Priority queue

From Rosetta Code
Revision as of 04:21, 9 May 2024 by Nima.trueway (talk | contribs) (→‎{{header|Zig}})
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Task
Priority queue
You are encouraged to solve this task according to the task description, using any language you may know.

A priority queue is somewhat similar to a queue, with an important distinction: each item is added to a priority queue with a priority level, and will be later removed from the queue with the highest priority element first. That is, the items are (conceptually) stored in the queue in priority order instead of in insertion order.


Task

Create a priority queue.   The queue must support at least two operations:

  1.   Insertion.   An element is added to the queue with a priority (a numeric value).
  2.   Top item removal.   Deletes the element or one of the elements with the current top priority and return it.


Optionally, other operations may be defined, such as peeking (find what current top priority/top element is), merging (combining two priority queues into one), etc.


To test your implementation, insert a number of elements into the queue, each with some random priority.

Then dequeue them sequentially; now the elements should be sorted by priority.

You can use the following task/priority items as input data:

        Priority         Task
       ══════════   ════════════════
           3         Clear drains
           4         Feed cat
           5         Make tea
           1         Solve RC tasks
           2         Tax return


The implementation should try to be efficient.   A typical implementation has   O(log n)   insertion and extraction time,   where   n   is the number of items in the queue.

You may choose to impose certain limits such as small range of allowed priority levels, limited capacity, etc.   If so, discuss the reasons behind it.

11l

Translation of: Python
V items = [(3, ‘Clear drains’), (4, ‘Feed cat’), (5, ‘Make tea’), (1, ‘Solve RC tasks’), (2, ‘Tax return’)]
minheap:heapify(&items)
L !items.empty
   print(minheap:pop(&items))
Output:
(1, Solve RC tasks)
(2, Tax return)
(3, Clear drains)
(4, Feed cat)
(5, Make tea)

AArch64 Assembly

Works with: as version Raspberry Pi 3B version Buster 64 bits
/* ARM assembly AARCH64 Raspberry PI 3B */
/*  program priorQueue64.s   */
 
/*******************************************/
/* Constantes file                         */
/*******************************************/
/* for this file see task include a file in language AArch64 assembly*/
.include "../includeConstantesARM64.inc"
 
.equ  NBMAXIELEMENTS,    100
 
/*******************************************/
/* Structures                               */
/********************************************/
/* example structure  item  */
    .struct  0
item_priority:                     // priority
    .struct  item_priority + 8 
item_address:                      // string address
    .struct  item_address + 8 
item_fin:
/* example structure heap  */
    .struct  0
heap_size:                         // heap size
    .struct  heap_size + 8
heap_items:                        // structure of items
    .struct  heap_items + (item_fin * NBMAXIELEMENTS)
heap_fin:
 
 
/*********************************/
/* Initialized data              */
/*********************************/
.data
szMessEmpty:       .asciz "Empty queue. \n"
szMessNotEmpty:    .asciz "Not empty queue. \n"
szMessError:       .asciz "Error detected !!!!. \n"
szMessResult:      .asciz "Priority : @ : @ \n"          // message result
 
szString1:         .asciz "Clear drains"
szString2:         .asciz "Feed cat"
szString3:         .asciz "Make tea"
szString4:         .asciz "Solve RC tasks"
szString5:         .asciz "Tax return"
szCarriageReturn:  .asciz "\n"
/*********************************/
/* UnInitialized data            */
/*********************************/
.bss 
.align 4
sZoneConv:             .skip 24
Queue1:                .skip heap_fin      // queue memory place 
/*********************************/
/*  code section                 */
/*********************************/
.text
.global main 
main:                                       // entry of program 
    ldr x0,qAdrQueue1                       // queue structure address
    bl isEmpty
    cbz x0,1f
    ldr x0,qAdrszMessEmpty
    bl affichageMess                        // display message empty
    b 2f
1:
    ldr x0,qAdrszMessNotEmpty
    bl affichageMess                        // display message not empty
2:
    // init item 1
    ldr x0,qAdrQueue1                       // queue structure address
    mov x1,#3                               // priority
    ldr x2,qAdrszString1
    bl pushQueue                            // add item in queue
    cmp x0,#-1                              // error ?
    beq 99f
 
    ldr x0,qAdrQueue1                       // queue structure address
    bl isEmpty
    cbz x0,3f                               // not empty
    ldr x0,qAdrszMessEmpty
    bl affichageMess                        // display message empty
    b 4f
3:
    ldr x0,qAdrszMessNotEmpty
    bl affichageMess                        // display message not empty
 
4:
    // init item 2
    ldr x0,qAdrQueue1                       // queue structure address
    mov x1,#4                               // priority
    ldr x2,qAdrszString2
    bl pushQueue                            // add item in queue
    cmp x0,#-1                              // error ?
    beq 99f
    // init item 3
    ldr x0,qAdrQueue1                       // queue structure address
    mov x1,#5                               // priority
    ldr x2,qAdrszString3
    bl pushQueue                            // add item in queue
    cmp x0,#-1                              // error ?
    beq 99f
    // init item 4
    ldr x0,qAdrQueue1                       // queue structure address
    mov x1,#1                               // priority
    ldr x2,qAdrszString4
    bl pushQueue                            // add item in queue
    cmp x0,#-1                              // error ?
    beq 99f
    // init item 5
    ldr x0,qAdrQueue1                       // queue structure address
    mov x1,#2                               // priority
    ldr x2,qAdrszString5
    bl pushQueue                            // add item in queue
    cmp x0,#-1                              // error ?
    beq 99f
5:
    ldr x0,qAdrQueue1                       // queue structure address
    bl popQueue                             // return item
    cmp x0,#-1                              // end ?
    beq 100f
    mov x2,x1                               // save string address
    ldr x1,qAdrsZoneConv                    // conversion priority
    bl conversion10                         // decimal conversion
    ldr x0,qAdrszMessResult
    ldr x1,qAdrsZoneConv 
    bl strInsertAtCharInc
    mov x1,x2                               // string address
    bl strInsertAtCharInc
    bl affichageMess                        // display message
 
    b 5b                                    // loop
99:                                         // error
    ldr x0,qAdrszMessError
    bl affichageMess       
100:                                        // standard end of the program 
    mov x0, #0                              // return code
    mov x8, #EXIT                           // request to exit program
    svc #0                                  // perform the system call
 
qAdrQueue1:               .quad Queue1
qAdrszString1:            .quad szString1
qAdrszString2:            .quad szString2
qAdrszString3:            .quad szString3
qAdrszString4:            .quad szString4
qAdrszString5:            .quad szString5
qAdrszMessError:          .quad szMessError
qAdrszMessEmpty:          .quad szMessEmpty
qAdrszMessNotEmpty:       .quad szMessNotEmpty
qAdrszMessResult:         .quad szMessResult
qAdrszCarriageReturn:     .quad szCarriageReturn
//qAdrsMessPriority:        .quad sMessPriority
qAdrsZoneConv:            .quad sZoneConv
/******************************************************************/
/*     test if queue empty                                        */ 
/******************************************************************/
/* x0 contains the address of queue structure */
isEmpty:
    stp x1,lr,[sp,-16]!       // save  registres
    ldr x1,[x0,#heap_size]    // heap size
    cmp x1,#0
    cset x0,eq
    ldp x1,lr,[sp],16         // restaur des  2 registres
    ret
/******************************************************************/
/*     add item  in queue                                         */ 
/******************************************************************/
/* x0 contains the address of queue structure */
/* x1 contains the priority of item           */
/* x2 contains the string address             */
pushQueue:
    stp x1,lr,[sp,-16]!                     // save  registres
    stp x2,x3,[sp,-16]!                     // save  registres
    stp x4,x5,[sp,-16]!                     // save  registres
    stp x6,x7,[sp,-16]!                     // save  registres
    stp x8,x9,[sp,-16]!                     // save  registres
    ldr x3,[x0,#heap_size]                  // heap size
    cbnz x3,1f                              // heap empty ?
    add x4,x0,#heap_items                   // address of item structure
    str x1,[x4,#item_priority]              // store in first item
    str x2,[x4,#item_address]
    mov x3,#1                               // heap size
    str x3,[x0,#heap_size]                  // new heap size
    b 100f
1:
    mov x4,x3                               // maxi index
    lsr x5,x4,#1                            // current index = maxi / 2
    mov x8,x1                               // save priority
    mov x9,x2                               // save string address
2:                                          // insertion loop
    cmp x4,#0                               // end loop ?
    ble 3f
    mov x6,#item_fin                        // item size
    madd x6,x5,x6,x0                        // item shift
    add x6,x6,#heap_items                      // compute address item
    ldr x7,[x6,#item_priority]              // load priority
    cmp x7,x8                               // compare priority
    ble 3f                                  // <=  end loop
    mov x1,x4                               // last index
    mov x2,x5                               // current index
    bl exchange
    mov x4,x5                               // last index = current index
    lsr x5,x5,#1                               // current index / 2
    b 2b
3:                                          // store item at last index find
    mov x6,#item_fin                        // item size
    madd x6,x4,x6,x0                        // item shift
    add x6,x6,#heap_items                   // item address
    str x8,[x6,#item_priority]
    str x9,[x6,#item_address]
    add x3,x3,#1                               // increment heap size
    cmp x3,#NBMAXIELEMENTS                  // maxi ?
    bge 99f                                // yes -> error
    str x3,[x0,#heap_size]                  // store new size
    b 100f
99:
    mov x0,#-1                              // error
100:
    ldp x8,x9,[sp],16           // restaur des  2 registres
    ldp x6,x7,[sp],16           // restaur des  2 registres
    ldp x4,x5,[sp],16           // restaur des  2 registres
    ldp x2,x3,[sp],16           // restaur des  2 registres
    ldp x1,lr,[sp],16           // restaur des  2 registres
    ret
/******************************************************************/
/*     swap two elements of table                                  */ 
/******************************************************************/
/* x0 contains the address of table */
/* x1 contains the first index */
/* x2 contains the second index */
exchange:
    stp x1,lr,[sp,-16]!          // save  registres
    stp x2,x3,[sp,-16]!          // save  registres
    stp x4,x5,[sp,-16]!          // save  registres
    stp x6,x7,[sp,-16]!          // save  registres
    add x5,x0,#heap_items        // address items begin
    mov x3,#item_fin             // item size
    madd x4,x1,x3,x5             // compute item 1 address
    madd x6,x2,x3,x5             // compute item 2 address
    ldr x5,[x4,#item_priority]   // exchange
    ldr x3,[x6,#item_priority]
    str x3,[x4,#item_priority]
    str x5,[x6,#item_priority]
    ldr x5,[x4,#item_address]
    ldr x3,[x6,#item_address]
    str x5,[x6,#item_address]
    str x3,[x4,#item_address]
 
100:
    ldp x6,x7,[sp],16           // restaur des  2 registres
    ldp x4,x5,[sp],16           // restaur des  2 registres
    ldp x2,x3,[sp],16           // restaur des  2 registres
    ldp x1,lr,[sp],16           // restaur des  2 registres
    ret
/******************************************************************/
/*     move one element of table                                  */ 
/******************************************************************/
/* x0 contains the address of table */
/* x1 contains the origin index */
/* x2 contains the destination index */
moveItem:
    stp x1,lr,[sp,-16]!          // save  registres
    stp x2,x3,[sp,-16]!          // save  registres
    stp x4,x5,[sp,-16]!          // save  registres
    stp x6,x7,[sp,-16]!          // save  registres
    add x5,x0,#heap_items        // address items begin
    mov x3,#item_fin             // item size
    madd x4,x1,x3,x5             // compute item 1 address
    madd x6,x2,x3,x5             // compute item 2 address
    ldr x5,[x4,#item_priority]   // exchange
    str x5,[x6,#item_priority]
    ldr x5,[x4,#item_address]
    str x5,[x6,#item_address]
 
100:
    ldp x6,x7,[sp],16           // restaur des  2 registres
    ldp x4,x5,[sp],16           // restaur des  2 registres
    ldp x2,x3,[sp],16           // restaur des  2 registres
    ldp x1,lr,[sp],16           // restaur des  2 registres
    ret
 
/******************************************************************/
/*     pop queue                                                  */ 
/******************************************************************/
/* x0 contains the address of queue structure */
/* x0 return priority        */
/* x1 return string address   */
popQueue:
    stp x10,lr,[sp,-16]!          // save  registres
    stp x2,x3,[sp,-16]!          // save  registres
    stp x4,x5,[sp,-16]!          // save  registres
    stp x6,x7,[sp,-16]!          // save  registres
    stp x8,x9,[sp,-16]!          // save  registres
    mov x1,x0                    // save address queue
    bl isEmpty                   // control if empty queue
    cmp x0,#1                    // yes -> error
    beq 99f

    mov x0,x1                   // restaur address queue
    add x4,x0,#heap_items       // address of item structure
    ldr x8,[x4,#item_priority]  // save priority first item
    ldr x9,[x4,#item_address]   // save address string first item
    ldr x3,[x0,#heap_size]      // heap size
    sub x7,x3,#1                // last item
    mov x1,x7
    mov x2,#0                   // first item 
    bl moveItem                 // move last item in first item
 
    cmp x7,#1                   // one only item ?
    beq 10f                     // yes -> end
    mov x4,#0                   // first  index
1:
    cmp x4,x7                   // = last index
    bge 10f                     // yes -> end
    mov x5,x7                   // last index
    cmp x4,#0                   // init current index
    mov x6,#1                   // = 1
    lsl x1,x4,#1                // else = first index * 2
    csel x6,x6,x1,eq
    cmp x6,x7                   // current index > last index
    bgt 2f                      // yes
                                // no compar priority current item last item
    mov x1,#item_fin            
    madd x1,x6,x1,x0
    add x1,x1,#heap_items       // address of current item structure
    ldr x1,[x1,#item_priority]
    mov x10,#item_fin 
    madd x10,x5,x10,x0
    add x10,x10,#heap_items     // address of last item structure
    ldr x10,[x10,#item_priority]
    cmp x1,x10
    csel x5,x6,x5,lt
2:
    add x10,x6,#1               // increment current index
    cmp x10,x7                  // end ?
    bgt 3f                      // yes
    mov x1,#item_fin            // no compare priority
    madd x1,x10,x1,x0
    add x1,x1,#heap_items       // address of item structure
    ldr x1,[x1,#item_priority]
    mov x2,#item_fin 
    madd x2,x5,x2,x0
    add x2,x2,#heap_items       // address of item structure
    ldr x2,[x2,#item_priority]
    cmp x1,x2
    csel x5,x10,x5,lt
3:
    mov x1,x5                   // move item
    mov x2,x4
    bl moveItem
    mov x4,x5
    b 1b                        // and loop
10:
    sub x3,x3,#1
    str x3,[x0,#heap_size]      // new heap size
    mov x0,x8                   // return priority
    mov x1,x9                   // return string address
    b 100f
99:
    mov x0,#-1                  // error
100:
    ldp x8,x9,[sp],16           // restaur des  2 registres
    ldp x6,x7,[sp],16           // restaur des  2 registres
    ldp x4,x5,[sp],16           // restaur des  2 registres
    ldp x2,x3,[sp],16           // restaur des  2 registres
    ldp x10,lr,[sp],16          // restaur des  2 registres
    ret
/********************************************************/
/*        File Include fonctions                        */
/********************************************************/
/* for this file see task include a file in language AArch64 assembly */
.include "../includeARM64.inc"
Output:
Empty queue.
Not empty queue.
Priority : 1 : Solve RC tasks
Priority : 2 : Tax return
Priority : 3 : Clear drains
Priority : 4 : Feed cat
Priority : 5 : Make tea

Action!

The user must type in the monitor the following command after compilation and before running the program!

SET EndProg=*
CARD EndProg ;required for ALLOCATE.ACT

INCLUDE "D2:ALLOCATE.ACT" ;from the Action! Tool Kit. You must type 'SET EndProg=*' from the monitor after compiling, but before running this program!

DEFINE PTR="CARD"
DEFINE NODE_SIZE="5"
TYPE QueueNode=[
  BYTE priority
  PTR data ;CHAR ARRAY
  PTR nxt]

QueueNode POINTER queueFront,queueRear

BYTE FUNC IsEmpty()
  IF queueFront=0 THEN
    RETURN (1)
  FI
RETURN (0)

PROC Push(BYTE p CHAR ARRAY d)
  QueueNode POINTER node,curr,prev

  node=Alloc(NODE_SIZE)
  node.priority=p
  node.data=d
  node.nxt=0

  IF IsEmpty() THEN
    queueFront=node
    queueRear=node
    RETURN
  FI

  curr=queueFront
  prev=0
  WHILE curr#0 AND curr.priority<=p
  DO
    prev=curr
    curr=curr.nxt
  OD

  IF prev=0 THEN
    queueFront=node
  ELSEIF curr=0 THEN
    queueRear.nxt=node
    queueRear=node
  ELSE
    prev.nxt=node
  FI
  node.nxt=curr
RETURN

PTR FUNC Pop()
  QueueNode POINTER node
  
  IF IsEmpty() THEN
    PrintE("Error: queue is empty!")
    Break()
  FI

  node=queueFront
  queueFront=node.nxt
RETURN (node)

PROC TestIsEmpty()
  IF IsEmpty() THEN
    PrintE("Queue is empty")
  ELSE
    PrintE("Queue is not empty")
  FI
RETURN

PROC TestPush(BYTE p CHAR ARRAY d)
  PrintF("Push priority=%B task=%S%E",p,d)
  Push(p,d)
RETURN

PROC TestPop()
  QueueNode POINTER node

  node=Pop()
  PrintF("Pop priority=%B task=%S%E",node.priority,node.data)
  Free(node,NODE_SIZE)
RETURN

PROC Main()
  AllocInit(0)
  queueFront=0
  queueRear=0

  Put(125) PutE() ;clear screen

  TestIsEmpty()
  TestPush(3,"Clear drains")
  TestPush(4,"Feed cat")
  TestPush(5,"Make tea")
  TestPush(1,"Solve RC tasks")
  TestPush(2,"Tax return")
  TestIsEmpty()
  TestPop()
  TestPop()
  TestPop()
  TestPop()
  TestPop()
  TestIsEmpty()
RETURN
Output:

Screenshot from Atari 8-bit computer

Queue is empty
Push priority=3 task=Clear drains
Push priority=4 task=Feed cat
Push priority=5 task=Make tea
Push priority=1 task=Solve RC tasks
Push priority=2 task=Tax return
Queue is not empty
Pop priority=1 task=Solve RC tasks
Pop priority=2 task=Tax return
Pop priority=3 task=Clear drains
Pop priority=4 task=Feed cat
Pop priority=5 task=Make tea
Queue is empty

Ada

Works with: Ada 2012

Ada 2012 includes container classes for priority queues.

with Ada.Containers.Synchronized_Queue_Interfaces;
with Ada.Containers.Unbounded_Priority_Queues;
with Ada.Strings.Unbounded;
with Ada.Text_IO;

procedure Priority_Queues is
   use Ada.Containers;
   use Ada.Strings.Unbounded;
   type Queue_Element is record
      Priority : Natural;
      Content  : Unbounded_String;
   end record;
   function Get_Priority (Element : Queue_Element) return Natural is
   begin
      return Element.Priority;
   end Get_Priority;
   function Before (Left, Right : Natural) return Boolean is
   begin
      return Left > Right;
   end Before;
   package String_Queues is new Synchronized_Queue_Interfaces
     (Element_Type => Queue_Element);
   package String_Priority_Queues is new Unbounded_Priority_Queues
     (Queue_Interfaces => String_Queues,
      Queue_Priority => Natural);

   My_Queue : String_Priority_Queues.Queue;
begin
   My_Queue.Enqueue (New_Item => (Priority => 3, Content => To_Unbounded_String ("Clear drains")));
   My_Queue.Enqueue (New_Item => (Priority => 4, Content => To_Unbounded_String ("Feed cat")));
   My_Queue.Enqueue (New_Item => (Priority => 5, Content => To_Unbounded_String ("Make tea")));
   My_Queue.Enqueue (New_Item => (Priority => 1, Content => To_Unbounded_String ("Solve RC tasks")));
   My_Queue.Enqueue (New_Item => (Priority => 2, Content => To_Unbounded_String ("Tax return")));

   declare
      Element : Queue_Element;
   begin
      while My_Queue.Current_Use > 0 loop
         My_Queue.Dequeue (Element => Element);
         Ada.Text_IO.Put_Line (Natural'Image (Element.Priority) & " => " & To_String (Element.Content));
      end loop;
   end;
end Priority_Queues;
Output:
5 => Make tea
4 => Feed cat
3 => Clear drains
2 => Tax return
1 => Solve RC tasks

ARM Assembly

Works with: as version Raspberry Pi
/* ARM assembly Raspberry PI  */
/*  program priorqueue.s   */

/* Constantes    */
.equ STDOUT, 1     @ Linux output console
.equ EXIT,   1     @ Linux syscall
.equ WRITE,  4     @ Linux syscall

.equ  NBMAXIELEMENTS,    100

/*******************************************/
/* Structures                               */
/********************************************/
/* example structure  item  */
    .struct  0
item_priority:                     @ priority
    .struct  item_priority + 4 
item_address:                      @ string address
    .struct  item_address + 4 
item_fin:
/* example structure heap  */
    .struct  0
heap_size:                         @ heap size
    .struct  heap_size + 4 
heap_items:                        @ structure of items
    .struct  heap_items + (item_fin * NBMAXIELEMENTS)
heap_fin:


/*********************************/
/* Initialized data              */
/*********************************/
.data
szMessEmpty:       .asciz "Empty queue. \n"
szMessNotEmpty:    .asciz "Not empty queue. \n"
szMessError:       .asciz "Error detected !!!!. \n"
szMessResult:      .ascii "Priority : "                    @ message result
sMessPriority:        .fill 11, 1, ' '
                   .asciz " : "

szString1:         .asciz "Clear drains"
szString2:         .asciz "Feed cat"
szString3:         .asciz "Make tea"
szString4:         .asciz "Solve RC tasks"
szString5:         .asciz "Tax return"
szCarriageReturn:  .asciz "\n"
/*********************************/
/* UnInitialized data            */
/*********************************/
.bss 
.align 4
Queue1:                .skip heap_fin      @ queue memory place 
/*********************************/
/*  code section                 */
/*********************************/
.text
.global main 
main:                                       @ entry of program 
    ldr r0,iAdrQueue1                       @ queue structure address
    bl isEmpty
    cmp r0,#0
    beq 1f
    ldr r0,iAdrszMessEmpty
    bl affichageMess                        @ display message empty
    b 2f
1:
    ldr r0,iAdrszMessNotEmpty
    bl affichageMess                        @ display message not empty
2:
    @ init item 1
    ldr r0,iAdrQueue1                       @ queue structure address
    mov r1,#3                               @ priority
    ldr r2,iAdrszString1
    bl pushQueue                            @ add item in queue
    cmp r0,#-1                              @ error ?
    beq 99f

    ldr r0,iAdrQueue1                       @ queue structure address
    bl isEmpty
    cmp r0,#0                               @ not empty
    beq 3f
    ldr r0,iAdrszMessEmpty
    bl affichageMess                        @ display message empty
    b 4f
3:
    ldr r0,iAdrszMessNotEmpty
    bl affichageMess                        @ display message not empty

4:
    @ init item 2
    ldr r0,iAdrQueue1                       @ queue structure address
    mov r1,#4                               @ priority
    ldr r2,iAdrszString2
    bl pushQueue                            @ add item in queue
    cmp r0,#-1                              @ error ?
    beq 99f
    @ init item 3
    ldr r0,iAdrQueue1                       @ queue structure address
    mov r1,#5                               @ priority
    ldr r2,iAdrszString3
    bl pushQueue                            @ add item in queue
    cmp r0,#-1                              @ error ?
    beq 99f
    @ init item 4
    ldr r0,iAdrQueue1                       @ queue structure address
    mov r1,#1                               @ priority
    ldr r2,iAdrszString4
    bl pushQueue                            @ add item in queue
    cmp r0,#-1                              @ error ?
    beq 99f
    @ init item 5
    ldr r0,iAdrQueue1                       @ queue structure address
    mov r1,#2                               @ priority
    ldr r2,iAdrszString5
    bl pushQueue                            @ add item in queue
    cmp r0,#-1                              @ error ?
    beq 99f
5:
    ldr r0,iAdrQueue1                       @ queue structure address
    bl popQueue                             @ return item
    cmp r0,#-1                              @ end ?
    beq 100f
    mov r2,r1                               @ save string address
    ldr r1,iAdrsMessPriority                @ conversion priority
    bl conversion10                         @ decimal conversion
    ldr r0,iAdrszMessResult
    bl affichageMess                        @ display message
    mov r0,r2                               @ string address
    bl affichageMess                        @ display message
    ldr r0,iAdrszCarriageReturn
    bl affichageMess

    b 5b                                    @ loop
99:
    @ error
    ldr r0,iAdrszMessError
    bl affichageMess       
100:                                        @ standard end of the program 
    mov r0, #0                              @ return code
    mov r7, #EXIT                           @ request to exit program
    svc #0                                  @ perform the system call

iAdrQueue1:               .int Queue1
iAdrszString1:            .int szString1
iAdrszString2:            .int szString2
iAdrszString3:            .int szString3
iAdrszString4:            .int szString4
iAdrszString5:            .int szString5
iAdrszMessError:          .int szMessError
iAdrszMessEmpty:          .int szMessEmpty
iAdrszMessNotEmpty:       .int szMessNotEmpty
iAdrszMessResult:         .int szMessResult
iAdrszCarriageReturn:     .int szCarriageReturn
iAdrsMessPriority:        .int sMessPriority

/******************************************************************/
/*     test if queue empty                                        */ 
/******************************************************************/
/* r0 contains the address of queue structure */
isEmpty:
    push {r1,lr}                            @ save  registres
    ldr r1,[r0,#heap_size]                  @ heap size
    cmp r1,#0
    moveq r0,#1                             @ empty queue
    movne r0,#0                             @ not empty
    pop {r1,lr}                             @ restaur registers 
    bx lr                                   @ return  
/******************************************************************/
/*     add item  in queue                                         */ 
/******************************************************************/
/* r0 contains the address of queue structure */
/* r1 contains the priority of item           */
/* r2 contains the string address             */
pushQueue:
    push {r1-r9,lr}                         @ save  registres
    ldr r3,[r0,#heap_size]                  @ heap size
    cmp r3,#0                               @ heap empty ?
    bne 1f
    add r4,r0,#heap_items                   @ address of item structure
    str r1,[r4,#item_priority]              @ store in first item
    str r2,[r4,#item_address]
    mov r3,#1                               @ heap size
    str r3,[r0,#heap_size]                  @ new heap size
    b 100f
1:
    mov r4,r3                               @ maxi index
    lsr r5,r4,#1                            @ current index = maxi / 2
    mov r8,r1                               @ save priority
    mov r9,r2                               @ save string address
2:                                          @ insertion loop
    cmp r4,#0                               @ end loop ?
    ble 3f
    mov r6,#item_fin                        @ item size
    mul r6,r5,r6                            @ item shift
    add r6,r0
    add r6,#heap_items                      @ compute address item
    ldr r7,[r6,#item_priority]              @ load priority
    cmp r7,r8                               @ compare priority
    ble 3f                                  @ <=  end loop
    mov r1,r4                               @ last index
    mov r2,r5                               @ current index
    bl exchange
    mov r4,r5                               @ last index = current index
    lsr r5,#1                               @ current index / 2
    b 2b
3:                                          @ store item at last index find
    mov r6,#item_fin                        @ item size
    mul r6,r4,r6                            @ item shift
    add r6,r0
    add r6,#heap_items                      @ item address
    str r8,[r6,#item_priority]
    str r9,[r6,#item_address]
    add r3,#1                               @ increment heap size
    cmp r3,#NBMAXIELEMENTS                  @ maxi ?
    movge r0,#-1                            @ yes -> error
    bge 100f
    str r3,[r0,#heap_size]                  @ store new size
100:
    pop {r1-r9,lr}                          @ restaur registers 
    bx lr                                   @ return 
/******************************************************************/
/*     swap two elements of table                                  */ 
/******************************************************************/
/* r0 contains the address of table */
/* r1 contains the first index */
/* r2 contains the second index */
exchange:
    push {r3-r6,lr}                         @ save registers
    add r5,r0,#heap_items                   @ address items begin
    mov r3,#item_fin                        @ item size
    mul r4,r1,r3                            @ compute item 1 shift
    add r4,r5                               @ compute item 1 address
    mul r6,r2,r3                            @ compute item 2 shift
    add r6,r5                               @ compute item 2 address
    ldr r5,[r4,#item_priority]              @ exchange
    ldr r3,[r6,#item_priority]
    str r3,[r4,#item_priority]
    str r5,[r6,#item_priority]
    ldr r5,[r4,#item_address]
    ldr r3,[r6,#item_address]
    str r5,[r6,#item_address]
    str r3,[r4,#item_address]

100:
    pop {r3-r6,lr}
    bx lr                                              @ return 
/******************************************************************/
/*     move one element of table                                  */ 
/******************************************************************/
/* r0 contains the address of table */
/* r1 contains the origin index */
/* r2 contains the destination index */
moveItem:
    push {r3-r6,lr}                         @ save registers
    add r5,r0,#heap_items                   @ address items begin
    mov r3,#item_fin                        @ item size
    mul r4,r1,r3                            @ compute item 1 shift
    add r4,r5                               @ compute item 1 address
    mul r6,r2,r3                            @ compute item 2 shift
    add r6,r5                               @ compute item 2 address
    ldr r5,[r4,#item_priority]              @ exchange
    str r5,[r6,#item_priority]
    ldr r5,[r4,#item_address]
    str r5,[r6,#item_address]

100:
    pop {r3-r6,lr}
    bx lr                                   @ return 


/******************************************************************/
/*     pop queue                                                  */ 
/******************************************************************/
/* r0 contains the address of queue structure */
/* r0 return priority        */
/* r1 return string address   */
popQueue:
    push {r2-r10,lr}                        @ save  registres
    mov r1,r0                               @ save address queue
    bl isEmpty                              @ control if empty queue
    cmp r0,#1                               @ yes -> error
    moveq r0,#-1
    beq 100f
    @ save données à retourner
    mov r0,r1                               @ restaur address queue
    add r4,r0,#heap_items                   @ address of item structure
    ldr r8,[r4,#item_priority]              @ save priority first item
    ldr r9,[r4,#item_address]               @ save address string first item
    ldr r3,[r0,#heap_size]                  @ heap size
    sub r7,r3,#1                            @ last item
    mov r1,r7
    mov r2,#0                               @ first item 
    bl moveItem                             @ move last item in first item

    cmp r7,#1                               @ one only item ?
    beq 10f                                 @ yes -> end
    mov r4,#0                               @ first  index
1:
    cmp r4,r7                               @ = last index
    bge 10f                                 @ yes -> end
    mov r5,r7                               @ last index
    cmp r4,#0                               @ init current index
    moveq r6,#1                             @ = 1
    lslne r6,r4,#1                          @ else = first index * 2
    cmp r6,r7                               @ current index > last index
    bgt 2f                                  @ yes
                                            @ no compar priority current item last item
    mov r1,#item_fin            
    mul r1,r6,r1
    add r1,r0
    add r1,#heap_items                      @ address of current item structure
    ldr r1,[r1,#item_priority]
    mov r10,#item_fin 
    mul r10,r5,r10
    add r10,r0
    add r10,#heap_items                     @ address of last item structure
    ldr r10,[r10,#item_priority]
    cmp r1,r10
    movlt r5,r6
2:
    add r10,r6,#1                           @ increment current index
    cmp r10,r7                              @ end ?
    bgt 3f                                  @ yes
    mov r1,#item_fin                        @ no compare priority
    mul r1,r10,r1
    add r1,r0
    add r1,#heap_items                     @ address of item structure
    ldr r1,[r1,#item_priority]
    mov r2,#item_fin 
    mul r2,r5,r2
    add r2,r0
    add r2,#heap_items                     @ address of item structure
    ldr r2,[r2,#item_priority]
    cmp r1,r2
    movlt r5,r10
3:
    mov r1,r5                              @ move item
    mov r2,r4
    bl moveItem
    mov r4,r5
    b 1b                                   @ and loop
10:
    sub r3,#1
    str r3,[r0,#heap_size]                 @ new heap size
    mov r0,r8                              @ return priority
    mov r1,r9                              @ return string address
100:
    pop {r2-r10,lr}                        @ restaur registers 
    bx lr                                  @ return  
/******************************************************************/
/*     display text with size calculation                         */ 
/******************************************************************/
/* r0 contains the address of the message */
affichageMess:
    push {r0,r1,r2,r7,lr}                   @ save  registres
    mov r2,#0                               @ counter length 
1:                                          @ loop length calculation 
    ldrb r1,[r0,r2]                         @ read octet start position + index 
    cmp r1,#0                               @ if 0 its over 
    addne r2,r2,#1                          @ else add 1 in the length 
    bne 1b                                  @ and loop 
                                            @ so here r2 contains the length of the message 
    mov r1,r0                               @ address message in r1 
    mov r0,#STDOUT                          @ code to write to the standard output Linux 
    mov r7, #WRITE                          @ code call system "write" 
    svc #0                                  @ call systeme 
    pop {r0,r1,r2,r7,lr}                    @ restaur registers */ 
    bx lr                                   @ return  
/******************************************************************/
/*     Converting a register to a decimal                                 */ 
/******************************************************************/
/* r0 contains value and r1 address area   */
.equ LGZONECAL,   10
conversion10:
    push {r1-r4,lr}                         @ save registers 
    mov r3,r1
    mov r2,#LGZONECAL
1:                                          @ start loop
    bl divisionpar10                        @ r0 <- dividende. quotient ->r0 reste -> r1
    add r1,#48                              @ digit
    strb r1,[r3,r2]                         @ store digit on area
    cmp r0,#0                               @ stop if quotient = 0 
    subne r2,#1                               @ previous position    
    bne 1b                                  @ else loop
                                            @ end replaces digit in front of area
    mov r4,#0
2:
    ldrb r1,[r3,r2] 
    strb r1,[r3,r4]                         @ store in area begin
    add r4,#1
    add r2,#1                               @ previous position
    cmp r2,#LGZONECAL                       @ end
    ble 2b                                  @ loop
    mov r1,#' '
3:
    strb r1,[r3,r4]
    add r4,#1
    cmp r4,#LGZONECAL                       @ end
    ble 3b
100:
    pop {r1-r4,lr}                          @ restaur registres 
    bx lr                                   @return
/***************************************************/
/*   division par 10   signé                       */
/* Thanks to http://thinkingeek.com/arm-assembler-raspberry-pi/*  
/* and   http://www.hackersdelight.org/            */
/***************************************************/
/* r0 dividende   */
/* r0 quotient */	
/* r1 remainder  */
divisionpar10:	
  /* r0 contains the argument to be divided by 10 */
    push {r2-r4}                           @ save registers  */
    mov r4,r0  
    mov r3,#0x6667                         @ r3 <- magic_number  lower
    movt r3,#0x6666                        @ r3 <- magic_number  upper
    smull r1, r2, r3, r0                   @ r1 <- Lower32Bits(r1*r0). r2 <- Upper32Bits(r1*r0) 
    mov r2, r2, ASR #2                     @ r2 <- r2 >> 2
    mov r1, r0, LSR #31                    @ r1 <- r0 >> 31
    add r0, r2, r1                         @ r0 <- r2 + r1 
    add r2,r0,r0, lsl #2                   @ r2 <- r0 * 5 
    sub r1,r4,r2, lsl #1                   @ r1 <- r4 - (r2 * 2)  = r4 - (r0 * 10)
    pop {r2-r4}
    bx lr                                  @ return
Output:
Empty queue.
Not empty queue.
Priority : 1           : Solve RC tasks
Priority : 2           : Tax return
Priority : 3           : Clear drains
Priority : 4           : Feed cat
Priority : 5           : Make tea

Arturo

define :item [priority, value][
    print: [
        ~"(|this\priority|, |this\value|)"
    ]
]
define :queue [items][
    init: [
        this\items: arrange this\items 'it -> it\priority
    ]
]

empty?: function [this :queue][
    zero? this\items
]

push: function [this :queue, item][
    this\items: this\items ++ item
    this\items: arrange this\items 'it -> it\priority
]

pop: function [this :queue][
    ensure -> not? empty? this
    
    result: this\items\0
    this\items: remove.index this\items 0
    return result
]

Q: to :queue @[to [:item] [
    [3 "Clear drains"]
    [4 "Feed cat"]
    [5 "Make tea"]
    [1 "Solve RC tasks"]
]]

push Q to :item [2 "Tax return"]

print ["queue is empty?" empty? Q]
print ""

while [not? empty? Q]->
    print ["task:" pop Q]

print ""
print ["queue is empty?" empty? Q]
Output:
queue is empty? false 

task: (1, Solve RC tasks) 
task: (2, Tax return) 
task: (3, Clear drains) 
task: (4, Feed cat) 
task: (5, Make tea) 

queue is empty? true

ATS

I am treating more positive numbers as higher in priority, because that way the list of "Tasks" comes out in a plausible order. It is simple to reverse that order. (In fact, the direction of priorities could easily be made configurable by the template mechanism.)

Any value of type int may be used as a priority number.

(* NOTE: Others are treating more negative numbers as the higher
   priority, but I think it is pretty clear that making tea and
   feeding the cat are higher in priority than solving RC tasks.
   
   So I treat more positive numbers as higher priority.
   
   But see a note below on how easy it is to reverse that. *)

#include "share/atspre_staload.hats"
staload UN = "prelude/SATS/unsafe.sats"

(* For the sake of the task, use a heap implementation that comes with
   the ATS distribution. *)
staload H = "libats/ATS1/SATS/funheap_binomial.sats"

(* #include instead of anonymous staload, to work around an
   inconvenience in the distributed code: funheap_is_empty and
   funheap_isnot_empty are functions rather than template
   functions. One could instead compile funheap_binomial.dats
   separately. Or one could copy and modify the distributed code to
   one's own taste. (The heap code is GPL-3+) *)
#include "libats/ATS1/DATS/funheap_binomial.dats"

#define NIL list_nil ()
#define ::  list_cons

abstype pqueue (a : t@ype+) = ptr

extern fn {}
pqueue_make_empty :
  {a : t@ype}
  () -<> pqueue a

extern fn {}
pqueue_is_empty :
  {a : t@ype}
  pqueue (INV(a)) -<> [b : bool] bool

extern fn {}
pqueue_isnot_empty :
  {a : t@ype}
  pqueue (INV(a)) -<> [b : bool] bool

extern fn {a : t@ype}
pqueue_size :
  pqueue (INV(a)) -<> [n : nat] size_t n

extern fn {a : t@ype}
pqueue_insert :
  (&pqueue (INV(a)) >> _, int, a) -< !wrt > void

extern fn {a : t@ype}
pqueue_delete :
  (&pqueue (INV(a)) >> _) -< !wrt > Option a

extern fn {a : t@ype}
pqueue_peek :
  (pqueue (INV(a))) -< !wrt > Option a

extern fn {a : t@ype}
pqueue_merge :
  (pqueue (INV(a)), pqueue a) -< !wrt > pqueue a

local

  typedef heap_elt (a : t@ype+) =
    '{
      (* The "priority" field must come first. We take advantage of
         the layout of a '{..} being that of a C struct. *)
      priority = int,
      value = a
    }

  fn {a : t@ype}
  heap_elt_get_priority (elt : heap_elt a)
      :<> int =
    let
      typedef prio_t = '{ priority = int }
      val prio = $UN.cast{prio_t} elt
    in
      prio.priority
    end

  extern castfn
  pqueue2heap :
    {a : t@ype}
    pqueue a -<> $H.heap (heap_elt a)

  extern castfn
  heap2pqueue :
    {a : t@ype}
    $H.heap (heap_elt a) -<> pqueue a

  macdef p2h = pqueue2heap
  macdef h2p = heap2pqueue

  macdef comparison_cloref =
    lam (x, y) =<cloref>
      let
        val px = heap_elt_get_priority x
        and py = heap_elt_get_priority y
      in
        (* NOTE: Reverse the order of the arguments, if you want more
                 negative numbers to represent higher priorities. *)
        compare (py, px)
      end

  fn {a : t@ype}
  funheap_getmin_opt (heap : $H.heap (INV(a)),
                      cmp  : $H.cmp a)
      :<!wrt> Option_vt a =
    let
      var result : a?
      val success = $H.funheap_getmin<a> (heap, cmp, result)
    in
      if success then
        let
          prval () = opt_unsome{a} result
        in
          Some_vt{a} result
        end
      else
        let
          prval () = opt_unnone{a} result
        in
          None_vt{a} ()
        end
    end

in

  implement {}
  pqueue_make_empty {a} () =
    h2p{a} ($H.funheap_make_nil {heap_elt a} ())

  implement {}
  pqueue_is_empty {a} pq =
    $H.funheap_is_empty {heap_elt a} (p2h{a} pq)

  implement {}
  pqueue_isnot_empty {a} pq =
    $H.funheap_isnot_empty {heap_elt a} (p2h{a} pq)

  implement {a}
  pqueue_size pq =
    $H.funheap_size<heap_elt a> (p2h{a} pq)

  implement {a}
  pqueue_insert (pq, priority, x) =
    let
      val elt =
        '{
          priority = priority,
          value = x
        } : heap_elt a
      and compare = comparison_cloref
      var heap = p2h{a} pq
      val () = $H.funheap_insert (heap, elt, compare)
    in
      pq := h2p{a} heap
    end

  implement {a}
  pqueue_delete pq =
    let
      typedef t = heap_elt a
      val compare = comparison_cloref
      var heap = p2h{a} pq
      val elt_opt = $H.funheap_delmin_opt<heap_elt a> (heap, compare)
    in
      pq := h2p{a} heap;
      case+ elt_opt of
      | ~ Some_vt elt => Some (elt.value)
      | ~ None_vt () => None ()
    end

  implement {a}
  pqueue_peek pq =
    let
      typedef t = heap_elt a
      val compare = comparison_cloref
      and heap = p2h{a} pq
      val elt_opt = funheap_getmin_opt<heap_elt a> (heap, compare)
    in
      case+ elt_opt of
      | ~ Some_vt elt => Some (elt.value)
      | ~ None_vt () => None ()
    end

  implement {a}
  pqueue_merge (pq1, pq2) =
    let
      val heap1 = p2h{a} pq1
      and heap2 = p2h{a} pq2
      and compare = comparison_cloref
    in
      h2p{a} ($H.funheap_merge<heap_elt a> (heap1, heap2, compare))
    end

  overload iseqz with pqueue_is_empty
  overload isneqz with pqueue_isnot_empty
  overload size with pqueue_size
  overload insert with pqueue_insert
  overload delete with pqueue_delete
  overload peek with pqueue_peek
  overload merge with pqueue_merge

end

implement
main0 () =
  let
    var pq = pqueue_make_empty{string} ()
    val () = print! (" ", iseqz pq)
    val () = print! (" ", isneqz pq)
    val () = print! (" ", "size:", size pq)
    val () = insert (pq, 3, "3")
    val () = insert (pq, 4, "4")
    val () = insert (pq, 2, "2")
    val () = insert (pq, 5, "5")
    val () = insert (pq, 1, "1")
    val () = print! (" ", iseqz pq)
    val () = print! (" ", isneqz pq)
    val () = print! (" ", "size:", size pq)

    var pq2 = pqueue_make_empty{string} ()
    val () = insert (pq, 6, "6")
    val () = insert (pq, 4, "4a")

    val () = pq := merge (pq, pq2)
    val () = print! (" ", iseqz pq)
    val () = print! (" ", isneqz pq)
    val () = print! (" ", "size:", size pq)

    val- Some x = peek pq
    val () = print! (" ", x)
    val- Some x = peek pq
    val () = print! (" ", x)
    val- Some x = peek pq
    val () = print! (" ", x)
    val- Some x = peek pq
    val () = print! (" ", x)
    val- Some x = delete pq
    val () = print! (" ", x)
    val- Some x = delete pq
    val () = print! (" ", x)
    val- Some x = peek pq
    val () = print! (" ", x)
    val- Some x = peek pq
    val () = print! (" ", x)
    val- Some x = delete pq
    val () = print! (" ", x)
    val- Some x = peek pq
    val () = print! (" ", x)
    val- Some x = peek pq
    val () = print! (" ", x)
    val- Some x = peek pq
    val () = print! (" ", x)
    val- Some x = peek pq
    val () = print! (" ", x)
    val- Some x = delete pq
    val () = print! (" ", x)
    val- Some x = delete pq
    val () = print! (" ", x)
    val- Some x = delete pq
    val () = print! (" ", x)
    val- Some x = delete pq
    val () = print! (" ", x)
    val- None () = delete pq

    val () = println! ()

    var pq2 = pqueue_make_empty{string} ()
    val () = insert (pq2, 3, "Clear drains")
    val () = insert (pq2, 4, "Feed cat")
    val () = insert (pq2, 5, "Make tea")
    val () = insert (pq2, 1, "Solve RC tasks")
    val () = insert (pq2, 2, "Tax return")
    val- Some x = delete pq2
    val () = println! ("|", x, "|")
    val- Some x = delete pq2
    val () = println! ("|", x, "|")
    val- Some x = delete pq2
    val () = println! ("|", x, "|")
    val- Some x = delete pq2
    val () = println! ("|", x, "|")
    val- Some x = delete pq2
    val () = println! ("|", x, "|")
  in
  end
Output:
$ patscc -O3 -DATS_MEMALLOC_GCBDW priority-queue.dats -lgc && ./a.out
 true false size:0 false true size:5 false true size:7 6 6 6 6 6 5 4a 4a 4a 4 4 4 4 4 3 2 1
|Make tea|
|Feed cat|
|Clear drains|
|Tax return|
|Solve RC tasks|

AutoHotkey

;-----------------------------------
PQ_TopItem(Queue,Task:=""){					; remove and return top priority item 
	TopPriority := PQ_TopPriority(Queue)
	for T, P in Queue
		if (P = TopPriority) && ((T=Task)||!Task)
			return T , Queue.Remove(T)
	return 0
}
;-----------------------------------
PQ_AddTask(Queue,Task,Priority){				; insert and return new task
	for T, P in Queue
		if (T=Task) || !(Priority && Task)
			return 0
	return Task,	Queue[Task] := Priority
}
;-----------------------------------
PQ_DelTask(Queue, Task){					; delete and return task
	for T, P in Queue
		if (T = Task)
			return Task,	Queue.Remove(Task)
}
;-----------------------------------
PQ_Peek(Queue){							; peek and return top priority task(s)
	TopPriority := PQ_TopPriority(Queue)
	for T, P in Queue
		if (P = TopPriority)
			PeekList .= (PeekList?"`n":"") "`t" T
	return PeekList
}
;-----------------------------------
PQ_Check(Queue,Task){						; check task and return its priority
	for T, P in Queue
		if (T = Task)
			return P
	return 0
}
;-----------------------------------
PQ_Edit(Queue,Task,Priority){					; Update task priority and return its new priority
	for T, P in Queue
		if (T = Task)
			return Priority,	Queue[T]:=Priority
	return 0
}
;-----------------------------------
PQ_View(Queue){							; view current Queue
	for T, P in Queue
		Res .= P " : " T "`n"
	Sort, Res, FMySort
	return "Priority Queue=`n" Res
}
MySort(a,b){
	RegExMatch(a,"(\d+) : (.*)", x), RegExMatch(b,"(\d+) : (.*)", y)
	return x1>y1?1:x1<y1?-1: x2>y2?1:x2<y2?-1: 0
}
;-----------------------------------
PQ_TopPriority(Queue){						; return queue's top priority
	for T, P in Queue
		TopPriority := TopPriority?TopPriority:P	, TopPriority := TopPriority<P?TopPriority:P
	return, TopPriority
}

Examples:

data =
(
3	Clear drains
1	test
4	Feed cat
5	Make tea
1	Solve RC tasks
2	Tax return
)
PQ:=[] 								; Create Priority Queue PQ[Task, Priority]
loop, parse, data, `n, `r
	F:= StrSplit(A_LoopField, "`t")	, PQ[F[2]] := F[1]
PQ_View(PQ)
MsgBox, 262208,, % "Top Priority item(s)=`n" 			PQ_Peek(PQ)	"`n`n" PQ_View(PQ)
MsgBox, 262208,, % "Add : " 					PQ_AddTask(PQ, "AutoHotkey", 2)	"`n`n" PQ_View(PQ)
MsgBox, 262208,, % "Remove Top Item : " 			PQ_TopItem(PQ) "`n`n" PQ_View(PQ)
MsgBox, 262208,, % "Remove specific top item : " 		PQ_TopItem(PQ,"test") "`n`n" PQ_View(PQ)
MsgBox, 262208,, % "Delete Item : " 				PQ_DelTask(PQ, "Clear drains")	"`n`n" PQ_View(PQ)
MsgBox, 262208,, % (Task:="Tax return") " new priority = "	PQ_Edit(PQ,task, 7)	"`n`n" PQ_View(PQ)
MsgBox, 262208,, % (Task:="Feed cat")  " priority = " 		PQ_Check(PQ,task)"`n`n" PQ_View(PQ)
^Esc::
ExitApp

Axiom

Axiom already has a heap domain for ordered sets. We define a domain for ordered key-entry pairs and then define a priority queue using the heap domain over the pairs:

)abbrev Domain ORDKE OrderedKeyEntry
OrderedKeyEntry(Key:OrderedSet,Entry:SetCategory): Exports == Implementation where
  Exports == OrderedSet with
    construct: (Key,Entry) -> %
    elt: (%,"key") -> Key
    elt: (%,"entry") -> Entry
  Implementation == add
    Rep := Record(k:Key,e:Entry)
    x,y: %
    construct(a,b) == construct(a,b)$Rep @ %
    elt(x,"key"):Key == (x@Rep).k
    elt(x,"entry"):Entry == (x@Rep).e
    x < y == x.key < y.key
    x = y == x.key = y.key
    hash x == hash(x.key)
    if Entry has CoercibleTo OutputForm then
      coerce(x):OutputForm == bracket [(x.key)::OutputForm,(x.entry)::OutputForm]
)abbrev Domain PRIORITY PriorityQueue
S ==> OrderedKeyEntry(Key,Entry)
PriorityQueue(Key:OrderedSet,Entry:SetCategory): Exports == Implementation where
  Exports == PriorityQueueAggregate S with
    heap : List S  -> %
    setelt: (%,Key,Entry) -> Entry
  Implementation == Heap(S) add
    setelt(x:%,key:Key,entry:Entry) == 
      insert!(construct(key,entry)$S,x)
      entry

For an example:

pq := empty()$PriorityQueue(Integer,String)
pq(3):="Clear drains";
pq(4):="Feed cat";
pq(5):="Make tea";
pq(1):="Solve RC tasks";
pq(2):="Tax return";
[extract!(pq) for i in 1..#pq]
Output:
   [[5,"Make tea"], [4,"Feed cat"], [3,"Clear drains"], [2,"Tax return"],
    [1,"Solve RC tasks"]]
                                  Type: List(OrderedKeyEntry(Integer,String))

BASIC

FreeBASIC

Translation of: VBA
Type Tupla
    Prioridad As Integer
    Tarea As String
End Type
Dim Shared As Tupla a()
Dim Shared As Integer n 'número de eltos. en la matriz, el último elto. es n-1

Function Izda(i As Integer) As Integer
    Izda = 2 * i + 1
End Function

Function Dcha(i As Integer) As Integer
    Dcha = 2 * i + 2
End Function

Function Parent(i As Integer) As Integer
    Parent = (i - 1) \ 2
End Function

Sub Intercambio(i As Integer, j As Integer)
    Dim t As Tupla
    t = a(i)
    a(i) = a(j)
    a(j) = t
End Sub

Sub bubbleUp(i As Integer)
    Dim As Integer p = Parent(i)
    Do While i > 0 And a(i).Prioridad < a(p).Prioridad
        Intercambio i, p
        i = p
        p = Parent(i)
    Loop
End Sub

Sub Annadir(fPrioridad As Integer, fTarea As String)
    n += 1
    If n > Ubound(a) Then Redim Preserve a(2 * n)
    a(n - 1).Prioridad = fPrioridad
    a(n - 1).Tarea = fTarea
    bubbleUp (n - 1)
End Sub

Sub trickleDown(i As Integer)
    Dim As Integer j, l, r
    Do
        j = -1
        r = Dcha(i)
        If r < n And a(r).Prioridad < a(i).Prioridad Then
            l = Izda(i)
            If a(l).Prioridad < a(r).Prioridad Then
                j = l
            Else
                j = r
            End If
        Else
            l = Izda(i)
            If l < n And a(l).Prioridad < a(i).Prioridad Then j = l
        End If
        If j >= 0 Then Intercambio i, j
        i = j
    Loop While i >= 0
End Sub

Function Remove() As Tupla
    Dim As Tupla x = a(0)
    a(0) = a(n - 1)
    n = n - 1
    trickleDown 0
    If 3 * n < Ubound(a) Then Redim Preserve a(Ubound(a) \ 2)
    Remove = x
End Function


Redim a(4)
Annadir (3, "Clear drains")
Annadir (4, "Feed cat")
Annadir (5, "Make tea")
Annadir (1, "Solve RC tasks")
Annadir (2, "Tax return")
Dim t As Tupla
Do While n > 0
    t = Remove
    Print t.Prioridad; "  "; t.Tarea
Loop
Sleep
Output:
Igual que la entrada de VBA.

Batch File

Batch has only a data structure, the environment that incidentally sorts itself automatically by key. The environment has a limit of 64K

@echo off
setlocal enabledelayedexpansion

call :push 10  "item ten"
call :push 2   "item two"
call :push 100 "item one hundred"
call :push 5   "item five"

call :pop & echo !order! !item!
call :pop & echo !order! !item!
call :pop & echo !order! !item!
call :pop & echo !order! !item!
call :pop & echo !order! !item!

goto:eof


:push
set temp=000%1
set queu%temp:~-3%=%2
goto:eof

:pop
set queu >nul 2>nul
if %errorlevel% equ 1 (set order=-1&set item=no more items & goto:eof)  
for /f "tokens=1,2 delims==" %%a in ('set queu') do set %%a=& set order=%%a& set item=%%~b& goto:next
:next
set order= %order:~-3%
goto:eof
Output:
 002 item two
 005 item five
 010 item ten
 100 item one hundred
-1 no more items

C

Using a dynamic array as a binary heap. Stores integer priority and a character pointer. Supports push and pop.

#include <stdio.h>
#include <stdlib.h>

typedef struct {
    int priority;
    char *data;
} node_t;

typedef struct {
    node_t *nodes;
    int len;
    int size;
} heap_t;

void push (heap_t *h, int priority, char *data) {
    if (h->len + 1 >= h->size) {
        h->size = h->size ? h->size * 2 : 4;
        h->nodes = (node_t *)realloc(h->nodes, h->size * sizeof (node_t));
    }
    int i = h->len + 1;
    int j = i / 2;
    while (i > 1 && h->nodes[j].priority > priority) {
        h->nodes[i] = h->nodes[j];
        i = j;
        j = j / 2;
    }
    h->nodes[i].priority = priority;
    h->nodes[i].data = data;
    h->len++;
}

char *pop (heap_t *h) {
    int i, j, k;
    if (!h->len) {
        return NULL;
    }
    char *data = h->nodes[1].data;
    
    h->nodes[1] = h->nodes[h->len];
    
    h->len--;
    
    i = 1;
    while (i!=h->len+1) {
        k = h->len+1;
        j = 2 * i;
        if (j <= h->len && h->nodes[j].priority < h->nodes[k].priority) {
            k = j;
        }
        if (j + 1 <= h->len && h->nodes[j + 1].priority < h->nodes[k].priority) {
            k = j + 1;
        }
        h->nodes[i] = h->nodes[k];
        i = k;
    }
    return data;
}

int main () {
    heap_t *h = (heap_t *)calloc(1, sizeof (heap_t));
    push(h, 3, "Clear drains");
    push(h, 4, "Feed cat");
    push(h, 5, "Make tea");
    push(h, 1, "Solve RC tasks");
    push(h, 2, "Tax return");
    int i;
    for (i = 0; i < 5; i++) {
        printf("%s\n", pop(h));
    }
    return 0;
}
Output:
Solve RC tasks
Tax return
Clear drains
Feed cat
Make tea

Pairing heap w/ generic data types

header file:

typedef struct _pq_node_t {
    long int key;
    struct _pq_node_t *next, *down;
} pq_node_t, *heap_t;

extern heap_t heap_merge(heap_t, heap_t);
extern heap_t heap_pop(heap_t);

#define NEW_PQ_ELE(p, k) \
    do { \
	(p) = (typeof(p)) malloc(sizeof(*p)); \
	((pq_node_t *) (p))->next = ((pq_node_t *) (p))->down = NULL; \
	((pq_node_t *) (p))->key = (k); \
    } while (0)

#define HEAP_PUSH(p, k, h) \
    NEW_PQ_ELE(p, k); \
    *(h) = heap_merge(((pq_node_t *) (p)), *(h))

implementation:

#include <stdlib.h>
#include "pairheap.h"

/* ---------------------------------------------------------------------------
 * Pairing heap implementation
 * --------------------------------------------------------------------------- */

static heap_t add_child(heap_t h, heap_t g) {
    if (h->down != NULL)
        g->next = h->down;
    h->down = g;
}

heap_t heap_merge(heap_t a, heap_t b) {
    if (a == NULL) return b;
    if (b == NULL) return a;
    if (a->key < b->key) {
        add_child(a, b);
        return a;
    } else {
        add_child(b, a);
        return b;
    }
}

/* NOTE: caller should have pointer to top of heap, since otherwise it won't 
 *       be reclaimed.  (we do not free the top.)
 */
heap_t two_pass_merge(heap_t h) {
    if (h == NULL || h->next == NULL)
        return h;
    else {
        pq_node_t
            *a = h,
            *b = h->next,
            *rest = b->next;
        a->next = b->next = NULL;
        return heap_merge(heap_merge(a, b), two_pass_merge(rest));
    }
}

heap_t heap_pop(heap_t h) {
    return two_pass_merge(h->down);
}

usage:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "pairheap.h"

struct task {
    pq_node_t hd;
    char task[40];
};

void main() {
    heap_t heap = NULL;
    struct task *new;

    HEAP_PUSH(new, 3, &heap);
    strcpy(new->task, "Clear drains.");

    HEAP_PUSH(new, 4, &heap);
    strcpy(new->task, "Feed cat.");

    HEAP_PUSH(new, 5, &heap);
    strcpy(new->task, "Make tea.");

    HEAP_PUSH(new, 1, &heap);
    strcpy(new->task, "Solve RC tasks.");

    HEAP_PUSH(new, 2, &heap);
    strcpy(new->task, "Tax return.");

    while (heap != NULL) {
        struct task *top = (struct task *) heap;
        printf("%s\n", top->task);
        heap = heap_pop(heap);
        free(top);
    }
}
Output:
Solve RC tasks.
Tax return.
Clear drains.
Feed cat.
Make tea.

C#

.NET 6 solution

using System;
using System.Collections.Generic;

namespace PriorityQueueExample
{
	class Program
	{
		static void Main(string[] args)
		{
			// Starting with .NET 6.0 preview 2 (released March 11th, 2021), there's a built-in priority queue
			var p = new PriorityQueue<string, int>();
			p.Enqueue("Clear drains", 3);
			p.Enqueue("Feed cat", 4);
			p.Enqueue("Make tea", 5);
			p.Enqueue("Solve RC tasks", 1);
			p.Enqueue("Tax return", 2);
			while (p.TryDequeue(out string task, out int priority))
			{
				Console.WriteLine($"{priority}\t{task}");
			}
		}
	}
}

/* Output:
 
1       Solve RC tasks
2       Tax return
3       Clear drains
4       Feed cat
5       Make tea
 
 */

Pre-.NET 6 solution

using System;

namespace PriorityQueue
{
    class Program
    {
        static void Main(string[] args)
        {
            PriorityQueue PQ = new PriorityQueue();
            PQ.push(3, "Clear drains");
            PQ.push(4, "Feed cat");
            PQ.push(5, "Make tea");
            PQ.push(1, "Solve RC tasks");
            PQ.push(2, "Tax return");

            while (!PQ.Empty)
            {
                var Val = PQ.pop();
                Console.WriteLine(Val[0] + " : " + Val[1]);
            }
            Console.ReadKey();
        }
    }

    class PriorityQueue
    {
        private System.Collections.SortedList PseudoQueue;

        public bool Empty
        {
            get
            {
                return PseudoQueue.Count == 0;
            }
        }

        public PriorityQueue()
        {
            PseudoQueue = new System.Collections.SortedList();
        }

        public void push(object Priority, object Value)
        {
            PseudoQueue.Add(Priority, Value);
        }

        public object[] pop()
        {
            object[] ReturnValue = { null, null };
            if (PseudoQueue.Count > 0)
            {
                ReturnValue[0] = PseudoQueue.GetKey(0);
                ReturnValue[1] = PseudoQueue.GetByIndex(0);

                PseudoQueue.RemoveAt(0);
            }
            return ReturnValue;
        }
    }
}

Min Heap Priority Queue

Works with: C# version 3.0+/DotNet 3.5+

The above code is not really a true Priority Queue as it does not allow duplicate keys; also, the SortedList on which it is based does not have O(log n) insertions and removals for random data as a true Priority Queue does. The below code implements a true Min Heap Priority Queue:

namespace PriorityQ {
  using KeyT = UInt32;
  using System;
  using System.Collections.Generic;
  using System.Linq;
  class Tuple<K, V> { // for DotNet 3.5 without Tuple's
    public K Item1; public V Item2;
    public Tuple(K k, V v) { Item1 = k; Item2 = v; }
    public override string ToString() {
      return "(" + Item1.ToString() + ", " + Item2.ToString() + ")";
    }
  }
  class MinHeapPQ<V> {
    private struct HeapEntry {
      public KeyT k; public V v;
      public HeapEntry(KeyT k, V v) { this.k = k; this.v = v; }
    }
    private List<HeapEntry> pq;
    private MinHeapPQ() { this.pq = new List<HeapEntry>(); }
    private bool mt { get { return pq.Count == 0; } }
    private int sz {
      get {
        var cnt = pq.Count;
        return (cnt == 0) ? 0 : cnt - 1;
      }
    }
    private Tuple<KeyT, V> pkmn {
      get {
        if (pq.Count == 0) return null;
        else {
          var mn = pq[0];
          return new Tuple<KeyT, V>(mn.k, mn.v);
        }
      }
    }
    private void psh(KeyT k, V v) { // add extra very high item if none
      if (pq.Count == 0) pq.Add(new HeapEntry(UInt32.MaxValue, v));
      var i = pq.Count; pq.Add(pq[i - 1]); // copy bottom item...
      for (var ni = i >> 1; ni > 0; i >>= 1, ni >>= 1) {
        var t = pq[ni - 1];
        if (t.k > k) pq[i - 1] = t; else break;
      }
      pq[i - 1] = new HeapEntry(k, v);
    }
    private void siftdown(KeyT k, V v, int ndx) {
      var cnt = pq.Count - 1; var i = ndx;
      for (var ni = i + i + 1; ni < cnt; ni = ni + ni + 1) {
        var oi = i; var lk = pq[ni].k; var rk = pq[ni + 1].k;
        var nk = k;
        if (k > lk) { i = ni; nk = lk; }
        if (nk > rk) { ni += 1; i = ni; }
        if (i != oi) pq[oi] = pq[i]; else break;
      }
      pq[i] = new HeapEntry(k, v);
    }
    private void rplcmin(KeyT k, V v) {
      if (pq.Count > 1) siftdown(k, v, 0);
    }
    private void dltmin() {
      var lsti = pq.Count - 2;
      if (lsti <= 0) pq.Clear();
      else {
        var lkv = pq[lsti];
        pq.RemoveAt(lsti); siftdown(lkv.k, lkv.v, 0);
      }
    }
    private void reheap(int i) {
      var lfti = i + i + 1;
      if (lfti < sz) {
        var rghti = lfti + 1; reheap(lfti); reheap(rghti);
        var ckv = pq[i]; siftdown(ckv.k, ckv.v, i);
      }
    }
    private void bld(IEnumerable<Tuple<KeyT, V>> sq) {
      var sqm = from e in sq
                select new HeapEntry(e.Item1, e.Item2);
      pq = sqm.ToList<HeapEntry>();
      var sz = pq.Count;
      if (sz > 0) {
        var lkv = pq[sz - 1];
        pq.Add(new HeapEntry(KeyT.MaxValue, lkv.v));
        reheap(0);
      }
    }
    private IEnumerable<Tuple<KeyT, V>> sq() {
      return from e in pq
             where e.k != KeyT.MaxValue
             select new Tuple<KeyT, V>(e.k, e.v); }
    private void adj(Func<KeyT, V, Tuple<KeyT, V>> f) {
      var cnt = pq.Count - 1;
      for (var i = 0; i < cnt; ++i) {
        var e = pq[i];
        var r = f(e.k, e.v);
        pq[i] = new HeapEntry(r.Item1, r.Item2);
      }
      reheap(0);
    }
    public static MinHeapPQ<V> empty { get { return new MinHeapPQ<V>(); } }
    public static bool isEmpty(MinHeapPQ<V> pq) { return pq.mt; }
    public static int size(MinHeapPQ<V> pq) { return pq.sz; }
    public static Tuple<KeyT, V> peekMin(MinHeapPQ<V> pq) { return pq.pkmn; }
    public static MinHeapPQ<V> push(KeyT k, V v, MinHeapPQ<V> pq) {
      pq.psh(k, v); return pq; }
    public static MinHeapPQ<V> replaceMin(KeyT k, V v, MinHeapPQ<V> pq) {
      pq.rplcmin(k, v); return pq; }
    public static MinHeapPQ<V> deleteMin(MinHeapPQ<V> pq) { pq.dltmin(); return pq; }
    public static MinHeapPQ<V> merge(MinHeapPQ<V> pq1, MinHeapPQ<V> pq2) {
      return fromSeq(pq1.sq().Concat(pq2.sq())); }
    public static MinHeapPQ<V> adjust(Func<KeyT, V, Tuple<KeyT, V>> f, MinHeapPQ<V> pq) {
      pq.adj(f); return pq; }
    public static MinHeapPQ<V> fromSeq(IEnumerable<Tuple<KeyT, V>> sq) {
      var pq = new MinHeapPQ<V>(); pq.bld(sq); return pq; }
    public static Tuple<Tuple<KeyT, V>, MinHeapPQ<V>> popMin(MinHeapPQ<V> pq) {
      var rslt = pq.pkmn; if (rslt == null) return null;
      pq.dltmin(); return new Tuple<Tuple<KeyT, V>, MinHeapPQ<V>>(rslt, pq); }
    public static IEnumerable<Tuple<KeyT, V>> toSeq(MinHeapPQ<V> pq) {
      for (; !pq.mt; pq.dltmin()) yield return pq.pkmn; }
    public static IEnumerable<Tuple<KeyT, V>> sort(IEnumerable<Tuple<KeyT, V>> sq) {
      return toSeq(fromSeq(sq)); }
  }
}

The above class code offers a full set of static methods and properties:

 1.  "empty" to create a new empty queue,
 2.  "isEmpty" to test if a queue is empty,
 3.  "size" to get the number of elements in the queue,
 4.  "peekMin" to retrieve the lowest priority key/value pair entry as a Tuple (possibly null for empty queues),
 5.  "push" to insert an entry,
 6.  "deleteMin" to remove the lowest priority entry,
 7.  "replaceMin" to replace the lowest priority and adjust the queue according to the value (faster than a "deleteMin" followed by a "push"), 
 8.  "adjust" to apply a function to every key/value entry pair and reheapify the result,
 9.  "merge" to merge two queues into a single reheapified result,
 10. "fromSeq" to build a queue from a sequence of key/value pair tuples,
 11. "popMin" which is a convenience function combining a "peekMin" with a "deleteMin", returning null if the queue is empty and a tuple of the result otherwise,
 12. "toSeq" to output an ordered sequence of the queue contents as Tuple's of the key/value pairs, and
 13. "sort" which is a convenience function combining "fromSeq" followed by "toSeq".

The first four are all O(1) and the remainder O(log n) except "adjust" and "fromSeq" are O(n), "merge" is O(m + n) where m and n are the sizes of the two queues, and "toSeq" and "sort" are O(n log n); "replaceMin" is still O(log n) but faster than a "deleteMin" followed by a "push" by a constant factor.

Note that the Key type "KeyT" is not generic in order to give better comparison efficiency than using generic comparison using the IComparible interface but can be changed to different numeric types using the "using KeyT = ???" type alias.

The above code can be tested as per the page specification by the following code:

    static void Main(string[] args) {
      Tuple<uint, string>[] ins = { new Tuple<uint,string>(3u, "Clear drains"),
                                    new Tuple<uint,string>(4u, "Feed cat"),
                                    new Tuple<uint,string>(5u, "Make tea"),
                                    new Tuple<uint,string>(1u, "Solve RC tasks"),
                                    new Tuple<uint,string>(2u, "Tax return") };

      var spq = ins.Aggregate(MinHeapPQ<string>.empty, (pq, t) => MinHeapPQ<string>.push(t.Item1, t.Item2, pq));
      foreach (var e in MinHeapPQ<string>.toSeq(spq)) Console.WriteLine(e); Console.WriteLine();

      foreach (var e in MinHeapPQ<string>.sort(ins)) Console.WriteLine(e); Console.WriteLine();

      var npq = MinHeapPQ<string>.fromSeq(ins);
      foreach (var e in MinHeapPQ<string>.toSeq(MinHeapPQ<string>.merge(npq, npq)))
        Console.WriteLine(e); Console.WriteLine();

      var npq = MinHeapPQ<string>.fromSeq(ins);
      foreach (var e in MinHeapPQ<string>.toSeq(MinHeapPQ<string>.merge(npq, npq)))
        Console.WriteLine(e);

      foreach (var e in MinHeapPQ<string>.toSeq(MinHeapPQ<string>.adjust((k, v) => new Tuple<uint,string>(6u - k, v), npq)))
        Console.WriteLine(e); Console.WriteLine();
    }

It tests building the queue the slow way using repeated "push"'s - O(n log n), the faster "fromSeq" (included in the "sort") - O(n), and also tests the "merge" and "adjust" methods.

The output of the above test is as follows:

Output:
(1, Solve RC tasks)
(2, Tax return)
(3, Clear drains)
(4, Feed cat)
(5, Make tea)

(1, Solve RC tasks)
(2, Tax return)
(3, Clear drains)
(4, Feed cat)
(5, Make tea)

(1, Solve RC tasks)
(1, Solve RC tasks)
(2, Tax return)
(2, Tax return)
(3, Clear drains)
(3, Clear drains)
(4, Feed cat)
(4, Feed cat)
(5, Make tea)
(5, Make tea)

(1, Make tea)
(2, Feed cat)
(3, Clear drains)
(4, Tax return)
(5, Solve RC tasks)

C++

The C++ standard library contains the std::priority_queue opaque data structure. It implements a max-heap.

#include <iostream>
#include <string>
#include <queue>
#include <utility>

int main() {
  std::priority_queue<std::pair<int, std::string> > pq;
  pq.push(std::make_pair(3, "Clear drains"));
  pq.push(std::make_pair(4, "Feed cat"));
  pq.push(std::make_pair(5, "Make tea"));
  pq.push(std::make_pair(1, "Solve RC tasks"));
  pq.push(std::make_pair(2, "Tax return"));

  while (!pq.empty()) {
    std::cout << pq.top().first << ", " << pq.top().second << std::endl;
    pq.pop();
  }

  return 0;
}
Output:
5, Make tea
4, Feed cat
3, Clear drains
2, Tax return
1, Solve RC tasks

Alternately, you can use a pre-existing container of yours and use the heap operations to manipulate it:

#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <utility>

int main() {
  std::vector<std::pair<int, std::string> > pq;
  pq.push_back(std::make_pair(3, "Clear drains"));
  pq.push_back(std::make_pair(4, "Feed cat"));
  pq.push_back(std::make_pair(5, "Make tea"));
  pq.push_back(std::make_pair(1, "Solve RC tasks"));

  // heapify
  std::make_heap(pq.begin(), pq.end());

  // enqueue
  pq.push_back(std::make_pair(2, "Tax return"));
  std::push_heap(pq.begin(), pq.end());

  while (!pq.empty()) {
    // peek
    std::cout << pq[0].first << ", " << pq[0].second << std::endl;
    // dequeue
    std::pop_heap(pq.begin(), pq.end());
    pq.pop_back();
  }

  return 0;
}
Output:
5, Make tea
4, Feed cat
3, Clear drains
2, Tax return
1, Solve RC tasks

Clojure

user=> (use 'clojure.data.priority-map)

; priority-map can be used as a priority queue
user=> (def p (priority-map "Clear drains" 3, "Feed cat" 4, "Make tea" 5, "Solve RC tasks" 1))
#'user/p
user=> p
{"Solve RC tasks" 1, "Clear drains" 3, "Feed cat" 4, "Make tea" 5}

; You can use assoc or conj to add items
user=> (assoc p "Tax return" 2)
{"Solve RC tasks" 1, "Tax return" 2, "Clear drains" 3, "Feed cat" 4, "Make tea" 5}

; peek to get first item, pop to give you back the priority-map with the first item removed 
user=> (peek p)
["Solve RC tasks" 1]

; Merge priority-maps together
user=> (into p [["Wax Car" 4]["Paint Fence" 1]["Sand Floor" 3]])
{"Solve RC tasks" 1, "Paint Fence" 1, "Clear drains" 3, "Sand Floor" 3, "Wax Car" 4, "Feed cat" 4, "Make tea" 5}

CLU

This is a priority queue based on a binary heap. It uses CLU's dynamic array to store the data.

There are no intrinsic limits on what kind of data can be used for the priority or the values themselves, except that the priority datatype must support the less-than operator.

prio_queue = cluster [P, T: type] is new, empty, push, pop 
             where P has lt: proctype (P,P) returns (bool)
             
    item = struct[prio: P, val: T]
    rep = array[item]
    
    new = proc () returns (cvt)
        return (rep$create(0))
    end new 
    
    empty = proc (pq: cvt) returns (bool)
        return (rep$empty(pq))
    end empty
    
    parent = proc (k: int) returns (int)
        return ((k-1)/2)
    end parent
    
    left = proc (k: int) returns (int)
        return (2*k + 1)
    end left
    
    right = proc (k: int) returns (int)
        return (2*k + 2)
    end right
    
    swap = proc (pq: rep, a: int, b: int)
        temp: item := pq[a]
        pq[a] := pq[b]
        pq[b] := temp
    end swap 
    
    min_heapify = proc (pq: rep, k: int)
        l: int := left(k)
        r: int := right(k)
        
        smallest: int := k
        if l < rep$size(pq) cand pq[l].prio < pq[smallest].prio then
            smallest := l
        end
        if r < rep$size(pq) cand pq[r].prio < pq[smallest].prio then
            smallest := r 
        end
        if smallest ~= k then
            swap(pq, k, smallest)
            min_heapify(pq, smallest)
        end
    end min_heapify
    
    push = proc (pq: cvt, prio: P, val: T)
        rep$addh(pq, item${prio: prio, val: val})
        
        i: int := rep$high(pq)
        while i ~= 0 cand pq[i].prio < pq[parent(i)].prio do
            swap(pq, i, parent(i))
            i := parent(i)
        end
    end push
    
    pop = proc (pq: cvt) returns (P, T) signals (empty)
        if empty(up(pq)) then signal empty end
        if rep$size(pq) = 1 then
            i: item := rep$remh(pq)
            return (i.prio, i.val)
        end
        
        root: item := pq[0]
        pq[0] := rep$remh(pq)
        min_heapify(pq, 0)
        return (root.prio, root.val)
    end pop
end prio_queue
        
start_up = proc ()
    % use ints for priority and strings for data
    prioq = prio_queue[int,string] 
    
    % make the priority queue
    pq: prioq := prioq$new()
    
    % add some tasks 
    prioq$push(pq, 3, "Clear drains")
    prioq$push(pq, 4, "Feed cat")
    prioq$push(pq, 5, "Make tea")
    prioq$push(pq, 1, "Solve RC tasks")
    prioq$push(pq, 2, "Tax return")
    
    % print them all out in order
    po: stream := stream$primary_output()
    while ~prioq$empty(pq) do
        prio: int task: string
        prio, task := prioq$pop(pq)
        stream$putl(po, int$unparse(prio) || ": " || task)
    end
end start_up
Output:
1: Solve RC tasks
2: Tax return
3: Clear drains
4: Feed cat
5: Make tea

COBOL

IBM Enterprise COBOL solution

Note that the logic of this implementation follows the C solution above for "Pairing heap w/ generic data types" except that the "generic type" (the TASK record defintion) is sized and allocated in the calling test program instead of in the priority queue subroutines.

Note also that each subroutine is declared RECURSIVE though they do not all need it.

The subroutines each pass back a return value in their last parameter. The most recent release of the IBM Enterprise COBOL compiler (V6.4 as of the date of this contribution) does, in fact, support user-defined functions, which would make some of this implementation a little easier to write and read, but since many IBM shops are not yet up to the most recent level, this version is offered as one that will work with down-level compiler versions.

In the "two pass merge" subroutine (PTYQ2PMG), the final three lines are needed because the COBOL CALL statement does not allow for expressions as arguments, so the arguments to the outer call to the "merge" subroutine must be executed first, and the results of those two calls become the arguments to the final "merge" call.

Note also that the subroutines call each other using "PIC X(8)" pseudonyms because the actually recursive subroutines cannot use the "same name" as both the PROGRAM-ID and as a variable name. This could be resolved by simply using "constant" calls (like CALL "PTYQ2PMG" USING . . . but using the pseudonyms allows each of the subroutines to also be separately compiled into an executable module and then dynamically loaded at run time. Many IBM shops will prefer that method to this purely "static" solution.

       PROCESS NOSEQ,DS(S),AR(E),TEST(SO),CP(1047)
       IDENTIFICATION DIVISION.
       PROGRAM-ID. PTYQTEST
       ENVIRONMENT DIVISION.
       CONFIGURATION SECTION.
      * UNCOMMENT WITH DEBUGGING CLAUSE FOR DEBUG LINES TO EXECUTE.
       SOURCE-COMPUTER.
           Z-SYSTEM
      *        WITH DEBUGGING MODE
           .

       DATA DIVISION.
       WORKING-STORAGE SECTION.
       01  PTYQ-PGMNAMES.
           05  PTYQPUSH          PIC  X(8) VALUE "PTYQPUSH".
           05  PTYQPOP           PIC  X(8) VALUE "PTYQPOP".

       01  TASK-PTR              POINTER.

       01  TOP-PTR               POINTER.

       01  LINK-KEY              PIC S9(8) COMP-5.

       01  HEAP-PTR              POINTER VALUE NULL.

       01  PUSHD-PTR             POINTER VALUE NULL.

       01  POPPD-PTR             POINTER VALUE NULL.

       LINKAGE SECTION.
       01  TASK.
           05  TASK-NODE.
               10  TASK-KEY      PIC S9(8) COMP-5.
               10  TASK-NEXT     POINTER.
               10  TASK-DOWN     POINTER.
           05  TASK-NAME         PIC  X(40).

       PROCEDURE DIVISION.
           ALLOCATE TASK RETURNING TASK-PTR
           MOVE "EAT SCONES."      TO TASK-NAME
           MOVE +6 TO LINK-KEY
           CALL PTYQPUSH USING TASK-PTR, LINK-KEY, HEAP-PTR, PUSHD-PTR
           SET HEAP-PTR TO PUSHD-PTR

           ALLOCATE TASK RETURNING TASK-PTR
           MOVE "CLEAR DRAINS."    TO TASK-NAME
           MOVE +3 TO LINK-KEY
           CALL PTYQPUSH USING TASK-PTR, LINK-KEY, HEAP-PTR, PUSHD-PTR
           SET HEAP-PTR TO PUSHD-PTR

           ALLOCATE TASK RETURNING TASK-PTR
           MOVE "FEED CAT."        TO TASK-NAME
           MOVE +4 TO LINK-KEY
           CALL PTYQPUSH USING TASK-PTR, LINK-KEY, HEAP-PTR, PUSHD-PTR
           SET HEAP-PTR TO PUSHD-PTR

           ALLOCATE TASK RETURNING TASK-PTR
           MOVE "MAKE TEA."        TO TASK-NAME
           MOVE +5 TO LINK-KEY
           CALL PTYQPUSH USING TASK-PTR, LINK-KEY, HEAP-PTR, PUSHD-PTR
           SET HEAP-PTR TO PUSHD-PTR

           ALLOCATE TASK RETURNING TASK-PTR
           MOVE "SOLVE RC TASKS."  TO TASK-NAME
           MOVE +1 TO LINK-KEY
           CALL PTYQPUSH USING TASK-PTR, LINK-KEY, HEAP-PTR, PUSHD-PTR
           SET HEAP-PTR TO PUSHD-PTR

           ALLOCATE TASK RETURNING TASK-PTR
           MOVE "TAX RETURN."      TO TASK-NAME
           MOVE +2 TO LINK-KEY
           CALL PTYQPUSH USING TASK-PTR, LINK-KEY, HEAP-PTR, PUSHD-PTR
           SET HEAP-PTR TO PUSHD-PTR

           PERFORM WITH TEST BEFORE UNTIL HEAP-PTR = NULL
               SET TOP-PTR TO HEAP-PTR
               SET ADDRESS OF TASK TO TOP-PTR
               DISPLAY TASK-KEY " " TASK-NAME
               CALL PTYQPOP USING HEAP-PTR, POPPD-PTR
               SET HEAP-PTR TO POPPD-PTR
               FREE TOP-PTR
           END-PERFORM
           GOBACK.
       END PROGRAM PTYQTEST.
       PROCESS NOSEQ,DS(S),AR(E),TEST(SO),CP(1047)
       IDENTIFICATION DIVISION.
       PROGRAM-ID. PTYQMERG RECURSIVE.
       ENVIRONMENT DIVISION.
       CONFIGURATION SECTION.
      * UNCOMMENT WITH DEBUGGING CLAUSE FOR DEBUG LINES TO EXECUTE.
       SOURCE-COMPUTER.
           Z-SYSTEM
      *        WITH DEBUGGING MODE
           .

       DATA DIVISION.

       LINKAGE SECTION.
       01  HEAP-PTRA             POINTER.

       01  HEAP-PTRB             POINTER.

       01  MERGD-PTR             POINTER.

       01  HEAPA.
           05  HEAPA-KEY         PIC S9(8) COMP-5 VALUE +0.
           05  HEAPA-NEXT        POINTER.
           05  HEAPA-DOWN        POINTER.

       01  HEAPB.
           05  HEAPB-KEY         PIC S9(8) COMP-5 VALUE +0.
           05  HEAPB-NEXT        POINTER.
           05  HEAPB-DOWN        POINTER.

       PROCEDURE DIVISION USING HEAP-PTRA, HEAP-PTRB, MERGD-PTR.
           EVALUATE TRUE
               WHEN HEAP-PTRA = NULL
                   SET MERGD-PTR TO HEAP-PTRB
               WHEN HEAP-PTRB = NULL
                   SET MERGD-PTR TO HEAP-PTRA
               WHEN OTHER
                   SET ADDRESS OF HEAPA TO HEAP-PTRA
                   SET ADDRESS OF HEAPB TO HEAP-PTRB
                   IF HEAPA-KEY < HEAPB-KEY
                       IF HEAPA-DOWN NOT = NULL
                           SET HEAPB-NEXT TO HEAPA-DOWN
                       END-IF
                       SET HEAPA-DOWN TO HEAP-PTRB
                       SET MERGD-PTR TO HEAP-PTRA
                   ELSE
                       IF HEAPB-DOWN NOT = NULL
                           SET HEAPA-NEXT TO HEAPB-DOWN
                       END-IF
                       SET HEAPB-DOWN TO HEAP-PTRA
                       SET MERGD-PTR TO HEAP-PTRB
                   END-IF
           END-EVALUATE
           GOBACK.
       END PROGRAM PTYQMERG.
       PROCESS NOSEQ,DS(S),AR(E),TEST(SO),CP(1047)
       IDENTIFICATION DIVISION.
       PROGRAM-ID. PTYQ2PMG RECURSIVE.
       ENVIRONMENT DIVISION.
       CONFIGURATION SECTION.
      * UNCOMMENT WITH DEBUGGING CLAUSE FOR DEBUG LINES TO EXECUTE.
       SOURCE-COMPUTER.
           Z-SYSTEM
      *        WITH DEBUGGING MODE
           .

       DATA DIVISION.
       WORKING-STORAGE SECTION.
       01  PGMQMERG              PIC  X(8) VALUE "PTYQMERG".
       01  PGMQ2PMG              PIC  X(8) VALUE "PTYQ2PMG".

       LOCAL-STORAGE SECTION.
       01  HEAP-PTRA             POINTER.

       01  HEAP-PTRB             POINTER.

       01  HEAP-REST             POINTER.

       01  MERG1-PTR             POINTER.

       01  MERG2-PTR             POINTER.

       LINKAGE SECTION.
       01  HEAP-PTR              POINTER.

       01  MERGD-PTR             POINTER.

       01  HEAP.
           05  HEAP-KEY          PIC S9(8) COMP-5 VALUE +0.
           05  HEAP-NEXT         POINTER.
           05  HEAP-DOWN         POINTER.

       01  HEAPA.
           05  HEAPA-KEY         PIC S9(8) COMP-5 VALUE +0.
           05  HEAPA-NEXT        POINTER.
           05  HEAPA-DOWN        POINTER.

       01  HEAPB.
           05  HEAPB-KEY         PIC S9(8) COMP-5 VALUE +0.
           05  HEAPB-NEXT        POINTER.
           05  HEAPB-DOWN        POINTER.

       01  REST.
           05  REST-KEY          PIC S9(8) COMP-5 VALUE +0.
           05  REST-NEXT         POINTER.
           05  REST-DOWN         POINTER.

       PROCEDURE DIVISION USING HEAP-PTR, MERGD-PTR.
           SET ADDRESS OF HEAP TO HEAP-PTR
           EVALUATE TRUE
               WHEN HEAP-PTR = NULL
                   SET MERGD-PTR TO HEAP-PTR
               WHEN HEAP-NEXT = NULL
                   SET MERGD-PTR TO HEAP-PTR
               WHEN OTHER
                   SET HEAP-PTRA TO HEAP-PTR
                   SET ADDRESS OF HEAPA TO HEAP-PTRA
                   SET HEAP-PTRB TO HEAP-NEXT
                   SET ADDRESS OF HEAPB TO HEAP-PTRB
                   SET HEAP-REST TO HEAPB-NEXT
                   SET ADDRESS OF REST  TO HEAP-REST
                   SET HEAPA-NEXT TO NULL
                   SET HEAPB-NEXT TO NULL
                   CALL PGMQMERG USING HEAP-PTRA, HEAP-PTRB, MERG1-PTR
                   CALL PGMQ2PMG USING HEAP-REST, MERG2-PTR
                   CALL PGMQMERG USING MERG1-PTR, MERG2-PTR, MERGD-PTR
           END-EVALUATE
           GOBACK.
       END PROGRAM PTYQ2PMG.
       PROCESS NOSEQ,DS(S),AR(E),TEST(SO),CP(1047)
       IDENTIFICATION DIVISION.
       PROGRAM-ID. PTYQPUSH RECURSIVE.
       ENVIRONMENT DIVISION.
       CONFIGURATION SECTION.
      * UNCOMMENT WITH DEBUGGING CLAUSE FOR DEBUG LINES TO EXECUTE.
       SOURCE-COMPUTER.
           Z-SYSTEM
      *        WITH DEBUGGING MODE
           .

       DATA DIVISION.
       WORKING-STORAGE SECTION.
       01  PTYQMERG              PIC  X(8) VALUE "PTYQMERG".

       LINKAGE SECTION.
       01  NODE-PTR              POINTER.

       01  LINK-KEY              PIC S9(8) COMP-5.

       01  HEAP-PTR              POINTER.

       01  PUSHD-PTR             POINTER.

       01  HEAP.
           05  HEAP-KEY          PIC S9(8) COMP-5.
           05  HEAP-NEXT         POINTER.
           05  HEAP-DOWN         POINTER.

       01  NODE.
           05  NODE-KEY          PIC S9(8) COMP-5.
           05  NODE-NEXT         POINTER.
           05  NODE-DOWN         POINTER.

       PROCEDURE DIVISION USING NODE-PTR, LINK-KEY, HEAP-PTR, PUSHD-PTR.
           SET ADDRESS OF NODE TO NODE-PTR
           SET ADDRESS OF HEAP TO HEAP-PTR
           SET NODE-NEXT TO NULL
           SET NODE-DOWN TO NULL
           MOVE LINK-KEY TO NODE-KEY
           CALL PTYQMERG USING NODE-PTR, HEAP-PTR, PUSHD-PTR
           GOBACK.
       END PROGRAM PTY2PUSH.
       PROCESS NOSEQ,DS(S),AR(E),TEST(SO),CP(1047)
       IDENTIFICATION DIVISION.
       PROGRAM-ID. PTYQPOP RECURSIVE.
       ENVIRONMENT DIVISION.
       CONFIGURATION SECTION.
      * UNCOMMENT WITH DEBUGGING CLAUSE FOR DEBUG LINES TO EXECUTE.
       SOURCE-COMPUTER.
           Z-SYSTEM
      *        WITH DEBUGGING MODE
           .

       DATA DIVISION.
       WORKING-STORAGE SECTION.
       01  PTYQ2PMG              PIC  X(8) VALUE "PTYQ2PMG".

       LINKAGE SECTION.
       01  HEAP-PTR              POINTER.

       01  POPPD-PTR             POINTER.

       01  HEAP.
           05  HEAP-KEY          PIC S9(8) COMP-5 VALUE +0.
           05  HEAP-NEXT         POINTER.
           05  HEAP-DOWN         POINTER.

       PROCEDURE DIVISION USING HEAP-PTR, POPPD-PTR.
           SET ADDRESS OF HEAP TO HEAP-PTR
           CALL PTYQ2PMG USING HEAP-DOWN, POPPD-PTR
           GOBACK.
       END PROGRAM PTYQPOP.
Output:
+0000000001 SOLVE RC TASKS.
+0000000002 TAX RETURN.
+0000000003 CLEAR DRAINS.
+0000000004 FEED CAT.
+0000000005 MAKE TEA.
+0000000006 EAT SCONES.

CoffeeScript

PriorityQueue = ->
  # Use closure style for object creation (so no "new" required).
  # Private variables are toward top.
  h = []
  
  better = (a, b) ->
    h[a].priority < h[b].priority
  
  swap = (a, b) ->
    [h[a], h[b]] = [h[b], h[a]]
      
  sift_down = ->
    max = h.length
    n = 0
    while n < max
      c1 = 2*n + 1
      c2 = c1 + 1
      best = n
      best = c1 if c1 < max and better(c1, best)
      best = c2 if c2 < max and better(c2, best)
      return if best == n
      swap n, best
      n = best
      
  sift_up = ->
    n = h.length - 1
    while n > 0
      parent = Math.floor((n-1) / 2)
      return if better parent, n
      swap n, parent
      n = parent
 
  # now return the public interface, which is an object that only
  # has functions on it
  self =
    size: ->
      h.length

    push: (priority, value) ->
      elem =
        priority: priority
        value: value
      h.push elem
      sift_up()
      
    pop: ->
      throw Error("cannot pop from empty queue") if h.length == 0
      value = h[0].value
      last = h.pop()
      if h.length > 0
        h[0] = last
        sift_down()
      value

# test
do ->     
  pq = PriorityQueue()
  pq.push 3, "Clear drains"
  pq.push 4, "Feed cat"
  pq.push 5, "Make tea"
  pq.push 1, "Solve RC tasks"
  pq.push 2, "Tax return"

  while pq.size() > 0
    console.log pq.pop()
    
  # test high performance
  for n in [1..100000]
    priority = Math.random()
    pq.push priority, priority
  
  v = pq.pop()
  console.log "First random element was #{v}"
  while pq.size() > 0
    new_v = pq.pop()
    throw Error "Queue broken" if new_v < v
    v = new_v
  console.log "Final random element was #{v}"

output

> coffee priority_queue.coffee 
Solve RC tasks
Tax return
Clear drains
Feed cat
Make tea
First random element was 0.00002744467929005623
Final random element was 0.9999718656763434

Common Lisp

In this task were implemented to versions of the functions, the non-destructive ones that will not change the state of the priority queue and the destructive ones that will change. The destructive ones work very similarly to the 'pop' and 'push' functions.

;priority-queue's are implemented with association lists
(defun make-pq (alist)
  (sort (copy-alist alist) (lambda (a b) (< (car a) (car b)))))
;
;Will change the state of pq
;
(define-modify-macro insert-pq (pair)
                     (lambda (pq pair) (sort-alist (cons pair pq))))

(define-modify-macro remove-pq-aux () cdr)

(defmacro remove-pq (pq)
  `(let ((aux (copy-alist ,pq)))
     (REMOVE-PQ-AUX ,pq)
     (car aux)))
;
;Will not change the state of pq
;
(defun insert-pq-non-destructive (pair pq)
  (sort-alist (cons pair pq)))

(defun remove-pq-non-destructive (pq)
  (cdr pq))
;testing
(defparameter a (make-pq '((1 . "Solve RC tasks") (3 . "Clear drains") (2 . "Tax return") (5 . "Make tea"))))
(format t "~a~&" a)
(insert-pq a '(4 . "Feed cat"))
(format t "~a~&" a)
(format t "~a~&" (remove-pq a))
(format t "~a~&" a)
(format t "~a~&" (remove-pq a))
(format t "~a~&" a)
Output:
((1 . Solve RC tasks) (2 . Tax return) (3 . Clear drains) (5 . Make tea))
((1 . Solve RC tasks) (2 . Tax return) (3 . Clear drains) (4 . Feed cat) (5 . Make tea))
(1 . Solve RC tasks)
((2 . Tax return) (3 . Clear drains) (4 . Feed cat) (5 . Make tea))
(2 . Tax return)
((3 . Clear drains) (4 . Feed cat) (5 . Make tea))

Component Pascal

BlackBox Component Builder

MODULE PQueues;
IMPORT StdLog,Boxes;

TYPE
  Rank* = POINTER TO RECORD
    p-: LONGINT; (* Priority *)
    value-: Boxes.Object
  END;
  
  PQueue* = POINTER TO RECORD
    a: POINTER TO ARRAY OF Rank;
    size-: LONGINT;
  END;
  
  PROCEDURE NewRank*(p: LONGINT; v: Boxes.Object): Rank;
  VAR
    r: Rank;
  BEGIN
    NEW(r);r.p := p;r.value := v;
    RETURN r
  END NewRank;
  
  PROCEDURE NewPQueue*(cap: LONGINT): PQueue;
  VAR
    pq: PQueue;
  BEGIN
    NEW(pq);pq.size := 0;
    NEW(pq.a,cap);pq.a[0] := NewRank(MIN(INTEGER),NIL);
    RETURN pq
  END NewPQueue;
  
  PROCEDURE (pq: PQueue) Push*(r:Rank), NEW;
  VAR
    i: LONGINT;
  BEGIN
    INC(pq.size);
    i := pq.size;
    WHILE r.p < pq.a[i DIV 2].p DO
      pq.a[i] := pq.a[i DIV 2];i := i DIV 2
    END;
    pq.a[i] := r
  END Push;
  
  PROCEDURE (pq: PQueue) Pop*(): Rank,NEW;
  VAR
    r,y: Rank;
    i,j: LONGINT;
    ok: BOOLEAN;
  BEGIN
    r := pq.a[1]; (* Priority object *)
    y := pq.a[pq.size]; DEC(pq.size); i := 1; ok := FALSE;
    WHILE (i <= pq.size DIV 2) & ~ok DO
      j := i + 1;
      IF (j < pq.size) & (pq.a[i].p > pq.a[j + 1].p) THEN INC(j) END;
      IF y.p > pq.a[j].p THEN pq.a[i] := pq.a[j]; i := j ELSE ok := TRUE END
    END;
    pq.a[i] := y;
    RETURN r
  END Pop;
  
  PROCEDURE (pq: PQueue) IsEmpty*(): BOOLEAN,NEW;
  BEGIN
    RETURN pq.size = 0
  END IsEmpty;
  
  PROCEDURE Test*;
  VAR
    pq: PQueue;
    r: Rank;
    PROCEDURE ShowRank(r:Rank);
    BEGIN
      StdLog.Int(r.p);StdLog.String(":> ");StdLog.String(r.value.AsString());StdLog.Ln;
    END ShowRank;
  BEGIN
    pq := NewPQueue(128);
    pq.Push(NewRank(3,Boxes.NewString("Clear drains")));
    pq.Push(NewRank(4,Boxes.NewString("Feed cat")));
    pq.Push(NewRank(5,Boxes.NewString("Make tea")));
    pq.Push(NewRank(1,Boxes.NewString("Solve RC tasks")));
    pq.Push(NewRank(2,Boxes.NewString("Tax return")));
    ShowRank(pq.Pop());
    ShowRank(pq.Pop());
    ShowRank(pq.Pop());
    ShowRank(pq.Pop());
    ShowRank(pq.Pop());
  END Test;
  
END PQueues.

Interface extracted from the implementation

DEFINITION PQueues;

  IMPORT Boxes;

  TYPE
    PQueue = POINTER TO RECORD 
      size-: LONGINT;
      (pq: PQueue) IsEmpty (): BOOLEAN, NEW;
      (pq: PQueue) Pop (): Rank, NEW;
      (pq: PQueue) Push (r: Rank), NEW
    END;

    Rank = POINTER TO RECORD 
      p-: LONGINT;
      value-: Boxes.Object
    END;

  PROCEDURE NewPQueue (cap: LONGINT): PQueue;
  PROCEDURE NewRank (p: LONGINT; v: Boxes.Object): Rank;
  PROCEDURE Test;

END PQueues.

Execute: ^Q PQueues.Test
Output:

 1:> Solve RC tasks
 2:> Tax return
 3:> Clear drains
 4:> Feed cat
 5:> Make tea

D

import std.stdio, std.container, std.array, std.typecons;

void main() {
    alias tuple T;
    auto heap = heapify([T(3, "Clear drains"),
                         T(4, "Feed cat"),
                         T(5, "Make tea"),
                         T(1, "Solve RC tasks"),
                         T(2, "Tax return")]);

    while (!heap.empty) {
        writeln(heap.front);
        heap.removeFront();
    }
}
Output:
Tuple!(int,string)(5, "Make tea")
Tuple!(int,string)(4, "Feed cat")
Tuple!(int,string)(3, "Clear drains")
Tuple!(int,string)(2, "Tax return")
Tuple!(int,string)(1, "Solve RC tasks")

Delphi

Boost.Generics.Collection is part of DelphiBoostLib

program Priority_queue;

{$APPTYPE CONSOLE}

uses
  System.SysUtils, Boost.Generics.Collection;

var
  Queue: TPriorityQueue<String>;

begin
  Queue := TPriorityQueue<String>.Create(['Clear drains', 'Feed cat',
    'Make tea', 'Solve RC tasks', 'Tax return'], [3, 4, 5, 1, 2]);

  while not Queue.IsEmpty do
    with Queue.DequeueEx do
      Writeln(Priority, ', ', value);
end.
Output:
1, Solve RC tasks
2, Tax return
3, Clear drains
4, Feed cat
5, Make tea

EchoLisp

We use the built-in binary tree library. Each tree node has a datum (key . value). The functions (bin-tree-pop-first tree) and (bin-tree-pop-last tree) allow to extract the node with highest or lowest priority.

(lib 'tree)
(define tasks (make-bin-tree 3 "Clear drains"))
(bin-tree-insert tasks 2 "Tax return")
(bin-tree-insert tasks 5 "Make tea")
(bin-tree-insert tasks 1 "Solve RC tasks")
(bin-tree-insert tasks 4 "Feed 🐡")

(bin-tree-pop-first tasks)  (1 . "Solve RC tasks")
(bin-tree-pop-first tasks)  (2 . "Tax return")
(bin-tree-pop-first tasks)  (3 . "Clear drains")
(bin-tree-pop-first tasks)  (4 . "Feed 🐡")
(bin-tree-pop-first tasks)  (5 . "Make tea")
(bin-tree-pop-first tasks)  null

;; similarly
(bin-tree-pop-last tasks)  (5 . "Make tea")
(bin-tree-pop-last tasks)  (4 . "Feed 🐡")
; etc.

Elixir

Translation of: Erlang
defmodule Priority do
  def create, do: :gb_trees.empty
 
  def insert( element, priority, queue ), do: :gb_trees.enter( priority, element, queue )
 
  def peek( queue ) do
    {_priority, element, _new_queue} = :gb_trees.take_smallest( queue )
    element
  end
  
  def task do
    items = [{3, "Clear drains"}, {4, "Feed cat"}, {5, "Make tea"}, {1, "Solve RC tasks"}, {2, "Tax return"}]
    queue = Enum.reduce(items, create, fn({priority, element}, acc) -> insert( element, priority, acc ) end)
    IO.puts "peek priority: #{peek( queue )}"
    Enum.reduce(1..length(items), queue, fn(_n, q) -> write_top( q ) end)
  end
  
  def top( queue ) do
    {_priority, element, new_queue} = :gb_trees.take_smallest( queue )
    {element, new_queue}
  end
  
  defp write_top( q ) do
    {element, new_queue} = top( q )
    IO.puts "top priority: #{element}"
    new_queue
  end
end

Priority.task
Output:
peek priority: Solve RC tasks
top priority: Solve RC tasks
top priority: Tax return
top priority: Clear drains
top priority: Feed cat
top priority: Make tea

Erlang

Using built in gb_trees module, with the suggested interface for this task.

-module( priority_queue ).

-export( [create/0, insert/3, peek/1, task/0, top/1] ).

create() -> gb_trees:empty().

insert( Element, Priority, Queue ) -> gb_trees:enter( Priority, Element, Queue ).

peek( Queue ) ->
  {_Priority, Element, _New_queue} = gb_trees:take_smallest( Queue ),
  Element.

task() ->
  Items = [{3, "Clear drains"}, {4, "Feed cat"}, {5, "Make tea"}, {1, "Solve RC tasks"}, {2, "Tax return"}],
  Queue = lists:foldl( fun({Priority, Element}, Acc) -> insert( Element, Priority, Acc ) end, create(), Items ),
  io:fwrite( "peek priority: ~p~n", [peek( Queue )] ),
  lists:foldl( fun(_N, Q) -> write_top( Q ) end, Queue, lists:seq(1, erlang:length(Items)) ).

top( Queue ) ->
  {_Priority, Element, New_queue} = gb_trees:take_smallest( Queue ),
  {Element, New_queue}.



write_top( Q ) ->
  {Element, New_queue} = top( Q ),
  io:fwrite( "top priority: ~p~n", [Element] ),
  New_queue.
Output:
12> priority_queue:task(). 
peek priority: "Solve RC tasks"
top priority: "Solve RC tasks"
top priority: "Tax return"
top priority: "Clear drains"
top priority: "Feed cat"
top priority: "Make tea"

F#

The below codes all provide the standard priority queue functions of "peekMin", "push", and "deleteMin"; as well, "replaceMin" which can be much more efficient that a "deleteMin" followed by a "push" for some types of queues), "popMin" (generally a convenience function for "peekMin" followed by "deleteMin"), "adjust" for applying a function to all queue entries and reheapifying, "fromSeq" for building a queue from a sequence, "toSeq" for outputting a sorted sequence of the queue contents, and "sort" which is a convenience function combining the latter two functions are provided. Finally, the queue's all provide a "merge" function to combine two queues into one, and an "adjust" function which applies a function to every heap element and reheapifies.

Functional

Binomial Heap Priority Queue

The following Binomial Heap Priority Queue code has been adapted from a version by "DeeJay" updated for changes in F# over the intervening years, and implementing the O(1) "peekMin" mentioned in that post; in addition to the above standard priority queue functions, it also implements the "merge" function for which the Binomial Heap is particularly suited, taking O(log n) time rather than the usual O(n) (or worse) time:

[<RequireQualifiedAccess>]
module PriorityQ =

//  type 'a treeElement = Element of uint32 * 'a
  type 'a treeElement = struct val k:uint32 val v:'a new(k,v) = { k=k;v=v } end

  type 'a tree = Node of uint32 * 'a treeElement * 'a tree list

  type 'a heap = 'a tree list

  [<CompilationRepresentation(CompilationRepresentationFlags.UseNullAsTrueValue)>]
  [<NoEquality; NoComparison>]
  type 'a outerheap = | HeapEmpty | HeapNotEmpty of 'a treeElement * 'a heap

  let empty = HeapEmpty

  let isEmpty = function | HeapEmpty -> true | _ -> false

  let inline private rank (Node(r,_,_)) = r

  let inline private root (Node(_,x,_)) = x

  exception Empty_Heap

  let peekMin = function | HeapEmpty -> None
                         | HeapNotEmpty(min, _) -> Some (min.k, min.v)

  let rec private findMin heap =
    match heap with | [] -> raise Empty_Heap //guarded so should never happen
                    | [node] -> root node,[]
                    | topnode::heap' ->
                      let min,subheap = findMin heap' in let rtn = root topnode
                      match subheap with
                        | [] -> if rtn.k > min.k then min,[] else rtn,[]
                        | minnode::heap'' ->
                          let rmn = root minnode
                          if rtn.k <= rmn.k then rtn,heap
                          else rmn,minnode::topnode::heap''

  let private mergeTree (Node(r,kv1,ts1) as tree1) (Node (_,kv2,ts2) as tree2) =
    if kv1.k > kv2.k then Node(r+1u,kv2,tree1::ts2)
    else Node(r+1u,kv1,tree2::ts1)

  let rec private insTree (newnode: 'a tree) heap =
    match heap with
      | [] -> [newnode]
      | topnode::heap' -> if (rank newnode) < (rank topnode) then newnode::heap
                          else insTree (mergeTree newnode topnode) heap'

  let push k v = let kv = treeElement(k,v) in let nn = Node(0u,kv,[])
                   function | HeapEmpty -> HeapNotEmpty(kv,[nn])
                            | HeapNotEmpty(min,heap) -> let nmin = if k > min.k then min else kv
                                                        HeapNotEmpty(nmin,insTree nn heap)

  let rec private merge' heap1 heap2 = //doesn't guaranty minimum tree node as head!!!
    match heap1,heap2 with
      | _,[] -> heap1
      | [],_ -> heap2
      | topheap1::heap1',topheap2::heap2' ->
        match compare (rank topheap1) (rank topheap2) with
          | -1 -> topheap1::merge' heap1' heap2
          | 1 -> topheap2::merge' heap1 heap2'
          | _ -> insTree (mergeTree topheap1 topheap2) (merge' heap1' heap2')

  let merge oheap1 oheap2 = match oheap1,oheap2 with
                              | _,HeapEmpty -> oheap1
                              | HeapEmpty,_ -> oheap2
                              | HeapNotEmpty(min1,heap1),HeapNotEmpty(min2,heap2) ->
                                  let min = if min1.k > min2.k then min2 else min1
                                  HeapNotEmpty(min,merge' heap1 heap2)

  let rec private removeMinTree = function
                          | [] -> raise Empty_Heap // will never happen as already guarded
                          | [node] -> node,[]
                          | t::ts -> let t',ts' = removeMinTree ts
                                     if (root t).k <= (root t').k then t,ts else t',t::ts'

  let deleteMin =
    function | HeapEmpty -> HeapEmpty
             | HeapNotEmpty(_,heap) ->
               match heap with
                 | [] -> HeapEmpty // should never occur: non empty heap with no elements
                 | [Node(_,_,heap')] -> match heap' with
                                          | [] -> HeapEmpty
                                          | _ -> let min,_ = findMin heap'
                                                 HeapNotEmpty(min,heap')
                 | _::_ -> let Node(_,_,ts1),ts2 = removeMinTree heap
                           let nheap = merge' (List.rev ts1) ts2 in let min,_ = findMin nheap
                           HeapNotEmpty(min,nheap)

  let replaceMin k v pq = push k v (deleteMin pq)

  let fromSeq sq = Seq.fold (fun pq (k, v) -> push k v pq) empty sq

  let popMin pq = match peekMin pq with
                      | None -> None
                      | Some(kv) -> Some(kv, deleteMin pq)

  let toSeq pq = Seq.unfold popMin pq

  let sort sq = sq |> fromSeq |> toSeq

  let adjust f pq = pq |> toSeq |> Seq.map (fun (k, v) -> f k v) |> fromSeq

"isEmpty", "empty", and "peekMin" all have O(1) performance, "push" is O(1) amortized performance with O(log n) worst case, and the rest are O(log n) except for "fromSeq" (and thus "sort" and "adjust") which have O(n log n) performance since they use repeated "deleteMin" with one per entry.

No "size" function is provided, but it would be implemented by summing the total size of all the nested tree lists, which each have a "Count" property and thus would be quite fast.

Note that the current "adjust" function is horribly inefficient as it outputs the original queue as a sorted sequence (O(n log n) time complexity), maps the adjusting function to each element, and rebuilds the queue be repeated "push" operations of the resulting sequence. This could be improved by re-writing to output the sequence in unsorted order (using an internal function that doesn't use repeated "deleteMin" operations) and then rebuilding from the adjusted sequence; doing this would make the "adjust" operation take O(n) amortized time.

The "sort" function also uses a similar technique of building a queue from a sequence by repeated "push" operations (however, those only take O(n) amortized time for the Binomial Heap), then outputting a sorted sequence by repeated "popMin" operations for a combined O(n log n) time complexity.

Min Heap Priority Queue

The following code implementing a Min Heap Priority Queue is adapted from the ML PRIORITY_QUEUE code by Lawrence C. Paulson including separating the key/value pairs as separate entries in the data structure for better comparison efficiency; it implements an efficient "fromSeq" function using reheapify for which the Min Heap is particularly suited as it has only O(n) instead of O(n log n) computational time complexity, which method is also used for the "adjust" and "merge" functions:

[<RequireQualifiedAccess>]
module PriorityQ =

  type HeapEntry<'V> = struct val k:uint32 val v:'V new(k,v) = {k=k;v=v} end
  [<CompilationRepresentation(CompilationRepresentationFlags.UseNullAsTrueValue)>]
  [<NoEquality; NoComparison>]
  type PQ<'V> =
         | Mt
         | Br of HeapEntry<'V> * PQ<'V> * PQ<'V>

  let empty = Mt

  let isEmpty = function | Mt -> true
                         | _  -> false

  // Return number of elements in the priority queue. 
  // /O(log(n)^2)/ 
  let rec size = function
    | Mt -> 0 
    | Br(_, ll, rr) ->
        let n = size rr
        // rest n p q, where n = size ll, and size ll - size rr = 0 or 1 
        // returns 1 + size ll - size rr. 
        let rec rest n pl pr =
          match pl with
            | Mt -> 1
            | Br(_, pll, plr) ->
                match pr with
                  | Mt -> 2
                  | Br(_, prl, prr) ->
                      let nm1 = n - 1 in let d = nm1 >>> 1
                      if (nm1 &&& 1) = 0
                        then rest d pll prl // subtree sizes: (d or d+1), d; d, d 
                        else rest d plr prr // subtree sizes: d+1, (d or d+1); d+1, d 
        2 * n + rest n ll rr

  let peekMin = function | Br(kv, _, _) -> Some(kv.k, kv.v)
                         | _            -> None

  let rec push wk wv = 
    function | Mt -> Br(HeapEntry(wk, wv), Mt, Mt)
             | Br(vkv, ll, rr) ->
                 if wk <= vkv.k then
                   Br(HeapEntry(wk, wv), push vkv.k vkv.v rr, ll)
                 else Br(vkv, push wk wv rr, ll)

  let inline private siftdown wk wv pql pqr =
    let rec sift pl pr =
      match pl with
        | Mt -> Br(HeapEntry(wk, wv), Mt, Mt)
        | Br(vkvl, pll, plr) ->
            match pr with
              | Mt -> if wk <= vkvl.k then Br(HeapEntry(wk, wv), pl, Mt)
                      else Br(vkvl, Br(HeapEntry(wk, wv), Mt, Mt), Mt)
              | Br(vkvr, prl, prr) ->
                  if wk <= vkvl.k && wk <= vkvr.k then Br(HeapEntry(wk, wv), pl, pr)
                  elif vkvl.k <= vkvr.k then Br(vkvl, sift pll plr, pr)
                  else Br(vkvr, pl, sift prl prr)
    sift pql pqr                                        

  let replaceMin wk wv = function | Mt -> Mt
                                  | Br(_, ll, rr) -> siftdown wk wv ll rr

  let deleteMin = function 
        | Mt -> Mt
        | Br(_, ll, Mt) -> ll
        | Br(vkv, ll, rr) ->
          let rec leftrem = function | Mt -> vkv, Mt // should never happen
                                     | Br(kvd, Mt, _) -> kvd, Mt
                                     | Br(vkv, Br(kvd, _, _), Mt) ->
                                                 kvd, Br(vkv, Mt, Mt)
                                     | Br(vkv, pl, pr) -> let kvd, pqd = leftrem pl
                                                          kvd, Br(vkv, pr, pqd)
          let (kvd, pqd) = leftrem ll
          siftdown kvd.k kvd.v rr pqd; 

  let adjust f pq =
        let rec adj = function 
              | Mt -> Mt
              | Br(vkv, ll, rr) -> let nk, nv = f vkv.k vkv.v
                                   siftdown nk nv (adj ll) (adj rr)
        adj pq

  let fromSeq sq = 
    if Seq.isEmpty sq then Mt
    else let nmrtr = sq.GetEnumerator()
         let rec build lvl = if lvl = 0 || not (nmrtr.MoveNext()) then Mt
                             else let ck, cv = nmrtr.Current
                                  let lft = lvl >>> 1
                                  let rght = (lvl - 1) >>> 1
                                  siftdown ck cv (build lft) (build rght)
         build (sq |> Seq.length)

  let merge (pq1:PQ<_>) (pq2:PQ<_>) = // merges without using a sequence
    match pq1 with
      | Mt -> pq2
      | _ ->
        match pq2 with
          | Mt -> pq1
          | _ ->
            let rec zipper lvl pq rest =
              if lvl = 0 then Mt, pq, rest else
              let lft = lvl >>> 1 in let rght = (lvl - 1) >>> 1
              match pq with
                | Mt ->
                  match rest with
                    | [] | Mt :: _ -> Mt, pq, [] // Mt in list never happens
                    | Br(kv, ll, Mt) :: tl ->
                        let pl, pql, rstl = zipper lft ll tl
                        let pr, pqr, rstr = zipper rght pql rstl
                        siftdown kv.k kv.v pl pr, pqr, rstr
                    | Br(kv, ll, rr) :: tl ->
                        let pl, pql, rstl = zipper lft ll (rr :: tl)
                        let pr, pqr, rstr = zipper rght pql rstl
                        siftdown kv.k kv.v pl pr, pqr, rstr
                | Br(kv, ll, Mt) ->
                    let pl, pql, rstl = zipper lft ll rest
                    let pr, pqr, rstr = zipper rght pql rstl
                    siftdown kv.k kv.v pl pr, pqr, rstr
                | Br(kv, ll, rr) ->
                    let pl, pql, rstl = zipper lft ll (rr :: rest)
                    let pr, pqr, rstr = zipper rght pql rstl
                    siftdown kv.k kv.v pl pr, pqr, rstr
            let sz = size pq1 + size pq2
            let pq, _, _ = zipper sz pq1 [pq2] in pq

  let popMin pq = match peekMin pq with
                      | None -> None
                      | Some(kv) -> Some(kv, deleteMin pq)

  let toSeq pq = Seq.unfold popMin pq

  let sort sq = sq |> fromSeq |> toSeq

The above code implements a "merge" function so that no internal sequence generation is necessary as generation of sequence iterators is quite inefficient in F# for a combined O(n) computational time complexity but a considerable reduction in the constant factor overhead.

Other than the "merge" function, the Min Heap Priority Queue has the same time complexity as for the Binomial Heap Priority Queue above except that "push" has O(log n) performance rather than the amortized O(1) performance; however, the Binomial Heap Priority Queue is generally a constant factor slower due to more complex operations. The Binomial Heap Priority Queue is generally more suited when used where merging of large queues or frequent "push" operations are used; the Min Heap Priority Queue is more suitable for use when replacing the value at the minimum entry of the queue is frequently required, especially when the adjusted value is not displaced very far down the queue on average.

Imperative

Min Heap Priority Queue

As the Min Heap is usually implemented as a mutable array binary heap after a genealogical tree based model invented by Michael Eytzinger over 400 years ago, the following "ugly imperative" code implements the Min Heap Priority Queue this way; note that the code could be implemented not using "ugly" mutable state variables other than the contents of the array (DotNet List which implements a growable array) but in this case the code would be considerably slower as in not much faster or slower than the functional version since using mutable side effects greatly reduces the number of operations:

[<RequireQualifiedAccess>]
module PriorityQ =

  type HeapEntry<'T> = struct val k:uint32 val v:'T new(k,v) = { k=k;v=v } end
  type MinHeapTree<'T> = ResizeArray<HeapEntry<'T>>

  let empty<'T> = MinHeapTree<HeapEntry<'T>>()

  let isEmpty (pq: MinHeapTree<_>) = pq.Count = 0

  let size (pq: MinHeapTree<_>) = let cnt = pq.Count
                                  if cnt = 0 then 0 else cnt - 1

  let peekMin (pq:MinHeapTree<_>) = if pq.Count > 1 then let kv = pq.[0]
                                                         Some (kv.k, kv.v) else None

  let push k v (pq:MinHeapTree<_>) =
    if pq.Count = 0 then pq.Add(HeapEntry(0xFFFFFFFFu,v)) //add an extra entry so there's always a right max node
    let mutable nxtlvl = pq.Count in let mutable lvl = nxtlvl <<< 1 //1 past index of value added times 2
    pq.Add(pq.[nxtlvl - 1]) //copy bottom entry then do bubble up while less than next level up
    while ((lvl <- lvl >>> 1); nxtlvl <- nxtlvl >>> 1; nxtlvl <> 0) do
      let t = pq.[nxtlvl - 1] in if t.k > k then pq.[lvl - 1] <- t else lvl <- lvl <<< 1; nxtlvl <- 0 //causes loop break
    pq.[lvl - 1] <-  HeapEntry(k,v); pq

  let inline private siftdown k v ndx (pq: MinHeapTree<_>) =
    let mutable i = ndx in let mutable ni = i in let cnt = pq.Count - 1
    while (ni <- ni + ni + 1; ni < cnt) do
      let lk = pq.[ni].k in let rk = pq.[ni + 1].k in let oi = i
      let k = if k > lk then i <- ni; lk else k in if k > rk then ni <- ni + 1; i <- ni
      if i <> oi then pq.[oi] <- pq.[i] else ni <- cnt //causes loop break
    pq.[i] <- HeapEntry(k,v)

  let replaceMin k v (pq:MinHeapTree<_>) = siftdown k v 0 pq; pq

  let deleteMin (pq:MinHeapTree<_>) =
    let lsti = pq.Count - 2
    if lsti <= 0 then pq.Clear(); pq else
    let lstkv = pq.[lsti]
    pq.RemoveAt(lsti)
    siftdown lstkv.k lstkv.v 0 pq; pq

  let adjust f (pq:MinHeapTree<_>) = //adjust all the contents using the function, then re-heapify
    let cnt = pq.Count - 1
    let rec adj i =
      let lefti = i + i + 1 in let righti = lefti + 1
      let ckv = pq.[i] in let (nk, nv) = f ckv.k ckv.v
      if righti < cnt then adj righti
      if lefti < cnt then adj lefti; siftdown nk nv i pq
      else pq.[i] <- HeapEntry(nk, nv)
    adj 0; pq

  let fromSeq sq = 
    if Seq.isEmpty sq then empty
    else let pq = new MinHeapTree<_>(sq |> Seq.map (fun (k, v) -> HeapEntry(k, v)))
         let sz = pq.Count in let lkv = pq.[sz - 1]
         pq.Add(HeapEntry(UInt32.MaxValue, lkv.v))
         let rec build i =
           let lefti = i + i + 1
           if lefti < sz then
             let righti = lefti + 1 in build lefti; build righti
             let ckv = pq.[i] in siftdown ckv.k ckv.v i pq
         build 0; pq

  let merge (pq1:MinHeapTree<_>) (pq2:MinHeapTree<_>) =
    if pq2.Count = 0 then pq1 else
    if pq1.Count = 0 then pq2 else
    let pq = empty
    pq.AddRange(pq1); pq.RemoveAt(pq.Count - 1)
    pq.AddRange(pq2)
    let sz = pq.Count - 1
    let rec build i =
      let lefti = i + i + 1
      if lefti < sz then
        let righti = lefti + 1 in build lefti; build righti
        let ckv = pq.[i] in siftdown ckv.k ckv.v i pq
    build 0; pq

  let popMin pq = match peekMin pq with
                   | None     -> None
                   | Some(kv) -> Some(kv, deleteMin pq)

  let toSeq pq = Seq.unfold popMin pq

  let sort sq = sq |> fromSeq |> toSeq

The comments for the above code are the same as for the functional version; the main difference is that the imperative code takes about two thirds of the time on average.

All of the above codes can be tested under the F# REPL using the following:

> let testseq = [| (3u, "Clear drains");
                   (4u, "Feed cat");
                   (5u, "Make tea");
                   (1u, "Solve RC tasks");
                   (2u, "Tax return") |] |> Array.toSeq
  let testpq = testseq |> MinHeap.fromSeq
  testseq |> Seq.fold (fun pq (k, v) -> MinHeap.push k v pq) MinHeap.empty
  |> MinHeap.toSeq |> Seq.iter (printfn "%A") // test slow build
  printfn ""
  testseq |> MinHeap.fromSeq |> MinHeap.toSeq // test fast build
   |> Seq.iter (printfn "%A")
  printfn ""
  testseq |> MinHeap.sort |> Seq.iter (printfn "%A") // convenience function
  printfn ""
  MinHeap.merge testpq testpq // test merge
  |> MinHeap.toSeq |> Seq.iter (printfn "%A")
  printfn ""
  testpq |> MinHeap.adjust (fun k v -> uint32 (MinHeap.size testpq) - k, v)
  |> MinHeap.toSeq |> Seq.iter (printfn "%A") // test adjust;;

to produce the following output:

Output:
(1u, "Solve RC tasks")
(2u, "Tax return")
(3u, "Clear drains")
(4u, "Feed cat")
(5u, "Make tea")

(1u, "Solve RC tasks")
(2u, "Tax return")
(3u, "Clear drains")
(4u, "Feed cat")
(5u, "Make tea")

(1u, "Solve RC tasks")
(2u, "Tax return")
(3u, "Clear drains")
(4u, "Feed cat")
(5u, "Make tea")

(1u, "Solve RC tasks")
(1u, "Solve RC tasks")
(2u, "Tax return")
(2u, "Tax return")
(3u, "Clear drains")
(3u, "Clear drains")
(4u, "Feed cat")
(4u, "Feed cat")
(5u, "Make tea")
(5u, "Make tea")

(0u, "Make tea")
(1u, "Feed cat")
(2u, "Clear drains")
(3u, "Tax return")
(4u, "Solve RC tasks")
val it : unit = ()

Note that the code using "fromSeq" instead of repeated "push" operations to build a queue is considerably faster for large random-order entry sequences.

Also note that the imperative version modifies the state of the "testpq" binding for modification operations such as "push" and "deleteMin" or operations derived from those; this means that if the last two tests were reversed then the "merge" would be passed zero sized queues since the "testpq" would have been reduced by the "toSeq" operation (which effectively uses repeated "deleteMin" functions).

Factor

Factor has priority queues implemented in the library: documentation is available at http://docs.factorcode.org/content/article-heaps.html (or by typing "heaps" help interactively in the listener).

<min-heap> [ {
    { 3 "Clear drains" }
    { 4 "Feed cat" }
    { 5 "Make tea" }
    { 1 "Solve RC tasks" }
    { 2 "Tax return" }
  } swap heap-push-all 
] [
  [ print ] slurp-heap
] bi

output:

Solve RC tasks
Tax return
Clear drains
Feed cat
Make tea

Forth

Works with: gforth version 0.7.3


#! /usr/bin/gforth

\ Priority queue

10 CONSTANT INITIAL-CAPACITY

\ creates a new empty queue
: new-queue ( -- addr )
    2 INITIAL-CAPACITY 3 * + cells allocate throw
    INITIAL-CAPACITY over !
    0 over cell + !
;

\ deletes a queue
: delete-queue ( addr -- )
    free throw
;

: queue-capacity ( addr -- n )
    @
;

\ the number of elements in the queue
: queue-size ( addr -- n )
    cell + @
;

: resize-queue ( addr -- addr )
    dup queue-capacity 2 * dup >r 3 * 2 + cells resize throw
    r> over !
;

: ix->addr ( addr ix -- addr )
    3 * 2 + cells +
;

: ix! ( p x y addr ix -- )
    ix->addr
    tuck 2 cells + !
    tuck cell + !
    !
;

: ix@ ( addr ix -- p x y )
    ix->addr
    dup @ swap
    cell + dup @ swap
    cell + @
;

: ix->priority ( addr ix -- p )
    ix->addr @
;

: ix<->ix ( addr ix ix' -- )
    -rot over swap  ( ix' addr addr ix ) ( )
    2over swap 2>r  ( ix' addr addr ix ) ( addr ix' )
    2dup ix@ 2>r >r ( ix' addr addr ix ) ( addr ix' x y p )
    2>r             ( ix' addr )         ( addr ix' x y p addr ix )
    swap ix@        ( p' x' y' )         ( addr ix' x y p addr ix )
    2r> ix!         ( )                  ( addr ix' x y p )
    r> 2r> 2r> ix!  ( )                  ( )
;

: ix-parent ( ix -- ix' )
    dup 0> IF
        1- 2/
    THEN
;

: ix-left-son ( ix -- ix' )
    2* 1+
;

: ix-right-son ( ix -- ix' )
    2* 2 +
;

: swap? ( addr ix ix' -- f )
    rot >r           ( ix ix' )                  ( addr )
    2dup             ( ix ix' ix ix' )           ( addr )
    r> tuck swap     ( ix ix' ix addr addr ix' ) ( )
    ix->priority >r  ( ix ix' ix addr )          ( p' )
    tuck swap        ( ix ix' addr addr ix )     ( p' )
    ix->priority r>  ( ix ix' addr p p' )        ( )
    > IF
        -rot ix<->ix
        true
    ELSE
        2drop drop
        false
    THEN
;

: ix? ( addr ix -- f )
    swap queue-size <
;

: bubble-up ( addr ix -- )
    2dup dup ix-parent swap ( addr ix addr ix' ix )
    swap? IF                ( addr ix )
        ix-parent recurse
    ELSE
        2drop
    THEN
;

: bubble-down ( addr ix -- )
    2dup ix-right-son ix? IF
        2dup ix-left-son ix->priority >r
        2dup ix-right-son ix->priority r> < IF
            2dup dup ix-right-son swap? IF
                ix-right-son recurse
            ELSE
                2drop
            THEN
        ELSE
            2dup dup ix-left-son swap? IF
                ix-left-son recurse
            ELSE
                2drop
            THEN
        THEN
    ELSE
        2dup ix-left-son ix? IF
            2dup dup ix-left-son swap? IF
                ix-left-son recurse
            ELSE
                2drop
            THEN
        ELSE
            2drop
        THEN
    THEN
;

\ enqueues an element with priority p and payload x y into queue addr
: >queue ( p x y addr -- addr )
    dup queue-capacity over queue-size =
    IF
        resize-queue
    THEN
    dup >r
    dup queue-size
    ix!
    r>
    1 over cell + +!
    dup dup queue-size 1- bubble-up
;

\ dequeues the element with highest priority
: queue> ( addr -- p x y )
    dup queue-size 0= IF
        1 throw
    THEN
    dup 0 ix@ 2>r >r dup >r
    dup dup queue-size 1- ix@ r> 0 ix!
    dup cell + -1 swap +!
    0 bubble-down
    r> 2r>
;

\ dequeues elements and prints them until the queue is empty
: drain-queue ( addr -- )
    dup queue-size 0> IF
        dup queue>
        rot
        . ." - " type cr
        recurse
    ELSE
        drop
    THEN
;


\ example

new-queue
>r 3 s" Clear drains"   r> >queue
>r 4 s" Feed cat"       r> >queue
>r 5 s" Make tea"       r> >queue
>r 1 s" Solve RC tasks" r> >queue
>r 2 s" Tax return"     r> >queue

drain-queue
Output:
1 - Solve RC tasks
2 - Tax return
3 - Clear drains
4 - Feed cat
5 - Make tea

Fortran

module priority_queue_mod
implicit none

type node
  character (len=100)              :: task
  integer                          :: priority
end type

type queue
  type(node), allocatable :: buf(:)
  integer                 :: n = 0
contains
  procedure :: top
  procedure :: enqueue
  procedure :: siftdown
end type

contains

subroutine siftdown(this, a)
  class (queue)           :: this
  integer                 :: a, parent, child
  associate (x => this%buf)
  parent = a
  do while(parent*2 <= this%n)
    child = parent*2
    if (child + 1 <= this%n) then 
      if (x(child+1)%priority > x(child)%priority ) then
        child = child +1 
      end if
    end if
    if (x(parent)%priority < x(child)%priority) then
      x([child, parent]) = x([parent, child])
      parent = child
    else
      exit
    end if  
  end do      
  end associate
end subroutine

function top(this) result (res)
  class(queue) :: this
  type(node)   :: res
  res = this%buf(1)
  this%buf(1) = this%buf(this%n)
  this%n = this%n - 1
  call this%siftdown(1)
end function

subroutine enqueue(this, priority, task)
  class(queue), intent(inout) :: this
  integer                     :: priority
  character(len=*)            :: task
  type(node)                  :: x
  type(node), allocatable     :: tmp(:)
  integer                     :: i
  x%priority = priority
  x%task = task
  this%n = this%n +1  
  if (.not.allocated(this%buf)) allocate(this%buf(1))
  if (size(this%buf)<this%n) then
    allocate(tmp(2*size(this%buf)))
    tmp(1:this%n-1) = this%buf
    call move_alloc(tmp, this%buf)
  end if
  this%buf(this%n) = x
  i = this%n
  do 
    i = i / 2
    if (i==0) exit
    call this%siftdown(i)
  end do
end subroutine
end module 

program main
  use priority_queue_mod

  type (queue) :: q
  type (node)  :: x 

  call q%enqueue(3, "Clear drains")
  call q%enqueue(4, "Feed cat")
  call q%enqueue(5, "Make Tea")
  call q%enqueue(1, "Solve RC tasks")
  call q%enqueue(2, "Tax return")

  do while (q%n >0) 
    x = q%top()
    print "(g0,a,a)", x%priority, " -> ", trim(x%task)
  end do

end program

! Output:
! 5 -> Make Tea
! 4 -> Feed cat
! 3 -> Clear drains
! 2 -> Tax return
! 1 -> Solve RC tasks

Frink

This uses Frink's ability to call arbitrary Java code and uses Java's PriorityQueue implementation, defining our own comparator function.

pq = newJava["java.util.PriorityQueue", new Comparator[byColumn[0]]]

pq.add[[3, "Clear Drains"]]
pq.add[[4, "Feed cat"]]
pq.add[[5, "Make tea"]]
pq.add[[1, "Solve RC tasks"]]
pq.add[[2, "Tax return"]]

while ! pq.isEmpty[]
   println[pq.poll[]]
Output:
[1, Solve RC tasks]
[2, Tax return]
[3, Clear Drains]
[4, Feed cat]
[5, Make tea]

FunL

import util.ordering
native scala.collection.mutable.PriorityQueue

data Task( priority, description )

def comparator( Task(a, _), Task(b, _) )
  | a > b     = -1
  | a < b     =  1
  | otherwise =  0
  
q = PriorityQueue( ordering(comparator) )

q.enqueue(
  Task(3, 'Clear drains'),
  Task(4, 'Feed cat'),
  Task(5, 'Make tea'),
  Task(1, 'Solve RC tasks'),
  Task(2, 'Tax return')
  )

while not q.isEmpty()
  println( q.dequeue() )
Output:
Task(1, Solve RC tasks)
Task(2, Tax return)
Task(3, Clear drains)
Task(4, Feed cat)
Task(5, Make tea)

Go

Go's standard library contains the container/heap package, which which provides operations to operate as a heap any data structure that contains the Push, Pop, Len, Less, and Swap methods.

package main

import (
    "fmt"
    "container/heap"
)

type Task struct {
    priority int
    name     string
}

type TaskPQ []Task

func (self TaskPQ) Len() int { return len(self) }
func (self TaskPQ) Less(i, j int) bool {
    return self[i].priority < self[j].priority
}
func (self TaskPQ) Swap(i, j int) { self[i], self[j] = self[j], self[i] }
func (self *TaskPQ) Push(x interface{}) { *self = append(*self, x.(Task)) }
func (self *TaskPQ) Pop() (popped interface{}) {
    popped = (*self)[len(*self)-1]
    *self = (*self)[:len(*self)-1]
    return
}

func main() {
    pq := &TaskPQ{{3, "Clear drains"},
        {4, "Feed cat"},
        {5, "Make tea"},
        {1, "Solve RC tasks"}}

    // heapify
    heap.Init(pq)

    // enqueue
    heap.Push(pq, Task{2, "Tax return"})

    for pq.Len() != 0 { 
        // dequeue
        fmt.Println(heap.Pop(pq))
    }
}

output:

{1 Solve RC tasks}
{2 Tax return}
{3 Clear drains}
{4 Feed cat}
{5 Make tea}

Groovy

Groovy can use the built in java PriorityQueue class

import groovy.transform.Canonical

@Canonical
class Task implements Comparable<Task> {
    int priority
    String name
    int compareTo(Task o) { priority <=> o?.priority }
}

new PriorityQueue<Task>().with {
    add new Task(priority: 3, name: 'Clear drains')
    add new Task(priority: 4, name: 'Feed cat')
    add new Task(priority: 5, name: 'Make tea')
    add new Task(priority: 1, name: 'Solve RC tasks')
    add new Task(priority: 2, name: 'Tax return')

    while (!empty) { println remove() }
}

Output:

Task(1, Solve RC tasks)
Task(2, Tax return)
Task(3, Clear drains)
Task(4, Feed cat)
Task(5, Make tea)

Haskell

One of the best Haskell implementations of priority queues (of which there are many) is pqueue, which implements a binomial heap.

import Data.PQueue.Prio.Min

main = print (toList (fromList [(3, "Clear drains"),(4, "Feed cat"),(5, "Make tea"),(1, "Solve RC tasks"), (2, "Tax return")]))

Although Haskell's standard library does not have a dedicated priority queue structure, one can (for most purposes) use the built-in Data.Set data structure as a priority queue, as long as no two elements compare equal (since Set does not allow duplicate elements). This is the case here since no two tasks should have the same name. The complexity of all basic operations is still O(log n) although that includes the "elemAt 0" function to retrieve the first element of the ordered sequence if that were required; "fromList" takes O(n log n) and "toList" takes O(n) time complexity. Alternatively, a Data.Map.Lazy or Data.Map.Strict can be used in the same way with the same limitations.

import qualified Data.Set as S

main = print (S.toList (S.fromList [(3, "Clear drains"),(4, "Feed cat"),(5, "Make tea"),(1, "Solve RC tasks"), (2, "Tax return")]))
Output:
[(1,"Solve RC tasks"),(2,"Tax return"),(3,"Clear drains"),(4,"Feed cat"),(5,"Make tea")]

Alternatively, a homemade min heap implementation:

data MinHeap a = Nil | MinHeap { v::a, cnt::Int, l::MinHeap a, r::MinHeap a }
  deriving (Show, Eq)

hPush :: (Ord a) => a -> MinHeap a -> MinHeap a
hPush x Nil = MinHeap {v = x, cnt = 1, l = Nil, r = Nil}
hPush x h = if x < vv -- insert element, try to keep the tree balanced
  then if hLength (l h) <= hLength (r h)
    then MinHeap { v=x, cnt=cc, l=hPush vv ll, r=rr }
    else MinHeap { v=x, cnt=cc, l=ll, r=hPush vv rr }
  else if hLength (l h) <= hLength (r h)
    then MinHeap { v=vv, cnt=cc, l=hPush x ll, r=rr }
    else MinHeap { v=vv, cnt=cc, l=ll, r=hPush x rr }
  where (vv, cc, ll, rr) = (v h, 1 + cnt h, l h, r h)

hPop :: (Ord a) => MinHeap a -> (a, MinHeap a)
hPop h = (v h, pq) where -- just pop, heed not the tree balance
  pq  | l h == Nil = r h
    | r h == Nil = l h
    | v (l h) <= v (r h) = let (vv,hh) = hPop (l h) in
      MinHeap {v = vv, cnt = hLength hh + hLength (r h),
        l = hh, r = r h}
    | otherwise = let (vv,hh) = hPop (r h) in
      MinHeap {v = vv, cnt = hLength hh + hLength (l h),
        l = l h, r = hh}

hLength :: (Ord a) => MinHeap a -> Int
hLength Nil = 0
hLength h = cnt h

hFromList :: (Ord a) => [a] -> MinHeap a
hFromList = foldl (flip hPush) Nil

hToList :: (Ord a) => MinHeap a -> [a]
hToList = unfoldr f where
  f Nil = Nothing
  f h = Just $ hPop h

main = mapM_ print $ hToList $ hFromList [
  (3, "Clear drains"),
  (4, "Feed cat"),
  (5, "Make tea"),
  (1, "Solve RC tasks"),
  (2, "Tax return")]

The above code is a Priority Queue but isn't a Min Heap based on a Binary Heap for the following reasons: 1) it does not preserve the standard tree structure of the binary heap and 2) the tree balancing can be completely destroyed by some combinations of "pop" operations. The following code is a true purely functional Min Heap implementation and as well implements the extra optional features of Min Heap's that it can build a new Min Heap from a list in O(n) amortized time rather than the O(n log n) amortized time (for a large number of randomly ordered entries) by simply using repeated "push" operations; as well as the standard "push", "peek", "delete" and "pop" (combines the previous two). As well as the "fromList", "toList", and "sort" functions (the last combines the first two), it also has an "isEmpty" function to test for the empty queue, an "adjust" function that applies a function to every entry in the queue and reheapifies in O(n) amortized time and also the "replaceMin" function which is about twice as fast on the average as combined "delete" followed by "push" operations:

data MinHeap kv = MinHeapEmpty
                  | MinHeapLeaf !kv
                  | MinHeapNode !kv {-# UNPACK #-} !Int !(MinHeap a) !(MinHeap a)
  deriving (Show, Eq)

emptyPQ :: MinHeap kv
emptyPQ = MinHeapEmpty

isEmptyPQ :: PriorityQ kv -> Bool
isEmptyPQ Mt = True
isEmptyPQ _  = False
 
sizePQ :: (Ord kv) => MinHeap kv -> Int
sizePQ MinHeapEmpty = 0
sizePQ (MinHeapLeaf _) = 1
sizePQ (MinHeapNode _ cnt _ _) = cnt
 
peekMinPQ :: MinHeap kv -> Maybe kv
peekMinPQ MinHeapEmpty = Nothing
peekMinPQ (MinHeapLeaf v) = Just v
peekMinPQ (MinHeapNode v _ _ _) = Just v

pushPQ :: (Ord kv) => kv -> MinHeap kv -> MinHeap kv
pushPQ kv pq = insert kv 0 pq where -- insert element, keeping the tree balanced
  insert kv _ MinHeapEmpty = MinHeapLeaf kv
  insert kv _ (MinHeapLeaf vv) = if kv <= vv
      then MinHeapNode kv 2 (MinHeapLeaf vv) MinHeapEmpty
      else MinHeapNode vv 2 (MinHeapLeaf kv) MinHeapEmpty
  insert kv msk (MinHeapNode vv cc ll rr) = if kv <= vv
      then if nmsk >= 0
        then MinHeapNode kv nc (insert vv nmsk ll) rr
        else MinHeapNode kv nc ll (insert vv nmsk rr)
      else if nmsk >= 0
        then MinHeapNode vv nc (insert kv nmsk ll) rr
        else MinHeapNode vv nc ll (insert kv nmsk rr)
    where nc = cc + 1
          nmsk = if msk /= 0 then msk `shiftL` 1 -- walk path to next
                 else let s = floor $ (log $ fromIntegral nc) / log 2 in
                      (nc `shiftL` ((finiteBitSize cc) - s)) .|. 1 --never 0 again

siftdown :: (Ord kv) => kv -> Int -> MinHeap kv -> MinHeap kv -> MinHeap kv
siftdown kv cnt lft rght = replace cnt lft rght where
  replace cc ll rr = case rr of -- adj to put kv in current left/right
    MinHeapEmpty -> -- means left is a MinHeapLeaf
      case ll of { (MinHeapLeaf vl) ->
        if kv <= vl
          then MinHeapNode kv 2 ll MinHeapEmpty
          else MinHeapNode vl 2 (MinHeapLeaf kv) MinHeapEmpty }
    MinHeapLeaf vr ->
      case ll of 
        MinHeapLeaf vl -> if vl <= vr
          then if kv <= vl then MinHeapNode kv cc ll rr
               else MinHeapNode vl cc (MinHeapLeaf kv) rr
          else if kv <= vr then MinHeapNode kv cc ll rr
               else MinHeapNode vr cc ll (MinHeapLeaf kv)
        MinHeapNode vl ccl lll rrl -> if vl <= vr
          then if kv <= vl then MinHeapNode kv cc ll rr
               else MinHeapNode vl cc (replace ccl lll rrl) rr
          else if kv <= vr then MinHeapNode kv cc ll rr
               else MinHeapNode vr cc ll (MinHeapLeaf kv)
    MinHeapNode vr ccr llr rrr -> case ll of
      (MinHeapNode vl ccl lll rrl) -> -- right is node, so is left
        if vl <= vr then
          if kv <= vl then MinHeapNode kv cc ll rr
          else MinHeapNode vl cc (replace ccl lll rrl) rr
        else if kv <= vr then MinHeapNode kv cc ll rr
             else MinHeapNode vr cc ll (replace ccr llr rrr)

replaceMinPQ :: (Ord kv) => a -> MinHeap kv -> MinHeap kv
replaceMinPQ _ MinHeapEmpty = MinHeapEmpty
replaceMinPQ kv (MinHeapLeaf _) = MinHeapLeaf kv
replaceMinPQ kv (MinHeapNode _ cc ll rr) = siftdown kv cc ll rr where

deleteMinPQ :: (Ord kv) => MinHeap kv -> MinHeap kv
deleteMinPQ MinHeapEmpty = MinHeapEmpty -- remove min keeping tree balanced
deleteMinPQ pq = let (dkv, npq) = delete 0 pq in
                 replaceMinPQ dkv npq where
  delete _ (MinHeapLeaf vv) = (vv, MinHeapEmpty)
  delete msk (MinHeapNode vv cc ll rr) =
      if rr == MinHeapEmpty -- means left is MinHeapLeaf
        then case ll of (MinHeapLeaf vl) -> (vl, MinHeapLeaf vv)
      else if nmsk >= 0 -- means only deal with left
             then let (dv, npq) = delete nmsk ll in
                  (dv, MinHeapNode vv (cc - 1) npq rr)
             else let (dv, npq) = delete nmsk rr in
                  (dv, MinHeapNode vv (cc - 1) ll npq)
    where nmsk = if msk /= 0 then msk `shiftL` 1 -- walk path to last
                 else let s = floor $ (log $ fromIntegral cc) / log 2 in
                      (cc `shiftL` ((finiteBitSize cc) - s)) .|. 1 --never 0 again

adjustPQ :: (Ord kv) => (kv -> kv) -> MinHeap kv -> MinHeap kv
adjustPQ f pq = adjust pq where -- applies function to every element and reheapifies
  adjust MinHeapEmpty = MinHeapEmpty
  adjust (MinHeapLeaf v) = MinHeapLeaf (f v)
  adjust (MinHeapNode vv cc ll rr) = siftdown (f vv) cc (adjust ll) (adjust rr)

fromListPQ :: (Ord kv) => [kv] -> MinHeap kv
-- fromListPQ = foldl (flip pushPQ) MinHeapEmpty -- O(n log n) time; slow
fromListPQ [] = MinHeapEmpty -- O(n) time using "adjust id" which is O(n)
fromListPQ xs = let (_, pq) = build 1 xs in pq where
  sz = length xs
  szd2 = sz `div` 2
  build _ [] = ([], MinHeapEmpty)
  build lvl (x:xs') = if lvl > szd2 then (xs', MinHeapLeaf x)
                      else let nlvl = lvl + lvl in
                           let (xrl, pql) = build nlvl xs' in
                           let (xrr, pqr) = if nlvl >= sz
                                 then (xrl, MinHeapEmpty) -- no right leaf
                                 else build (nlvl + 1) xrl in
                           let cnt = sizePQ pql + sizePQ pqr + 1 in
                           (xrr, siftdown x cnt pql pqr)
 
popMinPQ :: (Ord kv) => MinHeap kv -> Maybe (kv, MinHeap kv)
popMinPQ pq = case peekMinPQ pq of
                Nothing -> Nothing
                Just v -> Just (v, deleteMinPQ pq)
 
toListPQ :: (Ord kv) => MinHeap kv -> [kv]
toListPQ = unfoldr f where
  f MinHeapEmpty = Nothing
  f pq = popMinPQ pq

sortPQ :: (Ord kv) => [kv] -> [kv]
sortPQ ls = toListPQ $ fromListPQ ls

If one is willing to forgo the fast O(1) "size" function and to give up strict conformance to the Heap tree structure (where rather than building each new level until each left node is full to that level before increasing level to the right, a new level is built by promoting leaves to branches only containing left leaves until all branches have left leaves before filling any right leaves of that level) although having even better tree balancing and therefore at least as high efficiency, one can use the following code adapted from the ML PRIORITY_QUEUE code by Lawrence C. Paulson including separating the key/value pairs as separate entries in the data structure for better comparison efficiency; as noted in the code comments, a "size" function to output the number of elements in the queue (fairly quickly in O((log n)^2)), an "adjust" function to apply a function to all elements and reheapify in O(n) time, and a "merge" function to merge two queues has been added to the ML code:

data PriorityQ k v = Mt
                     | Br !k v !(PriorityQ k v) !(PriorityQ k v)
  deriving (Eq, Ord, Read, Show)

emptyPQ :: PriorityQ k v
emptyPQ = Mt

isEmptyPQ :: PriorityQ k v -> Bool
isEmptyPQ Mt = True
isEmptyPQ _  = False

-- The size function isn't from the ML code, but an implementation was
-- suggested by Bertram Felgenhauer on Haskell Cafe, so it is included.

-- Return number of elements in the priority queue. 
-- /O(log(n)^2)/ 
sizePQ :: PriorityQ k v -> Int 
sizePQ Mt = 0 
sizePQ (Br _ _ pl pr) = 2 * n + rest n pl pr where 
  n = sizePQ pr 
  -- rest n p q, where n = sizePQ q, and sizePQ p - sizePQ q = 0 or 1 
  -- returns 1 + sizePQ p - sizePQ q. 
  rest :: Int -> PriorityQ k v -> PriorityQ k v -> Int 
  rest 0 Mt _ = 1 
  rest 0 _  _ = 2 
  rest n (Br _ _ ll lr) (Br _ _ rl rr) = case r of 
      0 -> rest d ll rl -- subtree sizes: (d or d+1), d; d, d 
      1 -> rest d lr rr -- subtree sizes: d+1, (d or d+1); d+1, d 
    where m1 = n - 1
          d = m1 `shiftR` 1
          r = m1 .&. 1

peekMinPQ :: PriorityQ k v -> Maybe (k, v)
peekMinPQ Mt           = Nothing
peekMinPQ (Br k v _ _) = Just (k, v)

pushPQ :: Ord k => k -> v -> PriorityQ k v -> PriorityQ k v
pushPQ wk wv Mt           = Br wk wv Mt Mt
pushPQ wk wv (Br vk vv pl pr)
             | wk <= vk   = Br wk wv (pushPQ vk vv pr) pl
             | otherwise  = Br vk vv (pushPQ wk wv pr) pl
 
siftdown :: Ord k => k -> v -> PriorityQ k v -> PriorityQ k v -> PriorityQ k v
siftdown wk wv Mt _          = Br wk wv Mt Mt
siftdown wk wv (pl @ (Br vk vv _ _)) Mt
    | wk <= vk               = Br wk wv pl Mt
    | otherwise              = Br vk vv (Br wk wv Mt Mt) Mt
siftdown wk wv (pl @ (Br vkl vvl pll plr)) (pr @ (Br vkr vvr prl prr))
    | wk <= vkl && wk <= vkr = Br wk wv pl pr
    | vkl <= vkr             = Br vkl vvl (siftdown wk wv pll plr) pr
    | otherwise              = Br vkr vvr pl (siftdown wk wv prl prr)
 
replaceMinPQ :: Ord k => k -> v -> PriorityQ k v -> PriorityQ k v
replaceMinPQ wk wv Mt             = Mt
replaceMinPQ wk wv (Br _ _ pl pr) = siftdown wk wv pl pr

deleteMinPQ :: (Ord k) =>  PriorityQ k v -> PriorityQ k v
deleteMinPQ Mt             = Mt
deleteMinPQ (Br _ _ pr Mt) = pr
deleteMinPQ (Br _ _ pl pr) = let (k, v, npl) = leftrem pl in
                             siftdown k v pr npl where
  leftrem (Br k v Mt Mt)             = (k, v, Mt) 
  leftrem (Br vk vv (Br k v _ _) Mt) = (k, v, Br vk vv Mt Mt)
  leftrem (Br vk vv pl pr)           = let (k, v, npl) = leftrem pl in
                                       (k, v, Br vk vv pr npl)

-- the following function has been added to the ML code to apply a function
--   to all the entries in the queue and reheapify in O(n) time
adjustPQ :: (Ord k) => (k -> v -> (k, v)) -> PriorityQ k v -> PriorityQ k v
adjustPQ f pq = adjust pq where -- applies function to every element and reheapifies
  adjust Mt               = Mt
  adjust (Br vk vv pl pr) = let (k, v) = f vk vv in
                            siftdown k v (adjust pl) (adjust pr)

fromListPQ :: (Ord k) => [(k, v)] -> PriorityQ k v
-- fromListPQ = foldl (flip pushPQ) Mt -- O(n log n) time; slow
fromListPQ [] = Mt -- O(n) time using adjust-from-bottom which is O(n)
fromListPQ xs = let (pq, _) = build (length xs) xs in pq where
  build 0 xs             = (Mt, xs)
  build lvl ((k, v):xs') = let (pl, xrl) = build (lvl `shiftR` 1) xs'
                               (pr, xrr) = build ((lvl - 1) `shiftR` 1) xrl in
                           (siftdown k v pl pr, xrr)

-- the following function has been added to merge two queues in O(m + n) time
--   where m and n are the sizes of the two queues
mergePQ :: (Ord k) => PriorityQ k v -> PriorityQ k v -> PriorityQ k v
mergePQ pq1 Mt = pq1 -- from concatenated "dumb" list
mergePQ Mt pq2 = pq2 -- in O(m + n) time where m,n are sizes pq1,pq2
mergePQ pq1 pq2 = fromListPQ (zipper pq1 $ zipper pq2 []) where
  zipper (Br wk wv Mt _) appndlst  = (wk, wv) : appndlst
  zipper (Br wk wv pl Mt) appndlst = (wk, wv) : zipper pl appndlst
  zipper (Br wk wv pl pr) appndlst = (wk, wv) : zipper pl (zipper pr appndlst)

popMinPQ :: (Ord k) => PriorityQ k v -> Maybe ((k, v), PriorityQ k v)
popMinPQ pq = case peekMinPQ pq of
                Nothing -> Nothing
                Just kv -> Just (kv, deleteMinPQ pq)

toListPQ :: (Ord k) => PriorityQ k v -> [(k, v)]
toListPQ Mt                  = [] -- unfoldr popMinPQ
toListPQ pq @ (Br vk vv _ _) = (vk, vv) : (toListPQ $ deleteMinPQ pq)

sortPQ :: (Ord k) => [(k, v)] -> [(k, v)]
sortPQ ls = toListPQ $ fromListPQ ls

The above codes compile but do not run with GHC Haskell version 7.8.3 using the LLVM back end with LLVM version 3.4 and full optimization turned on under Windows 32; they were tested under Windows 64 and 32 using the Native Code Generator back end with full optimization. With GHC Haskell version 7.10.1 they compile and run with or without LLVM 3.5.1 for 32-bit Windows (64-bit GHC Haskell under Windows does not run with LLVM for version 7.10.1), with a slight execution speed advantage to using LLVM.

Min Heaps are faster than Priority Queue's based on Binomial Heaps (or Leftist or Skewed Heaps) when one mainly requires fast replacement of the head of the queue without many fresh "push" operations; Binomial Heap based versions (or Leftist or Skewed Heap based versions) are faster for merging of a series of large queues into one and for algorithms that have a lot of "push" operations of random entries. Both have O(log n) average "push" and "pop" time complexity with O(1) for "peek", but Binomial Heap based queues (and the others) tend to be somewhat slower by a constant factor due to more complex operations.

Min Heaps are also faster than the use of balanced tree Set's or Map's where many references are made to the next element in the queue (O(1) complexity rather than O(log n)) or where frequent modification and reinsertion of the next element in the queue is required (still O(log n) but faster by a constant factor greater than two on average) and generally faster by a constant factor as operations near the top of the queue don't have to traverse the entire tree structure; O(log n) is worst case time complexity for "replace" operations not average.

The above codes when tested with the following "main" function (with a slight modification for the first test when the combined kv entry is used):

testList = [ (3, "Clear drains"),
             (4, "Feed cat"),
             (5, "Make tea"),
             (1, "Solve RC tasks"),
             (2, "Tax return") ]

testPQ = fromListPQ testList

main = do -- slow build
  mapM_ print $ toListPQ $ foldl (\pq (k, v) -> pushPQ k v pq) emptyPQ testList
  putStrLn "" -- fast build
  mapM_ print $ toListPQ $ fromListPQ testList
  putStrLn "" -- combined fast sort
  mapM_ print $ sortPQ testList
  putStrLn "" -- test merge
  mapM_ print $ toListPQ $ mergePQ testPQ testPQ
  putStrLn "" -- test adjust
  mapM_ print $ toListPQ $ adjustPQ (\x y -> (x * (-1), y)) testPQ

has the output as follows:

Output:
(1,"Solve RC tasks")
(2,"Tax return")
(3,"Clear drains")
(4,"Feed cat")
(5,"Make tea")

(1,"Solve RC tasks")
(2,"Tax return")
(3,"Clear drains")
(4,"Feed cat")
(5,"Make tea")

(1,"Solve RC tasks")
(2,"Tax return")
(3,"Clear drains")
(4,"Feed cat")
(5,"Make tea")

(1,"Solve RC tasks")
(1,"Solve RC tasks")
(2,"Tax return")
(2,"Tax return")
(3,"Clear drains")
(3,"Clear drains")
(4,"Feed cat")
(4,"Feed cat")
(5,"Make tea")
(5,"Make tea")

(-5,"Make tea")
(-4,"Feed cat")
(-3,"Clear drains")
(-2,"Tax return")
(-1,"Solve RC tasks")

but the first method uses the slower way of building a queue.

Icon and Unicon

This solution uses classes provided by the UniLib package. Heap is an implementation of a priority queue and Closure is used to allow the queue to order lists based on their first element. The solution only works in Unicon.

import Utils   # For Closure class
import Collections      # For Heap (dense priority queue) class

procedure main()
   pq := Heap(, Closure("[]",Arg,1) )
   pq.add([3, "Clear drains"])
   pq.add([4, "Feed cat"])
   pq.add([5, "Make tea"])
   pq.add([1, "Solve RC tasks"])
   pq.add([2, "Tax return"])

   while task := pq.get() do write(task[1]," -> ",task[2])
end

Output when run:

1 -> Solve RC tasks
2 -> Tax return
3 -> Clear drains
4 -> Feed cat
5 -> Make tea

J

Implementation:

coclass 'priorityQueue'

PRI=: ''
QUE=: ''

insert=:4 :0
  p=. PRI,x
  q=. QUE,y
  assert. p -:&$ q
  assert. 1 = #$q
  ord=: \: p
  QUE=: ord { q
  PRI=: ord { p
  i.0 0
)

topN=:3 :0
  assert y<:#PRI
  r=. y{.QUE
  PRI=: y}.PRI
  QUE=: y}.QUE
  r
)

Efficiency is obtained by batching requests. Size of batch for insert is determined by size of arguments. Size of batch for topN is its right argument.

Example:

   Q=: conew'priorityQueue'
   3 4 5 1 2 insert__Q 'clear drains';'feed cat';'make tea';'solve rc task';'tax return'
   >topN__Q 1
make tea
   >topN__Q 4
feed cat     
clear drains 
tax return   
solve rc task

Java

Java has a PriorityQueue class. It requires either the elements implement Comparable, or you give it a custom Comparator to compare the elements.

import java.util.PriorityQueue;

class Task implements Comparable<Task> {
    final int priority;
    final String name;

    public Task(int p, String n) {
        priority = p;
        name = n;
    }

    public String toString() {
        return priority + ", " + name;
    }

    public int compareTo(Task other) {
        return priority < other.priority ? -1 : priority > other.priority ? 1 : 0;
    }

    public static void main(String[] args) {
        PriorityQueue<Task> pq = new PriorityQueue<Task>();
        pq.add(new Task(3, "Clear drains"));
        pq.add(new Task(4, "Feed cat"));
        pq.add(new Task(5, "Make tea"));
        pq.add(new Task(1, "Solve RC tasks"));
        pq.add(new Task(2, "Tax return"));

        while (!pq.isEmpty())
            System.out.println(pq.remove());
    }
}
Output:
1, Solve RC tasks
2, Tax return
3, Clear drains
4, Feed cat
5, Make tea

jq

Since jq is a functional language, the priority queue must be represented explicitly as data; in the following, we use a JSON object with keys as priorities (strings). Since a given priority level may have more than task, we use arrays to hold the values.

The special key "priorities" is used to store the priorities in a sorted array. Since "sort" is fast we will use that rather than optimizing insertion in the priorities array.

We assume that if an item of a given priority is already in the priority queue, there is no need to add it again.

# In the following, pq stands for "priority queue".  

# Add an item with the given priority (an integer,
# or a string representing an integer)
# Input: a pq
def pq_add(priority; item):
  (priority|tostring) as $p
  | if .priorities|index($p) then
      if (.[$p] | index(item)) then . else .[$p] += [item] end
    else .[$p] = [item] | .priorities = (.priorities + [$p] | sort)
    end ;

# emit [ item, pq ]
# Input: a pq
def pq_pop:
  .priorities as $keys
  | if ($keys|length) == 0 then [ null, . ]
    else
      if (.[$keys[0]] | length) == 1
      then .priorities =  .priorities[1:]
      else .
      end
      | [ (.[$keys[0]])[0], (.[$keys[0]] = .[$keys[0]][1:]) ]
    end ;

# Emit the item that would be popped, or null if there is none
# Input: a pq
def pq_peep:
  .priorities as $keys
  | if ($keys|length) == 0 then null
    else (.[$keys[0]])[0] 
    end ;

# Add a bunch of tasks, presented as an array of arrays
# Input: a pq
def pq_add_tasks(list):
  reduce list[] as $pair (.; . + pq_add( $pair[0]; $pair[1]) ) ;

# Pop all the tasks, producing a stream
# Input: a pq
def pq_pop_tasks:
  pq_pop as $pair
  | if $pair[0] == null then empty
    else $pair[0], ( $pair[1] | pq_pop_tasks )
    end ;

# Input: a bunch of tasks, presented as an array of arrays
def prioritize:
  . as $list | {} | pq_add_tasks($list) | pq_pop_tasks ;

The specific task:

[ [3,     "Clear drains"],
  [4,     "Feed cat"],
  [5,     "Make tea"],
  [1,     "Solve RC tasks"],
  [2,     "Tax return"]
 ] | prioritize
Output:
"Solve RC tasks"
"Tax return"
"Clear drains"
"Feed cat"
"Make tea"

Julia

Julia has built-in support for priority queues, though the PriorityQueue type is not exported by default. Priority queues are a specialization of the Dictionary type having ordered values, which serve as the priority. In addition to all of the methods of standard dictionaries, priority queues support: enqueue!, which adds an item to the queue, dequeue! which removes the lowest priority item from the queue, returning its key, and peek, which returns the (key, priority) of the lowest priority entry in the queue. The ordering behavior of the queue, which by default is its value sort order (typically low to high), can be set by passing an order directive to its constructor. For this task, Base.Order.Reverse is used to set-up the task queue to return tasks from high to low priority.

using Base.Collections

test = ["Clear drains" 3;
        "Feed cat" 4;
        "Make tea" 5;
        "Solve RC tasks" 1;
        "Tax return" 2]

task = PriorityQueue(Base.Order.Reverse)
for i in 1:size(test)[1]
    enqueue!(task, test[i,1], test[i,2])
end

println("Tasks, completed according to priority:")
while !isempty(task)
    (t, p) = peek(task)
    dequeue!(task)
    println("    \"", t, "\" has priority ", p)
end
Output:
Tasks, completed according to priority:
    "Make tea" has priority 5
    "Feed cat" has priority 4
    "Clear drains" has priority 3
    "Tax return" has priority 2
    "Solve RC tasks" has priority 1

Kotlin

Translation of: Java
import java.util.PriorityQueue

internal data class Task(val priority: Int, val name: String) : Comparable<Task> {
    override fun compareTo(other: Task) = when {
        priority < other.priority -> -1
        priority > other.priority -> 1
        else -> 0
    }
}

private infix fun String.priority(priority: Int) = Task(priority, this)

fun main(args: Array<String>) {
    val q = PriorityQueue(listOf("Clear drains" priority 3,
                                 "Feed cat" priority 4,
                                 "Make tea" priority 5,
                                 "Solve RC tasks" priority 1,
                                 "Tax return" priority 2))
    while (q.any()) println(q.remove())
}
Output:
Task(priority=1, name=Solve RC tasks)
Task(priority=2, name=Tax return)
Task(priority=3, name=Clear drains)
Task(priority=4, name=Feed cat)
Task(priority=5, name=Make tea)

Lasso

define priorityQueue => type {
    data
        store        = map,
        cur_priority = void

    public push(priority::integer, value) => {
        local(store) = .`store`->find(#priority)

        if(#store->isA(::array)) => {
            #store->insert(#value)
            return
        }
        .`store`->insert(#priority=array(#value))

        .`cur_priority`->isA(::void) or #priority < .`cur_priority`
            ? .`cur_priority` = #priority
    }

    public pop => {
        .`cur_priority` == void
            ? return void

        local(store)  = .`store`->find(.`cur_priority`)
        local(retVal) =  #store->first

        #store->removeFirst&size > 0
            ? return #retVal
        
        // Need to find next priority
        .`store`->remove(.`cur_priority`)

        if(.`store`->size == 0) => {
            .`cur_priority` = void
        else
            // There are better / faster ways to do this
            // The keys are actually already sorted, but the order of
            // storage in a map is not actually defined, can't rely on it
            .`cur_priority` = .`store`->keys->asArray->sort&first
        }

        return #retVal
    }

    public isEmpty => (.`store`->size == 0)

}

local(test) = priorityQueue

#test->push(2,`e`)
#test->push(1,`H`)
#test->push(5,`o`)
#test->push(2,`l`)
#test->push(5,`!`)
#test->push(4,`l`)

while(not #test->isEmpty) => {
    stdout(#test->pop)
}
Output:
Hello!

Logtalk

Logtalk comes with a heap implementation out of the box. As such it by definition also has a priority queue. It can be used at the toplevel like this (with some formatting changes for clarity, and % marking comments that would not be in the output):

?- logtalk_load(heaps(loader)).  % also `{heaps(loader)}.` on most back-ends
% output varies by settings and what's already been loaded
?- heap(<)::new(H0),                           % H0 contains an empty heap
   heap(<)::insert(3, 'Clear drains', H0, H1), % as with Prolog, variables are in the mathematical 
                                               % sense: immutable, so we make a new heap from the empty one
   heap(<)::insert(4, 'Feed cat',H1, H2),      % with each insertion a new heap
   heap(<)::top(H2, K2, V2),                   % K2=3, V2='Clear drains', 
                                               % H2=t(2, [], t(3, 'Clear drains', t(4, 'Feed cat', t, t), t))
   heap(<)::insert_all(
      [
         5-'Make tea', 
         1-'Solve RC tasks', 
         2-'Tax return'
      ], H2, H3),                              % it's easier and more efficient to add items in K-V pairs
   heap(<)::top(H3, K3, V3),                   % K3=1, V3='Solve RC tasks', 
                                               % H3=t(5, [], t(1, 'Solve RC tasks', t(3, 'Clear drains', 
                                               % t(4, 'Feed cat', t, t), t), t(2, 'Tax return', 
                                               % t(5, 'Make tea', t, t), t))),
   heap(<)::delete(H3, K3, V3, H4),            % K3=1, V3='Solve RC tasks', 
                                               % H4=t(4, [5], t(2, 'Tax return', t(3, 'Clear drains', 
                                               % t(4, 'Feed cat', t, t), t), t(5, 'Make tea', t, t))),
   heap(<)::top(H4, K4, V4).                   % K4=2, V4='Tax return'

Since heap(Ordering) is a parametrized object in Logtalk, with the parameter being the ordering predicate, we actually use heap(<) object to get min ordering. There are two objects provided in Logtalk that eliminate the unnecessary replication of the two most common orderings:

:- object(minheap,
	extends(heap(<))).

	:- info([
		version is 1:0:0,
		author is 'Paulo Moura.',
		date is 2010-02-19,
		comment is 'Min-heap implementation. Uses standard order to compare keys.'
	]).

:- end_object.


:- object(maxheap,
	extends(heap(>))).

	:- info([
		version is 1:0:0,
		author is 'Paulo Moura.',
		date is 2010-02-19,
		comment is 'Max-heap implementation. Uses standard order to compare keys.'
	]).

:- end_object.

Given the presence of these two objects, all of the example code above could have heap(<) replaced with minheap for identical results (including identical performance). It also illustrates how quickly and easily other orderings could be provided at need.

Lua

This implementation uses a table with priorities as keys and queues as values. Queues for each priority are created when putting items as needed and are shrunk as necessary when popping items and removed when they are empty. Instead of using a plain array table for each queue, the technique shown in the Lua implementation from the Queue task is used. This avoids having to use table.remove(t, 1) to get and remove the first queue element, which is rather slow for big tables.

PriorityQueue = {
    __index = {
        put = function(self, p, v)
            local q = self[p]
            if not q then
                q = {first = 1, last = 0}
                self[p] = q
            end
            q.last = q.last + 1
            q[q.last] = v
        end,
        pop = function(self)
            for p, q in pairs(self) do
                if q.first <= q.last then
                    local v = q[q.first]
                    q[q.first] = nil
                    q.first = q.first + 1
                    return p, v
                else
                    self[p] = nil
                end
            end
        end
    },
    __call = function(cls)
        return setmetatable({}, cls)
    end
}

setmetatable(PriorityQueue, PriorityQueue)

-- Usage:
pq = PriorityQueue()

tasks = {
    {3, 'Clear drains'},
    {4, 'Feed cat'},
    {5, 'Make tea'},
    {1, 'Solve RC tasks'},
    {2, 'Tax return'}
}

for _, task in ipairs(tasks) do
    print(string.format("Putting: %d - %s", unpack(task)))
    pq:put(unpack(task))
end

for prio, task in pq.pop, pq do
    print(string.format("Popped: %d - %s", prio, task))
end

Output:

   Putting: 3 - Clear drains
   Putting: 4 - Feed cat
   Putting: 5 - Make tea
   Putting: 1 - Solve RC tasks
   Putting: 2 - Tax return
   Popped: 1 - Solve RC tasks
   Popped: 2 - Tax return
   Popped: 3 - Clear drains
   Popped: 4 - Feed cat
   Popped: 5 - Make tea

The implementation is faster than the Python implementations below using queue.PriorityQueue or heapq, even when comparing the standard Lua implementation against PyPy and millions of tasks are added to the queue. With LuaJIT it is yet faster. The following code measures the time needed to add 107 tasks with a random priority between 1 and 1000 and to retrieve them from the queue again in order.

-- Use socket.gettime() for benchmark measurements
-- since it has millisecond precision on most systems
local socket = require("socket")

n = 10000000 -- number of tasks added (10^7)
m = 1000     -- number different priorities

local pq = PriorityQueue()

print(string.format("Adding %d tasks with random priority 1-%d ...", n, m))
start = socket.gettime()

for i = 1, n do
    pq:put(math.random(m), i)
end

print(string.format("Elapsed: %.3f ms.", (socket.gettime() - start) * 1000))

print("Retrieving all tasks in order...")
start = socket.gettime()

local pp = 0
local pv = 0

for i = 1, n do
    local p, task = pq:pop()

    -- check that tasks are popped in ascending priority
    assert(p >= pp)

    if pp == p then
        -- check that tasks within one priority maintain the insertion order
        assert(task > pt)
    end

    pp = p
    pt = task
end

print(string.format("Elapsed: %.3f ms.", (socket.gettime() - start) * 1000))

M2000 Interpreter

For these three examples, we can use same priorities, so if a priority exist then the new insertion not alter the top item (which we pop or peek from queue).

Using unordered array

Module UnOrderedArray {
      Class PriorityQueue {
      Private:
            Dim Item()
            many=0, level=0, first
            cmp = lambda->0
            Module Reduce {
                  if .many<.first*2 then exit
                  if .level<.many/2 then .many/=2 : Dim .Item(.many)
            }
      Public:
            Module Clear {
                  Dim .Item() \\ erase all
                  .many<=0 \\ default
                  .Level<=0
            }
            Module Add {
                 if .level=.many then
                       if .many=0 then Error "Define Size First"
                        Dim .Item(.many*2)
                        .many*=2
                 end if
                 Read Item
                 if .level=0 then
                       .Item(0)=Item
                 else.If .cmp(.Item(0), Item)=-1 then \\ Item is max
                       .Item(.level)=Item
                       swap .Item(0), .Item(.level)
                 else
                       .Item(.level)=Item
                 end if
                 .level++
            }
            Function Peek {
                  if .level=0 then error "empty"
                  =.Item(0)
            }
            Function Poll {
                  if .level=0 then error "empty"
                  =.Item(0)
                  if .level=2 then
                        swap .Item(0), .Item(1)
                        .Item(1)=0
                        .Level<=1
                  else.If .level>2 then
                        .Level--
                        Swap .Item(.level), .Item(0)
                        .Item(.level)=0
                        for I=.level-1 to 1
                              if .cmp(.Item(I), .Item(I-1))=1 then Swap .Item(I), .Item(I-1)
                        next
                  else
                        .level<=0 : .Item(0)=0
                  end if
                  .Reduce
            }
            Module Remove {
                  if .level=0 then error "empty"
                  Read Item
                  k=true
                  if .cmp(.Item(0), Item)=0 then
                        Item=.Poll()
                        K~  \\ k=false
                  else.If .Level>1 then
                        I2=.Level-1
                            for I=1 to I2
                                    if k then
                                           if .cmp(.Item(I), Item)=0 then
                                                 if I<I2 then Swap .Item(I), .Item(I2)
                                                 .Item(I2)=0
                                                 k=false
                                           end if
                                    else
                                          exit
                                    end if
                              next
                       .Level--
                  end if
                  if k then Error "Not Found"
                  .Reduce
            }
            Function Size {
                  if .many=0 then Error "Define Size First"
                  =.Level
            }
      Class:
            Module PriorityQueue {
                  if .many>0 then Error "Clear List First"
                  Read .many, .cmp
                  .first<=.many
                  Dim .Item(.many)
            }
      }
      
      Class Item { X, S$
      Class:  // constructor as temporary definition
            Module Item {Read .X, .S$}
      }
      Queue=PriorityQueue(100, Lambda -> {Read A,B : =Compare(A.X,B.X)})
      Queue.Add Item(3, "Clear drains") : Gosub PrintTop()
      Queue.Add Item(4  ,"Feed cat") : PrintTop()
      Queue.Add Item(5  ,"Make tea") : PrintTop()
      Queue.Add Item(1  ,"Solve RC tasks") : PrintTop()
      Queue.Add Item(2  ,"Tax return") : PrintTop()
      Print "remove items"
      While true
            MM=Queue.Poll() :Print MM.X, MM.S$,,"Size="; Queue.Size()
            if Queue.Size()=0 then exit
            PrintTop()
      End While
      Sub PrintTop()
            M=Queue.Peek() : Print "Item ";M.X, M.S$
      End Sub
}
UnOrderedArray

Using a stack with arrays as elements

Every insertion push item using binary search in proper position. Pop is very fast. Cons() used for demo purposes, make a new array from a series of arrays (a=cons(a,a) add to a an a . Variable a is a pointer to array (a tuple)

Module PriorityQueue {
      a= ((3, "Clear drains"), (4 ,"Feed cat"), ( 5 , "Make tea"))
      a=cons(a, ((1 ,"Solve RC tasks"), ( 2 , "Tax return")))
      b=stack
      comp=lambda (a, b) -> array(a, 0)<array(b, 0)
      module InsertPQ (a, n, &comp) {
            if len(a)=0 then stack a {data n} : exit
            if comp(n, stackitem(a)) then stack a {push n} : exit
             stack a {
                  push n
                  t=2: b=len(a)
                   m=b
                   while t<=b
                         t1=m
                        m=(b+t) div 2
                        if m=0 then  m=t1 : exit 
                        If comp(stackitem(m),n) then t=m+1:  continue
                        b=m-1
                        m=b
                  end while
                  if m>1 then shiftback m
            }
      }
      
      n=each(a)
      while n
            InsertPq b, array(n), &comp
      end while
      
      n1=each(b)
      while n1
            m=stackitem(n1)
            print array(m, 0), array$(m, 1)
      end while
      
      \\ Peek topitem (without popping)
      print Array$(stackitem(b), 1)
      \\ Pop item
      Stack b {
            Read old
      }
      print Array$(old, 1)
      def Peek$(a)=Array$(stackitem(a), 1)
      Function Pop$(a) {
            stack a {
                  =Array$(stackitem(), 1)
                   drop
            }      
      }
      print Peek$(b)
      print Pop$(b)
      def IsEmpty(a)=len(a)=0
      while not IsEmpty(b)
            print pop$(b)
      end while
}
PriorityQueue

Using a stack with Groups as elements

This is the same as previous but now we use a group (a user object for M2000). InsertPQ is the same as before. Lambda comp has change only. We didn't use pointers to groups. All groups here works as values, so when we get a peek we get a copy of group in top position. All members of a group may not values, so if we have a pointer to group then we get a copy of that pointer, but then we can make changes and that changes happen for the group which we get the copy.

// class definitions are global
// if there aren't defintions in a class
global countmany=0&
class obj {
      x, s$
      property toString$ {
            value (sp=8) {
                  link parent x, s$ to x, s$
                  value$=format$("{0::-5}"+string$(" ", sp)+"{1:20}", x, s$)
            }
      }
      remove {
            countmany--
      }
class:
      module obj (.x, .s$) {countmany++}
}
Module PriorityQueueForGroups {
      Flush  ' empty current stack
      Data obj(3, "Clear drains"), obj(4 ,"Feed cat"), obj( 5 , "Make tea")
      Data obj( 1 ,"Solve RC tasks"), obj( 2 , "Tax return")
      ObjectCount()
      b=stack
      while not empty
            InsertPQ(b) // top of stack is b then objects follow
      end while
      ObjectCount()
      Print "Using Peek to Examine Priority Queue"
      n1=each(b)
      Header()
      while n1
            Print @Peek$(n1)
      end while
      ObjectCount()
      Header()
      while not @isEmpty(b)
            Print @Pop(b)=>tostring$
      end while
      ObjectCount()
      // here are the subs/simple functions
      // these are static parts of module
      sub Header()
            Print " Priority        Task"
            Print "==========  ================"
      end sub
      sub ObjectCount()
            Print "There are ";countmany;" objects of type obj"
      end sub
      sub InsertPQ(a, n)
            Print "Insert:";n.tostring$(1)
            if len(a)=0 then stack a {data n} : exit sub
            if @comp(n, stackitem(a)) then stack a {push n} : exit sub
            stack a {
                  push n
                  local t=2, b=len(a)
                  local m=b
                  while t<=b
                        t1=m
                        m=(b+t) div 2
                        if m=0 then  m=t1 : exit 
                        If @comp(stackitem(m),n) then t=m+1:  continue
                        b=m-1
                        m=b
                  end while
                  if m>1 then shiftback m
            }
      end sub
      function comp(a, b)
            =a.x<b.x
      end function
      function Peek$(a as stack)
            =stackitem(a)=>toString$
            countmany++
      end function
      function IsEmpty(a)
            =len(a)=0
      end function
      Function Pop(a)
            // Group make a copy
            stack a {=Group:countmany++}
      end function
}
PriorityQueueForGroups

Using a stack with pointers to Groups as elements (with Merge Function)

Now we use pointer to group, and use of Subs and simple Functions (called using @ prefix). Also we have a global countmany (is a long type, see 0&) to check how many objects exist. We have use "as *obj" to declare a parameter to stay as pointer and to check the type (here is obj). The remove method of object called when object has to be removed. The constructor module obj called once and not exist in the final object obj (it is a part under Class: label, and this part define things for construction time only). Property toString$ is a group which return value (a string value), and we can use it with or without parameter. Because it is a group, we have to link parent properties/functions (but not modules) to get access.

Added Merge function. We can choose if we leave the second queue untouched or erase each item as we merge it to the first queue, using the third parameter.

global countmany=0&
class obj {
      x, s$
      property toString$ {
            value (sp=8) {
                  link parent x, s$ to x, s$
                  value$=format$("{0::-5}"+string$(" ", sp)+"{1:20}", x, s$)
            }
      }
      function Copy {
            countmany++
            z=this
            =pointer((z))
      }
      remove {
            countmany--
      }
class:
      module obj (.x, .s$) {countmany++}
}
// obj() return object as value (using a special pointer)
function global g(priority, task$) {
	// here we return an object using nonrmal pointer
	// try to change -> to = to see the error
	->obj(priority, task$)
}
Module PriorityQueueForGroups {
      Flush  ' empty current stack
      Data g(3, "Clear drains"),g(4 ,"Feed cat"), g( 5 , "Make tea")
      Data g( 1 ,"Solve RC tasks")
      ObjectCount()
      pq=stack
      zz=stack
      while not empty
            InsertPQ(pq) // top of stack is pq then objects follow
      end while
      Pen 15 {
            data  g(2 , "Tax return"), g(1 ,"Solve RC tasks#2")
            while not empty: InsertPq(zz): End While
            n1=each(zz,-1,1)
            Header()
            while n1
                  Print @Peek$(stackitem(n1))
            end while             
      }
      MergePq(pq, zz, false)
      InsertPq(pq, g(1 ,"Solve RC tasks#3"))
      ObjectCount()
      Print "Using Peek to Examine Priority Queue"
      n1=each(pq,-1, 1)
      Header()
      while n1
            Print @Peek$(stackitem(n1))
      end while
      ObjectCount()
      Header()
      while not @isEmpty(pq)
            Print @Pop(pq)=>tostring$
      end while
      ObjectCount()
      Header()
      while not @isEmpty(zz)
            Print @Pop(zz)=>tostring$
      end while
      ObjectCount()
      // here are the subs/simple functions
      // these are static parts of module
      sub Header()
            Print " Priority        Task"
            Print "==========  ================"
      end sub
      sub ObjectCount()
            Print "There are ";countmany;" objects of type obj"
      end sub
      sub MergePq(a, pq, emptyqueue)
            local n1=each(pq, -1, 1), z=pointer()
            while n1               
                if emptyqueue then
                    stack pq {
                        shiftback len(pq)
                        InsertPQ(a, Group)
                    }
                else
                    z=stackitem(n1)
                    InsertPQ(a, z=>copy())
                end if
            end while      
      end sub
      sub InsertPQ(a, n as *obj)
            Print "Insert:";n=>tostring$(1)
            if len(a)=0 then stack a {data n} : exit sub
            if @comp(n, stackitem(a)) then stack a {push n} : exit sub
            stack a {
                  push n
                  local t=2, pq=len(a), t1=0
                  local m=pq
                  while t<=pq
                        t1=m
                        m=(pq+t) div 2
                        if m=0 then  m=t1 : exit 
                        If @comp(stackitem(m),n) then t=m+1:  continue
                        pq=m-1
                        m=pq
                  end while
                  if m>1 then shiftback m                  
            }
      end sub
      function comp(a as *obj, pq as *obj)
            =a=>x>pq=>x
      end function
      function Peek$(a as *obj)
            =a=>toString$
      end function
      function IsEmpty(a)
            =len(a)=0
      end function
      function Pop(a)
            // Group make a copy (but here is a pointer of group)
            stack a {shift stack.size
            =Group}
      end function
}
PriorityQueueForGroups

Using ordered list (plus merge function)

form 80, 42
Module OrdrerQueue (filename$)  {
      // f=-2  or use empty filename for screen
      open filename$ for output as #f
      zz=list
      pq=List      
      flush
      // subs can read from module's stack
      println("Add items to pq queue")
      Data 4 ,"Feed cat",5 , "Make tea", 3, "Clear drains",1 , "Solve RC tasks"
      AddItems(pq)
      println("Add items to zz queue")
      AddItems(zz, 2 , "Tax return", 1 ,"Solve RC tasks#2")
      println("Peek top from zz queue")
      PeekTop(zz)  // Solve RC tasks#2
      println("Merge two priority lists")
      merge(pq, zz, false)
      println("Peek top from pq queue")
      PeekTop(pq)  // Solve RC tasks
      println("Add items to pq queue")
      AddItems(pq, 1 ,"Solve RC tasks#3")
      println("Peek top from pq queue")
      PeekTop(pq)  // Solve RC tasks
      println("Pop one from pq until empty queue")
      while len(pq)>0
            PopOne(pq)
      end while
      println("Pop one from zz until empty queue")
      while len(zz)>0
            PopOne(zz)
      end while
      close #f
      sub AddItems(pq)
            local s, z
            while not empty
                  read z
                  if not exist(pq, z) then s=stack:append pq, z:=s else s=eval(pq)
                  read what$: stack s {data what$}
                  stack new {println( "add item",z,what$)}
            end while
            sort descending pq as number
            Println()
      end sub
      sub merge(pq, qp, emptyqueue)           
            local needsort=false
            local kqp=each(qp, -1, 1), k$, t, p
            while kqp
                  t=eval(kqp)
                  k$= eval$(kqp!)
                  if not exist(pq, eval$(kqp!)) then
                        p=stack
                        append pq, val(eval$(kqp!)):=p
                        needsort=true
                  else
                        p=eval(pq)                  
                  end if
                  stack p {
                        if emptyqueue then
                              data !t
                              delete qp,eval$(kqp!)
                        else
                              data !stack(t)
                        end if
                  }
            end while
            if needsort then sort descending pq as number
      end sub
      sub PeekTop(pq)
            Local k=len(pq)
            if k=0 then exit sub
            k=val(eval$(pq, k-1))
            if exist(pq, k) then local s=eval(pq): println( k,stackitem$(s, 1))
      End sub
      Sub PopOne(pq)
            Local k=len(pq)
            if k<0 then exit sub
            k=val(eval$(pq, k-1))
            if exist(pq, k) then
                  local s=eval(pq)
                  println( k,stackitem$(s, 1))
                  if len(s)=1 then
                        delete pq, k
                  else
                        stack s {drop}
                  end if
            end if
       end sub
       Sub println()
             if empty then print #f, "": exit sub
             while not empty
                  if islet then print #f, letter$;
                  if empty else print #f, " ";
                  if isnum then print #f,  number;
                  if empty else print #f, " ";
             end while
             if f=-2 and  pos=0 then exit sub
             print #f, ""
       end sub
}	
OrdrerQueue ""
Output:
Add items to pq queue
add item 4 Feed cat
add item 5 Make tea
add item 3 Clear drains
add item 1 Solve RC tasks

Add items to zz queue
add item 2 Tax return
add item 1 Solve RC tasks#2

Peek top from zz queue
 1 Solve RC tasks#2
Merge two priority lists
Peek top from pq queue
 1 Solve RC tasks
Add items to pq queue
add item 1 Solve RC tasks#3

Peek top from pq queue
 1 Solve RC tasks
Pop one from pq until empty queue
 1 Solve RC tasks
 1 Solve RC tasks#2
 1 Solve RC tasks#3
 2 Tax return
 3 Clear drains
 4 Feed cat
 5 Make tea
Pop one from zz until empty queue
 1 Solve RC tasks#2
 2 Tax return

Mathematica /Wolfram Language

push = Function[{queue, priority, item}, 
   queue = SortBy[Append[queue, {priority, item}], First], HoldFirst];
pop = Function[queue, 
   If[Length@queue == 0, Null, 
    With[{item = queue[[-1, 2]]}, queue = Most@queue; item]], 
   HoldFirst];
peek = Function[queue, 
   If[Length@queue == 0, Null, Max[queue[[All, 1]]]], HoldFirst];
merge = Function[{queue1, queue2}, 
   SortBy[Join[queue1, queue2], First], HoldAll];

Example:

queue = {};
push[queue, 3, "Clear drains"];
push[queue, 4, "Feed cat"];
push[queue, 5, "Make tea"];
push[queue, 1, "Solve RC tasks"];
push[queue, 2, "Tax return"];
Print[peek[queue]];
Print[pop[queue]];
queue1 = {};
push[queue1, 6, "Drink tea"];
Print[merge[queue, queue1]];

Output:

5

Make tea

{{1,Solve RC tasks},{2,Tax return},{3,Clear drains},{4,Feed cat},{6,Drink tea}}

Maxima

/* Naive implementation using a sorted list of pairs [key, [item[1], ..., item[n]]].
The key may be any number (integer or not). Items are extracted in FIFO order. */

defstruct(pqueue(q = []))$

/* Binary search */

find_key(q, p) := block(
   [i: 1, j: length(q), k, c],
   if j = 0 then false
   elseif (c: q[i][1]) >= p then
      (if c = p then i else false)
   elseif (c: q[j][1]) <= p then
      (if c = p then j else false)
   else catch(
      while j >= i do (
         k: quotient(i + j, 2),
         if (c: q[k][1]) = p then throw(k)
         elseif c < p then i: k + 1 else j: k - 1
      ),
      false
   )
)$

pqueue_push(pq, x, p) := block(
   [q: pq@q, k],
   k: find_key(q, p),
   if integerp(k) then q[k][2]: endcons(x, q[k][2])
   else pq@q: sort(cons([p, [x]], q)),
   'done
)$
      
pqueue_pop(pq) := block(
   [q: pq@q, v, x],
   if emptyp(q) then 'fail else (
      p: q[1][1],
      v: q[1][2],
      x: v[1],
      if length(v) > 1 then q[1][2]: rest(v) else pq@q: rest(q),
      x
   )
)$

pqueue_print(pq) := block([t], while (t: pqueue_pop(pq)) # 'fail do disp(t))$


/* An example */

a: new(pqueue)$

pqueue_push(a, "take milk", 4)$
pqueue_push(a, "take eggs", 4)$
pqueue_push(a, "take wheat flour", 4)$
pqueue_push(a, "take salt", 4)$
pqueue_push(a, "take oil", 4)$
pqueue_push(a, "carry out crepe recipe", 5)$
pqueue_push(a, "savour !", 6)$
pqueue_push(a, "add strawberry jam", 5 + 1/2)$
pqueue_push(a, "call friends", 5 + 2/3)$
pqueue_push(a, "go to the supermarket and buy food", 3)$
pqueue_push(a, "take a shower", 2)$
pqueue_push(a, "get dressed", 2)$
pqueue_push(a, "wake up", 1)$
pqueue_push(a, "serve cider", 5 + 3/4)$
pqueue_push(a, "buy also cider", 3)$

pqueue_print(a);
"wake up"
"take a shower"
"get dressed"
"go to the supermarket and buy food"
"buy also cider"
"take milk"
"take butter"
"take flour"
"take salt"
"take oil"
"carry out recipe"
"add strawberry jam"
"call friends"
"serve cider"
"savour !"

Mercury

Mercury comes with an efficient, albeit simple, priority queue in its standard library. The build_pqueue/2 predicate in the code below inserts the test data in arbitrary order. display_pqueue/3, in turn, removes one K/V pair at a time, displaying the value. Compiling and running the supplied program results in all tasks being displayed in priority order as expected.

:- module test_pqueue.

:- interface.

:- import_module io.

:- pred main(io::di, io::uo) is det.

:- implementation.

:- import_module int.
:- import_module list.
:- import_module pqueue.
:- import_module string.

:- pred build_pqueue(pqueue(int,string)::in, pqueue(int,string)::out) is det.
build_pqueue(!PQ) :-
  pqueue.insert(3, "Clear drains",   !PQ),
  pqueue.insert(4, "Feed cat",       !PQ),
  pqueue.insert(5, "Make tea",       !PQ),
  pqueue.insert(1, "Solve RC tasks", !PQ),
  pqueue.insert(2, "Tax return",     !PQ).

:- pred display_pqueue(pqueue(int, string)::in, io::di, io::uo) is det.
display_pqueue(PQ, !IO) :-
  ( pqueue.remove(K, V, PQ, PQO) ->
      io.format("Key = %d, Value = %s\n", [i(K), s(V)], !IO),
      display_pqueue(PQO, !IO)
  ;
      true
  ).

main(!IO) :-
  build_pqueue(pqueue.init, PQO),
  display_pqueue(PQO, !IO).

Nim

Translation of: C
type
  PriElem[T] = tuple
    data: T
    pri: int

  PriQueue[T] = object
    buf: seq[PriElem[T]]
    count: int

# first element not used to simplify indices
proc initPriQueue[T](initialSize = 4): PriQueue[T] =
  result.buf.newSeq(initialSize)
  result.buf.setLen(1)
  result.count = 0

proc add[T](q: var PriQueue[T], data: T, pri: int) =
  var n = q.buf.len
  var m = n div 2
  q.buf.setLen(n + 1)

  # append at end, then up heap
  while m > 0 and pri < q.buf[m].pri:
    q.buf[n] = q.buf[m]
    n = m
    m = m div 2

  q.buf[n] = (data, pri)
  q.count = q.buf.len - 1

proc pop[T](q: var PriQueue[T]): PriElem[T] =
  assert q.buf.len > 1
  result = q.buf[1]

  var qn = q.buf.len - 1
  var n = 1
  var m = 2
  while m < qn:
    if m + 1 < qn and q.buf[m].pri > q.buf[m+1].pri:
      inc m

    if q.buf[qn].pri <= q.buf[m].pri:
      break

    q.buf[n] = q.buf[m]
    n = m
    m = m * 2

  q.buf[n] = q.buf[qn]
  q.buf.setLen(q.buf.len - 1)
  q.count = q.buf.len - 1

var p = initPriQueue[string]()
p.add("Clear drains", 3)
p.add("Feed cat", 4)
p.add("Make tea", 5)
p.add("Solve RC tasks", 1)
p.add("Tax return", 2)

while p.count > 0:
  echo p.pop()
Output:
(data: Solve RC tasks, pri: 1)
(data: Tax return, pri: 2)
(data: Clear drains, pri: 3)
(data: Feed cat, pri: 4)
(data: Make tea, pri: 5)

Using Nim HeapQueue

import HeapQueue

var pq = newHeapQueue[(int, string)]()

pq.push((3, "Clear drains"))
pq.push((4, "Feed cat"))
pq.push((5, "Make tea"))
pq.push((1, "Solve RC tasks"))
pq.push((2, "Tax return"))

while pq.len() > 0:
    echo pq.pop()
Output:
(Field0: 1, Field1: "Solve RC tasks")
(Field0: 2, Field1: "Tax return")
(Field0: 3, Field1: "Clear drains")
(Field0: 4, Field1: "Feed cat")
(Field0: 5, Field1: "Make tea")

Using Nim tables

import tables

var
  pq = initTable[int, string]() 

proc main() =
  pq.add(3, "Clear drains")
  pq.add(4, "Feed cat")
  pq.add(5, "Make tea")
  pq.add(1, "Solve RC tasks")
  pq.add(2, "Tax return")

  for i in countUp(1,5):
    if pq.hasKey(i): 
      echo i, ": ", pq[i]
      pq.del(i)
    
main()
Output:
1: Solve RC tasks
2: Tax return
3: Clear drains
4: Feed cat
5: Make tea

Objective-C

Works with: Cocoa

The priority queue used in this example is not actually written in Objective-C. It is part of Apple's (C-based) Core Foundation library, which is included with in Cocoa on Mac OS X and iOS. Its interface is a C function interface, which makes the code very ugly. Core Foundation is not included in GNUStep or other Objective-C APIs.

#import <Foundation/Foundation.h>

const void *PQRetain(CFAllocatorRef allocator, const void *ptr) {
  return (__bridge_retained const void *)(__bridge id)ptr;
}
void PQRelease(CFAllocatorRef allocator, const void *ptr) {
  (void)(__bridge_transfer id)ptr;
}
CFComparisonResult PQCompare(const void *ptr1, const void *ptr2, void *unused) {
  return [(__bridge id)ptr1 compare:(__bridge id)ptr2];
}

@interface Task : NSObject {
  int priority;
  NSString *name;
}
- (instancetype)initWithPriority:(int)p andName:(NSString *)n;
- (NSComparisonResult)compare:(Task *)other;
@end

@implementation Task
- (instancetype)initWithPriority:(int)p andName:(NSString *)n {
  if ((self = [super init])) {
    priority = p;
    name = [n copy];
  }
  return self;
}
- (NSString *)description {
  return [NSString stringWithFormat:@"%d, %@", priority, name];
}
- (NSComparisonResult)compare:(Task *)other {
  if (priority == other->priority)
    return NSOrderedSame;
  else if (priority < other->priority)
    return NSOrderedAscending;
  else
    return NSOrderedDescending;
}
@end

int main (int argc, const char *argv[]) {
  @autoreleasepool {

    CFBinaryHeapCallBacks callBacks = {0, PQRetain, PQRelease, NULL, PQCompare};
    CFBinaryHeapRef pq = CFBinaryHeapCreate(NULL, 0, &callBacks, NULL);

    CFBinaryHeapAddValue(pq, [[Task alloc] initWithPriority:3 andName:@"Clear drains"]);
    CFBinaryHeapAddValue(pq, [[Task alloc] initWithPriority:4 andName:@"Feed cat"]);
    CFBinaryHeapAddValue(pq, [[Task alloc] initWithPriority:5 andName:@"Make tea"]);
    CFBinaryHeapAddValue(pq, [[Task alloc] initWithPriority:1 andName:@"Solve RC tasks"]);
    CFBinaryHeapAddValue(pq, [[Task alloc] initWithPriority:2 andName:@"Tax return"]);

    while (CFBinaryHeapGetCount(pq) != 0) {
      Task *task = (id)CFBinaryHeapGetMinimum(pq);
      NSLog(@"%@", task);
      CFBinaryHeapRemoveMinimumValue(pq);
    }

    CFRelease(pq);

  }
  return 0;
}

log:

2011-08-22 07:46:19.250 Untitled[563:903] 1, Solve RC tasks
2011-08-22 07:46:19.255 Untitled[563:903] 2, Tax return
2011-08-22 07:46:19.256 Untitled[563:903] 3, Clear drains
2011-08-22 07:46:19.257 Untitled[563:903] 4, Feed cat
2011-08-22 07:46:19.258 Untitled[563:903] 5, Make tea

OCaml

Holger Arnold's OCaml base library provides a PriorityQueue module.

module PQ = Base.PriorityQueue

let () =
  let tasks = [
    3, "Clear drains";
    4, "Feed cat";
    5, "Make tea";
    1, "Solve RC tasks";
    2, "Tax return";
  ] in
  let pq = PQ.make (fun (prio1, _) (prio2, _) -> prio1 > prio2) in
  List.iter (PQ.add pq) tasks;
  while not (PQ.is_empty pq) do
    let _, task = PQ.first pq in
    PQ.remove_first pq;
    print_endline task
  done

testing:

$ ocaml -I +pcre pcre.cma base.cma pq.ml
Make tea
Feed cat
Clear drains
Tax return
Solve RC tasks

Although OCaml's standard library does not have a dedicated priority queue structure, one can (for most purposes) use the built-in Set data structure as a priority queue, as long as no two elements compare equal (since Set does not allow duplicate elements). This is the case here since no two tasks should have the same name. Note that Set is a functional, persistent data structure, so we derive new priority queues from the old ones functionally, rather than modifying them imperatively; the complexity is still O(log n).

Works with: OCaml version 4.02+
module PQSet = Set.Make
  (struct
     type t = int * string (* pair of priority and task name *)
     let compare = compare
   end);;

let () =
  let tasks = [
    3, "Clear drains";
    4, "Feed cat";
    5, "Make tea";
    1, "Solve RC tasks";
    2, "Tax return";
  ] in
  let pq = PQSet.of_list tasks in
  let rec aux pq' =
    if not (PQSet.is_empty pq') then begin
      let prio, name as task = PQSet.min_elt pq' in
      Printf.printf "%d, %s\n" prio name;
      aux (PQSet.remove task pq')
    end
  in aux pq
Output:
1, Solve RC tasks
2, Tax return
3, Clear drains
4, Feed cat
5, Make tea

OxygenBasic

'PRIORITY QUEUE WITH 16 LEVELS

uses console

% pl 16 'priority levels

===================
Class PriorityQueue
===================

indexbase 1
bstring buf[pl] 'buffers to hold priority queues content
int      bg[pl] 'buffers base offset
int       i[pl] 'indexers
int      le[pl] 'length of buffer

method constructor()
====================
int p
for p=1 to pl
  buf[p]=""
  le[p]=0
  bg[p]=0
  i=[p]=0
next
end method

method destructor()
===================
int p
for p=1 to pl
  del (buf[p])
  le[p]=0
  bg[p]=0
  i=[p]=0
next
end method
 
method Encodelength(int ls,p)
=============================
int ll at i[p]+strptr(buf[p])
ll=ls
i[p]+=sizeof int
end method

method limit(int*p)
===================
if p>pl
  p=pl
endif
if p<1
  p=1
endif
end method
 
method push(string s,int p)
=============================
limit p
int ls
ls=len s
if i[p]+ls+8 > le[p] then
  int e=8000+(ls*2) 'extra buffer bytes
  buf[p]=buf[p]+nuls e 'extend buf
  le[p]=len buf[p]
end if
EncodeLength ls,p   'length of input s
mid buf[p],i[p]+1,s 'patch in s
i[p]+=ls
end method

 
method popLength(int p) as int
==============================
if bg[p]>=i[p]
  return -1 'buffer empty
endif
int ll at (bg[p]+strptr buf[p])
bg[p]+=sizeof int
return ll
end method
 
method pop(string *s, int *p=1, lpl=0) as int
=============================================
limit p
int ls
do
  ls=popLength p
  if ls=-1
    if not lpl 'lpl: lock priority level
      p++ 'try next priority level
      if p<=pl
        continue do
      endif
    endif
    s=""
    return ls 'empty buffers
  endif
  exit do
loop
s=mid buf[p],bg[p]+1,ls
bg[p]+=ls
'cleanup buffer
if bg[p]>1e6 then
  buf[p]=mid buf[p],bg[p]+1 'remove old popped data
  le[p]=len buf[p] 
  i[p]-=bg[p] 'shrink buf
  bg[p]=0
end if
end method
 
method clear()
==============
constructor
end method

 
end class 'PriorityQueue


'====
'DEMO
'====
new PriorityQueue  medo()
string s

def inp
  medo.push %2,%1
end def

'   Priority         Task
'   ══════════         ════════════════
inp        3         "Clear drains"
inp        4         "Feed cat"
inp        5         "Make tea"
inp        1         "Solve RC tasks"
inp        2         "Tax return"
inp        4         "Plant beans"
'
int er
int p
print "Priority Task" cr
print "=================" cr
do
  er=medo.pop s,p
  if er=-1
    print "(buffer empty)"
    exit do
  endif
  print p tab s cr
loop
pause
del medo

/*
RESULTS:
Priority Task
=================
1       Solve RC tasks
2       Tax return
3       Clear drains
4       Feed cat
4       Plant beans
5       Make tea
(buffer empty)
*/

Pascal

program PriorityQueueTest;

uses Classes;

Type
 TItem = record
    Priority:Integer;
    Value:string;
 end;
 
 PItem = ^TItem;
 
TPriorityQueue = class(Tlist)
 procedure Push(Priority:Integer;Value:string);
 procedure SortPriority();
 function Pop():String;
 function Empty:Boolean;
end;

{ TPriorityQueue }

procedure TPriorityQueue.Push(Priority:Integer;Value:string);
var
 Item: PItem;
begin
    new(Item);
    Item^.Priority := Priority;
    Item^.Value := Value;
    inherited Add(Item);
    SortPriority();
end;

procedure TPriorityQueue.SortPriority();
var
 i,j:Integer;
begin
 if(Count < 2) Then  Exit();
 
 for i:= 0 to Count-2 do
  for j:= i+1 to Count-1 do
    if ( PItem(Items[i])^.Priority > PItem(Items[j])^.Priority)then
      Exchange(i,j);
end;

function TPriorityQueue.Pop():String;
begin
 if count = 0  then
   Exit('');
 result := PItem(First)^.value; 
 Dispose(PItem(First));
 Delete(0); 
end;

function TPriorityQueue.Empty:Boolean;
begin
 Result := Count = 0;
end;

var
 Queue : TPriorityQueue;
begin
  Queue:= TPriorityQueue.Create();
  
  Queue.Push(3,'Clear drains');
  Queue.Push(4,'Feed cat');
  Queue.Push(5,'Make tea');
  Queue.Push(1,'Solve RC tasks');
  Queue.Push(2,'Tax return');
  
  while not Queue.Empty() do
   writeln(Queue.Pop());
  
  Queue.free;  
end.

Advanced version

Works with: FPC

A maximizing priority queue based on a binary heap with the ability to update keys using a special handle. User is responsible for keeping track of when the handle becomes invalid. Comparing elements requires a regular boolean function of the form:

type
  TComparer<T> = function(const L, R: T): Boolean;

which should return True if the first argument is less than the second. It seems that all operations should be performed in O(LogN).

unit PQueue;
{$mode objfpc}{$h+}{$b-}
interface
uses
  SysUtils;

type
  EPqError = class(Exception);

  generic TPriorityQueue<T> = class
  public
  type
    TComparer = function(const L, R: T): Boolean;
    THandle   = type SizeInt;
  const
    NULL_HANDLE = THandle(-1);
  strict private
  type
    TNode = record
      Data: T;
      HeapIndex: SizeInt;
    end;
  const
    INIT_SIZE          = 16;
    NULL_INDEX         = SizeInt(-1);
    SEUndefComparer    = 'Undefined comparer';
    SEInvalidHandleFmt = 'Invalid handle value(%d)';
    SEAccessEmpty      = 'Cannot access an empty queue item';
  var
    FNodes: array of TNode;
    FHeap: array of SizeInt;
    FCount,
    FStackTop: SizeInt;
    FCompare: TComparer;
    procedure CheckEmpty;
    procedure Expand;
    function  NodeAdd(const aValue: T; aIndex: SizeInt): SizeInt;
    function  NodeRemove(aIndex: SizeInt): T;
    function  StackPop: SizeInt;
    procedure StackPush(aIdx: SizeInt);
    procedure PushUp(Idx: SizeInt);
    procedure SiftDown(Idx: SizeInt);
    function  DoPop: T;
  public
    constructor Create(c: TComparer);
    function  IsEmpty: Boolean;
    procedure Clear;
    function  Push(const v: T): THandle;
    function  Pop: T;
    function  TryPop(out v: T): Boolean;
    function  Peek: T;
    function  TryPeek(out v: T): Boolean;
    function  GetValue(h: THandle): T;
    procedure Update(h: THandle; const v: T);
    property  Count: SizeInt read FCount;
  end;

implementation

procedure TPriorityQueue.CheckEmpty;
begin
  if Count = 0 then raise EPqError.Create(SEAccessEmpty);
end;

procedure TPriorityQueue.Expand;
begin
  if Length(FHeap) < INIT_SIZE then begin
    SetLength(FHeap, INIT_SIZE);
    SetLength(FNodes, INIT_SIZE)
  end
  else begin
    SetLength(FHeap, Length(FHeap) * 2);
    SetLength(FNodes, Length(FNodes) * 2);
  end;
end;

function TPriorityQueue.NodeAdd(const aValue: T; aIndex: SizeInt): SizeInt;
begin
  if FStackTop <> NULL_INDEX then
    Result := StackPop
  else
    Result := FCount;
  FNodes[Result].Data := aValue;
  FNodes[Result].HeapIndex := aIndex;
  Inc(FCount);
end;

function TPriorityQueue.NodeRemove(aIndex: SizeInt): T;
begin
  StackPush(aIndex);
  Result := FNodes[aIndex].Data;
end;

function TPriorityQueue.StackPop: SizeInt;
begin
  Result := FStackTop;
  if Result <> NULL_INDEX then begin
    FStackTop := FNodes[Result].HeapIndex;
    FNodes[Result].HeapIndex := NULL_INDEX;
  end;
end;

procedure TPriorityQueue.StackPush(aIdx: SizeInt);
begin
  FNodes[aIdx].HeapIndex := FStackTop;
  FStackTop := aIdx;
end;

procedure TPriorityQueue.PushUp(Idx: SizeInt);
var
  Prev, Curr: SizeInt;
begin
  Prev := (Idx - 1) shr 1;
  Curr := FHeap[Idx];
  while(Idx > 0) and FCompare(FNodes[FHeap[Prev]].Data, FNodes[Curr].Data) do begin
    FHeap[Idx] := FHeap[Prev];
    FNodes[FHeap[Prev]].HeapIndex := Idx;
    Idx := Prev;
    Prev := (Prev - 1) shr 1;
  end;
  FHeap[Idx] := Curr;
  FNodes[Curr].HeapIndex := Idx;
end;

procedure TPriorityQueue.SiftDown(Idx: SizeInt);
var
  Next, Sifted: SizeInt;
begin
  if Count < 2 then exit;
  Next := Idx*2 + 1;
  Sifted := FHeap[Idx];
  while Next < Count do begin
    if(Next+1 < Count)and FCompare(FNodes[FHeap[Next]].Data, FNodes[FHeap[Next+1]].Data)then Inc(Next);
    if not FCompare(FNodes[Sifted].Data, FNodes[FHeap[Next]].Data) then break;
    FHeap[Idx] := FHeap[Next];
    FNodes[FHeap[Next]].HeapIndex := Idx;
    Idx := Next;
    Next := Next*2 + 1;
  end;
  FHeap[Idx] := Sifted;
  FNodes[Sifted].HeapIndex := Idx;
end;

function TPriorityQueue.DoPop: T;
begin
  Result := NodeRemove(FHeap[0]);
  Dec(FCount);
  if Count > 0 then begin
    FHeap[0] := FHeap[Count];
    SiftDown(0);
  end;
end;

constructor TPriorityQueue.Create(c: TComparer);
begin
  if c = nil then raise EPqError.Create(SEUndefComparer);
  FCompare := c;
  FStackTop := NULL_INDEX;
end;

function TPriorityQueue.IsEmpty: Boolean;
begin
  Result := Count = 0;
end;

procedure TPriorityQueue.Clear;
begin
  FNodes := nil;
  FHeap := nil;
  FCount := 0;
  FStackTop := NULL_INDEX;
end;

function TPriorityQueue.Push(const v: T): THandle;
var
  InsertPos: SizeInt;
begin
  if Count = Length(FHeap) then Expand;
  InsertPos := Count;
  Result := NodeAdd(v, InsertPos);
  FHeap[InsertPos] := Result;
  if InsertPos > 0 then PushUp(InsertPos);
end;

function TPriorityQueue.Pop: T;
begin
  CheckEmpty;
  Result := DoPop;
end;

function TPriorityQueue.TryPop(out v: T): Boolean;
begin
  if Count = 0 then exit(False);
  v := DoPop;
  Result := True;
end;

function TPriorityQueue.Peek: T;
begin
  CheckEmpty;
  Result := FNodes[FHeap[0]].Data;
end;

function TPriorityQueue.TryPeek(out v: T): Boolean;
begin
  if Count = 0 then exit(False);
  v := FNodes[FHeap[0]].Data;
  Result := True;
end;

function TPriorityQueue.GetValue(h: THandle): T;
begin
  if SizeUInt(h) < SizeUInt(Length(FHeap)) then
    Result := FNodes[h].Data
  else
    raise EPqError.CreateFmt(SEInvalidHandleFmt, [h]);
end;

procedure TPriorityQueue.Update(h: THandle; const v: T);
begin
  if SizeUInt(h) < SizeUInt(Length(FHeap)) then begin
    if FCompare(FNodes[h].Data, v) then begin
      FNodes[h].Data := v;
      PushUp(FNodes[h].HeapIndex);
    end else
      if FCompare(v, FNodes[h].Data) then begin
        FNodes[h].Data := v;
        SiftDown(FNodes[h].HeapIndex);
      end;
  end else
    raise EPqError.CreateFmt(SEInvalidHandleFmt, [h]);
end;

end.

Usage:

program PqDemo;
{$mode delphi}
uses 
  SysUtils, PQueue;

type
  TTask = record
    Name: string; Prio: Integer;
  end;

const
  Tasks: array of TTask = [
    (Name: 'Clear drains';   Prio: 3), (Name: 'Feed cat';       Prio: 4),
    (Name: 'Make tea';       Prio: 5), (Name: 'Solve RC tasks'; Prio: 1),
    (Name: 'Tax return';     Prio: 2)];

function TaskCmp(const L, R: TTask): Boolean;
begin
  Result := L.Prio < R.Prio;
end;

var
  q: TPriorityQueue<TTask>;
  h: q.THandle = q.NULL_HANDLE;
  t: TTask;
  MaxPrio: Integer = Low(Integer);
begin
  Randomize;
  q := TPriorityQueue<TTask>.Create(@TaskCmp);
  for t in Tasks do begin
    if t.Prio > MaxPrio then MaxPrio := t.Prio;
    if Pos('cat', t.Name) > 0 then
      h := q.Push(t)
    else
      q.Push(t);
  end;
  if (h <> q.NULL_HANDLE) and Boolean(Random(2)) then begin
    WriteLn('Cat is angry!');
    t := q.GetValue(h);
    t.Prio := Succ(MaxPrio);
    q.Update(h, t);
  end;
  WriteLn('Task list:');
  while q.TryPop(t) do
    WriteLn('  ', t.Prio, ' ', t.Name);
  q.Free; 
end.
Output:
Cat is angry!
Task list:
  6 Feed cat
  5 Make tea
  3 Clear drains
  2 Tax return
  1 Solve RC tasks

Perl

Using a Module

There are a few implementations on CPAN. Following uses Heap::Priority[1]

use strict;
use warnings;
use feature 'say';
use Heap::Priority;

my $h = Heap::Priority->new;

$h->highest_first(); # higher or lower number is more important
$h->add(@$_) for ["Clear drains",   3],
     ["Feed cat",     4],
     ["Make tea",     5],
     ["Solve RC tasks", 1],
     ["Tax return",     2];

say while ($_ = $h->pop);
Output:
Make tea
Feed cat
Clear drains
Tax return
Solve RC tasks

IBM card sorter version

use strict;
use warnings; # in homage to IBM card sorters :)

my $data = <<END;
Priority    Task
  3        Clear drains
  4        Feed cat
  5        Make tea
  1        Solve RC tasks
  2        Tax return
  4        Feed dog
END

insert( $1, $2 ) while $data =~ /(\d+)\h+(.*)/g; # insert all data

while( my $item = top_item_removal() ) # get in priority order
  {
  print "$item\n";
  }

######################################################################

my @bins; # priorities limited to small (<1e6 maybe?) non-negative integers

sub insert { push @{ $bins[shift] }, pop }        # O(1)

sub top_item_removal                              # O(1) (sort of, maybe?)
  {
  delete $bins[-1] while @bins and @{ $bins[-1] // [] } == 0;
  shift @{ $bins[-1] // [] };
  }
Output:
Make tea
Feed cat
Feed dog
Clear drains
Tax return
Solve RC tasks

Phix

Dictionary based solution. Allows duplicate tasks, FIFO within priority, and uses a callback-style method of performing tasks.
Assumes 5 is the highest priority and should be done first, for 1 first just delete the ",true" on traverse_dict calls.

with javascript_semantics
constant tasklist = new_dict()
 
procedure add_task(integer priority, string desc)
    integer k = getd_index(priority,tasklist)
    if k=0 then
        putd(priority,{desc},tasklist)
    else
        sequence descs = getd_by_index(k,tasklist)
        putd(priority,append(descs,desc),tasklist)
    end if
end procedure
 
function list_task_visitor(integer priority, sequence descs, integer /*user_data*/)
    ?{priority,descs}
    return true -- continue
end function
 
procedure list_tasks()
    traverse_dict(list_task_visitor, 0, tasklist, true)
end procedure
 
function pop_task_visitor(integer priority, sequence descs, integer rid)
    string desc = descs[1]
    descs = descs[2..$]
    if length(descs)=0 then
        deld(priority,tasklist)
    else
        putd(priority,descs,tasklist)
    end if
    rid(priority,desc)
    return false -- stop
end function
 
procedure pop_task(integer rid)
    if dict_size(tasklist)!=0 then
        traverse_dict(pop_task_visitor, rid, tasklist, true)
    end if
end procedure
 
add_task(3,"Clear drains")
add_task(4,"Feed cat")
add_task(5,"Make tea")
add_task(1,"Solve RC tasks")
add_task(2,"Tax return")
 
procedure do_task(integer priority, string desc)
    ?{priority,desc}
end procedure
 
list_tasks()
?"==="
pop_task(do_task)
?"==="
list_tasks()
Output:
{5,{"Make tea"}}
{4,{"Feed cat"}}
{3,{"Clear drains"}}
{2,{"Tax return"}}
{1,{"Solve RC tasks"}}
"==="
{5,"Make tea"}
"==="
{4,{"Feed cat"}}
{3,{"Clear drains"}}
{2,{"Tax return"}}
{1,{"Solve RC tasks"}}

trans nim

Translation of: Nim

(I needed this for Taxicab_numbers)
The bulk of this code now forms builtins/pqueue.e (not properly documented at the time, but now is, see below)

with javascript_semantics
sequence pq = {}

constant PRIORITY = 2

procedure pqAdd(sequence item)
-- item is {object data, object priority}
    integer n = length(pq)+1,
            m = floor(n/2) 
    pq &= 0
    -- append at end, then up heap
    while m>0 and item[PRIORITY]<pq[m][PRIORITY] do
        pq[n] = pq[m]
        n = m
        m = floor(m/2)
    end while
    pq[n] = item
end procedure
 
function pqPop()
    sequence result = pq[1]
 
    integer qn = length(pq),
            n = 1,
            m = 2
    while m<qn do
        if m+1<qn and pq[m][PRIORITY]>pq[m+1][PRIORITY] then
            m += 1
        end if 
        if pq[qn][PRIORITY]<=pq[m][PRIORITY] then exit end if
        pq[n] = pq[m]
        n = m
        m = m * 2
    end while
    pq[n] = pq[qn]
    pq = pq[1..$-1]
    return result
end function

set_rand(iff(platform()=JS?5749:    -- (optional!)
         iff(machine_bits()=32?4601:97)))

constant set = shuffle({{"Clear drains", 3},
                        {"Feed cat", 4},
                        {"Make tea", 5},
                        {"Solve RC tasks", 1},
                        {"Tax return", 2}})
for i=1 to length(set) do
    pqAdd(set[i])
    pqAdd(set[rand(length(set))])
end for
 
sequence res = {}
while length(pq) do
    ?pqPop()
end while
Output:

The optional initial set_rand() makes it slightly more amusing.
As shown set_rand() achieves consistency per-platform, not cross-platform, the numbers above were found using a brute-force outer loop stopping on the desired result, since deleted.

{"Solve RC tasks",1}
{"Tax return",2}
{"Clear drains",3}
{"Feed cat",4}
{"Feed cat",4}
{"Feed cat",4}
{"Feed cat",4}
{"Feed cat",4}
{"Feed cat",4}
{"Make tea",5}

builtin

If you omit MAX_HEAP or (same thing) specify MIN_HEAP, the output'll be 1..5

with javascript_semantics
constant tasklist = pq_new(MAX_HEAP)

pq_add({"Clear drains",3},tasklist)
pq_add({"Feed cat",4},tasklist)
pq_add({"Make tea",5},tasklist)
pq_add({"Solve RC tasks",1},tasklist)
pq_add({"Tax return",2},tasklist)

while pq_size(tasklist) do
    {string task, integer priority} = pq_pop(tasklist)
    printf(1,"%d: %s\n",{priority,task})
end while
Output:
5: Make tea
4: Feed cat
3: Clear drains
2: Tax return
1: Solve RC tasks

Phixmonti

/# Rosetta Code problem: http://rosettacode.org/wiki/Priority_queue
by Galileo, 05/2022 #/

include ..\Utilitys.pmt

( )
( 3 "Clear drains" ) 0 put ( 4 "Feed cat" ) 0 put ( 5 "Make tea" ) 0 put ( 1 "Solve RC tasks" ) 0 put ( 2 "Tax return" ) 0 put
sort pop swap print pstack
Output:
[1, "Solve RC tasks"]
[[[2, "Tax return"], [3, "Clear drains"], [4, "Feed cat"], [5, "Make tea"]]]

=== Press any key to exit ===

PHP

Works with: PHP version 5.3+

PHP's SplPriorityQueue class implements a max-heap. PHP also separately has SplHeap, SplMinHeap, and SplMaxHeap classes.

<?php
$pq = new SplPriorityQueue;

$pq->insert('Clear drains', 3);
$pq->insert('Feed cat', 4);
$pq->insert('Make tea', 5);
$pq->insert('Solve RC tasks', 1);
$pq->insert('Tax return', 2);

// This line causes extract() to return both the data and priority (in an associative array),
// Otherwise it would just return the data
$pq->setExtractFlags(SplPriorityQueue::EXTR_BOTH); 

while (!$pq->isEmpty()) {
    print_r($pq->extract());
}
?>

Output:

Array
(
    [data] => Make tea
    [priority] => 5
)
Array
(
    [data] => Feed cat
    [priority] => 4
)
Array
(
    [data] => Clear drains
    [priority] => 3
)
Array
(
    [data] => Tax return
    [priority] => 2
)
Array
(
    [data] => Solve RC tasks
    [priority] => 1
)
Works with: PHP version 5.3+

The difference between SplHeap and SplPriorityQueue is that SplPriorityQueue takes the data and the priority as two separate arguments, and the comparison is only made on the priority; whereas SplHeap takes only one argument (the element), and the comparison is made on that directly. In all of these classes it is possible to provide a custom comparator by subclassing the class and overriding its compare method.

<?php
$pq = new SplMinHeap;
 
$pq->insert(array(3, 'Clear drains'));
$pq->insert(array(4, 'Feed cat'));
$pq->insert(array(5, 'Make tea'));
$pq->insert(array(1, 'Solve RC tasks'));
$pq->insert(array(2, 'Tax return'));

while (!$pq->isEmpty()) {
    print_r($pq->extract());
}
?>

Output:

Array
(
    [0] => 1
    [1] => Solve RC tasks
)
Array
(
    [0] => 2
    [1] => Tax return
)
Array
(
    [0] => 3
    [1] => Clear drains
)
Array
(
    [0] => 4
    [1] => Feed cat
)
Array
(
    [0] => 5
    [1] => Make tea
)

Picat

Picat has built-in support for min and max heaps.

main =>
  Tasks = [[3,"Clear drains"],
           [4,"Feed cat"],
           [5,"Make tea"],
           [1,"Solve RC tasks"],
           [2,"Tax return"]],
  Heap = new_min_heap([]),
  foreach(Task in Tasks)
     Heap.heap_push(Task),
     println(top=Heap.heap_top())
  end,
  nl,
  println(Heap),
  println(size=Heap.heap_size),
  nl,
  println("Pop the elements from the queue:"),
  println([Heap.heap_pop() : _ in 1..Heap.heap_size]).
Output:
top = [3,Clear drains]
top = [3,Clear drains]
top = [3,Clear drains]
top = [1,Solve RC tasks]
top = [1,Solve RC tasks]

_$heap(5,{[1,Solve RC tasks],[2,Tax return],[5,Make tea],[4,Feed cat],[3,Clear drains],_33c8},min)
size = 5

Pop the elements from the queue:
[[1,Solve RC tasks],[2,Tax return],[3,Clear drains],[4,Feed cat],[5,Make tea]]

The heaps creation functions can take the task list as argument:

  Tasks = [[3,"Clear drains"],
           [4,"Feed cat"],
           [5,"Make tea"],
           [1,"Solve RC tasks"],
           [2,"Tax return"]],
  Heap = new_min_heap(Tasks),
  println([Heap.heap_pop() : _ in 1..Heap.heap_size]).


PicoLisp

The following implementation imposes no limits. It uses a binary tree for storage. The priority levels may be numeric, or of any other type.

# Insert item into priority queue
(de insertPQ (Queue Prio Item)
   (idx Queue (cons Prio Item) T) )

# Remove and return top item from priority queue
(de removePQ (Queue)
   (cdar (idx Queue (peekPQ Queue) NIL)) )

# Find top element in priority queue
(de peekPQ (Queue)
   (let V (val Queue)
      (while (cadr V)
         (setq V @) )
      (car V) ) )

# Merge second queue into first
(de mergePQ (Queue1 Queue2)
   (balance Queue1 (sort (conc (idx Queue1) (idx Queue2)))) )

Test:

# Two priority queues
(off Pq1 Pq2)

# Insert into first queue
(insertPQ 'Pq1 3 '(Clear drains))
(insertPQ 'Pq1 4 '(Feed cat))

# Insert into second queue
(insertPQ 'Pq2 5 '(Make tea))
(insertPQ 'Pq2 1 '(Solve RC tasks))
(insertPQ 'Pq2 2 '(Tax return))

# Merge second into first queue
(mergePQ 'Pq1 'Pq2)

# Remove and print all items from first queue
(while Pq1
   (println (removePQ 'Pq1)) )

Output:

(Solve RC tasks)
(Tax return)
(Clear drains)
(Feed cat)
(Make tea)

Alternative version using a pairing heap:

(de heap-first (H)  (car H))

(de heap-merge (H1 H2)
   (cond
      ((= H1 NIL)  H2)
      ((= H2 NIL)  H1)
      ((< (car H1) (car H2))
         (cons (car H1) (cons H2 (cdr H1))))
      (T
         (cons (car H2) (cons H1 (cdr H2))))))

(de heap-insert (Item Heap)
   (heap-merge (list Item) Heap))

(de "merge-pairs" (H)
   (if (= (cdr H) NIL)
      (car H)   # also handles NIL (H = NIL -> NIL)
      (heap-merge
         (heap-merge (car H) (cadr H))
         ("merge-pairs" (cddr H)))))

(de heap-rest (H)
   ("merge-pairs" (cdr H)))

Test:

(setq H NIL)
(for
   Task '(
      (3 . "Clear drains.")
      (4 . "Feed cat.")
      (5 . "Make tea.")
      (1 . "Solve RC tasks.")
      (2 . "Tax Return."))
   (setq H (heap-insert Task H)))

(while H
   (prinl (caar H) ". " (cdar H))
   (setq H (heap-rest H)))

(bye)
Output:
1. Solve RC tasks.
2. Tax Return.
3. Clear drains.
4. Feed cat.
5. Make tea.

Prolog

SWI-Prolog has a library heaps.pl, written by Lars Buitinck that implements priority queues.
Informations here : http://www.swi-prolog.org/pldoc/doc/swi/library/heaps.pl

Example of use :

priority-queue :-
  TL0 = [3-'Clear drains',
         4-'Feed cat'],

  % we can create a priority queue from a list
  list_to_heap(TL0, Heap0),
  
  % alternatively we can start from an empty queue
  % get from empty_heap/1.
  
  % now we add the other elements
  add_to_heap(Heap0, 5, 'Make tea', Heap1),
  add_to_heap(Heap1, 1, 'Solve RC tasks', Heap2),
  add_to_heap(Heap2, 2, 'Tax return', Heap3),

  % we list the content of the heap:
  heap_to_list(Heap3, TL1),
  writeln('Content of the queue'), maplist(writeln, TL1),
  nl,

  % now we retrieve the minimum-priority pair
  get_from_heap(Heap3, Priority, Key, Heap4),
  format('Retrieve top of the queue : Priority ~w, Element ~w~n', [Priority, Key]),
  nl,

  % we list the content of the heap:
  heap_to_list(Heap4, TL2),
  writeln('Content of the queue'), maplist(writeln, TL2).

The output :

1 ?- priority-queue.
Content of the queue
1-Solve RC tasks
2-Tax return
3-Clear drains
4-Feed cat
5-Make tea

Retrieve top of the queue : Priority 1, Element Solve RC tasks

Content of the queue
2-Tax return
3-Clear drains
4-Feed cat
5-Make tea
true.

PureBasic

The priority queue is implemented using a binary heap array and a map. The map stores the elements of a given priority in a FIFO list. Priorities can be any signed 32 value.

Structure taskList
  List description.s()  ;implements FIFO queue
EndStructure

Structure task
  *tl.tList  ;pointer to a list of task descriptions
  Priority.i ;tasks priority, lower value has more priority
EndStructure

Structure priorityQueue
  maxHeapSize.i ;increases as needed
  heapItemCount.i  ;number of elements currently in heap
  Array heap.task(0) ;elements hold FIFO queues ordered by priorities, lowest first
  map heapMap.taskList() ;holds lists of tasks with the same priority that are FIFO queues
EndStructure

Procedure insertPQ(*PQ.priorityQueue, description.s, p)
  If FindMapElement(*PQ\heapMap(), Str(p))
    LastElement(*PQ\heapMap()\description())
    AddElement(*PQ\heapMap()\description())
    *PQ\heapMap()\description() = description
  Else
    Protected *tl.taskList = AddMapElement(*PQ\heapMap(), Str(p))
    AddElement(*tl\description())
    *tl\description() = description
     
    Protected pos = *PQ\heapItemCount
    
    *PQ\heapItemCount + 1
    If *PQ\heapItemCount > *PQ\maxHeapSize
      Select *PQ\maxHeapSize
        Case 0
          *PQ\maxHeapSize = 128
        Default
          *PQ\maxHeapSize * 2
      EndSelect
      Redim *PQ\heap.task(*PQ\maxHeapSize)
    EndIf 
    
    While pos > 0 And p < *PQ\heap((pos - 1) / 2)\Priority
      *PQ\heap(pos) = *PQ\heap((pos - 1) / 2)
      pos = (pos - 1) / 2
    Wend
    
    *PQ\heap(pos)\tl = *tl
    *PQ\heap(pos)\Priority = p
  EndIf 
EndProcedure

Procedure.s removePQ(*PQ.priorityQueue)
  Protected *tl.taskList = *PQ\heap(0)\tl, description.s
  FirstElement(*tl\description())
  description = *tl\description()
  If ListSize(*tl\description()) > 1
    DeleteElement(*tl\description())
  Else
    DeleteMapElement(*PQ\heapMap(), Str(*PQ\heap(0)\Priority))
   
    *PQ\heapItemCount - 1
    *PQ\heap(0) = *PQ\heap(*PQ\heapItemCount)
    
    Protected pos
    Repeat
      Protected child1 = 2 * pos + 1
      Protected child2 = 2 * pos + 2
      If child1 >= *PQ\heapItemCount
        Break 
      EndIf
      
      Protected smallestChild
      If child2 >= *PQ\heapItemCount
        smallestChild = child1 
      ElseIf *PQ\heap(child1)\Priority <= *PQ\heap(child2)\Priority
        smallestChild = child1 
      Else
        smallestChild = child2 
      EndIf
      
      If (*PQ\heap(smallestChild)\Priority >= *PQ\heap(pos)\Priority)
        Break 
      EndIf
      Swap *PQ\heap(pos)\tl, *PQ\heap(smallestChild)\tl
      Swap *PQ\heap(pos)\Priority, *PQ\heap(smallestChild)\Priority
      pos = smallestChild
    ForEver
  EndIf 
  
  ProcedureReturn description
EndProcedure

Procedure isEmptyPQ(*PQ.priorityQueue) ;returns 1 if empty, otherwise returns 0
  If *PQ\heapItemCount
    ProcedureReturn 0
  EndIf
  ProcedureReturn 1
EndProcedure  

If OpenConsole()
  Define PQ.priorityQueue
  insertPQ(PQ, "Clear drains", 3)
  insertPQ(PQ, "Answer Phone 1", 8)
  insertPQ(PQ, "Feed cat", 4)
  insertPQ(PQ, "Answer Phone 2", 8)
  insertPQ(PQ, "Make tea", 5)
  insertPQ(PQ, "Sleep", 9)
  insertPQ(PQ, "Check email", 3)
  insertPQ(PQ, "Solve RC tasks", 1)
  insertPQ(PQ, "Answer Phone 3", 8)
  insertPQ(PQ, "Exercise", 9)
  insertPQ(PQ, "Answer Phone 4", 8)
  insertPQ(PQ, "Tax return", 2)
   
  While Not isEmptyPQ(PQ)
    PrintN(removePQ(PQ))
  Wend
  
  Print(#CRLF$ + #CRLF$ + "Press ENTER to exit"): Input()
  CloseConsole()
EndIf
Output:
Solve RC tasks
Tax return
Clear drains
Check email
Feed cat
Make tea
Answer Phone 1
Answer Phone 2
Answer Phone 3
Answer Phone 4
Sleep
Exercise

Python

Using PriorityQueue

Python has the class queue.PriorityQueue in its standard library.

The data structures in the "queue" module are synchronized multi-producer, multi-consumer queues for multi-threaded use. They can however handle this task:

>>> import queue
>>> pq = qu