Sort primes from list to a list

From Rosetta Code
Sort primes from list to a list is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.
Task


Let given list:
Primes = [2,43,81,122,63,13,7,95,103]
Show on this page the ascending ordered list of primes from given list.

ALGOL 68

Library: ALGOL 68-rows
Library: ALGOL 68-sort
BEGIN # extract the elements of a list that are prime and sort them           #
    PR read "primes.incl.a68" PR                    # include prime utilities #
    PR read "rows.incl.a68"   PR              # include row (array) utilities #
    PR read "sort.incl.a68"   PR                  # include sorting utilities #
    # list of numbers required by the task #
    []INT list = (  2, 43, 81, 122, 63, 13, 7, 95, 103 );
    [ 1 : UPB list ]INT prime list;
    # count the nunber of primes in list and assign the primes to prime list  #
    INT p count := 0;
    FOR i TO UPB list DO
        IF is probably prime( list[ i ] ) THEN
            # have a prime #
            prime list[ p count +:= 1 ] := list[ i ]
        FI
    OD;
    print( ( "prime elements of: " ) );
    SHOW list;
    print( ( newline, "              are: " ) );
    SHOW ( prime list QUICKSORT ELEMENTS( 1, p count ) )[ 1 : p count ]
END
Output:
prime elements of:  2 43 81 122 63 13 7 95 103
              are:  2 7 13 43 103

AppleScript

The strangely worded title and task description suggest to this native English speaker that the task is to sort each prime into the primes list as it's identified, which is certainly a less pointless coding exercise than simply extracting all the primes and then sorting them. The implementation here allows for the primes list to be created from scratch or supplied with a few ordered numbers already in it. The sort process is part of an insertion sort.

on isPrime(n)
    if (n < 4) then return (n > 1)
    if ((n mod 2 is 0) or (n mod 3 is 0)) then return false
    repeat with i from 5 to (n ^ 0.5) div 1 by 6
        if ((n mod i is 0) or (n mod (i + 2) is 0)) then return false
    end repeat
    
    return true
end isPrime

-- primes list created from scratch.
on sortPrimesFromList:givenList
    return my sortPrimesFromList:givenList toList:{}
end sortPrimesFromList:

-- primes list supplied as a parameter, its current contents assumed to be already ordered ascending.
on sortPrimesFromList:givenList toList:primes
    set j to (count primes)
    repeat with this in givenList
        set this to this's contents
        if (isPrime(this)) then
            set end of primes to this
            set j to j + 1
            if (j > 1) then
                repeat with i from (j - 1) to 1 by -1
                    set v to primes's item i
                    if (v > this) then
                        set primes's item (i + 1) to v
                    else
                        set i to i + 1
                        exit repeat
                    end if
                end repeat
                set primes's item i to this
            end if
        end if
    end repeat
    
    return primes
end sortPrimesFromList:toList:

on demo()
    set primes to my sortPrimesFromList:{2, 43, 81, 22, 63, 13, 7, 95, 103}
    log primes
    my sortPrimesFromList:{8, 137, 19, 5, 44, 23} toList:primes
    log primes
end demo

demo()
Output:
Log:
(*2, 7, 13, 43, 103*)
(*2, 5, 7, 13, 19, 23, 43, 103, 137*)

Arturo

lst: [2 43 81 122 63 13 7 95 103]

print sort select lst => prime?
Output:
2 7 13 43 103

AutoHotkey

Primes := [2,43,81,122,63,13,7,95,103]

t := [], result := []
for i, n in Primes
	if isPrime(n)
		t[n, i] := true
	
for n, obj in t
    for i, v in obj
        result.push(n)
	
isPrime(n){
	Loop, % floor(sqrt(n))
		v := A_Index = 1 ? n : mod(n,A_Index) ? v : v "," A_Index "," n//A_Index
	Return (v = n)
}
Output:
[2, 7, 13, 43, 103]

AWK

# syntax: GAWK -f SORT_PRIMES_FROM_LIST_TO_A_LIST.AWK
BEGIN {
    PROCINFO["sorted_in"] = "@val_num_asc"
    split("2,43,81,122,63,13,7,95,103",arr,",")
    for (i in arr) {
      if (is_prime(arr[i])) {
        printf("%d ",arr[i])
      }
    }
    printf("\n")
    exit(0)
}
function is_prime(n,  d) {
    d = 5
    if (n < 2) { return(0) }
    if (n % 2 == 0) { return(n == 2) }
    if (n % 3 == 0) { return(n == 3) }
    while (d*d <= n) {
      if (n % d == 0) { return(0) }
      d += 2
      if (n % d == 0) { return(0) }
      d += 4
    }
    return(1)
}
Output:
2 7 13 43 103


BASIC

BASIC256

Translation of: FreeBASIC
arraybase 1
global temp

function isPrime(v)
	if v < 2 then return False
	if v mod 2 = 0 then return v = 2
	if v mod 3 = 0 then return v = 3
	d = 5
	while d * d <= v
		if v mod d = 0 then return False else d += 2
	end while
	return True
end function

subroutine sort(array)
	for i = 1 to array[?]
		for j = i + 1 to array[?]
			if temp[i] > temp[j] then
				t = temp[i] : temp[i] = temp[j] : temp[j] = t
			end if
		next j
	next i
end subroutine

subroutine showArray(array)
	txt$ = ""
	print "[";
	for n = 1 to array[?]
		txt$ &= string(array[n]) & ","
	next n
	txt$ = left(txt$,length(txt$)-1)
	txt$ &= "]"
	print txt$
end subroutine

dim Primes(9)
Primes[1] = 2
Primes[2] = 43
Primes[3] = 81
Primes[4] = 122
Primes[5] = 63
Primes[6] = 13
Primes[7] = 7
Primes[8] = 95
Primes[9] = 103
c = 1

for n = 1 to Primes[?]
	if isprime(Primes[n]) then
		redim temp(c)
		temp[c] = Primes[n]
		c += 1
	end if
next n
call sort(temp)
call showArray(temp)
end
Output:
Igual que la entrada de FreeBASIC.

FreeBASIC

Dim Shared As Integer temp()

Function isPrime(Byval ValorEval As Integer) As Boolean
    If ValorEval <= 1 Then Return False
    For i As Integer = 2 To Int(Sqr(ValorEval))
        If ValorEval Mod i = 0 Then Return False
    Next i
    Return True
End Function

Sub sort(array() As Integer)
    For i As Integer = Lbound(array) To Ubound(array)
        For j As Integer = i + 1 To Ubound(array)
            If temp(i) > temp(j) Then Swap temp(i), temp(j)
        Next j
    Next i
End Sub

Sub showArray(array() As Integer)
    Dim As String txt = ""
    Print "[";
    For n As Integer = Lbound(array) To Ubound(array)
        txt &= Str(array(n)) & ","
    Next n
    txt = Left(txt,Len(txt)-1)
    txt &= "]"
    Print txt
End Sub

Dim As Integer Primes(1 To 9) = {2,43,81,122,63,13,7,95,103}
Dim As Integer c = 0

For n As Integer = Lbound(Primes) To Ubound(Primes)
    If isprime(Primes(n)) Then
        Redim Preserve temp(c)
        temp(c) = Primes(n)
        c += 1
    End If
Next n 
sort(temp())
showArray(temp())
Sleep
Output:
[2,7,13,43,103]

Yabasic

dim Primes(9)
Primes(1) = 2
Primes(2) = 43
Primes(3) = 81
Primes(4) = 122
Primes(5) = 63
Primes(6) = 13
Primes(7) = 7
Primes(8) = 95
Primes(9) = 103
c = 1

for n = 1 to arraysize(Primes(),1)
	if isPrime(Primes(n)) then
		redim temp(c)
		temp(c) = Primes(n)
		c = c + 1
	end if
next n
sort(temp)
showArray(temp)
end

sub isPrime(v)
    if v < 2 then return False : fi
    if mod(v, 2) = 0 then return v = 2 : fi
    if mod(v, 3) = 0 then return v = 3 : fi
    d = 5
    while d * d <= v
        if mod(v, d) = 0 then return False else d = d + 2 : fi
    wend
    return True
end sub

sub sort(array)
	for i = 1 to arraysize(temp(),1)
		for j = i + 1 to arraysize(temp(),1)
			if temp(i) > temp(j) then
				t = temp(i) : temp(i) = temp(j) : temp(j) = t
			end if
		next j
	next i
end sub

sub showArray(array)
	local txt$ //= ""
	print "[";
	for n = 1 to arraysize(temp(),1)
		txt$ = txt$ + str$(temp(n)) + ","
	next n
	txt$ = left$(txt$,len(txt$)-1)
	txt$ = txt$ + "]"
	print txt$
end sub
Output:
Igual que la entrada de FreeBASIC.

Delphi

Works with: Delphi version 6.0

Uses Delphi TList object to hold and sort the data.

{Raw data to process}

var NumList: array [0..8] of integer = (2,43,81,122,63,13,7,95,103);

function Compare(P1,P2: pointer): integer;
{Compare for quick sort}
begin
Result:=Integer(P1)-Integer(P2);
end;

procedure GetSortedPrimes(Nums: Array of integer; var IA: TIntegerDynArray);
{Extract data from array "Nums" and return a sorted list of primes}
var I: integer;
var List: TList;
begin
List:=TList.Create;
try
{Put the primes in the TList object}
for I:=0 to High(Nums) do
 if IsPrime(Nums[I]) then List.Add(Pointer(Nums[I]));
{Sort the list}
List.Sort(Compare);
{Put the result in array}
SetLength(IA,List.Count);
for I:=0 to List.Count-1 do
 IA[I]:=Integer(List[I]);
finally List.Free; end;
end;


function ArrayToStr(Nums: array of integer): string;
{Convert array of integers to a string}
var I: integer;
begin
Result:='[';
for I:=0 to High(Nums) do
	begin
	if I<>0 then Result:=Result+',';
	Result:=Result+IntToStr(Nums[I]);
	end;
Result:=Result+']';
end;


procedure ShowSortedPrimes(Memo: TMemo);
var I: integer;
var IA: TIntegerDynArray;
var S: string;
begin
GetSortedPrimes(NumList,IA);
Memo.Lines.Add('Raw data:      '+ArrayToStr(NumList));
Memo.Lines.Add('Sorted Primes: '+ArrayToStr(IA));
end;
Output:
Raw data:      [2,43,81,122,63,13,7,95,103]
Sorted Primes: [2,7,13,43,103]
Elapsed Time: 2.910 ms.


EasyLang

fastfunc isprim num .
   i = 2
   while i <= sqrt num
      if num mod i = 0
         return 0
      .
      i += 1
   .
   return 1
.
proc sort . d[] .
   for i = 1 to len d[] - 1
      for j = i + 1 to len d[]
         if d[j] < d[i]
            swap d[j] d[i]
         .
      .
   .
.
inp[] = [ 2 43 81 122 63 13 7 95 103 ]
for v in inp[]
   if isprim v = 1
      d[] &= v
   .
.
sort d[]
print d[]
Output:
[ 2 7 13 43 103 ]

F#

This task uses Extensible Prime Generator (F#)

// Primes from a list. Nigel Galloway: Januuary 23rd., 2022
[2;43;81;122;63;13;7;95;103]|>List.filter isPrime|>List.sort|>List.iter(printf "%d "); printfn ""
Output:
2 7 13 43 103 

Factor

Works with: Factor version 0.99 2021-06-02
USING: math.primes prettyprint sequences sorting ;

{ 2 43 81 122 63 13 7 95 103 } [ prime? ] filter natural-sort .
Output:
{ 2 7 13 43 103 }

Go

Library: Go-rcu
package main

import (
    "fmt"
    "rcu"
    "sort"
)

func main() {
    list := []int{2, 43, 81, 122, 63, 13, 7, 95, 103}
    var primes []int
    for _, e := range list {
        if rcu.IsPrime(e) {
            primes = append(primes, e)
        }
    }
    sort.Ints(primes)
    fmt.Println(primes)
}
Output:
[2 7 13 43 103]

Haskell

import Data.List ( sort ) 

isPrime :: Int -> Bool
isPrime n 
   |n == 1 = False
   |n == 2 = True
   |otherwise = all (\d -> mod n d /= 0 ) [2..limit]
   where
    limit = floor $ sqrt $ fromIntegral n

solution :: [Int]
solution = sort $ filter isPrime [2 , 43 , 122 , 63, 13 , 7 , 95 , 103]
Output:
[2,7,13,43,103]

J

This is a filter (on primality) and a sort (though we could first sort then filter if we preferred):

   /:~ (#~ 1&p:)2,43,81,122,63,13,7,95,103
2 7 13 43 103

jq

Works with: jq

Works with gojq, the Go implementation of jq

See Erdős-primes#jq for a suitable definition of `is_prime` as used here.

def lst: [2, 43, 81, 122, 63, 13, 7, 95, 103];

lst | map( select(is_prime) ) | sort
Output:
[2,7,13,43,103]


Julia

julia> using Primes

julia> sort(filter(isprime, [2,43,81,122,63,13,7,95,103]))
5-element Vector{Int64}:
   2
   7
  13
  43
 103

Mathematica /Wolfram Language

Sort[Select[{2, 43, 81, 122, 63, 13, 7, 95, 103}, PrimeQ]]
Output:
{2, 7, 13, 43, 103}

Nim

import std/[algorithm, strutils]

let primes = [2, 43, 81, 122, 63, 13, 7, 95, 103]
echo sorted(primes).join(", ")
Output:
2, 7, 13, 43, 63, 81, 95, 103, 122

Perl

#!/usr/bin/perl

use strict; # https://rosettacode.org/wiki/Sort_primes_from_list_to_a_list
use warnings;
use ntheory qw( is_prime );
use List::AllUtils qw( nsort_by );

print "@{[ nsort_by {$_} grep is_prime($_), 2,43,81,122,63,13,7,95,103 ]}\n";
Output:
2 7 13 43 103

Phix

You could also use unique() instead of sort(), since that (by default) performs a sort() internally anyway. It wouldn't be any slower, might even be better, also it does not really make much difference here whether you filter() before or after the sort(), though of course some more expensive filtering operations might be faster given fewer items.

with javascript_semantics
pp(sort(filter({2,43,81,122,63,13,7,95,103},is_prime)))
Output:
{2,7,13,43,103}

Python

Python: Procedural

print("working...")
print("Primes are:")

def isprime(m):
    for i in range(2,int(m**0.5)+1):
        if m%i==0:
            return False
    return True

Primes = [2,43,81,122,63,13,7,95,103]
Temp = []

for n in range(len(Primes)):
	if isprime(Primes[n]):
		Temp.append(Primes[n])

Temp.sort()
print(Temp)
print("done...")
Output:
working...
Primes are:
[2, 7, 13, 43, 103]
done...

Python: Functional

'''Prime elements in rising order'''


# primeElementsSorted :: [Int] -> [Int]
def primeElementsSorted(xs):
    '''The prime elements of xs in rising order'''
    return sorted(x for x in xs if isPrime(x))


# ------------------------- TEST -------------------------
# main :: IO ()
def main():
    '''Filtered elements of given list in rising order'''

    print(
        primeElementsSorted([
            2, 43, 81, 122, 63, 13, 7, 95, 103
        ])
    )


# ----------------------- GENERIC ------------------------

# isPrime :: Int -> Bool
def isPrime(n):
    '''True if n is prime.'''
    if n in (2, 3):
        return True
    if 2 > n or 0 == n % 2:
        return False
    if 9 > n:
        return True
    if 0 == n % 3:
        return False

    def p(x):
        return 0 == n % x or 0 == n % (2 + x)

    return not any(map(p, range(5, 1 + int(n ** 0.5), 6)))


# MAIN ---
if __name__ == '__main__':
    main()
Output:
[2, 7, 13, 43, 103]

Quackery

eratosthenes and isprime are defined at Sieve of Eratosthenes#Quackery.

  ' [ 2 43 81 122 63 13 7 95 103 ]
  sort 
  dup -1 peek eratosthenes
  [] swap witheach
    [ dup isprime iff join else drop ]
  echo
Output:
[ 2 7 13 43 103 ]

Raku

put <2 43 81 122 63 13 7 95 103>.grep( &is-prime ).sort
Output:
2 7 13 43 103

Of course "ascending" is a little ambiguous. That ^^^ is numerically. This vvv is lexicographically.

put <2 43 81 122 63 13 7 95 103>.grep( &is-prime ).sort: ~*
Output:
103 13 2 43 7

Ring

load "stdlibcore.ring"
? "working"

Primes = [2,43,81,122,63,13,7,95,103]
Temp = []

for n = 1 to len(Primes)
     if isprime(Primes[n])
        add(Temp,Primes[n])
     ok
next

Temp = sort(Temp)
showarray(Temp)
? "done..."

func showArray(array)
     txt = ""
     see "["
     for n = 1 to len(array)
         txt = txt + array[n] + ","
     next
     txt = left(txt,len(txt)-1)
     txt = txt + "]"
     ? txt
Output:
working
Primes are:
[2,7,13,43,103]
done...

RPL

Works with: HP version 49

With control flow structure

« SORT { }
  1 PICK3 SIZE FOR j
     OVER j GET
     IF DUP ISPRIME? THEN + ELSE DROP END
  NEXT NIP
» 'TASK' STO 

Direct computation

« DUP ISPRIME? SWAP IFT SORT
» 'TASK' STO 
{2,43,81,122,63,13,7,95,103} TASK
Output:
1: { 2 7 13 43 103 }

Ruby

require 'prime'

p [2,43,81,122,63,13,7,95,103].select(&:prime?).sort
Output:
[2, 7, 13, 43, 103]

Rust

fn is_prime( number : u32 ) -> bool {
   let result : bool = match number {
      0 => false ,
      1 => false ,
      2 => true ,
      _ => {
         let limit : u32 = (number as f32).sqrt( ).floor( ) as u32 ;
         (2..=limit).filter( | &d | number % d == 0 ).count( ) == 0 
      }
   } ;
   result 
}

fn main() {
    let numbers : Vec<u32> = vec![2 , 43 , 81 , 122 , 63 , 7 , 95 , 103] ;
    let mut primes : Vec<u32> = numbers.into_iter( ).filter( | &d | is_prime( d ) ).
       collect( ) ;
    primes.sort( ) ;
    println!("{:?}" , primes )
}
Output:
[2, 7, 43, 103]

Sidef

var arr = [2,43,81,122,63,13,7,95,103]
say arr.grep{.is_prime}.sort
Output:
[2, 7, 13, 43, 103]

Wren

Library: Wren-math
import "./math" for Int

var lst = [2, 43, 81, 122, 63, 13, 7, 95, 103]
System.print(lst.where { |e| Int.isPrime(e) }.toList.sort())
Output:
[2, 7, 13, 43, 103]

XPL0

include xpllib;
int Primes, Smallest, I, SI;
def Len=9, Inf=1000;
[Primes:= [2,43,81,122,63,13,7,95,103];
repeat  Smallest:= Inf;
        for I:= 0 to Len-1 do
            if Primes(I) < Smallest then
                [Smallest:= Primes(I);  SI:= I];
        Primes(SI):= Inf;       \cross off
        if IsPrime(Smallest) then
            [IntOut(0, Smallest);  ChOut(0, ^ )];
until   Smallest = Inf;
]
Output:
2 7 13 43 103