Nice primes

From Rosetta Code
Nice primes is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.


Task
  1.   Take an positive integer   n
  2.   sumn   is the sum of the decimal digits of   n
  3.   If  sumn's  length is greater than   1   (unity),   repeat step 2 for   n = sumn
  4.   Stop when  sumn's  length is equal to   1   (unity)


If   n   and   sumn   are prime,   then   n   is a   Nice prime

Let     500   <   n   <   1000


Example
       853 (prime)
       8 + 5 + 3 = 16
       1 + 6 = 7 (prime)


Also see



11l

F is_prime(a)
   I a == 2
      R 1B
   I a < 2 | a % 2 == 0
      R 0B
   L(i) (3 .. Int(sqrt(a))).step(2)
      I a % i == 0
         R 0B
   R 1B

F digital_root(n)
   R 1 + (n - 1) % 9

L(n) 501..999
   I is_prime(digital_root(n)) & is_prime(n)
      print(n, end' ‘ ’)
Output:
509 547 563 569 587 599 601 617 619 641 653 659 673 677 691 709 727 743 761 797 821 839 853 857 887 907 911 929 941 947 977 983 997 

Action!

INCLUDE "H6:SIEVE.ACT"

BYTE Func IsNicePrime(INT i BYTE ARRAY primes)
  BYTE sum,d

  IF primes(i)=0 THEN
    RETURN (0)
  FI

  DO
    sum=0
    WHILE i#0
    DO
      d=i MOD 10
      sum==+d
      i==/10
    OD
    IF sum<10 THEN
      EXIT
    FI
    i=sum
  OD
RETURN (primes(sum))

PROC Main()
  DEFINE MAX="999"
  BYTE ARRAY primes(MAX+1)
  INT i,count=[0]

  Put(125) PutE() ;clear the screen
  Sieve(primes,MAX+1)
  FOR i=501 TO 999
  DO
    IF IsNicePrime(i,primes) THEN
      PrintI(i) Put(32)
      count==+1
    FI
  OD
  PrintF("%E%EThere are %I nice primes",count)
RETURN
Output:

Screenshot from Atari 8-bit computer

509 547 563 569 587 599 601 617 619 641 653 659 673 677 691 709 727 743 761 797 821 839 853 857 887 907 911 929 941 947 977 983 997

There are 33 nice primes

ALGOL 68

BEGIN  # find nice primes - primes whose digital root is also prime #
    INT min prime = 501;
    INT max prime = 999;
    # sieve the primes to max prime #
    PR read "primes.incl.a68" PR
    []BOOL prime = PRIMESIEVE max prime;
    # find the nice primes #
    INT nice count := 0;
    FOR n FROM min prime TO max prime DO
        IF prime[ n ] THEN
            # have a prime #
            INT digit sum := 0;
            INT v         := n;
            WHILE digit sum := 0;
                  WHILE v > 0 DO
                      digit sum +:= v MOD 10;
                      v OVERAB 10
                  OD;
                  digit sum > 9
            DO
                v := digit sum
            OD;
            IF prime( digit sum ) THEN
                # the digital root is prime #
                nice count +:= 1;
                print( ( " ", whole( n, -3 ), "(", whole( digit sum, 0 ), ")" ) );
                IF nice count MOD 12 = 0 THEN print( ( newline ) ) FI
            FI
        FI
    OD
END
Output:
 509(5) 547(7) 563(5) 569(2) 587(2) 599(5) 601(7) 617(5) 619(7) 641(2) 653(5) 659(2)
 673(7) 677(2) 691(7) 709(7) 727(7) 743(5) 761(5) 797(5) 821(2) 839(2) 853(7) 857(2)
 887(5) 907(7) 911(2) 929(2) 941(5) 947(2) 977(5) 983(2) 997(7)

ALGOL W

begin % find some nice primes - primes whose digital root is prime           %
    % returns the digital root of n in base 10                               %
    integer procedure digitalRoot( integer value  n ) ;
        if n = 0 then 0
        else begin
            integer root;
            root := ( abs n ) rem 9;
            if root = 0 then 9 else root
        end digitalRoot ;
    % sets p( 1 :: n ) to a sieve of primes up to n %
    procedure Eratosthenes ( logical array p( * ) ; integer value n ) ;
    begin
        p( 1 ) := false; p( 2 ) := true;
        for i := 3 step 2 until n do p( i ) := true;
        for i := 4 step 2 until n do p( i ) := false;
        for i := 3 step 2 until truncate( sqrt( n ) ) do begin
            integer ii; ii := i + i;
            if p( i ) then for pr := i * i step ii until n do p( pr ) := false
        end for_i ;
    end Eratosthenes ;
    integer MIN_PRIME, MAX_PRIME;
    MIN_PRIME :=  501;
    MAX_PRIME :=  999;
    % find the nice primes in the exclusive range 500 < prime < 1000 %
    begin
        logical array p ( 1 :: MAX_PRIME );
        integer       nCount;
        % construct a sieve of primes up to the maximum required     %
        Eratosthenes( p, MAX_PRIME );
        % show the primes that are nice                              %
        write( i_w := 1, s_w := 0, "Nice primes from ", MIN_PRIME, " to ", MAX_PRIME );
        for i := MIN_PRIME until MAX_PRIME do begin
            if p( i ) then begin
                integer dr;
                dr := digitalRoot( i );
                if p( dr ) then begin
                    nCount := nCount + 1;
                    write( i_w := 3, s_w := 0, nCount, ":", i, "  dr(", i_w := 1, dr, ")" )
                end if_dr_p
            end if_p_i
        end for_i
    end
end.
Output:
Nice primes from 501 to 999
  1:509  dr(5)
  2:547  dr(7)
  3:563  dr(5)
  4:569  dr(2)
  5:587  dr(2)
  6:599  dr(5)
  7:601  dr(7)
  8:617  dr(5)
  9:619  dr(7)
 10:641  dr(2)
 11:653  dr(5)
 12:659  dr(2)
 13:673  dr(7)
 14:677  dr(2)
 15:691  dr(7)
 16:709  dr(7)
 17:727  dr(7)
 18:743  dr(5)
 19:761  dr(5)
 20:797  dr(5)
 21:821  dr(2)
 22:839  dr(2)
 23:853  dr(7)
 24:857  dr(2)
 25:887  dr(5)
 26:907  dr(7)
 27:911  dr(2)
 28:929  dr(2)
 29:941  dr(5)
 30:947  dr(2)
 31:977  dr(5)
 32:983  dr(2)
 33:997  dr(7)

APL

Works with: Dyalog APL
((/⍨)(/(2=(0+.=⍳|⊢))¨∘(⊢,(+/10¯1)(9≥⊣)))¨) 500+⍳500
Output:
509 547 563 569 587 599 601 617 619 641 653 659 673 677 691 709 727 743 761 797 821 839 853 857 887 907 911 929 941 947
      977 983 997

AppleScript

sumn formula borrowed from the Factor solution.

on sieveOfEratosthenes(limit)
    script o
        property numberList : {missing value}
    end script
    
    repeat with n from 2 to limit
        set end of o's numberList to n
    end repeat
    repeat with n from 2 to (limit ^ 0.5 div 1)
        if (item n of o's numberList is n) then
            repeat with multiple from (n * n) to limit by n
                set item multiple of o's numberList to missing value
            end repeat
        end if
    end repeat
    
    return o's numberList's numbers
end sieveOfEratosthenes

on nicePrimes(a, b)
    script o
        property primes : reverse of sieveOfEratosthenes(b)
        property niceOnes : {}
    end script
    
    repeat with n in o's primes
        set n to n's contents
        if (n < a) then exit repeat
        set sumn to (n - 1) mod 9 + 1
        -- n being a prime, sumn can obviously never be 0 here. Tests suggest that it's never 6 or 9
        -- either and that it's only ever 3 when n is 3. Occurrences of the other single-digit
        -- possibilities are fairly evenly distributed. Testing for a prime result — 2, 5, 7, or the
        -- very unlikely 3 — requires one to four tests, depending on which test eventually decides
        -- the matter. An alternative is to eliminate 8, 4, and 1 instead, which can be done with
        -- only one or two tests. The test eliminating both 8 and 4 should be tried first.
        if ((sumn mod 4 > 0) and (sumn > 1)) then set end of o's niceOnes to n
    end repeat
    
    return reverse of o's niceOnes
end nicePrimes

return nicePrimes(501, 999)
Output:
{509, 547, 563, 569, 587, 599, 601, 617, 619, 641, 653, 659, 673, 677, 691, 709, 727, 743, 761, 797, 821, 839, 853, 857, 887, 907, 911, 929, 941, 947, 977, 983, 997}

Arturo

sumd: function [n][
    s: sum digits n 
    (1 = size digits s)? -> return s
                         -> return sumd s
]

nice?: function [x] -> and? prime? x
                            prime? sumd x

loop split.every:10 select 500..1000 => nice? 'a ->
    print map a => [pad to :string & 4]
Output:
 509  547  563  569  587  599  601  617  619  641 
 653  659  673  677  691  709  727  743  761  797 
 821  839  853  857  887  907  911  929  941  947 
 977  983  997

AWK

# syntax: GAWK -f NICE_PRIMES.AWK
BEGIN {
    start = 500
    stop = 1000
    for (i=start; i<=stop; i++) {
      if (is_prime(i)) {
        s = i
        while (s >= 10) {
          s = sum_digits(s)
        }
        if (s ~ /^[2357]$/) {
          count++
          printf("%d %d\n",i,s)
        }
      }
    }
    printf("Nice primes %d-%d: %d\n",start,stop,count)
    exit(0)
}
function is_prime(x,  i) {
    if (x <= 1) {
      return(0)
    }
    for (i=2; i<=int(sqrt(x)); i++) {
      if (x % i == 0) {
        return(0)
      }
    }
    return(1)
}
function sum_digits(x,  sum,y) {
    while (x) {
      y = x % 10
      sum += y
      x = int(x/10)
    }
    return(sum)
}
Output:
509 5
547 7
563 5
569 2
587 2
599 5
601 7
617 5
619 7
641 2
653 5
659 2
673 7
677 2
691 7
709 7
727 7
743 5
761 5
797 5
821 2
839 2
853 7
857 2
887 5
907 7
911 2
929 2
941 5
947 2
977 5
983 2
997 7
Nice primes 500-1000: 33

BASIC

10 DEFINT A-Z: B=500: E=1000
20 DIM P(E): P(0)=-1: P(1)=-1
30 FOR I=2 TO SQR(E)
40 IF NOT P(I) THEN FOR J=I*2 TO E STEP I: P(J)=-1: NEXT
50 NEXT
60 FOR I=B TO E: IF P(I) GOTO 110
70 J=I
80 S=0
90 IF J>0 THEN S=S+J MOD 10: J=J\10: GOTO 90
100 IF S>9 THEN J=S: GOTO 80 ELSE IF NOT P(S) THEN PRINT I,
110 NEXT
Output:
 509           547           563           569           587
 599           601           617           619           641
 653           659           673           677           691
 709           727           743           761           797
 821           839           853           857           887
 907           911           929           941           947
 977           983           997

BCPL

get "libhdr"
manifest $(
    begin = 500
    end   = 1000
$)

let sieve(prime, top) be
$(  0!prime := false
    1!prime := false
    for i=2 to top do i!prime := true
    for i=2 to top/2
        if i!prime
        $(  let j = i*2
            while j <= top
            $(  j!prime := false
                j := j + i
            $)
        $)
$)

let digroot(n) = 
    n<10 -> n, 
    digroot(digsum(n))
and digsum(n) = 
    n<10 -> n,
    n rem 10 + digsum(n/10)

let nice(prime, n) = n!prime & digroot(n)!prime

let start() be
$(  let prime = getvec(end)
    sieve(prime, end)
    for i = begin to end
        if nice(prime, i) do
            writef("%N*N", i)
    freevec(prime)
$)
Output:
509
547
563
569
587
599
601
617
619
641
653
659
673
677
691
709
727
743
761
797
821
839
853
857
887
907
911
929
941
947
977
983
997


C

Translation of: C++
#include <stdbool.h>
#include <stdio.h>

bool is_prime(unsigned int n) {
    if (n < 2) {
        return false;
    }
    if (n % 2 == 0) {
        return n == 2;
    }
    if (n % 3 == 0) {
        return n == 3;
    }
    for (unsigned int p = 5; p * p <= n; p += 4) {
        if (n % p == 0) {
            return false;
        }
        p += 2;
        if (n % p == 0) {
            return false;
        }
    }
    return true;
}

unsigned int digital_root(unsigned int n) {
    return n == 0 ? 0 : 1 + (n - 1) % 9;
}

int main() {
    const unsigned int from = 500, to = 1000;
    unsigned int count = 0;
    unsigned int n;

    printf("Nice primes between %d and %d:\n", from, to);
    for (n = from; n < to; ++n) {
        if (is_prime(digital_root(n)) && is_prime(n)) {
            ++count;
            //std::cout << n << (count % 10 == 0 ? '\n' : ' ');
            printf("%d", n);
            if (count % 10 == 0) {
                putc('\n', stdout);
            } else {
                putc(' ', stdout);
            }
        }
    }
    printf("\n%d nice primes found.\n", count);

    return 0;
}
Output:
Nice primes between 500 and 1000:
509 547 563 569 587 599 601 617 619 641
653 659 673 677 691 709 727 743 761 797
821 839 853 857 887 907 911 929 941 947
977 983 997
33 nice primes found.

C++

#include <iostream>

bool is_prime(unsigned int n) {
    if (n < 2)
        return false;
    if (n % 2 == 0)
        return n == 2;
    if (n % 3 == 0)
        return n == 3;
    for (unsigned int p = 5; p * p <= n; p += 4) {
        if (n % p == 0)
            return false;
        p += 2;
        if (n % p == 0)
            return false;
    }
    return true;
}

unsigned int digital_root(unsigned int n) {
    return n == 0 ? 0 : 1 + (n - 1) % 9;
}

int main() {
    const unsigned int from = 500, to = 1000;
    std::cout << "Nice primes between " << from << " and " << to << ":\n";
    unsigned int count = 0;
    for (unsigned int n = from; n < to; ++n) {
        if (is_prime(digital_root(n)) && is_prime(n)) {
            ++count;
            std::cout << n << (count % 10 == 0 ? '\n' : ' ');
        }
    }
    std::cout << '\n' << count << " nice primes found.\n";
}
Output:
Nice primes between 500 and 1000:
509 547 563 569 587 599 601 617 619 641
653 659 673 677 691 709 727 743 761 797
821 839 853 857 887 907 911 929 941 947
977 983 997 
33 nice primes found.

D

Translation of: C++
import std.stdio;

bool isPrime(uint n) {
    if (n < 2) {
        return false;
    }
    if (n % 2 == 0) {
        return n == 2;
    }
    if (n % 3 == 0) {
        return n == 3;
    }
    for (uint p = 5; p * p <= n; p += 4) {
        if (n % p == 0) {
            return false;
        }
        p += 2;
        if (n % p == 0) {
            return false;
        }
    }
    return true;
}

uint digitalRoot(uint n) {
    return n == 0 ? 0 : 1 + (n - 1) % 9;
}

void main() {
    immutable from = 500;
    immutable to = 1000;
    writeln("Nice primes between ", from, " and ", to, ':');
    uint count;
    foreach (n; from .. to) {
        if (isPrime(digitalRoot(n)) && isPrime(n)) {
            count++;
            write(n);
            if (count % 10 == 0) {
                writeln;
            } else {
                write(' ');
            }
        }
    }
    writeln;
    writeln(count, " nice primes found.");
}
Output:
Nice primes between 500 and 1000:
509 547 563 569 587 599 601 617 619 641
653 659 673 677 691 709 727 743 761 797
821 839 853 857 887 907 911 929 941 947
977 983 997
33 nice primes found.


Delphi

Works with: Delphi version 6.0


function IsPrime(N: int64): boolean;
{Fast, optimised prime test}
var I,Stop: int64;
begin
if (N = 2) or (N=3) then Result:=true
else if (n <= 1) or ((n mod 2) = 0) or ((n mod 3) = 0) then Result:= false
else
     begin
     I:=5;
     Stop:=Trunc(sqrt(N+0.0));
     Result:=False;
     while I<=Stop do
           begin
           if ((N mod I) = 0) or ((N mod (I + 2)) = 0) then exit;
           Inc(I,6);
           end;
     Result:=True;
     end;
end;



function SumDigits(N: integer): integer;
{Sum the integers in a number}
var T: integer;
begin
Result:=0;
repeat
	begin
	T:=N mod 10;
	N:=N div 10;
	Result:=Result+T;
	end
until N<1;
end;



function IsNiceNumber(N: integer): boolean;
{Return True if N is a nice number}
var Sum: integer;
begin
Result:=False;
{N must be primes}
if not IsPrime(N) then exit;
{Keep summing until one digit number}
Sum:=N;
repeat Sum:=SumDigits(Sum)
until Sum<10;
{Must be prime too}
Result:=IsPrime(Sum);
end;


procedure ShowNicePrimes(Memo: TMemo);
{Display Nice Primes between 501 and 999}
var I,Cnt: integer;
var S: string;
begin
Cnt:=0; S:='';
for I:=501 to 999 do
 if IsNiceNumber(I) then
	begin
	S:=S+Format('%4d',[i]);
	Inc(Cnt);
	if (Cnt mod 5)=0 then S:=S+#$0D#$0A;
	end;
Memo.Lines.Add(Format('Nice Primes: %3D',[Cnt]));
Memo.Lines.Add(S);
end;
Output:
Nice Primes:  33
 509 547 563 569 587
 599 601 617 619 641
 653 659 673 677 691
 709 727 743 761 797
 821 839 853 857 887
 907 911 929 941 947
 977 983 997


EasyLang

Translation of: 11l
fastfunc isprim num .
   if num < 2
      return 0
   .
   i = 2
   while i <= sqrt num
      if num mod i = 0
         return 0
      .
      i += 1
   .
   return 1
.
func digroot n .
   return 1 + (n - 1) mod 9
.
for n = 501 to 999
   if isprim digroot n = 1 and isprim n = 1
      write n & " "
   .
.
Output:
509 547 563 569 587 599 601 617 619 641 653 659 673 677 691 709 727 743 761 797 821 839 853 857 887 907 911 929 941 947 977 983 997 

F#

This task uses Extensible Prime Generator (F#)

// Nice primes. Nigel Galloway: March 22nd., 2021
let fN g=1+((g-1)%9) in primes32()|>Seq.skipWhile((>)500)|>Seq.takeWhile((>)1000)|>Seq.filter(fN>>isPrime)|>Seq.iter(printf "%d "); printfn ""
Output:
509 547 563 569 587 599 601 617 619 641 653 659 673 677 691 709 727 743 761 797 821 839 853 857 887 907 911 929 941 947 977 983 997

Factor

Using the following formula to find the digital root of a base 10 number:

dr10(n) = 0                                 if n = 0,
dr10(n) = 1 + ((n - 1) mod 9)     if n ≠ 0.

(n = 0 may not need to be special-cased depending on the behavior of your language's modulo operator.)

USING: math math.primes prettyprint sequences ;

: digital-root ( m -- n ) 1 - 9 mod 1 + ;

500 1000 primes-between [ digital-root prime? ] filter .
Output:
V{
    509
    547
    563
    569
    587
    599
    601
    617
    619
    641
    653
    659
    673
    677
    691
    709
    727
    743
    761
    797
    821
    839
    853
    857
    887
    907
    911
    929
    941
    947
    977
    983
    997
}

Forth

Translation of: Factor
Works with: Gforth
: prime? ( n -- ? ) here + c@ 0= ;
: notprime! ( n -- ) here + 1 swap c! ;

: prime_sieve ( n -- )
  here over erase
  0 notprime!
  1 notprime!
  2
  begin
    2dup dup * >
  while
    dup prime? if
      2dup dup * do
        i notprime!
      dup +loop
    then
    1+
  repeat
  2drop ;

: digital_root ( m -- n ) 1 - 9 mod 1 + ;

: print_nice_primes ( m n -- )
  ." Nice primes between " dup . ." and " over 1 .r ." :" cr
  over prime_sieve
  0 -rot
  do
    i prime? if
      i digital_root prime? if
        i 3 .r
        1+ dup 10 mod 0= if cr else space then
      then
    then
  loop
  cr . ." nice primes found." cr ;

1000 500 print_nice_primes
bye
Output:
Nice primes between 500 and 1000:
509 547 563 569 587 599 601 617 619 641
653 659 673 677 691 709 727 743 761 797
821 839 853 857 887 907 911 929 941 947
977 983 997 
33 nice primes found. 

FreeBASIC

Function isPrime(Byval ValorEval As Integer) As Boolean
    If ValorEval <= 1 Then Return False
    For i As Integer = 2 To Int(Sqr(ValorEval))
        If ValorEval Mod i = 0 Then Return False
    Next i
    Return True
End Function

Dim As Integer column = 0, limit1 = 500, limit2 = 1000, sumn

Print !"Buenos n£meros entre"; limit1; " y"; limit2; !": \n"

For n As Integer = limit1 To limit2
    Dim As String strn = Str(n)
    
    Do
        sumn = 0
        For m As Integer = 1 To Len(strn)
            sumn += Val(Mid(strn,m,1))
        Next m
        strn = Str(sumn)
    Loop Until Len(strn) = 1
    
    If isPrime(n) And isPrime(sumn) Then
        column += 1
        Print Using " ###"; n;
        If column Mod 8 = 0 Then Print : End If
    End If
Next n

Print !"\n\n"; column; " buenos n£meros encontrados."
Sleep
Output:
Buenos números entre 500 y 1000:

 509 547 563 569 587 599 601 617
 619 641 653 659 673 677 691 709
 727 743 761 797 821 839 853 857
 887 907 911 929 941 947 977 983
 997

 33 buenos números encontrados.

Fōrmulæ

Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text. Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for storage and transfer purposes more than visualization and edition.

Programs in Fōrmulæ are created/edited online in its website.

In this page you can see and run the program(s) related to this task and their results. You can also change either the programs or the parameters they are called with, for experimentation, but remember that these programs were created with the main purpose of showing a clear solution of the task, and they generally lack any kind of validation.

Solution

Test case

Showing nice primes in the range 500 .. 1,000

Go

Translation of: Wren
package main

import "fmt"

func isPrime(n int) bool {
    switch {
    case n < 2:
        return false
    case n%2 == 0:
        return n == 2
    case n%3 == 0:
        return n == 3
    default:
        d := 5
        for d*d <= n {
            if n%d == 0 {
                return false
            }
            d += 2
            if n%d == 0 {
                return false
            }
            d += 4
        }
        return true
    }
}

func sumDigits(n int) int {
    sum := 0
    for n > 0 {
        sum += n % 10
        n /= 10
    }
    return sum
}

func main() {
    fmt.Println("Nice primes in the interval (500, 900) are:")
    c := 0
    for i := 501; i <= 999; i += 2 {
        if isPrime(i) {
            s := i
            for s >= 10 {
                s = sumDigits(s)
            }
            if s == 2 || s == 3 || s == 5 || s == 7 {
                c++
                fmt.Printf("%2d: %d -> Σ = %d\n", c, i, s)
            }
        }
    }
}
Output:
Same as Wren example.

Haskell

import Data.Char ( digitToInt ) 

isPrime :: Int -> Bool
isPrime n 
   |n == 2 = True
   |n == 1 = False
   |otherwise = null $ filter (\i -> mod n i == 0 ) [2 .. root]
   where
      root :: Int
      root = floor $ sqrt $ fromIntegral n

digitsum :: Int -> Int
digitsum n = sum $ map digitToInt $ show n

findSumn :: Int -> Int
findSumn n = until ( (== 1) . length . show ) digitsum n

isNicePrime :: Int -> Bool
isNicePrime n = isPrime n && isPrime ( findSumn n ) 

solution :: [Int]
solution = filter isNicePrime [501..999]
Output:
[509,547,563,569,587,599,601,617,619,641,653,659,673,677,691,709,727,743,761,797,821,839,853,857,887,907,911,929,941,947,977,983,997]

J

   primeQ=: 1&p:
   digital_root=: +/@:(10&#.inv)^:_   NB. sum the digits to convergence
   niceQ=: [: *./ [: primeQ (, digital_root)
   (#~niceQ&>)(+i.)500
509 547 563 569 587 599 601 617 619 641 653 659 673 677 691 709 727 743 761 797 821 839 853 857 887 907 911 929 941 947 977 983 997

   NB. testing only the primes on the range
   p:inv 500 1000  NB. index of the next largest prime in an ordered list of primes
95 168

   (#~ (2 3 5 7 e.~ digital_root&>)) p: 95 + i. 168 - 95
509 547 563 569 587 599 601 617 619 641 653 659 673 677 691 709 727 743 761 797 821 839 853 857 887 907 911 929 941 947 977 983 997

Java

Translation of: Kotlin
public class NicePrimes {
    private static boolean isPrime(long n) {
        if (n < 2) {
            return false;
        }
        if (n % 2 == 0L) {
            return n == 2L;
        }
        if (n % 3 == 0L) {
            return n == 3L;
        }

        var p = 5L;
        while (p * p <= n) {
            if (n % p == 0L) {
                return false;
            }
            p += 2;
            if (n % p == 0L) {
                return false;
            }
            p += 4;
        }
        return true;
    }

    private static long digitalRoot(long n) {
        if (n == 0) {
            return 0;
        }
        return 1 + (n - 1) % 9;
    }

    public static void main(String[] args) {
        final long from = 500;
        final long to = 1000;
        int count = 0;

        System.out.printf("Nice primes between %d and %d%n", from, to);
        long n = from;
        while (n < to) {
            if (isPrime(digitalRoot(n)) && isPrime(n)) {
                count++;
                System.out.print(n);
                if (count % 10 == 0) {
                    System.out.println();
                } else {
                    System.out.print(' ');
                }
            }

            n++;
        }
        System.out.println();
        System.out.printf("%d nice primes found.%n", count);
    }
}
Output:
Nice primes between 500 and 1000
509 547 563 569 587 599 601 617 619 641
653 659 673 677 691 709 727 743 761 797
821 839 853 857 887 907 911 929 941 947
977 983 997 
33 nice primes found.

jq

Works with: jq

Works with gojq, the Go implementation of jq

This entry uses `is_prime` as defined at Erdős-primes#jq.

def is_nice:
  # input: a non-negative integer
  def sumn:
    . as $in
    | tostring
    | if length == 1 then $in
      else explode | map([.] | implode | tonumber) | add | sumn
      end;

  is_prime and (sumn|is_prime);

# The task:
range(501; 1000) | select(is_nice)
Output:
509
547
563
569
587
599
601
617
619
641
653
659
673
677
691
709
727
743
761
797
821
839
853
857
887
907
911
929
941
947
977
983
997

Julia

See Strange_numbers#Julia for the filter_open_interval function.

using Primes

isnice(n, base=10) = isprime(n) && (mod1(n - 1, base - 1) + 1) in [2, 3, 5, 7, 11, 13, 17, 19]

filter_open_interval(500, 1000, isnice)
Output:
Finding numbers matching isnice for open interval (500, 1000):

509  547  563  569  587  599  601  617  619  641  653  659  673  677  691  709  727  743  
761  797  821  839  853  857  887  907  911  929  941  947  977  983  997

The total found was 33

Kotlin

Translation of: C
fun isPrime(n: Long): Boolean {
    if (n < 2) {
        return false
    }
    if (n % 2 == 0L) {
        return n == 2L
    }
    if (n % 3 == 0L) {
        return n == 3L
    }

    var p = 5
    while (p * p <= n) {
        if (n % p == 0L) {
            return false
        }
        p += 2
        if (n % p == 0L) {
            return false
        }
        p += 4
    }
    return true
}

fun digitalRoot(n: Long): Long {
    if (n == 0L) {
        return 0
    }
    return 1 + (n - 1) % 9
}

fun main() {
    val from = 500L
    val to = 1000L
    var count = 0

    println("Nice primes between $from and $to:")
    var n = from
    while (n < to) {
        if (isPrime(digitalRoot(n)) && isPrime(n)) {
            count += 1
            print(n)
            if (count % 10 == 0) {
                println()
            } else {
                print(' ')
            }
        }

        n += 1
    }
    println()
    println("$count nice primes found.")
}
Output:
Nice primes between 500 and 1000:
509 547 563 569 587 599 601 617 619 641
653 659 673 677 691 709 727 743 761 797
821 839 853 857 887 907 911 929 941 947
977 983 997 
33 nice primes found.

Lua

Translation of: C
function isPrime(n)
    if n < 2 then
        return false
    end
    if n % 2 == 0 then
        return n == 2
    end
    if n % 3 == 0 then
        return n == 3
    end

    local p = 5
    while p * p <= n do
        if n % p == 0 then
            return false
        end
        p = p + 2
        if n % p == 0 then
            return false
        end
        p = p + 4
    end
    return true
end

function digitalRoot(n)
    if n == 0 then
        return 0
    else
        return 1 + (n - 1) % 9
    end
end

from = 500
to = 1000
count = 0
print("Nice primes between " .. from .. " and " .. to)
n = from
while n < to do
    if isPrime(digitalRoot(n)) and isPrime(n) then
        count = count + 1
        io.write(n)
        if count % 10 == 0 then
            print()
        else
            io.write(' ')
        end
    end
    n = n + 1
end
print(count .. " nice primes found.")
Output:
Nice primes between 500 and 1000
509 547 563 569 587 599 601 617 619 641
653 659 673 677 691 709 727 743 761 797
821 839 853 857 887 907 911 929 941 947
977 983 997 33 nice primes found.

Mathematica /Wolfram Language

ClearAll[summ]
summ[n_] := FixedPoint[IntegerDigits /* Total, n]
Select[Range[501, 999], PrimeQ[#] \[And] PrimeQ[summ[#]] &]
Output:
{509, 547, 563, 569, 587, 599, 601, 617, 619, 641, 653, 659, 673, 677, 691, 709, 727, 743, 761, 797, 821, 839, 853, 857, 887, 907, 911, 929, 941, 947, 977, 983, 997}

Nim

import strutils, sugar

func isPrime(n: Positive): bool =
  if (n and 1) == 0: return n == 2
  var m = 3
  while m * m <= n:
    if n mod m == 0: return false
    inc m, 2
  result = true

func sumn(n: Positive): int =
  var n = n.int
  while n != 0:
    result += n mod 10
    n = n div 10

func isNicePrime(n: Positive): bool =
  if not n.isPrime: return false
  var n = n
  while n notin 1..9:
    n = sumn(n)
  result = n in [2, 3, 5, 7]

let list = collect(newSeq):
             for n in 501..999:
               if n.isNicePrime: n

echo "Found $1 nice primes between 501 and 999:".format(list.len)
for i, n in list:
  stdout.write n, if (i + 1) mod 10 == 0: '\n' else: ' '
echo()
Output:
Found 33 nice primes between 501 and 999:
509 547 563 569 587 599 601 617 619 641
653 659 673 677 691 709 727 743 761 797
821 839 853 857 887 907 911 929 941 947
977 983 997 

OCaml

After ruling out all multiples of three, mod 9 (the digital root) can only return {1, 2, 4, 5, 7, 8}. Adding 6 before calculating mod 9 makes all primes in the result even (and the composites odd), so (n + 6) mod 9 land 1 = 0 is sufficient for checking the digital root.

let is_nice_prime n =
  let rec test x =
    x * x > n || n mod x <> 0 && n mod (x + 2) <> 0 && test (x + 6)
  in
  if n < 5
  then n lor 1 = 3
  else n land 1 <> 0 && n mod 3 <> 0 && (n + 6) mod 9 land 1 = 0 && test 5

let () =
  Seq.(ints 500 |> take 500 |> filter is_nice_prime |> iter (Printf.printf " %u"))
  |> print_newline
Output:
 509 547 563 569 587 599 601 617 619 641 653 659 673 677 691 709 727 743 761 797 821 839 853 857 887 907 911 929 941 947 977 983 997

ooRexx

/* REXX */
n=1000
prime = .Array~new(n)~fill(.true)~~remove(1)
p.=0
Do i = 2 to n
  If prime[i] = .true Then Do
    Do j = i * i to n by i
      prime~remove(j)
      End
    p.i=1
    End
  End
z=0
ol=''
Do i=500 To 1000
  If p.i then Do
    dr=digroot(i)
    If p.dr Then Do
      ol=ol'  'i'('dr')'
      z=z+1
      If z//10=0 Then Do
        Say strip(ol)
        ol=''
        End
      End
    End
  End
Say strip(ol)
Say z 'nice primes in the range 500 to 1000'
Exit

digroot:
  Parse Arg s
  Do Until length(s)=1
    dr=0
    Do j=1 To length(s)
      dr=dr+substr(s,j,1)
      End
    s=dr
    End
  Return s
Output:
509(5)  547(7)  563(5)  569(2)  587(2)  599(5)  601(7)  617(5)  619(7)  641(2)
653(5)  659(2)  673(7)  677(2)  691(7)  709(7)  727(7)  743(5)  761(5)  797(5)
821(2)  839(2)  853(7)  857(2)  887(5)  907(7)  911(2)  929(2)  941(5)  947(2)
977(5)  983(2)  997(7)
33 nice primes in the range 500 to 1000

PARI/GP

nicePrimes( s, e ) = { local( m );
    forprime( p = s, e,
        m = p;                      \\
        while( m > 9,               \\   m == p mod 9
            m = sumdigits( m ) );   \\
        if( isprime( m ),
            print1( p, " " ) ) ); 
}

or

select( p -> isprime( p % 9 ), primes( [500, 1000] ))

Perl

Library: ntheory
use strict;
use warnings;

use ntheory 'is_prime';
use List::Util qw(sum);

sub digital_root {
    my ($n) = @_;
    do { $n = sum split '', $n } until 1 == length $n;
    $n
}

my($low, $high, $cnt, @nice_primes) = (500,1000);
is_prime($_) and is_prime(digital_root($_)) and push @nice_primes, $_ for $low+1 .. $high-1;

$cnt = @nice_primes;
print "Nice primes between $low and $high (total of $cnt):\n" .
(sprintf "@{['%5d' x $cnt]}", @nice_primes[0..$cnt-1]) =~ s/(.{55})/$1\n/gr;
Output:
Nice primes between 500 and 1000 (total of 33):
  509  547  563  569  587  599  601  617  619  641  653
  659  673  677  691  709  727  743  761  797  821  839
  853  857  887  907  911  929  941  947  977  983  997

Phix

Translation of: Factor
function pdr(integer n) return is_prime(n) and is_prime(1+remainder(n-1,9)) end function
sequence res = filter(tagset(1000,500),pdr)
printf(1,"%d nice primes found:\n  %s\n",{length(res),join_by(apply(res,sprint),1,11,"  ","\n  ")})
Output:
33 nice primes found:
  509  547  563  569  587  599  601  617  619  641  653
  659  673  677  691  709  727  743  761  797  821  839
  853  857  887  907  911  929  941  947  977  983  997

PHP

Translation of: Python
<?php
// Function to check if a number is prime
function isPrime($n) {
    if ($n <= 1) {
        return false;
    }
    for ($i = 2; $i <= sqrt($n); $i++) {
        if ($n % $i == 0) {
            return false;
        }
    }
    return true;
}

// Function to sum the digits of a number until the sum is a single digit
function sumOfDigits($n) {
    while ($n > 9) {
        $sum = 0;
        while ($n > 0) {
            $sum += $n % 10;
            $n = (int)($n / 10);
        }
        $n = $sum;
    }
    return $n;
}

function findNicePrimes($lower_limit=501, $upper_limit=1000) {
	// Find all Nice primes within the specified range 
    $nice_primes = array();
    for ($n = $lower_limit; $n < $upper_limit; $n++) {
        if (isPrime($n)) {
            $sumn = sumOfDigits($n);
            if (isPrime($sumn)) {
                array_push($nice_primes, $n);
            }
        }
    }
    return $nice_primes;
}
// Main loop to find and print "Nice Primes"
$nice_primes = findNicePrimes();
foreach ($nice_primes as $prime) {
    echo $prime . " ";
}
?>
Output:
509 547 563 569 587 599 601 617 619 641 653 659 673 677 691 709 727 743 761 797 821 839 853 857 887 907 911 929 941 947 977 983 997

Python

def is_prime(n):
    """Check if a number is prime."""
    if n <= 1:
        return False
    for i in range(2, int(n**0.5) + 1):
        if n % i == 0:
            return False
    return True

def sum_of_digits(n):
    """Calculate the repeated sum of digits until the sum's length is 1."""
    while n > 9:
        n = sum(int(digit) for digit in str(n))
    return n

def find_nice_primes(lower_limit=501, upper_limit=1000):
    """Find all Nice primes within the specified range."""
    nice_primes = []
    for n in range(lower_limit, upper_limit):
        if is_prime(n):
            sumn = sum_of_digits(n)
            if is_prime(sumn):
                nice_primes.append(n)
    return nice_primes

# Example usage
nice_primes = find_nice_primes()
print(nice_primes)
Output:
[509, 547, 563, 569, 587, 599, 601, 617, 619, 641, 653, 659, 673, 677, 691, 709, 727, 743, 761, 797, 821, 839, 853, 857, 887, 907, 911, 929, 941, 947, 977, 983, 997]

PL/0

var   n, sum, prime, i;
procedure sumdigitsofn;
    var v, vover10;
    begin
        sum := 0;
        v   := n;
        while v > 0 do begin
            vover10 := v / 10;
            sum := sum + ( v - ( vover10 * 10 ) );
            v := vover10
        end
    end;
procedure isnprime;
    var p;
    begin
        prime := 1;
        if n < 2 then prime := 0;
        if n > 2 then begin
            prime := 0;
            if odd( n ) then prime := 1;
            p := 3;
            while p * p <= n * prime do begin
               if n - ( ( n / p ) * p ) = 0 then prime := 0;
               p := p + 2;
            end
        end
    end;
begin
    i := 500;
    while i < 999 do begin
        i := i + 1;
        n := i;
        call isnprime;
        if prime = 1 then begin
            sum := n;
            while sum > 9 do begin
                call sumdigitsofn;
                n := sum
            end;
            if sum = 2 then ! i;
            if sum = 3 then ! i;
            if sum = 5 then ! i;
            if sum = 7 then ! i
        end
    end
end.
Output:

Note: PL/0 can only output one value per line, to avoid a long output, the results have been manually combined to 7 per line.

        509        547        563        569        587        599        601
        617        619        641        653        659        673        677
        691        709        727        743        761        797        821
        839        853        857        887        907        911        929
        941        947        977        983        997

PL/M

Translation of: ALGOL 68
100H:  /* FIND NICE PRIMES - PRIMES WHOSE DIGITAL ROOT IS ALSO PRIME */
   BDOS: PROCEDURE( FN, ARG ); /* CP/M BDOS SYSTEM CALL */
      DECLARE FN BYTE, ARG ADDRESS;
      GOTO 5;
   END BDOS;
   PRINT$CHAR:   PROCEDURE( C ); DECLARE C BYTE; CALL BDOS( 2, C ); END;
   PRINT$STRING: PROCEDURE( S ); DECLARE S ADDRESS; CALL BDOS( 9, S ); END;
   PRINT$NUMBER: PROCEDURE( N );
      DECLARE N ADDRESS;
      DECLARE V ADDRESS, N$STR( 6 ) BYTE, W BYTE;
      V = N;
      W = LAST( N$STR );
      N$STR( W ) = '$';
      N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
      DO WHILE( ( V := V / 10 ) > 0 );
         N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
      END;
      CALL PRINT$STRING( .N$STR( W ) );
   END PRINT$NUMBER;
   /* INTEGER SUARE ROOT: BASED ON THE ONE IN THE PL/M FOR FROBENIUS NUMBERS */
   SQRT: PROCEDURE( N )ADDRESS;
      DECLARE ( N, X0, X1 ) ADDRESS;
      IF N <= 3 THEN DO;
          IF N = 0 THEN X0 = 0; ELSE X0 = 1;
          END;
      ELSE DO;
         X0 = SHR( N, 1 );
         DO WHILE( ( X1 := SHR( X0 + ( N / X0 ), 1 ) ) < X0 );
            X0 = X1;
         END;
      END;
      RETURN X0;
   END SQRT;
   DECLARE MIN$PRIME LITERALLY '501';
   DECLARE MAX$PRIME LITERALLY '999';
   DECLARE DCL$PRIME LITERALLY '1000';
   DECLARE FALSE     LITERALLY '0';
   DECLARE TRUE      LITERALLY '1';
   /* SIEVE THE PRIMES TO MAX$PRIME */
   DECLARE ( I, S ) ADDRESS;
   DECLARE PRIME ( DCL$PRIME )BYTE;
   PRIME( 1 ) = FALSE; PRIME( 2 ) = TRUE;
   DO I = 3 TO LAST( PRIME ) BY 2; PRIME( I ) = TRUE;  END;
   DO I = 4 TO LAST( PRIME ) BY 2; PRIME( I ) = FALSE; END;
   DO I = 3 TO SQRT( MAX$PRIME );
      IF PRIME( I ) THEN DO;
         DO S = I * I TO LAST( PRIME ) BY I + I;PRIME( S ) = FALSE; END;
      END;
   END;
   /* FIND THE NICE PRIMES */
   DECLARE NICE$COUNT ADDRESS;
   NICE$COUNT = 0;
   DO I = MIN$PRIME TO MAX$PRIME;
      IF PRIME( I ) THEN DO;
         /* HAVE A PRIME */
         DECLARE DIGIT$SUM BYTE, V ADDRESS;
         DIGIT$SUM = LOW( V := I );
         DO WHILE( V > 9 );
            DIGIT$SUM = 0;
            DO WHILE( V > 0 );
               DIGIT$SUM = DIGIT$SUM + ( V MOD 10 );
               V = V / 10;
            END;
            V = DIGIT$SUM;
         END;
         IF PRIME( DIGIT$SUM ) THEN DO;
            /* THE DIGITAL ROOT IS PRIME */
            NICE$COUNT = NICE$COUNT + 1;
            CALL PRINT$CHAR( ' ' );
            CALL PRINT$NUMBER( I );
            CALL PRINT$CHAR( '(' );
            CALL PRINTCHAR( DIGIT$SUM + '0' );
            CALL PRINT$CHAR( ')' );
            IF NICE$COUNT MOD 12 = 0 THEN DO;
               CALL PRINT$STRING( .( 0DH, 0AH, '$' ) );
            END;
         END;
      END;
   END;
EOF
Output:
 509(5) 547(7) 563(5) 569(2) 587(2) 599(5) 601(7) 617(5) 619(7) 641(2) 653(5) 659(2)
 673(7) 677(2) 691(7) 709(7) 727(7) 743(5) 761(5) 797(5) 821(2) 839(2) 853(7) 857(2)
 887(5) 907(7) 911(2) 929(2) 941(5) 947(2) 977(5) 983(2) 997(7)

Quackery

eratosthenes and isprime are defined at Sieve of Eratosthenes#Quackery.

  1000 eratosthenes

  [ 1 - 9 mod 1+ ]          is digitalroot ( n --> n )

  [ dup digitalroot isprime
    swap isprime and ]      is niceprime   ( n --> b )

  500 times
    [ i^ 500 + niceprime if
        [ i^ 500 + echo sp ] ]
Output:
509 547 563 569 587 599 601 617 619 641 653 659 673 677 691 709 727 743 761 797 821 839 853 857 887 907 911 929 941 947 977 983 997 

Raku

sub digroot ($r) { .tail given $r, { [+] .comb } ... { .chars == 1 } }
my @is-nice = lazy (0..*).map: { .&is-prime && .&digroot.&is-prime ?? $_ !! False };
say @is-nice[500 ^..^ 1000].grep(*.so).batch(11)».fmt("%4d").join: "\n";
Output:
 509  547  563  569  587  599  601  617  619  641  653
 659  673  677  691  709  727  743  761  797  821  839
 853  857  887  907  911  929  941  947  977  983  997

Alternately, with somewhat better separation of concerns.

sub digroot ($r) { ($r, { .comb.sum } … { .chars == 1 }).tail }
sub is-nice ($_) { .is-prime && .&digroot.is-prime }
say (500 ^..^ 1000).grep( *.&is-nice ).batch(11)».fmt("%4d").join: "\n";

Same output.

REXX

/*REXX program finds and displays  nice primes, primes whose digital root is also prime.*/
parse arg lo hi cols .                           /*obtain optional argument from the CL.*/
if   lo=='' |   lo==","  then   lo=  500         /*Not specified?  Then use the default.*/
if   hi=='' |   hi==","  then   hi= 1000         /* "      "         "   "   "     "    */
if cols=='' | cols==","  then cols=   10         /* "      "         "   "   "     "    */
call genP                                        /*build array of semaphores for primes.*/
w= 10                                            /*width of a number in any column.     */
               title= ' nice primes that are between '   commas(lo)   " and "   commas(hi)
if cols>0 then say ' index │'center(title   ' (not inclusive)',   1 + cols*(w+1)     )
if cols>0 then say '───────┼'center(""                         ,  1 + cols*(w+1), '─')
found= 0;                    idx= 1              /*initialize # of nice primes and index*/
$=                                               /*a list of  nice  primes  (so far).   */
     do j=lo+1  to  hi-1;  if \!.j  then iterate /*search for  nice  primes within range*/
     digRoot= 1   +   (j - 1) // 9               /*obtain the digital root of  J.       */
     if \!.digRoot  then iterate                 /*Is digRoot prime?   No, then skip it.*/
     found= found + 1                            /*bump the number of  nice  primes.    */
     if cols<0             then iterate          /*Build the list  (to be shown later)? */
     c= commas(j)                                /*maybe add commas to the number.      */
     $= $ right(c, max(w, length(c) ) )          /*add a nice prime ──► list, allow big#*/
     if found//cols\==0    then iterate          /*have we populated a line of output?  */
     say center(idx, 7)'│'  substr($, 2);   $=   /*display what we have so far  (cols). */
     idx= idx + cols                             /*bump the  index  count for the output*/
     end   /*j*/

if $\==''  then say center(idx, 7)"│"  substr($, 2)  /*possible display residual output.*/
if cols>0 then say '───────┴'center(""                         ,  1 + cols*(w+1), '─')
say
say 'Found '       commas(found)      title      ' (not inclusive).'
exit 0                                           /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
commas: parse arg ?;  do jc=length(?)-3  to 1  by -3; ?=insert(',', ?, jc); end;  return ?
/*──────────────────────────────────────────────────────────────────────────────────────*/
genP:        @.1=2; @.2=3; @.3=5; @.4=7;  @.5=11 /*define some low primes.              */
      !.=0;  !.2=1; !.3=1; !.5=1; !.7=1;  !.11=1 /*   "     "   "    "     semaphores.  */
                           #=5;   s.#= @.# **2   /*number of primes so far;     prime². */
        do j=@.#+2  by 2  to hi                  /*find odd primes from here on.        */
        parse var j '' -1 _; if     _==5  then iterate  /*J divisible by 5?  (right dig)*/
                             if j// 3==0  then iterate  /*"     "      " 3?             */
                             if j// 7==0  then iterate  /*"     "      " 7?             */
                                                 /* [↑]  the above five lines saves time*/
               do k=5  while s.k<=j              /* [↓]  divide by the known odd primes.*/
               if j // @.k == 0  then iterate j  /*Is  J ÷ X?  Then not prime.     ___  */
               end   /*k*/                       /* [↑]  only process numbers  ≤  √ J   */
        #= #+1;    @.#= j;    s.#= j*j;   !.j= 1 /*bump # of Ps; assign next P;  P²; P# */
        end          /*j*/;   return
output   when using the default inputs:
 index │                         nice primes that are between  500  and  1,000  (not inclusive)
───────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────
   1   │        509        547        563        569        587        599        601        617        619        641
  11   │        653        659        673        677        691        709        727        743        761        797
  21   │        821        839        853        857        887        907        911        929        941        947
  31   │        977        983        997
───────┴───────────────────────────────────────────────────────────────────────────────────────────────────────────────

Found  33  nice primes that are between  500  and  1,000  (not inclusive).

Ring

load "stdlib.ring"

num = 0
limit1 = 500
limit2 = 1000

see "working..." + nl
see "Nice numbers are:" + nl

for n = limit1 to limit2
    strn = string(n)
    while true
          sumn = 0
          for m = 1 to len(strn)
              sumn = sumn + number(strn[m])
          next
          if len(string(sumn)) = 1
             exit
          ok
          strn = string(sumn)
    end
    if isprime(n) and isprime(sumn)
       num = num + 1
       see "" + num + ": " + n + " > Σ = " + sumn + nl
    ok
next

see "done..." + nl
Output:
working...
Nice numbers are:
1: 509 > Σ = 5
2: 547 > Σ = 7
3: 563 > Σ = 5
4: 569 > Σ = 2
5: 587 > Σ = 2
6: 599 > Σ = 5
7: 601 > Σ = 7
8: 617 > Σ = 5
9: 619 > Σ = 7
10: 641 > Σ = 2
11: 653 > Σ = 5
12: 659 > Σ = 2
13: 673 > Σ = 7
14: 677 > Σ = 2
15: 691 > Σ = 7
16: 709 > Σ = 7
17: 727 > Σ = 7
18: 743 > Σ = 5
19: 761 > Σ = 5
20: 797 > Σ = 5
21: 821 > Σ = 2
22: 839 > Σ = 2
23: 853 > Σ = 7
24: 857 > Σ = 2
25: 887 > Σ = 5
26: 907 > Σ = 7
27: 911 > Σ = 2
28: 929 > Σ = 2
29: 941 > Σ = 5
30: 947 > Σ = 2
31: 977 > Σ = 5
32: 983 > Σ = 2
33: 997 > Σ = 7
done...

RPL

≪ { } 500
   DO
      NEXTPRIME
      IF DUP 1 - 9 MOD 1 + ISPRIME? THEN
         SWAP OVER + SWAP END
   UNTIL DUP 1000 ≥ END
   DROP
≫ 'TASK' STO
Output:
1: { 509 547 563 569 587 599 601 617 619 641 653 659 673 677 691 709 727 743 761 797 821 839 853 857 887 907 911 929 941 947 977 983 997 }

Ruby

require 'prime'

class Integer
  def dig_root = (1+(self-1).remainder(9))
  def nice? = prime? && dig_root.prime?
end

p (500..1000).select(&:nice?)
Output:
[509, 547, 563, 569, 587, 599, 601, 617, 619, 641, 653, 659, 673, 677, 691, 709, 727, 743, 761, 797, 821, 839, 853, 857, 887, 907, 911, 929, 941, 947, 977, 983, 997]

Rust

Translation of: Factor
// [dependencies]
// primal = "0.3"

fn digital_root(n: u64) -> u64 {
    if n == 0 {
        0
    } else {
        1 + (n - 1) % 9
    }
}

fn nice_primes(from: usize, to: usize) {
    primal::Sieve::new(to)
        .primes_from(from)
        .take_while(|x| *x < to)
        .filter(|x| primal::is_prime(digital_root(*x as u64)))
        .for_each(|x| println!("{}", x));
}

fn main() {
    nice_primes(500, 1000);
}
Output:
509
547
563
569
587
599
601
617
619
641
653
659
673
677
691
709
727
743
761
797
821
839
853
857
887
907
911
929
941
947
977
983
997

Seed7

$ include "seed7_05.s7i";

const func boolean: isPrime (in integer: number) is func
  result
    var boolean: prime is FALSE;
  local
    var integer: upTo is 0;
    var integer: testNum is 3;
  begin
    if number = 2 then
      prime := TRUE;
    elsif odd(number) and number > 2 then
      upTo := sqrt(number);
      while number rem testNum <> 0 and testNum <= upTo do
        testNum +:= 2;
      end while;
      prime := testNum > upTo;
    end if;
  end func;

const proc: main is func
  local
    var integer: n is 0;
  begin
    for n range 501 to 999 step 2 do
      if isPrime(n) and 1 + ((n - 1) rem 9) in {2, 3, 5, 7} then
        write(n <& " ");
      end if;
    end for;
  end func;
Output:
509 547 563 569 587 599 601 617 619 641 653 659 673 677 691 709 727 743 761 797 821 839 853 857 887 907 911 929 941 947 977 983 997

Sidef

func digital_root(n, base=10) {
    while (n.len(base) > 1) {
        n = n.sumdigits(base)
    }
    return n
}

say primes(500, 1000).grep { digital_root(_).is_prime }
Output:
[509, 547, 563, 569, 587, 599, 601, 617, 619, 641, 653, 659, 673, 677, 691, 709, 727, 743, 761, 797, 821, 839, 853, 857, 887, 907, 911, 929, 941, 947, 977, 983, 997]

Wren

Library: Wren-math
Library: Wren-iterate
Library: Wren-fmt
import "./math" for Int
import "./iterate" for Stepped
import "./fmt" for Fmt

var sumDigits = Fn.new { |n|
    var sum = 0
    while (n > 0) {
        sum = sum + (n % 10)
        n = (n/10).floor
    }
    return sum
}

System.print("Nice primes in the interval (500, 900) are:")
var c = 0
for (i in Stepped.new(501..999, 2)) {
    if (Int.isPrime(i)) {
        var s = i
        while (s >= 10) s = sumDigits.call(s)
        if (Int.isPrime(s)) {
            c = c + 1
            Fmt.print("$2d: $d -> Σ = $d", c, i, s)
        }
    }
}
Output:
Nice primes in the interval (500, 900) are:
 1: 509 -> Σ = 5
 2: 547 -> Σ = 7
 3: 563 -> Σ = 5
 4: 569 -> Σ = 2
 5: 587 -> Σ = 2
 6: 599 -> Σ = 5
 7: 601 -> Σ = 7
 8: 617 -> Σ = 5
 9: 619 -> Σ = 7
10: 641 -> Σ = 2
11: 653 -> Σ = 5
12: 659 -> Σ = 2
13: 673 -> Σ = 7
14: 677 -> Σ = 2
15: 691 -> Σ = 7
16: 709 -> Σ = 7
17: 727 -> Σ = 7
18: 743 -> Σ = 5
19: 761 -> Σ = 5
20: 797 -> Σ = 5
21: 821 -> Σ = 2
22: 839 -> Σ = 2
23: 853 -> Σ = 7
24: 857 -> Σ = 2
25: 887 -> Σ = 5
26: 907 -> Σ = 7
27: 911 -> Σ = 2
28: 929 -> Σ = 2
29: 941 -> Σ = 5
30: 947 -> Σ = 2
31: 977 -> Σ = 5
32: 983 -> Σ = 2
33: 997 -> Σ = 7

XPL0

func IntLen(N);         \Return number of digits in N
int  N, I;
for I:= 1 to 10 do
    [N:= N/10;
    if N = 0 then return I;
    ];

func IsPrime(N);        \Return 'true' if N is prime
int  N, I;
[if N <= 2 then return N = 2;
if (N&1) = 0 then \even >2\ return false;
for I:= 3 to sqrt(N) do
    [if rem(N/I) = 0 then return false;
    I:= I+1;
    ];
return true;
];

func SumDigits(N);      \Return sum of digits in N
int  N, Sum;
[Sum:= 0;
repeat  N:= N/10;
        Sum:= Sum + rem(0);
until   N=0;
return Sum;
];

int  C, N, SumN;
[C:= 0;
for N:= 501 to 999 do
    if IsPrime(N) then
        [SumN:= N;
        repeat  SumN:= SumDigits(SumN);
        until   IntLen(SumN) = 1;
        if IsPrime(SumN) then
            [IntOut(0, N);
            C:= C+1;
            if rem (C/10) then ChOut(0, ^ ) else CrLf(0);
            ];
        ];
]
Output:
509 547 563 569 587 599 601 617 619 641
653 659 673 677 691 709 727 743 761 797
821 839 853 857 887 907 911 929 941 947
977 983 997