => [-1; -1, -24, -1, -2] 14142/10000 => [1; 2, 2, 2, 2, 2, 1, 1, 29] 141421/100000 => [1; 2, 2, 2, 2, 2, 2, 3, 1, 1, 3, 1, 7, 2] 1414214/1000000 => [1; 2, 2, 2, 2, 2, 2, 2, 3, 6, 1, 2, 1, 12] 14142136/10000000 => [1; 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 1, 2, 4, 1, 1, 2] 141421356237309504880168872420969807856967187537694807317667973799073247846210703885038753432764157/100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 => [1; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 1, 8, 3, 1, 2, 2, 1, 6, 2, 2, 3, 1, 2, 3, 1, 1, 39, 1, 3, 1, 2, 4, 10, 1, 6, 1, 30, 5, 2, 1, 1, 1, 1, 1, 32, 1, 4, 18, 124, 3, 2, 1, 1, 8, 1, 1, 1, 6, 15, 2, 3, 2, 7, 1, 4, 9, 2, 7, 1, 1, 1, 1, 1, 2, 1, 10, 1, 31, 5, 1, 1, 1, 7, 1, 14, 10, 3, 11, 1, 2, 1, 65, 4, 9, 2, 3, 2, 2, 9, 1, 1, 2, 1, 1, 2] 31/10 => [3; 10] 314/100 => [3; 7, 7] 3142/1000 => [3; 7, 23, 1, 2] 31428/10000 => [3; 7, 357] 314285/100000 => [3; 7, 2857] 3142857/1000000 => [3; 7, 142857] 31428571/10000000 => [3; 7, 476190, 3] 314285714/100000000 => [3; 7, 7142857] 3142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857/1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 => [3; 7, 142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857142857]
J
Note that the continued fractions shown in this task differ from those in the Continued fraction task as b here is implicitly always 1
.
Tacit version 1
This version is a modification of an explicit version shown in http://www.jsoftware.com/jwiki/Essays/Continued%20Fractions to comply with the task specifications.
cf=: _1 1 ,@}. (, <.)@%@-/ ::]^:a:@(, <.)@(%&x:/)
Examples
cf each 1 2;3 1;23 8;13 11;22 7;14142136 10000000;_151 77
┌───┬─┬─────┬─────┬───┬─────────────────────────────────┬─────────┐
│0 2│3│2 1 7│1 5 2│3 7│1 2 2 2 2 2 2 2 2 2 6 1 2 4 1 1 2│_2 25 1 2│
└───┴─┴─────┴─────┴───┴─────────────────────────────────┴─────────┘
cf each 14142 10000;141421 100000;1414214 1000000;14142136 10000000
┌──────────────────┬───────────────────────────┬────────────────────────────┬─────────────────────────────────┐
│1 2 2 2 2 2 1 1 29│1 2 2 2 2 2 2 3 1 1 3 1 7 2│1 2 2 2 2 2 2 2 3 6 1 2 1 12│1 2 2 2 2 2 2 2 2 2 6 1 2 4 1 1 2│
└──────────────────┴───────────────────────────┴────────────────────────────┴─────────────────────────────────┘
cf each 31 10;314 100;3142 1000;31428 10000;314285 100000;3142857 1000000;31428571 10000000;314285714 100000000
┌────┬─────┬──────────┬───────┬────────┬──────────┬────────────┬───────────┐
│3 10│3 7 7│3 7 23 1 2│3 7 357│3 7 2857│3 7 142857│3 7 476190 3│3 7 7142857│
└────┴─────┴──────────┴───────┴────────┴──────────┴────────────┴───────────┘
This tacit version first produces the answer with a trailing ∞ (represented by _ in J) which is then removed by the last operation (_1 1 ,@}. ...). A continued fraction can be evaluated using the verb ((+%)/) and both representations produce equal results,
3 7 =&((+ %)/) 3 7 _
1
Incidentally, J and Tcl report a different representation for -151/77 versus the representation of some other implementations; however, both representations produce equal results.
_2 25 1 2 =&((+ %)/) _1 _1 _24 _1 _2
1
Tacit version 2
Translation of python
r2cf=:1 1{."1@}.({:,(0,{:)#:{.)^:(*@{:)^:a:
Example use:
((":@{.,'/',":@{:),': ',":@r2cf)@>1 2;3 1;23 8;13 11;22 7;14142136 10000000;_151 77;14142 10000;141421 100000;1414214 1000000;14142136 10000000;31 10;314 100;3142 1000;31428 10000;314285 100000;3142857 1000000;31428571 10000000;314285714 100000000
1/2: 0 2
3/1: 3
23/8: 2 1 7
13/11: 1 5 2
22/7: 3 7
14142136/10000000: 1 2 2 2 2 2 2 2 2 2 6 1 2 4 1 1 2
_151/77: _2 25 1 2
14142/10000: 1 2 2 2 2 2 1 1 29
141421/100000: 1 2 2 2 2 2 2 3 1 1 3 1 7 2
1414214/1000000: 1 2 2 2 2 2 2 2 3 6 1 2 1 12
14142136/10000000: 1 2 2 2 2 2 2 2 2 2 6 1 2 4 1 1 2
31/10: 3 10
314/100: 3 7 7
3142/1000: 3 7 23 1 2
31428/10000: 3 7 357
314285/100000: 3 7 2857
3142857/1000000: 3 7 142857
31428571/10000000: 3 7 476190 3
314285714/100000000: 3 7 7142857
Explicit versions
version 1
Implemented as a class, r2cf preserves state in a separate locale. I've used some contrivances to jam the examples onto one line.
coclass'cf'
create =: dyad def 'EMPTY [ N =: x , y'
destroy =: codestroy
r2cf =: monad define
if. 0 (= {:) N do. _ return. end.
RV =. <.@:(%/) N
N =: ({. , |/)@:|. N
RV
)
cocurrent'base'
CF =: conew'cf'
Until =: conjunction def 'u^:(-.@:v)^:_'
(,. }.@:}:@:((,r2cf__CF)Until(_-:{:))@:(8[create__CF/)&.>)1 2;3 1;23 8;13 11;22 7;14142136 10000000;_151 77
Note 'Output'
┌─────────────────┬─────────────────────────────────┐
│1 2 │0 2 │
├─────────────────┼─────────────────────────────────┤
│3 1 │3 │
├─────────────────┼─────────────────────────────────┤
│23 8 │2 1 7 │
├─────────────────┼─────────────────────────────────┤
│13 11 │1 5 2 │
├─────────────────┼─────────────────────────────────┤
│22 7 │3 7 │
├─────────────────┼─────────────────────────────────┤
│14142136 10000000│1 2 2 2 2 2 2 2 2 2 6 1 2 4 1 1 2│
├─────────────────┼─────────────────────────────────┤
│_151 77 │_2 25 1 2 │
└─────────────────┴─────────────────────────────────┘
)
version 2
f =: 3 : 0
a =. {.y
b =. {:y
out=. <. a%b
while. b > 1 do.
'a b' =. b; b|a
out=. out , <. a%b
end.
)
f each 1 2;3 1;23 8;13 11;22 7;14142136 10000000;_151 77
┌───┬─┬─────┬─────┬───┬───────────────────────────────────┬─────────┐
│0 2│3│2 1 7│1 5 2│3 7│1 2 2 2 2 2 2 2 2 2 6 1 2 4 1 1 2 _│_2 25 1 2│
└───┴─┴─────┴─────┴───┴───────────────────────────────────┴─────────┘
version 3
translation of python:
r2cf=:3 :0
'n1 n2'=. y
r=.''
while.n2 do.
'n1 t1 n2'=. n2,(0,n2)#:n1
r=.r,t1
end.
)
Example:
r2cf each 1 2;3 1;23 8;13 11;22 7;14142136 10000000;_151 77
┌───┬─┬─────┬─────┬───┬─────────────────────────────────┬─────────┐
│0 2│3│2 1 7│1 5 2│3 7│1 2 2 2 2 2 2 2 2 2 6 1 2 4 1 1 2│_2 25 1 2│
└───┴─┴─────┴─────┴───┴─────────────────────────────────┴─────────┘
Java
import java.util.Iterator;
import java.util.List;
import java.util.Map;
public class ConstructFromRationalNumber {
private static class R2cf implements Iterator<Integer> {
private int num;
private int den;
R2cf(int num, int den) {
this.num = num;
this.den = den;
}
@Override
public boolean hasNext() {
return den != 0;
}
@Override
public Integer next() {
int div = num / den;
int rem = num % den;
num = den;
den = rem;
return div;
}
}
private static void iterate(R2cf generator) {
generator.forEachRemaining(n -> System.out.printf("%d ", n));
System.out.println();
}
public static void main(String[] args) {
List<Map.Entry<Integer, Integer>> fracs = List.of(
Map.entry(1, 2),
Map.entry(3, 1),
Map.entry(23, 8),
Map.entry(13, 11),
Map.entry(22, 7),
Map.entry(-151, 77)
);
for (Map.Entry<Integer, Integer> frac : fracs) {
System.out.printf("%4d / %-2d = ", frac.getKey(), frac.getValue());
iterate(new R2cf(frac.getKey(), frac.getValue()));
}
System.out.println("\nSqrt(2) ->");
List<Map.Entry<Integer, Integer>> root2 = List.of(
Map.entry( 14_142, 10_000),
Map.entry( 141_421, 100_000),
Map.entry( 1_414_214, 1_000_000),
Map.entry(14_142_136, 10_000_000)
);
for (Map.Entry<Integer, Integer> frac : root2) {
System.out.printf("%8d / %-8d = ", frac.getKey(), frac.getValue());
iterate(new R2cf(frac.getKey(), frac.getValue()));
}
System.out.println("\nPi ->");
List<Map.Entry<Integer, Integer>> pi = List.of(
Map.entry( 31, 10),
Map.entry( 314, 100),
Map.entry( 3_142, 1_000),
Map.entry( 31_428, 10_000),
Map.entry( 314_285, 100_000),
Map.entry( 3_142_857, 1_000_000),
Map.entry( 31_428_571, 10_000_000),
Map.entry(314_285_714, 100_000_000)
);
for (Map.Entry<Integer, Integer> frac : pi) {
System.out.printf("%9d / %-9d = ", frac.getKey(), frac.getValue());
iterate(new R2cf(frac.getKey(), frac.getValue()));
}
}
}
- Output:
1 / 2 = 0 2 3 / 1 = 3 23 / 8 = 2 1 7 13 / 11 = 1 5 2 22 / 7 = 3 7 -151 / 77 = -1 -1 -24 -1 -2 Sqrt(2) -> 14142 / 10000 = 1 2 2 2 2 2 1 1 29 141421 / 100000 = 1 2 2 2 2 2 2 3 1 1 3 1 7 2 1414214 / 1000000 = 1 2 2 2 2 2 2 2 3 6 1 2 1 12 14142136 / 10000000 = 1 2 2 2 2 2 2 2 2 2 6 1 2 4 1 1 2 Pi -> 31 / 10 = 3 10 314 / 100 = 3 7 7 3142 / 1000 = 3 7 23 1 2 31428 / 10000 = 3 7 357 314285 / 100000 = 3 7 2857 3142857 / 1000000 = 3 7 142857 31428571 / 10000000 = 3 7 476190 3 314285714 / 100000000 = 3 7 7142857
Julia
# It'st most appropriate to define a Julia iterable object for this task
# Julia doesn't have Python'st yield, the closest to it is produce/consume calls with Julia tasks
# but for various reasons they don't work out for this task
# This solution works with two integers, a Julia rational or a real
mutable struct ContinuedFraction{T<:Integer}
n1::T # numerator or real
n2::T # denominator or 1 if real
t1::T # generated coefficient
end
# Constructors for all possible input types
ContinuedFraction{T<:Integer}(n1::T, n2::T) = ContinuedFraction(n1, n2, 0)
ContinuedFraction(n::Rational) = ContinuedFraction(numerator(n), denominator(n))
ContinuedFraction(n::AbstractFloat) = ContinuedFraction(Rational(n))
# Methods to make our object iterable
Base.start(::ContinuedFraction) = nothing
# Returns true if we've prepared the continued fraction
Base.done(cf::ContinuedFraction, st) = cf.n2 == 0
# Generates the next coefficient
function Base.next(cf::ContinuedFraction, st)
cf.n1, (cf.t1, cf.n2) = cf.n2, divrem(cf.n1, cf.n2)
return cf.t1, nothing
end
# Tell Julia that this object always returns ints (all coeffs are integers)
Base.eltype{T}(::Type{ContinuedFraction{T}}) = T
# Overload the default collect function so that we can collect the first maxiter coeffs of infinite continued fractions
# array slicing doesn't work as Julia crashes before the slicing due to our infinitely long array
function Base.collect(itr::ContinuedFraction, maxiter::Integer = 100)
r = Array{eltype(itr)}(maxiter)
i = 1
for v in itr
r[i] = v
i += 1
if i > maxiter break end
end
return r[1:i-1]
end
# Test cases according to task description with outputs in comments
println(collect(ContinuedFraction(1, 2))) # => [0, 2]
println(collect(ContinuedFraction(3, 1))) # => [3]
println(collect(ContinuedFraction(23, 8))) # => [2, 1, 7]
println(collect(ContinuedFraction(13, 11))) # => [1, 5, 2]
println(collect(ContinuedFraction(22, 7))) # => [3, 7]
println(collect(ContinuedFraction(14142, 10000))) # => [1, 2, 2, 2, 2, 2, 1, 1, 29]
println(collect(ContinuedFraction(141421, 100000))) # => [1, 2, 2, 2, 2, 2, 2, 3, 1, 1, 3, 1, 7, 2]
println(collect(ContinuedFraction(1414214, 1000000))) # => [1, 2, 2, 2, 2, 2, 2, 2, 3, 6, 1, 2, 1, 12]
println(collect(ContinuedFraction(14142136, 10000000))) # => [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 1, 2, 4, 1, 1, 2]
println(collect(ContinuedFraction(13 // 11))) # => [1, 5, 2]
println(collect(ContinuedFraction(√2), 20)) # => [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
Kotlin
// version 1.1.2
// compile with -Xcoroutines=enable flag from command line
import kotlin.coroutines.experimental.buildSequence
fun r2cf(frac: Pair<Int, Int>) =
buildSequence {
var num = frac.first
var den = frac.second
while (Math.abs(den) != 0) {
val div = num / den
val rem = num % den
num = den
den = rem
yield(div)
}
}
fun iterate(seq: Sequence<Int>) {
for (i in seq) print("$i ")
println()
}
fun main(args: Array<String>) {
val fracs = arrayOf(1 to 2, 3 to 1, 23 to 8, 13 to 11, 22 to 7, -151 to 77)
for (frac in fracs) {
print("${"%4d".format(frac.first)} / ${"%-2d".format(frac.second)} = ")
iterate(r2cf(frac))
}
val root2 = arrayOf(14142 to 10000, 141421 to 100000,
1414214 to 1000000, 14142136 to 10000000)
println("\nSqrt(2) ->")
for (frac in root2) {
print("${"%8d".format(frac.first)} / ${"%-8d".format(frac.second)} = ")
iterate(r2cf(frac))
}
val pi = arrayOf(31 to 10, 314 to 100, 3142 to 1000, 31428 to 10000,
314285 to 100000, 3142857 to 1000000,
31428571 to 10000000, 314285714 to 100000000)
println("\nPi ->")
for (frac in pi) {
print("${"%9d".format(frac.first)} / ${"%-9d".format(frac.second)} = ")
iterate(r2cf(frac))
}
}
- Output:
1 / 2 = 0 2 3 / 1 = 3 23 / 8 = 2 1 7 13 / 11 = 1 5 2 22 / 7 = 3 7 -151 / 77 = -1 -1 -24 -1 -2 Sqrt(2) -> 14142 / 10000 = 1 2 2 2 2 2 1 1 29 141421 / 100000 = 1 2 2 2 2 2 2 3 1 1 3 1 7 2 1414214 / 1000000 = 1 2 2 2 2 2 2 2 3 6 1 2 1 12 14142136 / 10000000 = 1 2 2 2 2 2 2 2 2 2 6 1 2 4 1 1 2 Pi -> 31 / 10 = 3 10 314 / 100 = 3 7 7 3142 / 1000 = 3 7 23 1 2 31428 / 10000 = 3 7 357 314285 / 100000 = 3 7 2857 3142857 / 1000000 = 3 7 142857 31428571 / 10000000 = 3 7 476190 3 314285714 / 100000000 = 3 7 7142857
Mathematica / Wolfram Language
Mathematica has a build-in function ContinuedFraction.
ContinuedFraction[1/2]
ContinuedFraction[3]
ContinuedFraction[23/8]
ContinuedFraction[13/11]
ContinuedFraction[22/7]
ContinuedFraction[-151/77]
ContinuedFraction[14142/10000]
ContinuedFraction[141421/100000]
ContinuedFraction[1414214/1000000]
ContinuedFraction[14142136/10000000]
- Output:
{0, 2} {3} {2, 1, 7} {1, 5, 2} {3, 7} {-1, -1, -24, -1, -2} {1, 2, 2, 2, 2, 2, 1, 1, 29} {1, 2, 2, 2, 2, 2, 2, 3, 1, 1, 3, 1, 7, 2} {1, 2, 2, 2, 2, 2, 2, 2, 3, 6, 1, 2, 1, 12} {1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 1, 2, 4, 1, 1, 2}
Modula-2
MODULE ConstructFromrationalNumber;
FROM FormatString IMPORT FormatString;
FROM Terminal IMPORT WriteString,WriteLn,ReadChar;
TYPE R2cf = RECORD
num,den : INTEGER;
END;
PROCEDURE HasNext(self : R2cf) : BOOLEAN;
BEGIN
RETURN self.den # 0;
END HasNext;
PROCEDURE Next(VAR self : R2cf) : INTEGER;
VAR div,rem : INTEGER;
BEGIN
div := self.num / self.den;
rem := self.num REM self.den;
self.num := self.den;
self.den := rem;
RETURN div;
END Next;
PROCEDURE Iterate(self : R2cf);
VAR buf : ARRAY[0..64] OF CHAR;
BEGIN
WHILE HasNext(self) DO
FormatString("%i ", buf, Next(self));
WriteString(buf);
END;
WriteLn;
END Iterate;
PROCEDURE Print(num,den : INTEGER);
VAR frac : R2cf;
VAR buf : ARRAY[0..64] OF CHAR;
BEGIN
FormatString("%9i / %-9i = ", buf, num, den);
WriteString(buf);
frac.num := num;
frac.den := den;
Iterate(frac);
END Print;
VAR frac : R2cf;
BEGIN
Print(1,2);
Print(3,1);
Print(23,8);
Print(13,11);
Print(22,7);
Print(-151,77);
WriteLn;
WriteString("Sqrt(2) ->");
WriteLn;
Print(14142,10000);
Print(141421,100000);
Print(1414214,1000000);
Print(14142136,10000000);
WriteLn;
WriteString("Pi ->");
WriteLn;
Print(31,10);
Print(314,100);
Print(3142,1000);
Print(31428,10000);
Print(314285,100000);
Print(3142857,1000000);
Print(31428571,10000000);
Print(314285714,100000000);
ReadChar;
END ConstructFromrationalNumber.
Nim
iterator r2cf*(n1, n2: int): int =
var (n1, n2) = (n1, n2)
while n2 != 0:
yield n1 div n2
n1 = n1 mod n2
swap n1, n2
#———————————————————————————————————————————————————————————————————————————————————————————————————
when isMainModule:
from sequtils import toSeq
for pair in [(1, 2), (3, 1), (23, 8), (13, 11), (22, 7), (-151, 77)]:
echo pair, " -> ", toSeq(r2cf(pair[0], pair[1]))
echo ""
for pair in [(14142, 10000), (141421, 100000), (1414214, 1000000), (14142136, 10000000)]:
echo pair, " -> ", toSeq(r2cf(pair[0], pair[1]))
echo ""
for pair in [(31,10), (314,100), (3142,1000), (31428,10000), (314285,100000),
(3142857,1000000), (31428571,10000000), (314285714,100000000)]:
echo pair, " -> ", toSeq(r2cf(pair[0], pair[1]))
- Output:
(1, 2) -> @[0, 2] (3, 1) -> @[3] (23, 8) -> @[2, 1, 7] (13, 11) -> @[1, 5, 2] (22, 7) -> @[3, 7] (-151, 77) -> @[-1, -1, -24, -1, -2] (14142, 10000) -> @[1, 2, 2, 2, 2, 2, 1, 1, 29] (141421, 100000) -> @[1, 2, 2, 2, 2, 2, 2, 3, 1, 1, 3, 1, 7, 2] (1414214, 1000000) -> @[1, 2, 2, 2, 2, 2, 2, 2, 3, 6, 1, 2, 1, 12] (14142136, 10000000) -> @[1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 1, 2, 4, 1, 1, 2] (31, 10) -> @[3, 10] (314, 100) -> @[3, 7, 7] (3142, 1000) -> @[3, 7, 23, 1, 2] (31428, 10000) -> @[3, 7, 357] (314285, 100000) -> @[3, 7, 2857] (3142857, 1000000) -> @[3, 7, 142857] (31428571, 10000000) -> @[3, 7, 476190, 3] (314285714, 100000000) -> @[3, 7, 7142857]
PARI/GP
apply(contfrac,[1/2,3,23/8,13/11,22/7,-151/77])
- Output:
[[0, 2], [3], [2, 1, 7], [1, 5, 2], [3, 7], [-2, 25, 1, 2]]
Perl
To do output one digit at a time, we first turn off buffering to be pedantic, then use a closure that yields one term per call.
$|=1;
sub rc2f {
my($num, $den) = @_;
return sub { return unless $den;
my $q = int($num/$den);
($num, $den) = ($den, $num - $q*$den);
$q; };
}
sub rcshow {
my $sub = shift;
print "[";
my $n = $sub->();
print "$n" if defined $n;
print "; $n" while defined($n = $sub->());
print "]\n";
}
rcshow(rc2f(@$_))
for ([1,2],[3,1],[23,8],[13,11],[22,7],[-151,77]);
print "\n";
rcshow(rc2f(@$_))
for ([14142,10000],[141421,100000],[1414214,1000000],[14142136,10000000]);
print "\n";
rcshow(rc2f(314285714,100000000));
- Output:
[0; 2] [3] [2; 1; 7] [1; 5; 2] [3; 7] [-1; -1; -24; -1; -2] [1; 2; 2; 2; 2; 2; 1; 1; 29] [1; 2; 2; 2; 2; 2; 2; 3; 1; 1; 3; 1; 7; 2] [1; 2; 2; 2; 2; 2; 2; 2; 3; 6; 1; 2; 1; 12] [1; 2; 2; 2; 2; 2; 2; 2; 2; 2; 6; 1; 2; 4; 1; 1; 2] [3; 7; 7142857]
Phix
with javascript_semantics function r2cf(atom num, denom) atom quot = 0 if denom!=0 then quot = trunc(num/denom) {num,denom} = {denom,num-quot*denom} end if return {quot,{num,denom}} end function procedure test(string txt, sequence tests) printf(1,"Running %s :\n",{txt}) for i=1 to length(tests) do atom {num,denom} = tests[i], quot string sep = ";" printf(1,"%d/%d ==> [",{num,denom}) while denom!=0 do {quot,{num,denom}} = r2cf(num,denom) printf(1,"%d",quot) if denom=0 then exit end if printf(1,"%s",sep) sep = "," end while printf(1,"]\n") end for printf(1,"\n") end procedure constant examples = {{1,2}, {3,1}, {23,8}, {13,11}, {22,7}, {-151,77}}, sqrt2 = {{14142,10000}, {141421,100000}, {1414214,1000000}, {14142136,10000000}}, pi = {{31,10}, {314,100}, {3142,1000}, {31428,10000}, {314285,100000}, {3142857,1000000}, {31428571,10000000}, {314285714,100000000}, {3141592653589793,1000000000000000}} test("the examples",examples) test("for sqrt(2)",sqrt2) test("for pi",pi)
- Output:
Running the examples : 1/2 ==> [0;2] 3/1 ==> [3] 23/8 ==> [2;1,7] 13/11 ==> [1;5,2] 22/7 ==> [3;7] -151/77 ==> [-1;-1,-24,-1,-2] Running for sqrt(2) : 14142/10000 ==> [1;2,2,2,2,2,1,1,29] 141421/100000 ==> [1;2,2,2,2,2,2,3,1,1,3,1,7,2] 1414214/1000000 ==> [1;2,2,2,2,2,2,2,3,6,1,2,1,12] 14142136/10000000 ==> [1;2,2,2,2,2,2,2,2,2,6,1,2,4,1,1,2] Running for pi : 31/10 ==> [3;10] 314/100 ==> [3;7,7] 3142/1000 ==> [3;7,23,1,2] 31428/10000 ==> [3;7,357] 314285/100000 ==> [3;7,2857] 3142857/1000000 ==> [3;7,142857] 31428571/10000000 ==> [3;7,476190,3] 314285714/100000000 ==> [3;7,7142857] 3141592653589793/1000000000000000 ==> [3;7,15,1,292,1,1,1,2,1,3,1,14,4,2,3,1,12,5,1,5,20,1,11,1,1,1,2]
Python
def r2cf(n1,n2):
while n2:
n1, (t1, n2) = n2, divmod(n1, n2)
yield t1
print(list(r2cf(1,2))) # => [0, 2]
print(list(r2cf(3,1))) # => [3]
print(list(r2cf(23,8))) # => [2, 1, 7]
print(list(r2cf(13,11))) # => [1, 5, 2]
print(list(r2cf(22,7))) # => [3, 7]
print(list(r2cf(14142,10000))) # => [1, 2, 2, 2, 2, 2, 1, 1, 29]
print(list(r2cf(141421,100000))) # => [1, 2, 2, 2, 2, 2, 2, 3, 1, 1, 3, 1, 7, 2]
print(list(r2cf(1414214,1000000))) # => [1, 2, 2, 2, 2, 2, 2, 2, 3, 6, 1, 2, 1, 12]
print(list(r2cf(14142136,10000000))) # => [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 1, 2, 4, 1, 1, 2]
This version generates it from any real number (with rationals as a special case):
def real2cf(x):
while True:
t1, f = divmod(x, 1)
yield int(t1)
if not f:
break
x = 1/f
from fractions import Fraction
from itertools import islice
print(list(real2cf(Fraction(13, 11)))) # => [1, 5, 2]
print(list(islice(real2cf(2 ** 0.5), 20))) # => [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
Quackery
[ $ "bigrat.qky" loadfile ] now!
[ [] unrot
[ proper
2swap join unrot
over 0 != while
1/v again ]
2drop ] is cf ( n/d --> [ )
' [ [ 1 2 ]
[ 3 1 ]
[ 23 8 ]
[ 13 11 ]
[ 22 7 ]
[ -151 77 ]
[ 14142 10000 ]
[ 141421 100000 ]
[ 1414214 1000000 ]
[ 14142136 10000000 ]
[ 31 10 ]
[ 314 100 ]
[ 3142 1000 ]
[ 31428 10000 ]
[ 314285 100000 ]
[ 3142857 1000000 ]
[ 31428571 10000000 ]
[ 314285714 100000000 ] ]
witheach
[ do over echo say "/"
dup echo
say " = "
cf echo cr ]
- Output:
1/2 = [ 0 2 ] 3/1 = [ 3 ] 23/8 = [ 2 1 7 ] 13/11 = [ 1 5 2 ] 22/7 = [ 3 7 ] -151/77 = [ -2 25 1 2 ] 14142/10000 = [ 1 2 2 2 2 2 1 1 29 ] 141421/100000 = [ 1 2 2 2 2 2 2 3 1 1 3 1 7 2 ] 1414214/1000000 = [ 1 2 2 2 2 2 2 2 3 6 1 2 1 12 ] 14142136/10000000 = [ 1 2 2 2 2 2 2 2 2 2 6 1 2 4 1 1 2 ] 31/10 = [ 3 10 ] 314/100 = [ 3 7 7 ] 3142/1000 = [ 3 7 23 1 2 ] 31428/10000 = [ 3 7 357 ] 314285/100000 = [ 3 7 2857 ] 3142857/1000000 = [ 3 7 142857 ] 31428571/10000000 = [ 3 7 476190 3 ] 314285714/100000000 = [ 3 7 7142857 ]
Racket
#lang racket
(define ((r2cf n d))
(or (zero? d)
(let-values ([(q r) (quotient/remainder n d)])
(set! n d)
(set! d r)
q)))
(define (r->cf n d)
(for/list ([i (in-producer (r2cf n d) #t)]) i))
(define (real->cf x places)
(define d (expt 10 places))
(define n (exact-floor (* x d)))
(r->cf n d))
(map r->cf
'(1 3 23 13 22 -151)
'(2 1 8 11 7 77))
(real->cf (sqrt 2) 10)
(real->cf pi 10)
- Output:
'((0 2) (3) (2 1 7) (1 5 2) (3 7) (-1 -1 -24 -1 -2)) '(1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 1 3 8 9 1 20 1 2) '(3 7 15 1 292 1 1 6 2 13 3 1 12 3)
Raku
(formerly Perl 6) Straightforward implementation:
sub r2cf(Rat $x is copy) {
gather loop {
$x -= take $x.floor;
last unless $x > 0;
$x = 1 / $x;
}
}
say r2cf(.Rat) for <1/2 3 23/8 13/11 22/7 1.41 1.4142136>;
- Output:
(0 2) (3) (2 1 7) (1 5 2) (3 7) (1 2 2 3 1 1 2) (1 2 2 2 2 2 2 2 2 2 6 1 2 4 1 1 2)
As a silly one-liner:
sub r2cf(Rat $x is copy) { gather $x [R/]= 1 while ($x -= take $x.floor) > 0 }
REXX
Programming notes:
- Increasing numeric digits to a higher value will generate more terms.
- Two subroutines, sqrt and pi, were included here to demonstrate terms for √ 2 and pi.
- The subroutine $maxfact was included and is only needed if the number used for r2cf is a decimal fraction.
- Checks were included to verify that the arguments being passed to r2cf are indeed numeric and also not zero.
- This REXX version also handles negative numbers.
/*REXX program converts a decimal or rational fraction to a continued fraction. */
numeric digits 230 /*determines how many terms to be gened*/
say ' 1/2 ──► CF: ' r2cf( '1/2' )
say ' 3 ──► CF: ' r2cf( 3 )
say ' 23/8 ──► CF: ' r2cf( '23/8' )
say ' 13/11 ──► CF: ' r2cf( '13/11' )
say ' 22/7 ──► CF: ' r2cf( '22/7 ' )
say ' ___'
say '───────── attempts at √ 2.'
say '14142/1e4 ──► CF: ' r2cf( '14142/1e4 ' )
say '141421/1e5 ──► CF: ' r2cf( '141421/1e5 ' )
say '1414214/1e6 ──► CF: ' r2cf( '1414214/1e6 ' )
say '14142136/1e7 ──► CF: ' r2cf( '14142136/1e7 ' )
say '141421356/1e8 ──► CF: ' r2cf( '141421356/1e8 ' )
say '1414213562/1e9 ──► CF: ' r2cf( '1414213562/1e9 ' )
say '14142135624/1e10 ──► CF: ' r2cf( '14142135624/1e10 ' )
say '141421356237/1e11 ──► CF: ' r2cf( '141421356237/1e11 ' )
say '1414213562373/1e12 ──► CF: ' r2cf( '1414213562373/1e12 ' )
say '√2 ──► CF: ' r2cf( sqrt(2) )
say
say '───────── an attempt at pi'
say 'pi ──► CF: ' r2cf( pi() )
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
$maxFact: procedure; parse arg x 1 _x,y; y=10**(digits()-1); b=0; h=1; a=1; g=0
do while a<=y & g<=y; n=trunc(_x); _=a; a=n*a+b; b=_; _=g; g=n*g+h; h=_
if n=_x | a/g=x then do; if a>y | g>y then iterate; b=a; h=g; leave; end
_x=1/(_x-n); end; return b'/'h
/*──────────────────────────────────────────────────────────────────────────────────────*/
pi: return 3.1415926535897932384626433832795028841971693993751058209749445923078164062862,
|| 089986280348253421170679821480865132823066470938446095505822317253594081284,
|| 811174502841027019385211055596446229489549303819644288109756659334461284756,
|| 48233786783165271 /* ··· should ≥ NUMERIC DIGITS */
/*──────────────────────────────────────────────────────────────────────────────────────*/
r2cf: procedure; parse arg g 1 s 2; $=; if s=='-' then g=substr(g, 2)
else s=
if pos(., g)\==0 then do; if \datatype(g, 'N') then call serr 'not numeric:' g
g=$maxfact(g)
end
if pos('/', g)==0 then g=g"/"1
parse var g n '/' d
if \datatype(n, 'W') then call serr "a numerator isn't an integer:" n
if \datatype(d, 'W') then call serr "a denominator isn't an integer:" d
if d=0 then call serr 'a denominator is zero'
n=abs(n) /*ensure numerator is positive. */
do while d\==0; _=d /*where the rubber meets the road*/
$=$ s || (n%d) /*append another number to list. */
d=n // d; n=_ /* % is int div, // is modulus.*/
end /*while*/
return strip($)
/*──────────────────────────────────────────────────────────────────────────────────────*/
serr: say; say '***error***'; say; say arg(1); say; exit 13
/*──────────────────────────────────────────────────────────────────────────────────────*/
sqrt: procedure; parse arg x; if x=0 then return 0; d=digits(); h=d+6; numeric form
m.=9; numeric digits; parse value format(x,2,1,,0) 'E0' with g 'E' _ .; g=g*.5'e'_%2
do j=0 while h>9; m.j=h; h=h%2+1; end /*j*/
do k=j+5 to 0 by -1; numeric digits m.k; g=(g+x/g)*.5; end /*k*/
numeric digits d; return g/1
- output when using the default (internal) inputs:
1/2 ──► CF: 0 2 3 ──► CF: 3 23/8 ──► CF: 2 1 7 13/11 ──► CF: 1 5 2 22/7 ──► CF: 3 7 ___ ───────── attempts at √ 2. 14142/1e4 ──► CF: 1 2 2 2 2 2 1 1 29 141421/1e5 ──► CF: 1 2 2 2 2 2 2 3 1 1 3 1 7 2 1414214/1e6 ──► CF: 1 2 2 2 2 2 2 2 3 6 1 2 1 12 14142136/1e7 ──► CF: 1 2 2 2 2 2 2 2 2 2 6 1 2 4 1 1 2 141421356/1e8 ──► CF: 1 2 2 2 2 2 2 2 2 2 2 3 4 1 1 2 6 8 1414213562/1e9 ──► CF: 1 2 2 2 2 2 2 2 2 2 2 2 1 1 14 1 238 1 3 14142135624/1e10 ──► CF: 1 2 2 2 2 2 2 2 2 2 2 2 2 2 5 4 1 8 4 2 1 4 141421356237/1e11 ──► CF: 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 1 4 1 2 1 63 2 1 1 1 4 2 1414213562373/1e12 ──► CF: 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 1 11 2 3 2 1 1 1 25 1 2 3 √2 ──► CF: 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 ───────── an attempt at pi pi ──► CF: 3 7 15 1 292 1 1 1 2 1 3 1 14 2 1 1 2 2 2 2 1 84 2 1 1 15 3 13 1 4 2 6 6 99 1 2 2 6 3 5 1 1 6 8 1 7 1 2 3 7 1 2 1 1 12 1 1 1 3 1 1 8 1 1 2 1 6 1 1 5 2 2 3 1 2 4 4 16 1 161 45 1 22 1 2 2 1 4 1 2 24 1 2 1 3 1 2 1 1 10 2 5 4 1 2 2 8 1 5 2 2 26 1 4 1 1 8 2 42 2 1 7 3 3 1 1 7 2 4 9 7 2 3 1 57 1 18 1 9 19 1 2 18 1 3 7 30 1 1 1 3 3 3 1 2 8 1 1 2 1 15 1 2 13 1 2 1 4 1 12 1 1 3 3 28 1 10 3 2 20 1 1 1 1 4 1 1 1 5 3 2 1 6 1 4 1 120 2 1 1 3 1 23 1 15 1 3 7 1 16 1 2 1 21 2 1 1 2 9 1 6 4
Ruby
# Generate a continued fraction from a rational number
def r2cf(n1,n2)
while n2 > 0
n1, (t1, n2) = n2, n1.divmod(n2)
yield t1
end
end
Testing
Test 1:
[[1,2], [3,1], [23,8], [13,11], [22,7], [-151,77]].each do |n1,n2|
print "%10s : " % "#{n1} / #{n2}"
r2cf(n1,n2) {|n| print "#{n} "}
puts
end
- Output:
1 / 2 : 0 2 3 / 1 : 3 23 / 8 : 2 1 7 13 / 11 : 1 5 2 22 / 7 : 3 7 -151 / 77 : -2 25 1 2
Test 2:
(5..8).each do |digit|
n2 = 10 ** (digit-1)
n1 = (Math.sqrt(2) * n2).round
print "%-8s / %-8s : " % [n1, n2]
r2cf(n1,n2) {|n| print "#{n} "}
puts
end
- Output:
14142 / 10000 : 1 2 2 2 2 2 1 1 29 141421 / 100000 : 1 2 2 2 2 2 2 3 1 1 3 1 7 2 1414214 / 1000000 : 1 2 2 2 2 2 2 2 3 6 1 2 1 12 14142136 / 10000000 : 1 2 2 2 2 2 2 2 2 2 6 1 2 4 1 1 2
Test 3:
a =[ [31,10],
[314,100],
[3142,1000],
[31428,10000],
[314285,100000],
[3142857,1000000],
[31428571,10000000],
[314285714,100000000]
]
a.each do |n1,n2|
print "%-9s / %-9s : " % [n1, n2]
r2cf(n1,n2) {|n| print "#{n} "}
puts
end
- Output:
31 / 10 : 3 10 314 / 100 : 3 7 7 3142 / 1000 : 3 7 23 1 2 31428 / 10000 : 3 7 357 314285 / 100000 : 3 7 2857 3142857 / 1000000 : 3 7 142857 31428571 / 10000000 : 3 7 476190 3 314285714 / 100000000 : 3 7 7142857
Rust
struct R2cf {
n1: i64,
n2: i64
}
// This iterator generates the continued fraction representation from the
// specified rational number.
impl Iterator for R2cf {
type Item = i64;
fn next(&mut self) -> Option<i64> {
if self.n2 == 0 {
None
}
else {
let t1 = self.n1 / self.n2;
let t2 = self.n2;
self.n2 = self.n1 - t1 * t2;
self.n1 = t2;
Some(t1)
}
}
}
fn r2cf(n1: i64, n2: i64) -> R2cf {
R2cf { n1: n1, n2: n2 }
}
macro_rules! printcf {
($x:expr, $y:expr) => (println!("{:?}", r2cf($x, $y).collect::<Vec<_>>()));
}
fn main() {
printcf!(1, 2);
printcf!(3, 1);
printcf!(23, 8);
printcf!(13, 11);
printcf!(22, 7);
printcf!(-152, 77);
printcf!(14_142, 10_000);
printcf!(141_421, 100_000);
printcf!(1_414_214, 1_000_000);
printcf!(14_142_136, 10_000_000);
printcf!(31, 10);
printcf!(314, 100);
printcf!(3142, 1000);
printcf!(31_428, 10_000);
printcf!(314_285, 100_000);
printcf!(3_142_857, 1_000_000);
printcf!(31_428_571, 10_000_000);
printcf!(314_285_714, 100_000_000);
}
- Output:
[0, 2] [3] [2, 1, 7] [1, 5, 2] [3, 7] [-1, -1, -37, -2] [1, 2, 2, 2, 2, 2, 1, 1, 29] [1, 2, 2, 2, 2, 2, 2, 3, 1, 1, 3, 1, 7, 2] [1, 2, 2, 2, 2, 2, 2, 2, 3, 6, 1, 2, 1, 12] [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 1, 2, 4, 1, 1, 2] [3, 10] [3, 7, 7] [3, 7, 23, 1, 2] [3, 7, 357] [3, 7, 2857] [3, 7, 142857] [3, 7, 476190, 3] [3, 7, 7142857]
Scheme
The Implementation
; Create a terminating Continued Fraction generator for the given rational number.
; Returns one term per call; returns #f when no more terms remaining.
(define make-continued-fraction-gen
(lambda (rat)
(let ((num (numerator rat)) (den (denominator rat)))
(lambda ()
(if (= den 0)
#f
(let ((ret (quotient num den))
(rem (modulo num den)))
(set! num den)
(set! den rem)
ret))))))
; Return the continued fraction representation of a rational number as a string.
(define rat->cf-string
(lambda (rat)
(let* ((cf (make-continued-fraction-gen rat))
(str (string-append "[" (format "~a" (cf))))
(sep ";"))
(let loop ((term (cf)))
(when term
(set! str (string-append str (format "~a ~a" sep term)))
(set! sep ",")
(loop (cf))))
(string-append str "]"))))
; Return the continued fraction representation of a rational number as a list of terms.
(define rat->cf-list
(lambda (rat)
(let ((cf (make-continued-fraction-gen rat))
(lst '()))
(let loop ((term (cf)))
(when term
(set! lst (append lst (list term)))
(loop (cf))))
lst)))
The Task
Each continued fraction is displayed in both the conventional written form and as a list of terms.
(printf "~%Basic examples:~%")
(for-each
(lambda (rat)
(printf "~a = ~a~%" rat (rat->cf-string rat))
(printf "~a : ~a~%" rat (rat->cf-list rat)))
'(1/2 3 23/8 13/11 22/7 -151/77 0))
(printf "~%Root2 approximations:~%")
(for-each
(lambda (rat)
(printf "~a = ~a~%" rat (rat->cf-string rat))
(printf "~a : ~a~%" rat (rat->cf-list rat)))
'(14142/10000 141421/100000 1414214/1000000 14142136/10000000 141421356237/100000000000))
(printf "~%Pi approximations:~%")
(for-each
(lambda (rat)
(printf "~a = ~a~%" rat (rat->cf-string rat))
(printf "~a : ~a~%" rat (rat->cf-list rat)))
'(31/10 314/100 3142/1000 31428/10000 314285/100000 3142857/1000000
31428571/10000000 314285714/100000000 31415926535898/10000000000000))
- Output:
Basic examples: 1/2 = [0; 2] 1/2 : (0 2) 3 = [3] 3 : (3) 23/8 = [2; 1, 7] 23/8 : (2 1 7) 13/11 = [1; 5, 2] 13/11 : (1 5 2) 22/7 = [3; 7] 22/7 : (3 7) -151/77 = [-1; 25, 1, 2] -151/77 : (-1 25 1 2) 0 = [0] 0 : (0) Root2 approximations: 7071/5000 = [1; 2, 2, 2, 2, 2, 1, 1, 29] 7071/5000 : (1 2 2 2 2 2 1 1 29) 141421/100000 = [1; 2, 2, 2, 2, 2, 2, 3, 1, 1, 3, 1, 7, 2] 141421/100000 : (1 2 2 2 2 2 2 3 1 1 3 1 7 2) 707107/500000 = [1; 2, 2, 2, 2, 2, 2, 2, 3, 6, 1, 2, 1, 12] 707107/500000 : (1 2 2 2 2 2 2 2 3 6 1 2 1 12) 1767767/1250000 = [1; 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 1, 2, 4, 1, 1, 2] 1767767/1250000 : (1 2 2 2 2 2 2 2 2 2 6 1 2 4 1 1 2) 141421356237/100000000000 = [1; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 4, 1, 2, 1, 63, 2, 1, 1, 1, 4, 2] 141421356237/100000000000 : (1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 1 4 1 2 1 63 2 1 1 1 4 2) Pi approximations: 31/10 = [3; 10] 31/10 : (3 10) 157/50 = [3; 7, 7] 157/50 : (3 7 7) 1571/500 = [3; 7, 23, 1, 2] 1571/500 : (3 7 23 1 2) 7857/2500 = [3; 7, 357] 7857/2500 : (3 7 357) 62857/20000 = [3; 7, 2857] 62857/20000 : (3 7 2857) 3142857/1000000 = [3; 7, 142857] 3142857/1000000 : (3 7 142857) 31428571/10000000 = [3; 7, 476190, 3] 31428571/10000000 : (3 7 476190 3) 157142857/50000000 = [3; 7, 7142857] 157142857/50000000 : (3 7 7142857) 15707963267949/5000000000000 = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 21, 17, 1, 1, 1, 1, 8, 1, 7, 2, 1, 2, 2] 15707963267949/5000000000000 : (3 7 15 1 292 1 1 1 2 1 3 1 21 17 1 1 1 1 8 1 7 2 1 2 2)
Sidef
func r2cf(num, den) {
func() {
den || return nil
var q = num//den
(num, den) = (den, num - q*den)
return q
}
}
func showcf(f) {
print "["
var n = f()
print "#{n}" if defined(n)
print "; #{n}" while defined(n = f())
print "]\n"
}
[
[1/2, 3/1, 23/8, 13/11, 22/7, -151/77],
[14142/10000, 141421/100000, 1414214/1000000, 14142136/10000000],
[314285714/100000000],
].each { |seq|
seq.each { |r| showcf(r2cf(r.nude)) }
print "\n"
}
- Output:
[0; 2] [3] [2; 1; 7] [1; 5; 2] [3; 7] [-1; -1; -24; -1; -2] [1; 2; 2; 2; 2; 2; 1; 1; 29] [1; 2; 2; 2; 2; 2; 2; 3; 1; 1; 3; 1; 7; 2] [1; 2; 2; 2; 2; 2; 2; 2; 3; 6; 1; 2; 1; 12] [1; 2; 2; 2; 2; 2; 2; 2; 2; 2; 6; 1; 2; 4; 1; 1; 2] [3; 7; 7142857]
Tcl
Direct translation
package require Tcl 8.6
proc r2cf {n1 {n2 1}} {
# Convert a decimal fraction (e.g., 1.23) into a form we can handle
if {$n1 != int($n1) && [regexp {\.(\d+)} $n1 -> suffix]} {
set pow [string length $suffix]
set n1 [expr {int($n1 * 10**$pow)}]
set n2 [expr {$n2 * 10**$pow}]
}
# Construct the continued fraction as a coroutine that yields the digits in sequence
coroutine cf\#[incr ::cfcounter] apply {{n1 n2} {
yield [info coroutine]
while {$n2 > 0} {
yield [expr {$n1 / $n2}]
set n2 [expr {$n1 % [set n1 $n2]}]
}
return -code break
}} $n1 $n2
}
Demonstrating:
proc printcf {name cf} {
puts -nonewline "$name -> "
while 1 {
puts -nonewline "[$cf],"
}
puts "\b "
}
foreach {n1 n2} {
1 2
3 1
23 8
13 11
22 7
-151 77
14142 10000
141421 100000
1414214 1000000
14142136 10000000
31 10
314 100
3142 1000
31428 10000
314285 100000
3142857 1000000
31428571 10000000
314285714 100000000
3141592653589793 1000000000000000
} {
printcf "\[$n1;$n2\]" [r2cf $n1 $n2]
}
- Output:
[1;2] -> 0,2 [3;1] -> 3 [23;8] -> 2,1,7 [13;11] -> 1,5,2 [22;7] -> 3,7 [-151;77] -> -2,25,1,2 [14142;10000] -> 1,2,2,2,2,2,1,1,29 [141421;100000] -> 1,2,2,2,2,2,2,3,1,1,3,1,7,2 [1414214;1000000] -> 1,2,2,2,2,2,2,2,3,6,1,2,1,12 [14142136;10000000] -> 1,2,2,2,2,2,2,2,2,2,6,1,2,4,1,1,2 [31;10] -> 3,10 [314;100] -> 3,7,7 [3142;1000] -> 3,7,23,1,2 [31428;10000] -> 3,7,357 [314285;100000] -> 3,7,2857 [3142857;1000000] -> 3,7,142857 [31428571;10000000] -> 3,7,476190,3 [314285714;100000000] -> 3,7,7142857 [3141592653589793;1000000000000000] -> 3,7,15,1,292,1,1,1,2,1,3,1,14,4,2,3,1,12,5,1,5,20,1,11,1,1,1,2
Objectified version
package require Tcl 8.6
# General generator class based on coroutines
oo::class create Generator {
constructor {} {
coroutine [namespace current]::coro my Apply
}
destructor {
catch {rename [namespace current]::coro {}}
}
method Apply {} {
yield
# Call the method (defined in subclasses) that actually produces values
my Produce
my destroy
return -code break
}
forward generate coro
method unknown args {
if {![llength $args]} {
tailcall coro
}
next {*}$args
}
# Various ways to get the sequence from the generator
method collect {} {
set result {}
while 1 {
lappend result [my generate]
}
return $result
}
method take {n {suffix ""}} {
set result {}
for {set i 0} {$i < $n} {incr i} {
lappend result [my generate]
}
while {$suffix ne ""} {
my generate
lappend result $suffix
break
}
return $result
}
}
oo::class create R2CF {
superclass Generator
variable a b
# The constructor converts other kinds of fraction (e.g., 1.23, 22/7) into a
# form we can handle.
constructor {n1 {n2 1}} {
next; # Delegate to superclass for coroutine management
if {[regexp {(.*)/(.*)} $n1 -> a b]} {
# Nothing more to do; assume we can ignore second argument here
} elseif {$n1 != int($n1) && [regexp {\.(\d+)} $n1 -> suffix]} {
set pow [string length $suffix]
set a [expr {int($n1 * 10**$pow)}]
set b [expr {$n2 * 10**$pow}]
} else {
set a $n1
set b $n2
}
}
# How to actually produce the values of the sequence
method Produce {} {
while {$b > 0} {
yield [expr {$a / $b}]
set b [expr {$a % [set a $b]}]
}
}
}
proc printcf {name cf {take ""}} {
if {$take ne ""} {
set terms [$cf take $take \u2026]
} else {
set terms [$cf collect]
}
puts [format "%-15s-> %s" $name [join $terms ,]]
}
foreach {n1 n2} {
1 2
3 1
23 8
13 11
22 7
-151 77
14142 10000
141421 100000
1414214 1000000
14142136 10000000
31 10
314 100
3142 1000
31428 10000
314285 100000
3142857 1000000
31428571 10000000
314285714 100000000
3141592653589793 1000000000000000
} {
printcf "\[$n1;$n2\]" [R2CF new $n1 $n2]
}
# Demonstrate parsing of input in forms other than a direct pair of decimals
printcf "1.5" [R2CF new 1.5]
printcf "23/7" [R2CF new 23/7]
- Output:
[1;2] -> 0,2 [3;1] -> 3 [23;8] -> 2,1,7 [13;11] -> 1,5,2 [22;7] -> 3,7 [-151;77] -> -2,25,1,2 [14142;10000] -> 1,2,2,2,2,2,1,1,29 [141421;100000]-> 1,2,2,2,2,2,2,3,1,1,3,1,7,2 [1414214;1000000]-> 1,2,2,2,2,2,2,2,3,6,1,2,1,12 [14142136;10000000]-> 1,2,2,2,2,2,2,2,2,2,6,1,2,4,1,1,2 [31;10] -> 3,10 [314;100] -> 3,7,7 [3142;1000] -> 3,7,23,1,2 [31428;10000] -> 3,7,357 [314285;100000]-> 3,7,2857 [3142857;1000000]-> 3,7,142857 [31428571;10000000]-> 3,7,476190,3 [314285714;100000000]-> 3,7,7142857 [3141592653589793;1000000000000000]-> 3,7,15,1,292,1,1,1,2,1,3,1,14,4,2,3,1,12,5,1,5,20,1,11,1,1,1,2 1.5 -> 1,2 23/7 -> 3,3,2
Wren
import "/rat" for Rat
import "/fmt" for Fmt
var toContFrac = Fn.new { |r|
var a = r.num
var b = r.den
while (true) {
Fiber.yield((a/b).truncate)
var t = a % b
a = b
b = t
if (a == 1) return
}
}
var groups = [
[ [1, 2], [3, 1], [23, 8], [13, 11], [22, 7], [-151, 77] ],
[ [14142, 1e4], [141421, 1e5], [1414214, 1e6], [14142136, 1e7] ],
[ [31, 10], [314, 100], [3142, 1e3], [31428, 1e4], [314285, 1e5], [3142857, 1e6],
[31428571, 1e7], [314285714,1e8]]
]
var lengths = [ [4, 2], [8, 8], [9, 9] ]
var headings = [ "Examples ->", "Sqrt(2) ->", "Pi ->" ]
var i = 0
for (group in groups) {
System.print(headings[i])
for (pair in group) {
Fmt.write("$*d / $*d = ", lengths[i][0], pair[0], -lengths[i][1], pair[1])
var f = Fiber.new(toContFrac)
var r = Rat.new(pair[0], pair[1])
while (!f.isDone) {
var d = f.call(r)
if (d) System.write("%(d) ")
}
System.print()
}
System.print()
i = i + 1
}
- Output:
Examples -> 1 / 2 = 0 2 3 / 1 = 3 23 / 8 = 2 1 7 13 / 11 = 1 5 2 22 / 7 = 3 7 -151 / 77 = -1 -1 -24 -1 -2 Sqrt(2) -> 14142 / 10000 = 1 2 2 2 2 2 1 1 29 141421 / 100000 = 1 2 2 2 2 2 2 3 1 1 3 1 7 2 1414214 / 1000000 = 1 2 2 2 2 2 2 2 3 6 1 2 1 12 14142136 / 10000000 = 1 2 2 2 2 2 2 2 2 2 6 1 2 4 1 1 2 Pi -> 31 / 10 = 3 10 314 / 100 = 3 7 7 3142 / 1000 = 3 7 23 1 2 31428 / 10000 = 3 7 357 314285 / 100000 = 3 7 2857 3142857 / 1000000 = 3 7 142857 31428571 / 10000000 = 3 7 476190 3 314285714 / 100000000 = 3 7 7142857
XPL0
include c:\cxpl\codes;
real Val;
proc R2CF(N1, N2, Lev); \Output continued fraction for N1/N2
int N1, N2, Lev;
int Quot, Rem;
[if Lev=0 then Val:= 0.0;
Quot:= N1/N2;
Rem:= rem(0);
IntOut(0, Quot);
if Rem then [ChOut(0, if Lev then ^, else ^;); R2CF(N2, Rem, Lev+1)];
Val:= Val + float(Quot); \generate value from continued fraction
if Lev then Val:= 1.0/Val;
];
int I, Data;
[Data:= [1,2, 3,1, 23,8, 13,11, 22,7, 0];
Format(0, 15);
I:= 0;
while Data(I) do
[IntOut(0, Data(I)); ChOut(0, ^/); IntOut(0, Data(I+1)); ChOut(0, 9\tab\);
ChOut(0, ^[); R2CF(Data(I), Data(I+1), 0); ChOut(0, ^]); ChOut(0, 9\tab\);
RlOut(0, Val); CrLf(0);
I:= I+2];
]
- Output:
1/2 [0;2] 5.000000000000000E-001 3/1 [3] 3.000000000000000E+000 23/8 [2;1,7] 2.875000000000000E+000 13/11 [1;5,2] 1.181818181818180E+000 22/7 [3;7] 3.142857142857140E+000
zkl
Two iterators; one light weight, one heavy weight.
Light weight, explicit state:
fcn r2cf(nom,dnom){ // -->Walker (iterator)
Walker.tweak(fcn(state){
nom,dnom:=state;
if(dnom==0) return(Void.Stop);
n,d:=nom.divr(dnom);
state.clear(dnom,d);
n
}.fp(List(nom,dnom))) // partial application (light weight closure)
}
Heavy weight, implicit state:
fcn r2cf2(nom,dnom){ // -->Generator (heavy weight Walker)
Utils.Generator(fcn(nom,dnom){
while(dnom){
n,d:=nom.divr(dnom); nom,dnom=dnom,d;
vm.yield(n);
}
Void.Stop;
},nom,dnom)
}
Both of the above return an iterator so they function the same:
foreach nom,dnom in (T(T(1,2), T(3,1), T(23,8), T(13,11), T(22,7),
T(14142,10000), T(141421,100000), T(1414214,1000000),
T(14142136,10000000))){
r2cf(nom,dnom).walk(25).println(); // print up to 25 numbers
}
- Output:
L(0,2) L(3) L(2,1,7) L(1,5,2) L(3,7) L(1,2,2,2,2,2,1,1,29) L(1,2,2,2,2,2,2,3,1,1,3,1,7,2) L(1,2,2,2,2,2,2,2,3,6,1,2,1,12) L(1,2,2,2,2,2,2,2,2,2,6,1,2,4,1,1,2)