# Sort primes from list to a list

Sort primes from list to a list is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

Let given list:
Primes = [2,43,81,122,63,13,7,95,103]
Show on this page the ascending ordered list of primes from given list.

## ALGOL 68

Library: ALGOL 68-rows
```BEGIN # extract the elements of a list that are prime and sort them #
PR read "primes.incl.a68" PR    # include prime utilities       #
PR read "rows.incl.a68"   PR    # include row (array) utilities #
# list of numbers required by the task #
[]INT list = (  2, 43, 81, 122, 63, 13, 7, 95, 103 );
[ 1 : UPB list ]INT prime list;
# count the nunber of primes in list and assign the primes to prime list #
INT p count := 0;
FOR i TO UPB list DO
IF is probably prime( list[ i ] ) THEN
# have a prime #
prime list[ p count +:= 1 ] := list[ i ]
FI
OD;
print( ( "prime elements of: " ) );
SHOW list;
print( ( newline, "              are: " ) );
SHOW ( QUICKSORT prime list FROMELEMENT 1 TOELEMENT p count )[ 1 : p count ]
END```
Output:
```Prime elements of:  2 43 81 122 63 13 7 95 103
are:  2 7 13 43 103
```

## AppleScript

The strangely worded title and task description suggest to this native English speaker that the task is to sort each prime into the primes list as it's identified, which is certainly a less pointless coding exercise than simply extracting all the primes and then sorting them. The implementation here allows for the primes list to be created from scratch or supplied with a few ordered numbers already in it. The sort process is part of an insertion sort.

```on isPrime(n)
if (n < 4) then return (n > 1)
if ((n mod 2 is 0) or (n mod 3 is 0)) then return false
repeat with i from 5 to (n ^ 0.5) div 1 by 6
if ((n mod i is 0) or (n mod (i + 2) is 0)) then return false
end repeat

return true
end isPrime

-- primes list created from scratch.
on sortPrimesFromList:givenList
return my sortPrimesFromList:givenList toList:{}
end sortPrimesFromList:

-- primes list supplied as a parameter, its current contents assumed to be already ordered ascending.
on sortPrimesFromList:givenList toList:primes
set j to (count primes)
repeat with this in givenList
set this to this's contents
if (isPrime(this)) then
set end of primes to this
set j to j + 1
if (j > 1) then
repeat with i from (j - 1) to 1 by -1
set v to primes's item i
if (v > this) then
set primes's item (i + 1) to v
else
set i to i + 1
exit repeat
end if
end repeat
set primes's item i to this
end if
end if
end repeat

return primes
end sortPrimesFromList:toList:

on demo()
set primes to my sortPrimesFromList:{2, 43, 81, 22, 63, 13, 7, 95, 103}
log primes
my sortPrimesFromList:{8, 137, 19, 5, 44, 23} toList:primes
log primes
end demo

demo()
```
Output:
```Log:
(*2, 7, 13, 43, 103*)
(*2, 5, 7, 13, 19, 23, 43, 103, 137*)```

## Arturo

```lst: [2 43 81 122 63 13 7 95 103]

print sort select lst => prime?
```
Output:
`2 7 13 43 103`

## AutoHotkey

```Primes := [2,43,81,122,63,13,7,95,103]

t := [], result := []
for i, n in Primes
if isPrime(n)
t[n, i] := true

for n, obj in t
for i, v in obj
result.push(n)

isPrime(n){
Loop, % floor(sqrt(n))
v := A_Index = 1 ? n : mod(n,A_Index) ? v : v "," A_Index "," n//A_Index
Return (v = n)
}
```
Output:
`[2, 7, 13, 43, 103]`

## AWK

```# syntax: GAWK -f SORT_PRIMES_FROM_LIST_TO_A_LIST.AWK
BEGIN {
PROCINFO["sorted_in"] = "@val_num_asc"
split("2,43,81,122,63,13,7,95,103",arr,",")
for (i in arr) {
if (is_prime(arr[i])) {
printf("%d ",arr[i])
}
}
printf("\n")
exit(0)
}
function is_prime(n,  d) {
d = 5
if (n < 2) { return(0) }
if (n % 2 == 0) { return(n == 2) }
if (n % 3 == 0) { return(n == 3) }
while (d*d <= n) {
if (n % d == 0) { return(0) }
d += 2
if (n % d == 0) { return(0) }
d += 4
}
return(1)
}
```
Output:
```2 7 13 43 103
```

## BASIC

### BASIC256

Translation of: FreeBASIC
```arraybase 1
global temp

function isPrime(v)
if v < 2 then return False
if v mod 2 = 0 then return v = 2
if v mod 3 = 0 then return v = 3
d = 5
while d * d <= v
if v mod d = 0 then return False else d += 2
end while
return True
end function

subroutine sort(array)
for i = 1 to array[?]
for j = i + 1 to array[?]
if temp[i] > temp[j] then
t = temp[i] : temp[i] = temp[j] : temp[j] = t
end if
next j
next i
end subroutine

subroutine showArray(array)
txt\$ = ""
print "[";
for n = 1 to array[?]
txt\$ &= string(array[n]) & ","
next n
txt\$ = left(txt\$,length(txt\$)-1)
txt\$ &= "]"
print txt\$
end subroutine

dim Primes(9)
Primes[1] = 2
Primes[2] = 43
Primes[3] = 81
Primes[4] = 122
Primes[5] = 63
Primes[6] = 13
Primes[7] = 7
Primes[8] = 95
Primes[9] = 103
c = 1

for n = 1 to Primes[?]
if isprime(Primes[n]) then
redim temp(c)
temp[c] = Primes[n]
c += 1
end if
next n
call sort(temp)
call showArray(temp)
end```
Output:
```Igual que la entrada de FreeBASIC.
```

### FreeBASIC

```Dim Shared As Integer temp()

Function isPrime(Byval ValorEval As Integer) As Boolean
If ValorEval <= 1 Then Return False
For i As Integer = 2 To Int(Sqr(ValorEval))
If ValorEval Mod i = 0 Then Return False
Next i
Return True
End Function

Sub sort(array() As Integer)
For i As Integer = Lbound(array) To Ubound(array)
For j As Integer = i + 1 To Ubound(array)
If temp(i) > temp(j) Then Swap temp(i), temp(j)
Next j
Next i
End Sub

Sub showArray(array() As Integer)
Dim As String txt = ""
Print "[";
For n As Integer = Lbound(array) To Ubound(array)
txt &= Str(array(n)) & ","
Next n
txt = Left(txt,Len(txt)-1)
txt &= "]"
Print txt
End Sub

Dim As Integer Primes(1 To 9) = {2,43,81,122,63,13,7,95,103}
Dim As Integer c = 0

For n As Integer = Lbound(Primes) To Ubound(Primes)
If isprime(Primes(n)) Then
Redim Preserve temp(c)
temp(c) = Primes(n)
c += 1
End If
Next n
sort(temp())
showArray(temp())
Sleep```
Output:
`[2,7,13,43,103]`

### Yabasic

```dim Primes(9)
Primes(1) = 2
Primes(2) = 43
Primes(3) = 81
Primes(4) = 122
Primes(5) = 63
Primes(6) = 13
Primes(7) = 7
Primes(8) = 95
Primes(9) = 103
c = 1

for n = 1 to arraysize(Primes(),1)
if isPrime(Primes(n)) then
redim temp(c)
temp(c) = Primes(n)
c = c + 1
end if
next n
sort(temp)
showArray(temp)
end

sub isPrime(v)
if v < 2 then return False : fi
if mod(v, 2) = 0 then return v = 2 : fi
if mod(v, 3) = 0 then return v = 3 : fi
d = 5
while d * d <= v
if mod(v, d) = 0 then return False else d = d + 2 : fi
wend
return True
end sub

sub sort(array)
for i = 1 to arraysize(temp(),1)
for j = i + 1 to arraysize(temp(),1)
if temp(i) > temp(j) then
t = temp(i) : temp(i) = temp(j) : temp(j) = t
end if
next j
next i
end sub

sub showArray(array)
local txt\$ //= ""
print "[";
for n = 1 to arraysize(temp(),1)
txt\$ = txt\$ + str\$(temp(n)) + ","
next n
txt\$ = left\$(txt\$,len(txt\$)-1)
txt\$ = txt\$ + "]"
print txt\$
end sub```
Output:
```Igual que la entrada de FreeBASIC.
```

## Delphi

Works with: Delphi version 6.0

Uses Delphi TList object to hold and sort the data.

```{Raw data to process}

var NumList: array [0..8] of integer = (2,43,81,122,63,13,7,95,103);

function Compare(P1,P2: pointer): integer;
{Compare for quick sort}
begin
Result:=Integer(P1)-Integer(P2);
end;

procedure GetSortedPrimes(Nums: Array of integer; var IA: TIntegerDynArray);
{Extract data from array "Nums" and return a sorted list of primes}
var I: integer;
var List: TList;
begin
List:=TList.Create;
try
{Put the primes in the TList object}
for I:=0 to High(Nums) do
{Sort the list}
List.Sort(Compare);
{Put the result in array}
SetLength(IA,List.Count);
for I:=0 to List.Count-1 do
IA[I]:=Integer(List[I]);
finally List.Free; end;
end;

function ArrayToStr(Nums: array of integer): string;
{Convert array of integers to a string}
var I: integer;
begin
Result:='[';
for I:=0 to High(Nums) do
begin
if I<>0 then Result:=Result+',';
Result:=Result+IntToStr(Nums[I]);
end;
Result:=Result+']';
end;

procedure ShowSortedPrimes(Memo: TMemo);
var I: integer;
var IA: TIntegerDynArray;
var S: string;
begin
GetSortedPrimes(NumList,IA);
end;
```
Output:
```Raw data:      [2,43,81,122,63,13,7,95,103]
Sorted Primes: [2,7,13,43,103]
Elapsed Time: 2.910 ms.
```

## EasyLang

```fastfunc isprim num .
i = 2
while i <= sqrt num
if num mod i = 0
return 0
.
i += 1
.
return 1
.
proc sort . d[] .
for i = 1 to len d[] - 1
for j = i + 1 to len d[]
if d[j] < d[i]
swap d[j] d[i]
.
.
.
.
inp[] = [ 2 43 81 122 63 13 7 95 103 ]
for v in inp[]
if isprim v = 1
d[] &= v
.
.
sort d[]
print d[]```
Output:
```[ 2 7 13 43 103 ]
```

## F#

This task uses Extensible Prime Generator (F#)

```// Primes from a list. Nigel Galloway: Januuary 23rd., 2022
[2;43;81;122;63;13;7;95;103]|>List.filter isPrime|>List.sort|>List.iter(printf "%d "); printfn ""
```
Output:
```2 7 13 43 103
```

## Factor

Works with: Factor version 0.99 2021-06-02
```USING: math.primes prettyprint sequences sorting ;

{ 2 43 81 122 63 13 7 95 103 } [ prime? ] filter natural-sort .
```
Output:
```{ 2 7 13 43 103 }
```

## Go

Library: Go-rcu
```package main

import (
"fmt"
"rcu"
"sort"
)

func main() {
list := []int{2, 43, 81, 122, 63, 13, 7, 95, 103}
var primes []int
for _, e := range list {
if rcu.IsPrime(e) {
primes = append(primes, e)
}
}
sort.Ints(primes)
fmt.Println(primes)
}
```
Output:
```[2 7 13 43 103]
```

```import Data.List ( sort )

isPrime :: Int -> Bool
isPrime n
|n == 1 = False
|n == 2 = True
|otherwise = all (\d -> mod n d /= 0 ) [2..limit]
where
limit = floor \$ sqrt \$ fromIntegral n

solution :: [Int]
solution = sort \$ filter isPrime [2 , 43 , 122 , 63, 13 , 7 , 95 , 103]
```
Output:
```[2,7,13,43,103]
```

## J

This is a filter (on primality) and a sort (though we could first sort then filter if we preferred):

```   /:~ (#~ 1&p:)2,43,81,122,63,13,7,95,103
2 7 13 43 103
```

## jq

Works with: jq

Works with gojq, the Go implementation of jq

See Erdős-primes#jq for a suitable definition of `is_prime` as used here.

```def lst: [2, 43, 81, 122, 63, 13, 7, 95, 103];

lst | map( select(is_prime) ) | sort```
Output:
```[2,7,13,43,103]
```

## Julia

```julia> using Primes

julia> sort(filter(isprime, [2,43,81,122,63,13,7,95,103]))
5-element Vector{Int64}:
2
7
13
43
103
```

## Mathematica/Wolfram Language

```Sort[Select[{2, 43, 81, 122, 63, 13, 7, 95, 103}, PrimeQ]]
```
Output:
`{2, 7, 13, 43, 103}`

## Nim

```import std/[algorithm, strutils]

let primes = [2, 43, 81, 122, 63, 13, 7, 95, 103]
echo sorted(primes).join(", ")
```
Output:
```2, 7, 13, 43, 63, 81, 95, 103, 122
```

## Perl

```#!/usr/bin/perl

use strict; # https://rosettacode.org/wiki/Sort_primes_from_list_to_a_list
use warnings;
use ntheory qw( is_prime );
use List::AllUtils qw( nsort_by );

print "@{[ nsort_by {\$_} grep is_prime(\$_), 2,43,81,122,63,13,7,95,103 ]}\n";
```
Output:
```2 7 13 43 103
```

## Phix

You could also use unique() instead of sort(), since that (by default) performs a sort() internally anyway. It wouldn't be any slower, might even be better, also it does not really make much difference here whether you filter() before or after the sort(), though of course some more expensive filtering operations might be faster given fewer items.

```with javascript_semantics
pp(sort(filter({2,43,81,122,63,13,7,95,103},is_prime)))
```
Output:
```{2,7,13,43,103}
```

## Python

### Python: Procedural

```print("working...")
print("Primes are:")

def isprime(m):
for i in range(2,int(m**0.5)+1):
if m%i==0:
return False
return True

Primes = [2,43,81,122,63,13,7,95,103]
Temp = []

for n in range(len(Primes)):
if isprime(Primes[n]):
Temp.append(Primes[n])

Temp.sort()
print(Temp)
print("done...")
```
Output:
```working...
Primes are:
[2, 7, 13, 43, 103]
done...```

### Python: Functional

```'''Prime elements in rising order'''

# primeElementsSorted :: [Int] -> [Int]
def primeElementsSorted(xs):
'''The prime elements of xs in rising order'''
return sorted(x for x in xs if isPrime(x))

# ------------------------- TEST -------------------------
# main :: IO ()
def main():
'''Filtered elements of given list in rising order'''

print(
primeElementsSorted([
2, 43, 81, 122, 63, 13, 7, 95, 103
])
)

# ----------------------- GENERIC ------------------------

# isPrime :: Int -> Bool
def isPrime(n):
'''True if n is prime.'''
if n in (2, 3):
return True
if 2 > n or 0 == n % 2:
return False
if 9 > n:
return True
if 0 == n % 3:
return False

def p(x):
return 0 == n % x or 0 == n % (2 + x)

return not any(map(p, range(5, 1 + int(n ** 0.5), 6)))

# MAIN ---
if __name__ == '__main__':
main()
```
Output:
`[2, 7, 13, 43, 103]`

## Quackery

`eratosthenes` and `isprime` are defined at Sieve of Eratosthenes#Quackery.

```  ' [ 2 43 81 122 63 13 7 95 103 ]
sort
dup -1 peek eratosthenes
[] swap witheach
[ dup isprime iff join else drop ]
echo```
Output:
`[ 2 7 13 43 103 ]`

## Raku

```put <2 43 81 122 63 13 7 95 103>.grep( &is-prime ).sort
```
Output:
`2 7 13 43 103`

Of course "ascending" is a little ambiguous. That ^^^ is numerically. This vvv is lexicographically.

```put <2 43 81 122 63 13 7 95 103>.grep( &is-prime ).sort: ~*
```
Output:
`103 13 2 43 7`

## Ring

```load "stdlibcore.ring"
? "working"

Primes = [2,43,81,122,63,13,7,95,103]
Temp = []

for n = 1 to len(Primes)
if isprime(Primes[n])
ok
next

Temp = sort(Temp)
showarray(Temp)
? "done..."

func showArray(array)
txt = ""
see "["
for n = 1 to len(array)
txt = txt + array[n] + ","
next
txt = left(txt,len(txt)-1)
txt = txt + "]"
? txt```
Output:
```working
Primes are:
[2,7,13,43,103]
done...
```

## RPL

Works with: HP version 49

With control flow structure

```« SORT { }
1 PICK3 SIZE FOR j
OVER j GET
IF DUP ISPRIME? THEN + ELSE DROP END
NEXT NIP
```

Direct computation

```« DUP ISPRIME? SWAP IFT SORT
```
```{2,43,81,122,63,13,7,95,103} TASK
```
Output:
```1: { 2 7 13 43 103 }
```

## Ruby

```require 'prime'

p [2,43,81,122,63,13,7,95,103].select(&:prime?).sort
```
Output:
```[2, 7, 13, 43, 103]
```

## Rust

```fn is_prime( number : u32 ) -> bool {
let result : bool = match number {
0 => false ,
1 => false ,
2 => true ,
_ => {
let limit : u32 = (number as f32).sqrt( ).floor( ) as u32 ;
(2..=limit).filter( | &d | number % d == 0 ).count( ) == 0
}
} ;
result
}

fn main() {
let numbers : Vec<u32> = vec![2 , 43 , 81 , 122 , 63 , 7 , 95 , 103] ;
let mut primes : Vec<u32> = numbers.into_iter( ).filter( | &d | is_prime( d ) ).
collect( ) ;
primes.sort( ) ;
println!("{:?}" , primes )
}
```
Output:
```[2, 7, 43, 103]
```

## Sidef

```var arr = [2,43,81,122,63,13,7,95,103]
say arr.grep{.is_prime}.sort
```
Output:
```[2, 7, 13, 43, 103]
```

## Wren

Library: Wren-math
```import "./math" for Int

var lst = [2, 43, 81, 122, 63, 13, 7, 95, 103]
System.print(lst.where { |e| Int.isPrime(e) }.toList.sort())
```
Output:
```[2, 7, 13, 43, 103]
```

## XPL0

```include xpllib;
int Primes, Smallest, I, SI;
def Len=9, Inf=1000;
[Primes:= [2,43,81,122,63,13,7,95,103];
repeat  Smallest:= Inf;
for I:= 0 to Len-1 do
if Primes(I) < Smallest then
[Smallest:= Primes(I);  SI:= I];
Primes(SI):= Inf;       \cross off
if IsPrime(Smallest) then
[IntOut(0, Smallest);  ChOut(0, ^ )];
until   Smallest = Inf;
]```
Output:
```2 7 13 43 103
```