Greedy algorithm for Egyptian fractions
You are encouraged to solve this task according to the task description, using any language you may know.
An Egyptian fraction is the sum of distinct unit fractions such as:
Each fraction in the expression has a numerator equal to 1 (unity) and a denominator that is a positive integer, and all the denominators are distinct (i.e., no repetitions).
Fibonacci's Greedy algorithm for Egyptian fractions expands the fraction to be represented by repeatedly performing the replacement
(simplifying the 2nd term in this replacement as necessary, and where is the ceiling function).
For this task, Proper and improper fractions must be able to be expressed.
Proper fractions are of the form where and are positive integers, such that , and
improper fractions are of the form where and are positive integers, such that a ≥ b.
(See the REXX programming example to view one method of expressing the whole number part of an improper fraction.)
For improper fractions, the integer part of any improper fraction should be first isolated and shown preceding the Egyptian unit fractions, and be surrounded by square brackets [n].
- Task requirements
- show the Egyptian fractions for: and and
- for all proper fractions, where and are positive one-or two-digit (decimal) integers, find and show an Egyptian fraction that has:
- the largest number of terms,
- the largest denominator.
- for all one-, two-, and three-digit integers, find and show (as above). {extra credit}
- Also see
- Wolfram MathWorld™ entry: Egyptian fraction
- Numberphile YouTube video: Egyptian Fractions and the Greedy Algorithm
ALGOL 68
Based on the VB.NET sample.
Uses Algol 68G's LONG LONG INT for large integers.
Note that ALGOL 68 Genie version 3 will issue a warning: a68g: warning: 2007 digits precision impacts performance.
BEGIN # compute some Egyptian fractions #
PR precision 2000 PR # set the number of digits for LONG LONG INT #
PROC gcd = ( LONG LONG INT a, b )LONG LONG INT:
IF b = 0 THEN
IF a < 0 THEN
- a
ELSE
a
FI
ELSE
gcd( b, a MOD b )
FI ; # gcd #
MODE RATIONAL = STRUCT( LONG LONG INT num, den );
MODE LISTOFRATIONAL = STRUCT( RATIONAL element, REF LISTOFRATIONAL next );
REF LISTOFRATIONAL nil list of rational = NIL;
OP TOSTRING = ( INT a )STRING: whole( a, 0 );
CO OP TOSTRING = ( LONG INT a )STRING: whole( a, 0 ); # not needed for the task # CO
OP TOSTRING = ( LONG LONG INT a )STRING: whole( a, 0 );
OP TOSTRING = ( RATIONAL a )STRING:
IF den OF a = 1
THEN TOSTRING num OF a
ELSE TOSTRING num OF a + "/" + TOSTRING den OF a
FI ; # TOSTRING #
OP TOSTRING = ( REF LISTOFRATIONAL lr )STRING:
BEGIN
REF LISTOFRATIONAL p := lr;
STRING result := "[";
WHILE p ISNT nil list of rational DO
result +:= TOSTRING element OF p;
IF next OF p IS nil list of rational THEN
p := NIL
ELSE
p := next OF p;
result +:= " + "
FI
OD;
result + "]"
END ; # TOSTRING #
OP CEIL = ( LONG LONG REAL v )LONG LONG INT:
IF LONG LONG INT result := ENTIER v;
ABS v > ABS result
THEN result + 1
ELSE result
FI ; # CEIL #
OP EGYPTIAN = ( RATIONAL rp )REF LISTOFRATIONAL:
IF RATIONAL r := rp;
num OF r = 0 OR num OF r = 1
THEN HEAP LISTOFRATIONAL := ( r, nil list of rational )
ELSE
REF LISTOFRATIONAL result := nil list of rational;
REF LISTOFRATIONAL end result := nil list of rational;
PROC add = ( RATIONAL rn )VOID:
IF end result IS nil list of rational THEN
result := HEAP LISTOFRATIONAL := ( rn, nil list of rational );
end result := result
ELSE
next OF end result := HEAP LISTOFRATIONAL := ( rn, nil list of rational );
end result := next OF end result
FI ; # add #
IF num OF r > den OF r THEN
add( RATIONAL( num OF r OVER den OF r, 1 ) );
r := ( num OF r MOD den OF r, den OF r )
FI;
PROC mod func = ( LONG LONG INT m, n )LONG LONG INT: ( ( m MOD n ) + n ) MOD n;
WHILE num OF r /= 0 DO
LONG LONG INT q = CEIL( den OF r / num OF r );
add( RATIONAL( 1, q ) );
r := RATIONAL( mod func( - ( den OF r ), num OF r ), ( den OF r ) * q )
OD;
result
FI ; # EGYPTIAN #
BEGIN # task test cases #
[]RATIONAL test cases = ( RATIONAL( 43, 48 ), RATIONAL( 5, 121 ), RATIONAL( 2014, 59 ) );
FOR r pos FROM LWB test cases TO UPB test cases DO
print( ( TOSTRING test cases[ r pos ], " -> ", TOSTRING EGYPTIAN test cases[ r pos ], newline ) )
OD;
# find the fractions with the most terms and the largest denominator #
print( ( "For rationals with numerator and denominator in 1..99:", newline ) );
RATIONAL largest denominator := ( 0, 1 );
REF LISTOFRATIONAL max denominator list := nil list of rational;
LONG LONG INT max denominator := 0;
RATIONAL most terms := ( 0, 1 );
REF LISTOFRATIONAL most terms list := nil list of rational;
INT max terms := 0;
FOR num TO 99 DO
FOR den TO 99 DO
RATIONAL r = RATIONAL( num, den );
REF LISTOFRATIONAL e := EGYPTIAN r;
REF LISTOFRATIONAL p := e;
INT terms := 0;
WHILE p ISNT nil list of rational DO
terms +:= 1;
IF den OF element OF p > max denominator THEN
largest denominator := r;
max denominator := den OF element OF p;
max denominator list := e
FI;
p := next OF p
OD;
IF terms > max terms THEN
most terms := r;
max terms := terms;
most terms list := e
FI
OD
OD;
print( ( " ", TOSTRING most terms, " has the most terms: ", TOSTRING max terms, newline
, " ", TOSTRING most terms list, newline
)
);
print( ( " ", TOSTRING largest denominator, " has the largest denominator:", newline
, " ", TOSTRING max denominator list, newline
)
)
END
END
- Output:
a68g: warning: 2007 digits precision impacts performance. 43/48 -> [1/2 + 1/3 + 1/16] 5/121 -> [1/25 + 1/757 + 1/763309 + 1/873960180913 + 1/1527612795642093418846225] 2014/59 -> [34 + 1/8 + 1/95 + 1/14947 + 1/670223480] For rationals with numerator and denominator in 1..99: 97/53 has the most terms: 9 [1 + 1/2 + 1/4 + 1/13 + 1/307 + 1/120871 + 1/20453597227 + 1/697249399186783218655 + 1/1458470173998990524806872692984177836808420] 8/97 has the largest denominator: [1/13 + 1/181 + 1/38041 + 1/1736503177 + 1/3769304102927363485 + 1/18943537893793408504192074528154430149 + 1/538286441900380211365817285104907086347439746130226973253778132494225813153 + 1/579504587067542801713103191859918608251030291952195423583529357653899418686342360361798689053273749372615043661810228371898539583862011424993909789665]
C
Output has limited accuracy as noted by comments. The problem requires bigint support to be completely accurate.
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
typedef int64_t integer;
struct Pair {
integer md;
int tc;
};
integer mod(integer x, integer y) {
return ((x % y) + y) % y;
}
integer gcd(integer a, integer b) {
if (0 == a) return b;
if (0 == b) return a;
if (a == b) return a;
if (a > b) return gcd(a - b, b);
return gcd(a, b - a);
}
void write0(bool show, char *str) {
if (show) {
printf(str);
}
}
void write1(bool show, char *format, integer a) {
if (show) {
printf(format, a);
}
}
void write2(bool show, char *format, integer a, integer b) {
if (show) {
printf(format, a, b);
}
}
struct Pair egyptian(integer x, integer y, bool show) {
struct Pair ret;
integer acc = 0;
bool first = true;
ret.tc = 0;
ret.md = 0;
write2(show, "Egyptian fraction for %lld/%lld: ", x, y);
while (x > 0) {
integer z = (y + x - 1) / x;
if (z == 1) {
acc++;
} else {
if (acc > 0) {
write1(show, "%lld + ", acc);
first = false;
acc = 0;
ret.tc++;
} else if (first) {
first = false;
} else {
write0(show, " + ");
}
if (z > ret.md) {
ret.md = z;
}
write1(show, "1/%lld", z);
ret.tc++;
}
x = mod(-y, x);
y = y * z;
}
if (acc > 0) {
write1(show, "%lld", acc);
ret.tc++;
}
write0(show, "\n");
return ret;
}
int main() {
struct Pair p;
integer nm = 0, dm = 0, dmn = 0, dmd = 0, den = 0;;
int tm, i, j;
egyptian(43, 48, true);
egyptian(5, 121, true); // final term cannot be represented correctly
egyptian(2014, 59, true);
tm = 0;
for (i = 1; i < 100; i++) {
for (j = 1; j < 100; j++) {
p = egyptian(i, j, false);
if (p.tc > tm) {
tm = p.tc;
nm = i;
dm = j;
}
if (p.md > den) {
den = p.md;
dmn = i;
dmd = j;
}
}
}
printf("Term max is %lld/%lld with %d terms.\n", nm, dm, tm); // term max is correct
printf("Denominator max is %lld/%lld\n", dmn, dmd); // denominator max is not correct
egyptian(dmn, dmd, true); // enough digits cannot be represented without bigint
return 0;
}
- Output:
Egyptian fraction for 43/48: 1/2 + 1/3 + 1/16 Egyptian fraction for 5/121: 1/25 + 1/757 + 1/763309 + 1/873960180913 + 1/1025410058030422033 Egyptian fraction for 2014/59: 34 + 1/8 + 1/95 + 1/14947 + 1/670223480 Term max is 97/53 with 9 terms. Denominator max is 69/97 Egyptian fraction for 69/97: 1/2 + 1/5 + 1/89 + 1/9593 + 1/118309099 + 1/32659766662805104 + 1/2591418766870639376
C#
using System;
using System.Collections.Generic;
using System.Linq;
using System.Numerics;
using System.Text;
using System.Threading.Tasks;
namespace EgyptianFractions {
class Program {
class Rational : IComparable<Rational>, IComparable<int> {
public BigInteger Num { get; }
public BigInteger Den { get; }
public Rational(BigInteger n, BigInteger d) {
var c = Gcd(n, d);
Num = n / c;
Den = d / c;
if (Den < 0) {
Num = -Num;
Den = -Den;
}
}
public Rational(BigInteger n) {
Num = n;
Den = 1;
}
public override string ToString() {
if (Den == 1) {
return Num.ToString();
} else {
return string.Format("{0}/{1}", Num, Den);
}
}
public Rational Add(Rational rhs) {
return new Rational(Num * rhs.Den + rhs.Num * Den, Den * rhs.Den);
}
public Rational Sub(Rational rhs) {
return new Rational(Num * rhs.Den - rhs.Num * Den, Den * rhs.Den);
}
public int CompareTo(Rational rhs) {
var ad = Num * rhs.Den;
var bc = Den * rhs.Num;
return ad.CompareTo(bc);
}
public int CompareTo(int rhs) {
var ad = Num * rhs;
var bc = Den * rhs;
return ad.CompareTo(bc);
}
}
static BigInteger Gcd(BigInteger a, BigInteger b) {
if (b == 0) {
if (a < 0) {
return -a;
} else {
return a;
}
} else {
return Gcd(b, a % b);
}
}
static List<Rational> Egyptian(Rational r) {
List<Rational> result = new List<Rational>();
if (r.CompareTo(1) >= 0) {
if (r.Den == 1) {
result.Add(r);
result.Add(new Rational(0));
return result;
}
result.Add(new Rational(r.Num / r.Den));
r = r.Sub(result[0]);
}
BigInteger modFunc(BigInteger m, BigInteger n) {
return ((m % n) + n) % n;
}
while (r.Num != 1) {
var q = (r.Den + r.Num - 1) / r.Num;
result.Add(new Rational(1, q));
r = new Rational(modFunc(-r.Den, r.Num), r.Den * q);
}
result.Add(r);
return result;
}
static string FormatList<T>(IEnumerable<T> col) {
StringBuilder sb = new StringBuilder();
var iter = col.GetEnumerator();
sb.Append('[');
if (iter.MoveNext()) {
sb.Append(iter.Current);
}
while (iter.MoveNext()) {
sb.AppendFormat(", {0}", iter.Current);
}
sb.Append(']');
return sb.ToString();
}
static void Main() {
List<Rational> rs = new List<Rational> {
new Rational(43, 48),
new Rational(5, 121),
new Rational(2014, 59)
};
foreach (var r in rs) {
Console.WriteLine("{0} => {1}", r, FormatList(Egyptian(r)));
}
var lenMax = Tuple.Create(0UL, new Rational(0));
var denomMax = Tuple.Create(BigInteger.Zero, new Rational(0));
var query = (from i in Enumerable.Range(1, 100)
from j in Enumerable.Range(1, 100)
select new Rational(i, j))
.Distinct()
.ToList();
foreach (var r in query) {
var e = Egyptian(r);
ulong eLen = (ulong) e.Count;
var eDenom = e.Last().Den;
if (eLen > lenMax.Item1) {
lenMax = Tuple.Create(eLen, r);
}
if (eDenom > denomMax.Item1) {
denomMax = Tuple.Create(eDenom, r);
}
}
Console.WriteLine("Term max is {0} with {1} terms", lenMax.Item2, lenMax.Item1);
var dStr = denomMax.Item1.ToString();
Console.WriteLine("Denominator max is {0} with {1} digits {2}...{3}", denomMax.Item2, dStr.Length, dStr.Substring(0, 5), dStr.Substring(dStr.Length - 5, 5));
}
}
}
- Output:
43/48 => [1/2, 1/3, 1/16] 5/121 => [1/25, 1/757, 1/763309, 1/873960180913, 1/1527612795642093418846225] 2014/59 => [34, 1/8, 1/95, 1/14947, 1/670223480] Term max is 97/53 with 9 terms Denominator max is 8/97 with 150 digits 57950...89665
C++
The C++ standard library does not have a "big integer" type, so this solution uses the Boost library.
#include <boost/multiprecision/cpp_int.hpp>
#include <iostream>
#include <optional>
#include <sstream>
#include <string>
#include <vector>
typedef boost::multiprecision::cpp_int integer;
struct fraction {
fraction(const integer& n, const integer& d)
: numerator(n), denominator(d) {}
integer numerator;
integer denominator;
};
integer mod(const integer& x, const integer& y) { return ((x % y) + y) % y; }
size_t count_digits(const integer& i) {
std::ostringstream os;
os << i;
return os.str().length();
}
std::string to_string(const integer& i) {
const int max_digits = 20;
std::ostringstream os;
os << i;
std::string s = os.str();
if (s.length() > max_digits)
s.replace(max_digits / 2, s.length() - max_digits, "...");
return s;
}
std::ostream& operator<<(std::ostream& out, const fraction& f) {
return out << to_string(f.numerator) << '/' << to_string(f.denominator);
}
void egyptian(const fraction& f, std::vector<fraction>& result) {
result.clear();
integer x = f.numerator, y = f.denominator;
while (x > 0) {
integer z = (y + x - 1) / x;
result.emplace_back(1, z);
x = mod(-y, x);
y = y * z;
}
}
void print_egyptian(const std::vector<fraction>& result) {
if (result.empty())
return;
auto i = result.begin();
std::cout << *i++;
for (; i != result.end(); ++i)
std::cout << " + " << *i;
std::cout << '\n';
}
void print_egyptian(const fraction& f) {
std::cout << "Egyptian fraction for " << f << ": ";
integer x = f.numerator, y = f.denominator;
if (x > y) {
std::cout << "[" << x / y << "] ";
x = x % y;
}
std::vector<fraction> result;
egyptian(fraction(x, y), result);
print_egyptian(result);
std::cout << '\n';
}
void show_max_terms_and_max_denominator(const integer& limit) {
size_t max_terms = 0;
std::optional<fraction> max_terms_fraction, max_denominator_fraction;
std::vector<fraction> max_terms_result;
integer max_denominator = 0;
std::vector<fraction> max_denominator_result;
std::vector<fraction> result;
for (integer b = 2; b < limit; ++b) {
for (integer a = 1; a < b; ++a) {
fraction f(a, b);
egyptian(f, result);
if (result.size() > max_terms) {
max_terms = result.size();
max_terms_result = result;
max_terms_fraction = f;
}
const integer& denominator = result.back().denominator;
if (denominator > max_denominator) {
max_denominator = denominator;
max_denominator_result = result;
max_denominator_fraction = f;
}
}
}
std::cout
<< "Proper fractions with most terms and largest denominator, limit = "
<< limit << ":\n\n";
std::cout << "Most terms (" << max_terms
<< "): " << max_terms_fraction.value() << " = ";
print_egyptian(max_terms_result);
std::cout << "\nLargest denominator ("
<< count_digits(max_denominator_result.back().denominator)
<< " digits): " << max_denominator_fraction.value() << " = ";
print_egyptian(max_denominator_result);
}
int main() {
print_egyptian(fraction(43, 48));
print_egyptian(fraction(5, 121));
print_egyptian(fraction(2014, 59));
show_max_terms_and_max_denominator(100);
show_max_terms_and_max_denominator(1000);
return 0;
}
- Output:
Egyptian fraction for 43/48: 1/2 + 1/3 + 1/16 Egyptian fraction for 5/121: 1/25 + 1/757 + 1/763309 + 1/873960180913 + 1/1527612795...3418846225 Egyptian fraction for 2014/59: [34] 1/8 + 1/95 + 1/14947 + 1/670223480 Proper fractions with most terms and largest denominator, limit = 100: Most terms (8): 44/53 = 1/2 + 1/4 + 1/13 + 1/307 + 1/120871 + 1/20453597227 + 1/6972493991...6783218655 + 1/1458470173...7836808420 Largest denominator (150 digits): 8/97 = 1/13 + 1/181 + 1/38041 + 1/1736503177 + 1/3769304102927363485 + 1/1894353789...8154430149 + 1/5382864419...4225813153 + 1/5795045870...3909789665 Proper fractions with most terms and largest denominator, limit = 1000: Most terms (13): 641/796 = 1/2 + 1/4 + 1/19 + 1/379 + 1/159223 + 1/28520799973 + 1/9296411783...1338400861 + 1/1008271507...4174730681 + 1/1219933718...8484537833 + 1/1860297848...1025882029 + 1/4614277444...8874327093 + 1/3193733450...1456418881 + 1/2039986670...2410165441 Largest denominator (2847 digits): 36/457 = 1/13 + 1/541 + 1/321409 + 1/114781617793 + 1/1482167225...0844346913 + 1/2510651068...4290086881 + 1/7353930250...3326272641 + 1/6489634815...7391865217 + 1/5264420004...5476206145 + 1/3695215730...1238141889 + 1/2048192894...4706590593 + 1/8390188268...5525592705
Common Lisp
(defun egyption-fractions (x y &optional acc)
(let* ((a (/ x y)))
(cond
((> (numerator a) (denominator a))
(multiple-value-bind (q r) (floor x y)
(if (zerop r)
(cons q acc)
(egyption-fractions r y (cons q acc)))))
((= (numerator a) 1) (reverse (cons a acc)))
(t (let ((b (ceiling y x)))
(egyption-fractions (mod (- y) x) (* y b) (cons (/ b) acc)))))))
(defun test (n fn)
(car (sort (loop for i from 1 to n append
(loop for j from 2 to n collect
(cons (/ i j) (funcall fn (egyption-fractions i j)))))
#'>
:key #'cdr)))
- Output:
Basic tests:
(egyption-fractions 43 48) (egyption-fractions 5 121) (egyption-fractions 2014 59) (egyption-fractions 8 97)
(1/2 1/3 1/16) (1/25 1/757 1/763309 1/873960180913 1/1527612795642093418846225) (34 1/8 1/95 1/14947 1/670223480) (1/13 1/181 1/38041 1/1736503177 1/3769304102927363485 1/18943537893793408504192074528154430149 1/538286441900380211365817285104907086347439746130226973253778132494225813153 1/579504587067542801713103191859918608251030291952195423583529357653899418686342360361798689053273749372615043661810228371898539583862011424993909789665)
Other tests:
(test 999 #'length) (test 999 (lambda (xs) (loop for x in xs maximizing (denominator x))))
(493/457 . 13) (36/457 . 839018826833450186636781520007011999269820404906753180244759299287837378895397605613261469995626498719289835112392530430840514102146998625666594756995273418015600023494049208108894185781774002683063204252356172520941088783702738286944210460710059319691268110283467445381026653628599765684739105388642310044785844902157076919003735231543781785073393176144167688252446541416466418608465458502997971425428342769433127784560570193376772878336217849260872114137931351960543608384244009505664253173875705234889570853924105640193619301332776989688248555027054395237907581951261868280899150574360164800187964167274323078311078867593844043149124596271281252530924719121766925749760855109100066731841478262812686642693395896229983745226277793055820609058348269152190083695704685769622011655159174272326647342695589818127126303038171968768650476413027459205291075571637957597356820188031655122749743652301268394542123970892422944335857917641636041892192547135178153602038877677614358281581103685526041329841496863410305888255234495015115912388514981113593387572720476744188169200130515719608747338810136728267784013352396910979904545913458536243327311977805126410065576961237640824852114328884086581542091492600312838425666927627674227053793897767395465326589843035773944346372949759909905561209334216847158156644884281300512699910530092870919061876615770708519243818676366245477462042294267674677954783726990349386117468071932874021023714524610740225814235147693954027910741673103980749749728106483987721602738673173009362802337092908847797499475895347112889339502928407808058670297722175686638678788738689803945574002805677250463286479363670076942509109589495377221095405979217163821481666646160815221224686562530536116613645305335922819524037829878961518170177968768364853399057357772141655622381280196908637031556436461404285930426436983658106288733881761514992109680298995922754466040011586713812553117621857109517258943846004179432521131844156242428351270188803919554398620084668514054504414062276012292497375238210886595006249453460414790147611422121782194848803348777061816460876697945418158442269512987729152441940326466631610424906158237288218706447963113019239557885486647314085357651895226117364760315394354624547919209138539180807829672545924239541758108877100331729470119526373928796447673951888289511964811633025369821156695934557103429921063387965046715070102916811976552584464153981214277622597308113449320462341683055200576571910241686615924531368198770946893858410058348221985603151428153382461711196734214085852523778422630907646235900752317571022131569421231196329080023952364788544301495422061066036911772385739659997665503832444529713544286955548310166168837889046149061296461059432238621602179724809510024772127497080258401694929973105184832214622785679651550368465524821062859837409907538269572622296774545103747438431266995525592705)
D
Assuming the Python entry is correct, this code is equivalent. This requires the D module of the Arithmetic/Rational task.
import std.stdio, std.bigint, std.algorithm, std.range, std.conv, std.typecons,
arithmetic_rational: Rat = Rational;
Rat[] egyptian(Rat r) pure nothrow {
typeof(return) result;
if (r >= 1) {
if (r.denominator == 1)
return [r, Rat(0, 1)];
result = [Rat(r.numerator / r.denominator, 1)];
r -= result[0];
}
static enum mod = (in BigInt m, in BigInt n) pure nothrow =>
((m % n) + n) % n;
while (r.numerator != 1) {
immutable q = (r.denominator + r.numerator - 1) / r.numerator;
result ~= Rat(1, q);
r = Rat(mod(-r.denominator, r.numerator), r.denominator * q);
}
result ~= r;
return result;
}
void main() {
foreach (immutable r; [Rat(43, 48), Rat(5, 121), Rat(2014, 59)])
writefln("%s => %(%s %)", r, r.egyptian);
Tuple!(size_t, Rat) lenMax;
Tuple!(BigInt, Rat) denomMax;
foreach (immutable r; iota(1, 100).cartesianProduct(iota(1, 100))
.map!(nd => nd[].Rat).array.sort().uniq) {
immutable e = r.egyptian;
immutable eLen = e.length;
immutable eDenom = e.back.denominator;
if (eLen > lenMax[0])
lenMax = tuple(eLen, r);
if (eDenom > denomMax[0])
denomMax = tuple(eDenom, r);
}
writefln("Term max is %s with %d terms", lenMax[1], lenMax[0]);
immutable dStr = denomMax[0].text;
writefln("Denominator max is %s with %d digits %s...%s",
denomMax[1], dStr.length, dStr[0 .. 5], dStr[$ - 5 .. $]);
}
- Output:
43/48 => 1/2 1/3 1/16 5/121 => 1/25 1/757 1/763309 1/873960180913 1/1527612795642093418846225 2014/59 => 34 1/8 1/95 1/14947 1/670223480 Term max is 97/53 with 9 terms Denominator max is 8/97 with 150 digits 57950...89665
Erlang
-module(egypt).
-import(lists, [reverse/1, seq/2]).
-export([frac/2, show/2, rosetta/0]).
rosetta() ->
Fractions = [{N, D, second(frac(N, D))} || N <- seq(2,99), D <- seq(N+1, 99)],
{Longest, A1, B1} = findmax(fun length/1, Fractions),
io:format("~b/~b has ~b terms.~n", [A1, B1, Longest]),
{Largest, A2, B2} = findmax(fun (L) -> hd(reverse(L)) end, Fractions),
io:format("~b/~b has a really long denominator. (~b)~n", [A2, B2, Largest]).
second({_, B}) -> B.
findmax(Fn, L) -> findmax(Fn, L, 0, 0, 0).
findmax(_, [], M, A, B) -> {M, A, B};
findmax(Fn, [{A,B,Frac}|Fracs], M, A0, B0) ->
Val = Fn(Frac),
case Val > M of
true -> findmax(Fn, Fracs, Val, A, B);
false -> findmax(Fn, Fracs, M, A0, B0)
end.
show(A, B) ->
{W, R} = frac(A, B),
case W of
0 -> ok;
_ -> io:format("[~b] ", [W])
end,
case R of
[] -> ok;
[D0|Ds] ->
io:format("1/~b ", [D0]),
[io:format("+ 1/~b ", [D]) || D <- Ds],
ok
end.
frac(A, B) ->
{A div B, reverse(proper(A rem B, B, []))}.
proper(0, _, L) -> L;
proper(1, Y, L) -> [Y|L];
proper(X, Y, L) ->
D = ceildiv(Y, X),
X2 = mod(-Y, X),
Y2 = Y*ceildiv(Y, X),
proper(X2, Y2, [D|L]).
ceildiv(A, B) ->
Q = A div B,
case A rem B of
0 -> Q;
_ -> Q+1
end.
mod(A, M) ->
B = A rem M,
if
B < 0 -> B + M;
true -> B
end.
- Output:
129> egypt:show(43,48). 1/2 + 1/3 + 1/16 ok 130> egypt:show(5,121). 1/25 + 1/757 + 1/763309 + 1/873960180913 + 1/1527612795642093418846225 ok 131> egypt:show(2014,59). [34] 1/8 + 1/95 + 1/14947 + 1/670223480 ok 132> egypt:rosetta(). 8/97 has 8 terms. 8/97 has a really long denominator. (579504587067542801713103191859918608251030291952195423583529357653899418686342360361798689053273749372615043661810228371898539583862011424993909789665) ok
F#
// Greedy algorithm for Egyptian fractions. Nigel Galloway: February 1st., 2023
open Mathnet.Numerics
let fN(g:BigRational)=match bigint.DivRem(g.Denominator,g.Numerator) with (n,g) when g=0I->n |(n,_)->n+1I
let fG(n:BigRational)=Seq.unfold(fun(g:BigRational)->if g.Numerator=0I then None else let i=fN g in Some(i,(g-1N/(BigRational.FromBigInt i))))(n)
let fL(n:bigint,g:seq<bigint>)=printf "%A" n; g|>Seq.iter(printf "+1/%A"); printfn ""
let f2ef(i:BigRational)=let n,g=bigint.DivRem(i.Numerator,i.Denominator) in (n,fG(BigRational.FromBigIntFraction(g,i.Denominator)))
[43N/48N;5N/121N;2014N/59N]|>List.iter(f2ef>>fL)
let n,_=List.allPairs [1N..99N] [1N..99N]|>Seq.map(fun(n,g)->let n=n/g in (n,f2ef n))|>Seq.maxBy(fun(_,(n,g))->Seq.length g + if n>0I then 1 else 0) in printf "%A->" n; (f2ef>>fL)n
let n,_=List.allPairs [1N..999N] [1N..999N]|>Seq.map(fun(n,g)->let n=n/g in (n,f2ef n))|>Seq.maxBy(fun(_,(n,g))->Seq.length g + if n>0I then 1 else 0) in printf "%A->" n; (f2ef>>fL)n
let n,_=List.allPairs [1N..99N] [1N..99N]|>Seq.map(fun(n,g)->let n=n/g in (n,f2ef n))|>Seq.maxBy(fun(_,(n,g))->if Seq.isEmpty g then 0I else Seq.max g) in printf "%A->" n; (f2ef>>fL)n
let n,_=List.allPairs [1N..999N] [1N..999N]|>Seq.map(fun(n,g)->let n=n/g in (n,f2ef n))|>Seq.maxBy(fun(_,(n,g))->if Seq.isEmpty g then 0I else Seq.max g) in printf "%A->" n; (f2ef>>fL)n
- Output:
0+1/2+1/3+1/16 0+1/25+1/757+1/763309+1/873960180913+1/1527612795642093418846225 34+1/8+1/95+1/14947+1/670223480 97/53N->1+1/2+1/4+1/13+1/307+1/120871+1/20453597227+1/697249399186783218655+1/1458470173998990524806872692984177836808420 493/457N->1+1/13+1/541+1/321409+1/114781617793+1/14821672255960844346913+1/251065106814993628596500876449600804290086881+1/73539302503361520198362339236500915390885795679264404865887253300925727812630083326272641+1/6489634815217096741758907148982381236931234341288936993640630568353888026513046373352130623124225014404918014072680355409470797372507720812828610332359154836067922616607391865217+1/52644200043597301715163084170074049765863371513744701000308778672552161021188727897845435784419167578097570308323221316037189809321236639774156001218848770417914304730719451756764847141999454715415348579218576135692260706546084789833559164567239198064491721524233401718052341737694961761810858726456915514545036448002629051435498625211733293978125476206145+1/3695215730973720191743335450900515442837964059737103132125137784392340041085824276783333540815086968586494259680343732030671448522298751008735945486795776365973142745077411841504712940444458881229478108614230774637316342940593842925604630011475333378620376362943942755446627099104200059416153812858633723638212819657597061963458758259287734950993940819872945202809437805131650984566124057319228963533088559443909352453788455968978250113376533423265233637558939144535732287317303130488802163512444658441011602922480039143050047663394967808639154754442570791381496210122415541628843804495020590646687354364355396925939868087995781911240513904752765014910531863571167632659092232428610030201325032663259931238141889+1/20481928947653467858867964360215698922460866349989714221296388791180533521147068328398292448571350580917144516243144419767021450972552458770890215041236338405232471846144964422722088363577942656244304369314740680337368003341749927848292268159627280776486153786277410225081205358330757686606252814923029488556248114378465151886875778980493919811102286892641254175976181063891774788890129279669791215911728886439002027991447164421080590166911130116483359749418047307595497010369457711350953018694479942850146580996402187310635505278301929397030213544531068769667892360925519410013180703331321321833900350008776368272790481252519169303988218210095146759870287941250090204506960847016059468728275311477613271084474766715488264771177830115028195215223644336345646870679050787515340804351339449474385172464387868299006904638274425855008729765086091731260299397062138670321522563954731398813138738073326593694555049353805161855854036423870334342280080335804850998490793742536882308453307029152812821729798744074167237835462214043679643723245065093600037959124662392297413473130606861784229249604290090458912391096328362137163951398211801143455350336317188806956746282700489013366856863803112203078858200161688528939040348825835610989725020068306497091337571398894447440161081470240965873628208205669354804691958270783090585006358905094926094885655359774269830169287513005586562246433405044654325439410730648108371520856384706590593+1/839018826833450186636781520007011999269820404906753180244759299287837378895397605613261469995626498719289835112392530430840514102146998625666594756995273418015600023494049208108894185781774002683063204252356172520941088783702738286944210460710059319691268110283467445381026653628599765684739105388642310044785844902157076919003735231543781785073393176144167688252446541416466418608465458502997971425428342769433127784560570193376772878336217849260872114137931351960543608384244009505664253173875705234889570853924105640193619301332776989688248555027054395237907581951261868280899150574360164800187964167274323078311078867593844043149124596271281252530924719121766925749760855109100066731841478262812686642693395896229983745226277793055820609058348269152190083695704685769622011655159174272326647342695589818127126303038171968768650476413027459205291075571637957597356820188031655122749743652301268394542123970892422944335857917641636041892192547135178153602038877677614358281581103685526041329841496863410305888255234495015115912388514981113593387572720476744188169200130515719608747338810136728267784013352396910979904545913458536243327311977805126410065576961237640824852114328884086581542091492600312838425666927627674227053793897767395465326589843035773944346372949759909905561209334216847158156644884281300512699910530092870919061876615770708519243818676366245477462042294267674677954783726990349386117468071932874021023714524610740225814235147693954027910741673103980749749728106483987721602738673173009362802337092908847797499475895347112889339502928407808058670297722175686638678788738689803945574002805677250463286479363670076942509109589495377221095405979217163821481666646160815221224686562530536116613645305335922819524037829878961518170177968768364853399057357772141655622381280196908637031556436461404285930426436983658106288733881761514992109680298995922754466040011586713812553117621857109517258943846004179432521131844156242428351270188803919554398620084668514054504414062276012292497375238210886595006249453460414790147611422121782194848803348777061816460876697945418158442269512987729152441940326466631610424906158237288218706447963113019239557885486647314085357651895226117364760315394354624547919209138539180807829672545924239541758108877100331729470119526373928796447673951888289511964811633025369821156695934557103429921063387965046715070102916811976552584464153981214277622597308113449320462341683055200576571910241686615924531368198770946893858410058348221985603151428153382461711196734214085852523778422630907646235900752317571022131569421231196329080023952364788544301495422061066036911772385739659997665503832444529713544286955548310166168837889046149061296461059432238621602179724809510024772127497080258401694929973105184832214622785679651550368465524821062859837409907538269572622296774545103747438431266995525592705 8/97N->0+1/13+1/181+1/38041+1/1736503177+1/3769304102927363485+1/18943537893793408504192074528154430149+1/538286441900380211365817285104907086347439746130226973253778132494225813153+1/579504587067542801713103191859918608251030291952195423583529357653899418686342360361798689053273749372615043661810228371898539583862011424993909789665 36/457N->0+1/13+1/541+1/321409+1/114781617793+1/14821672255960844346913+1/251065106814993628596500876449600804290086881+1/73539302503361520198362339236500915390885795679264404865887253300925727812630083326272641+1/6489634815217096741758907148982381236931234341288936993640630568353888026513046373352130623124225014404918014072680355409470797372507720812828610332359154836067922616607391865217+1/52644200043597301715163084170074049765863371513744701000308778672552161021188727897845435784419167578097570308323221316037189809321236639774156001218848770417914304730719451756764847141999454715415348579218576135692260706546084789833559164567239198064491721524233401718052341737694961761810858726456915514545036448002629051435498625211733293978125476206145+1/3695215730973720191743335450900515442837964059737103132125137784392340041085824276783333540815086968586494259680343732030671448522298751008735945486795776365973142745077411841504712940444458881229478108614230774637316342940593842925604630011475333378620376362943942755446627099104200059416153812858633723638212819657597061963458758259287734950993940819872945202809437805131650984566124057319228963533088559443909352453788455968978250113376533423265233637558939144535732287317303130488802163512444658441011602922480039143050047663394967808639154754442570791381496210122415541628843804495020590646687354364355396925939868087995781911240513904752765014910531863571167632659092232428610030201325032663259931238141889+1/20481928947653467858867964360215698922460866349989714221296388791180533521147068328398292448571350580917144516243144419767021450972552458770890215041236338405232471846144964422722088363577942656244304369314740680337368003341749927848292268159627280776486153786277410225081205358330757686606252814923029488556248114378465151886875778980493919811102286892641254175976181063891774788890129279669791215911728886439002027991447164421080590166911130116483359749418047307595497010369457711350953018694479942850146580996402187310635505278301929397030213544531068769667892360925519410013180703331321321833900350008776368272790481252519169303988218210095146759870287941250090204506960847016059468728275311477613271084474766715488264771177830115028195215223644336345646870679050787515340804351339449474385172464387868299006904638274425855008729765086091731260299397062138670321522563954731398813138738073326593694555049353805161855854036423870334342280080335804850998490793742536882308453307029152812821729798744074167237835462214043679643723245065093600037959124662392297413473130606861784229249604290090458912391096328362137163951398211801143455350336317188806956746282700489013366856863803112203078858200161688528939040348825835610989725020068306497091337571398894447440161081470240965873628208205669354804691958270783090585006358905094926094885655359774269830169287513005586562246433405044654325439410730648108371520856384706590593+1/839018826833450186636781520007011999269820404906753180244759299287837378895397605613261469995626498719289835112392530430840514102146998625666594756995273418015600023494049208108894185781774002683063204252356172520941088783702738286944210460710059319691268110283467445381026653628599765684739105388642310044785844902157076919003735231543781785073393176144167688252446541416466418608465458502997971425428342769433127784560570193376772878336217849260872114137931351960543608384244009505664253173875705234889570853924105640193619301332776989688248555027054395237907581951261868280899150574360164800187964167274323078311078867593844043149124596271281252530924719121766925749760855109100066731841478262812686642693395896229983745226277793055820609058348269152190083695704685769622011655159174272326647342695589818127126303038171968768650476413027459205291075571637957597356820188031655122749743652301268394542123970892422944335857917641636041892192547135178153602038877677614358281581103685526041329841496863410305888255234495015115912388514981113593387572720476744188169200130515719608747338810136728267784013352396910979904545913458536243327311977805126410065576961237640824852114328884086581542091492600312838425666927627674227053793897767395465326589843035773944346372949759909905561209334216847158156644884281300512699910530092870919061876615770708519243818676366245477462042294267674677954783726990349386117468071932874021023714524610740225814235147693954027910741673103980749749728106483987721602738673173009362802337092908847797499475895347112889339502928407808058670297722175686638678788738689803945574002805677250463286479363670076942509109589495377221095405979217163821481666646160815221224686562530536116613645305335922819524037829878961518170177968768364853399057357772141655622381280196908637031556436461404285930426436983658106288733881761514992109680298995922754466040011586713812553117621857109517258943846004179432521131844156242428351270188803919554398620084668514054504414062276012292497375238210886595006249453460414790147611422121782194848803348777061816460876697945418158442269512987729152441940326466631610424906158237288218706447963113019239557885486647314085357651895226117364760315394354624547919209138539180807829672545924239541758108877100331729470119526373928796447673951888289511964811633025369821156695934557103429921063387965046715070102916811976552584464153981214277622597308113449320462341683055200576571910241686615924531368198770946893858410058348221985603151428153382461711196734214085852523778422630907646235900752317571022131569421231196329080023952364788544301495422061066036911772385739659997665503832444529713544286955548310166168837889046149061296461059432238621602179724809510024772127497080258401694929973105184832214622785679651550368465524821062859837409907538269572622296774545103747438431266995525592705
Factor
USING: backtrack formatting fry kernel locals make math
math.functions math.ranges sequences ;
IN: rosetta-code.egyptian-fractions
: >improper ( r -- str ) >fraction "%d/%d" sprintf ;
: improper ( x y -- a b ) [ /i ] [ [ rem ] [ nip ] 2bi / ] 2bi ;
:: proper ( x y -- a b )
y x / ceiling :> d1 1 d1 / y neg x rem y d1 * / ;
: expand ( a -- b c )
>fraction 2dup > [ improper ] [ proper ] if ;
: egyptian-fractions ( x -- seq )
[ [ expand [ , ] dip dup 0 = not ] loop drop ] { } make ;
: part1 ( -- )
43/48 5/121 2014/59 [
[ >improper ] [ egyptian-fractions ] bi
"%s => %[%u, %]\n" printf
] tri@ ;
: all-longest ( seq -- seq )
dup longest length '[ length _ = ] filter ;
: (largest-denominator) ( seq -- n )
[ denominator ] map supremum ;
: most-terms ( seq -- )
all-longest [ [ sum ] map ] [ first length ] bi
"most terms: %[%u, %] => %d\n" printf ;
: largest-denominator ( seq -- )
[ (largest-denominator) ] supremum-by
[ sum ] [ (largest-denominator) ] bi
"largest denominator: %u => %d\n" printf ;
: part2 ( -- )
[
99 [1,b] amb-lazy dup [1,b] amb-lazy swap /
egyptian-fractions
] bag-of [ most-terms ] [ largest-denominator ] bi ;
: egyptian-fractions-demo ( -- ) part1 part2 ;
MAIN: egyptian-fractions-demo
- Output:
43/48 => { 1/2, 1/3, 1/16 } 5/121 => { 1/25, 1/757, 1/763309, 1/873960180913, 1/1527612795642093418846225 } 2014/59 => { 34, 1/8, 1/95, 1/14947, 1/670223480 } most terms: { 44/53, 8/97 } => 8 largest denominator: 8/97 => 579504587067542801713103191859918608251030291952195423583529357653899418686342360361798689053273749372615043661810228371898539583862011424993909789665
FreeBASIC
' version 16-01-2017
' compile with: fbc -s console
#Define max 30
#Include Once "gmp.bi"
Dim Shared As Mpz_ptr num(max), den(max)
Function Egyptian_fraction(fraction As String, ByRef whole As Integer, range As Integer = 0) As Integer
If InStr(fraction,"/") = 0 Then
Print "Not a fraction, program will end"
Sleep 5000, 1
End
End If
Dim As Integer i, count
Dim As Mpz_ptr tmp_num, tmp_den, x, y, q
tmp_num = Allocate(Len(__Mpz_struct)) : Mpz_init(tmp_num)
tmp_den = Allocate(Len(__Mpz_struct)) : Mpz_init(tmp_den)
x = Allocate(Len(__Mpz_struct)) : Mpz_init(x)
y = Allocate(Len(__Mpz_struct)) : Mpz_init(y)
q = Allocate(Len(__Mpz_struct)) : Mpz_init(q)
For i = 1 To max ' clear the list
Mpz_set_ui(num(i), 0)
Mpz_set_ui(den(i), 0)
Next
i = InStr(fraction,"/")
Mpz_set_str(x, Left(fraction, i -1), 10)
Mpz_set_str(y, Right(fraction, Len(fraction) - i), 10)
' if it's a improper fraction make it proper fraction
If Mpz_cmp(x , y) > 0 Then
Mpz_fdiv_q(q, x, y)
whole = Mpz_get_ui(q)
Mpz_fdiv_r(x, x, q)
Else
whole = 0
End If
Mpz_gcd(q, x, y) ' check if reduction is possible
If Mpz_cmp_ui(q, 1) > 0 Then
If range <> 0 Then ' return if we do a range test
Return -1
Else
Mpz_fdiv_q(x, x, q)
Mpz_fdiv_q(y, y, q)
End If
End If
Mpz_set(num(count), x)
Mpz_set(den(count), y)
' Fibonacci's Greedy algorithm for Egyptian fractions
Do
If Mpz_cmp_ui(num(count), 1) = 0 Then Exit Do
Mpz_set(x, num(count))
Mpz_set(y, den(count))
Mpz_cdiv_q(q, y, x)
Mpz_set_ui(num(count), 1)
Mpz_set(den(count), q)
Mpz_mul(tmp_den, y, q)
Mpz_neg(y, y)
Mpz_mod(tmp_num, y, x)
count += 1
Mpz_gcd(q, tmp_num, tmp_den) ' check if reduction is possible
If Mpz_cmp_ui(q, 1) > 0 Then
Mpz_fdiv_q(tmp_num, tmp_num, q)
Mpz_fdiv_q(tmp_den, tmp_den, q)
End If
Mpz_set(num(count), tmp_num)
Mpz_set(den(count), tmp_den)
Loop
Mpz_clear(tmp_num) : Mpz_clear(tmp_den)
Mpz_clear(x) : Mpz_clear(y) :Mpz_clear(q)
Return count
End Function
Sub prt_solution(fraction As String, whole As Integer, count As Integer)
Print fraction; " = ";
If whole <> 0 Then
Print "["; Str(whole); "] + ";
End If
For i As Integer = 0 To count
Gmp_printf("%Zd/%Zd ", num(i), den(i))
If i <> count Then Print "+ ";
Next
Print
End Sub
' ------=< MAIN >=------
Dim As Integer n, d, number, improper, max_term, max_size
Dim As String str_in, max_term_str, max_size_str, m_str
Dim As ZString Ptr gmp_str : gmp_str = Allocate(1000000)
For n = 0 To max
num(n) = Allocate(Len(__Mpz_struct)) : Mpz_init(num(n))
den(n) = Allocate(Len(__Mpz_struct)) : Mpz_init(den(n))
Next
Data "43/48", "5/121", "2014/59"
' 4/121 = 12/363 = 11/363 + 1/363 = 1/33 + 1/363
' 5/121 = 4/121 + 1/121 = 1/33 + 1/121 + 1/363
' 2014/59 = 34 + 8/59
' 8/59 = 1/8 + 5/472 = 1/8 + 4/472 + 1/472 = 1/8 + 1/118 + 1/472
For n = 1 To 3
Read str_in
number = Egyptian_fraction(str_in, improper)
prt_solution(str_in, improper, number)
Print
Next
Dim As Integer a = 1 , b = 99
Do
For d = a To b
For n = 1 To d -1
str_in = Str(n) + "/" + Str(d)
number = Egyptian_fraction(str_in, improper,1)
If number = -1 Then Continue For ' skip
If number > max_term Then
max_term = number
max_term_str = str_in
ElseIf number = max_term Then
max_term_str += ", " & str_in
End If
Mpz_get_str(gmp_str, 10, den(number))
If Len(*gmp_str) > max_size Then
max_size = Len(*gmp_str)
max_size_str = str_in
m_str = *gmp_str
ElseIf max_size = Len(*gmp_str) Then
max_size_str += ", " & str_in
End If
Next
Next
Print
Print "for 1 to"; Len(Str(b)); " digits"
Print "Largest number of terms is"; max_term +1; " for "; max_term_str
Print "Largest size for denominator is"; max_size; " for "; max_size_str
If b = 999 Then Exit Do
a = b +1 : b = b * 10 +9
Loop
For n = 0 To max
Mpz_clear(num(n))
Mpz_clear(den(n))
Next
DeAllocate(gmp_str)
' empty keyboard buffer
While InKey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End
- Output:
43/48 = 1/2 + 1/3 + 1/16 5/121 = 1/25 + 1/757 + 1/763309 + 1/873960180913 + 1/1527612795642093418846225 2014/59 = [34] + 1/8 + 1/95 + 1/14947 + 1/670223480 for 1 to 2 digits Largest number of terms is 8 for 44/53, 8/97 Largest size for denominator is 150 for 8/97 for 1 to 3 digits Largest number of terms is 13 for 641/796, 529/914 Largest size for denominator is 2847 for 36/457, 529/914
Frink
frac[p, q] :=
{
a = makeArray[[0]]
if p > q
{
a.push[floor[p / q]]
p = p mod q
}
while p > 1
{
d = ceil[q / p]
a.push[1/d]
[p, q] = [-q mod p, d q]
}
if p == 1
a.push[1/q]
a
}
showApproximations[false]
egypt[p, q] := join[" + ", frac[p, q]]
rosetta[] :=
{
lMax = 0
longest = 0
dMax = 0
biggest = 0
for n = 1 to 99
for d = n+1 to 99
{
egypt = frac[n, d]
if length[egypt] > lMax
{
lMax = length[egypt]
longest = n/d
}
d2 = denominator[last[egypt, 1]@0]
if d2 > dMax
{
dMax = d2
biggest = n/d
}
}
println["The fraction with the largest number of terms is $longest"]
println["The fraction with the largest denominator is $biggest"]
}
- Output:
rosetta[] The fraction with the largest number of terms is 8/97 The fraction with the largest denominator is 8/97 egypt[43,48] 1/2 + 1/3 + 1/16 egypt[5,121] 1/25 + 1/757 + 1/763309 + 1/873960180913 + 1/1527612795642093418846225 egypt[2014,59] 34 + 1/8 + 1/95 + 1/14947 + 1/670223480
Fōrmulæ
Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text. Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for storage and transfer purposes more than visualization and edition.
Programs in Fōrmulæ are created/edited online in its website.
In this page you can see and run the program(s) related to this task and their results. You can also change either the programs or the parameters they are called with, for experimentation, but remember that these programs were created with the main purpose of showing a clear solution of the task, and they generally lack any kind of validation.
Solution
Test cases part 1
Test cases part 2
Go
... except that Go already has support for arbitrary precision rational numbers in its standard library.
package main
import (
"fmt"
"math/big"
"strings"
)
var zero = new(big.Int)
var one = big.NewInt(1)
func toEgyptianRecursive(br *big.Rat, fracs []*big.Rat) []*big.Rat {
if br.Num().Cmp(zero) == 0 {
return fracs
}
iquo := new(big.Int)
irem := new(big.Int)
iquo.QuoRem(br.Denom(), br.Num(), irem)
if irem.Cmp(zero) > 0 {
iquo.Add(iquo, one)
}
rquo := new(big.Rat).SetFrac(one, iquo)
fracs = append(fracs, rquo)
num2 := new(big.Int).Neg(br.Denom())
num2.Rem(num2, br.Num())
if num2.Cmp(zero) < 0 {
num2.Add(num2, br.Num())
}
denom2 := new(big.Int)
denom2.Mul(br.Denom(), iquo)
f := new(big.Rat).SetFrac(num2, denom2)
if f.Num().Cmp(one) == 0 {
fracs = append(fracs, f)
return fracs
}
fracs = toEgyptianRecursive(f, fracs)
return fracs
}
func toEgyptian(rat *big.Rat) []*big.Rat {
if rat.Num().Cmp(zero) == 0 {
return []*big.Rat{rat}
}
var fracs []*big.Rat
if rat.Num().CmpAbs(rat.Denom()) >= 0 {
iquo := new(big.Int)
iquo.Quo(rat.Num(), rat.Denom())
rquo := new(big.Rat).SetFrac(iquo, one)
rrem := new(big.Rat)
rrem.Sub(rat, rquo)
fracs = append(fracs, rquo)
fracs = toEgyptianRecursive(rrem, fracs)
} else {
fracs = toEgyptianRecursive(rat, fracs)
}
return fracs
}
func main() {
fracs := []*big.Rat{big.NewRat(43, 48), big.NewRat(5, 121), big.NewRat(2014, 59)}
for _, frac := range fracs {
list := toEgyptian(frac)
if list[0].Denom().Cmp(one) == 0 {
first := fmt.Sprintf("[%v]", list[0].Num())
temp := make([]string, len(list)-1)
for i := 1; i < len(list); i++ {
temp[i-1] = list[i].String()
}
rest := strings.Join(temp, " + ")
fmt.Printf("%v -> %v + %s\n", frac, first, rest)
} else {
temp := make([]string, len(list))
for i := 0; i < len(list); i++ {
temp[i] = list[i].String()
}
all := strings.Join(temp, " + ")
fmt.Printf("%v -> %s\n", frac, all)
}
}
for _, r := range [2]int{98, 998} {
if r == 98 {
fmt.Println("\nFor proper fractions with 1 or 2 digits:")
} else {
fmt.Println("\nFor proper fractions with 1, 2 or 3 digits:")
}
maxSize := 0
var maxSizeFracs []*big.Rat
maxDen := zero
var maxDenFracs []*big.Rat
var sieve = make([][]bool, r+1) // to eliminate duplicates
for i := 0; i <= r; i++ {
sieve[i] = make([]bool, r+2)
}
for i := 1; i <= r; i++ {
for j := i + 1; j <= r+1; j++ {
if sieve[i][j] {
continue
}
f := big.NewRat(int64(i), int64(j))
list := toEgyptian(f)
listSize := len(list)
if listSize > maxSize {
maxSize = listSize
maxSizeFracs = maxSizeFracs[0:0]
maxSizeFracs = append(maxSizeFracs, f)
} else if listSize == maxSize {
maxSizeFracs = append(maxSizeFracs, f)
}
listDen := list[len(list)-1].Denom()
if listDen.Cmp(maxDen) > 0 {
maxDen = listDen
maxDenFracs = maxDenFracs[0:0]
maxDenFracs = append(maxDenFracs, f)
} else if listDen.Cmp(maxDen) == 0 {
maxDenFracs = append(maxDenFracs, f)
}
if i < r/2 {
k := 2
for {
if j*k > r+1 {
break
}
sieve[i*k][j*k] = true
k++
}
}
}
}
fmt.Println(" largest number of items =", maxSize)
fmt.Println(" fraction(s) with this number :", maxSizeFracs)
md := maxDen.String()
fmt.Print(" largest denominator = ", len(md), " digits, ")
fmt.Print(md[0:20], "...", md[len(md)-20:], "\b\n")
fmt.Println(" fraction(s) with this denominator :", maxDenFracs)
}
}
- Output:
43/48 -> 1/2 + 1/3 + 1/16 5/121 -> 1/25 + 1/757 + 1/763309 + 1/873960180913 + 1/1527612795642093418846225 2014/59 -> [34] + 1/8 + 1/95 + 1/14947 + 1/670223480 For proper fractions with 1 or 2 digits: largest number of items = 8 fraction(s) with this number : [8/97 44/53] largest denominator = 150 digits, 57950458706754280171...62011424993909789665 fraction(s) with this denominator : [8/97] For proper fractions with 1, 2 or 3 digits: largest number of items = 13 fraction(s) with this number : [529/914 641/796] largest denominator = 2847 digits, 83901882683345018663...38431266995525592705 fraction(s) with this denominator : [36/457 529/914]
Haskell
import Data.Ratio (Ratio, (%), denominator, numerator)
egyptianFraction :: Integral a => Ratio a -> [Ratio a]
egyptianFraction n
| n < 0 = map negate (egyptianFraction (-n))
| n == 0 = []
| x == 1 = [n]
| x > y = (x `div` y % 1) : egyptianFraction (x `mod` y % y)
| otherwise = (1 % r) : egyptianFraction ((-y) `mod` x % (y * r))
where
x = numerator n
y = denominator n
r = y `div` x + 1
Testing:
λ> :m Test.QuickCheck
λ> quickCheck (\n -> n == (sum $ egyptianFraction n))
+++ OK, passed 100 tests.
Tasks:
import Data.List (intercalate, maximumBy)
import Data.Ord (comparing)
task1 = mapM_ run [43 % 48, 5 % 121, 2014 % 59]
where
run x = putStrLn $ show x ++ " = " ++ result x
result x = intercalate " + " $ show <$> egyptianFraction x
task21 n =
maximumBy
(comparing snd)
[ (a % b, length $ egyptianFraction (a % b))
| a <- [1 .. n]
, b <- [1 .. n]
, a < b ]
task22 n =
maximumBy
(comparing snd)
[ (a % b, maximum $ map denominator $ egyptianFraction (a % b))
| a <- [1 .. n]
, b <- [1 .. n]
, a < b ]
λ> task1
43 % 48 = 1 % 2 + 1 % 3 + 1 % 16
5 % 121 = 1 % 25 + 1 % 757 + 1 % 763309 + 1 % 873960180913 + 1 % 1527612795642093418846225
2014 % 59 = 34 % 1 + 1 % 8 + 1 % 95 + 1 % 14947 + 1 % 670223480
λ> task21 99
(44 % 53, 8)
λ> task22 99
(8 % 97, 579504587067542801713103191859918608251030291952195423583529357653899418686342360361798689053273749372615043661810228371898539583862011424993909789665)
λ> task21 999
(641 % 796,13)
λ> task22 999
(529 % 914, 839018826833450186636781520007011999269820404906753180244759299287837378895397605613261469995626498719289835112392530430840514102146998625666594756995273418015600023494049208108894185781774002683063204252356172520941088783702738286944210460710059319691268110283467445381026653628599765684739105388642310044785844902157076919003735231543781785073393176144167688252446541416466418608465458502997971425428342769433127784560570193376772878336217849260872114137931351960543608384244009505664253173875705234889570853924105640193619301332776989688248555027054395237907581951261868280899150574360164800187964167274323078311078867593844043149124596271281252530924719121766925749760855109100066731841478262812686642693395896229983745226277793055820609058348269152190083695704685769622011655159174272326647342695589818127126303038171968768650476413027459205291075571637957597356820188031655122749743652301268394542123970892422944335857917641636041892192547135178153602038877677614358281581103685526041329841496863410305888255234495015115912388514981113593387572720476744188169200130515719608747338810136728267784013352396910979904545913458536243327311977805126410065576961237640824852114328884086581542091492600312838425666927627674227053793897767395465326589843035773944346372949759909905561209334216847158156644884281300512699910530092870919061876615770708519243818676366245477462042294267674677954783726990349386117468071932874021023714524610740225814235147693954027910741673103980749749728106483987721602738673173009362802337092908847797499475895347112889339502928407808058670297722175686638678788738689803945574002805677250463286479363670076942509109589495377221095405979217163821481666646160815221224686562530536116613645305335922819524037829878961518170177968768364853399057357772141655622381280196908637031556436461404285930426436983658106288733881761514992109680298995922754466040011586713812553117621857109517258943846004179432521131844156242428351270188803919554398620084668514054504414062276012292497375238210886595006249453460414790147611422121782194848803348777061816460876697945418158442269512987729152441940326466631610424906158237288218706447963113019239557885486647314085357651895226117364760315394354624547919209138539180807829672545924239541758108877100331729470119526373928796447673951888289511964811633025369821156695934557103429921063387965046715070102916811976552584464153981214277622597308113449320462341683055200576571910241686615924531368198770946893858410058348221985603151428153382461711196734214085852523778422630907646235900752317571022131569421231196329080023952364788544301495422061066036911772385739659997665503832444529713544286955548310166168837889046149061296461059432238621602179724809510024772127497080258401694929973105184832214622785679651550368465524821062859837409907538269572622296774545103747438431266995525592705)
J
Solution:
ef =: [: (}.~ 0={.) [: (, r2ef)/ 0 1 #: x:
r2ef =: (<(<0);0) { ((] , -) >:@:<.&.%)^:((~:<.)@:%)@:{:^:a:
Examples (required):
(; ef)&> 43r48 5r121 2014r59
+-------+--------------------------------------------------------------+
|43r48 |1r2 1r3 1r16 |
+-------+--------------------------------------------------------------+
|5r121 |1r25 1r757 1r763309 1r873960180913 1r1527612795642093418846225|
+-------+--------------------------------------------------------------+
|2014r59|34 1r8 1r95 1r14947 1r670223480 |
+-------+--------------------------------------------------------------+
Examples (extended):
NB. ef for all 1- and 2-digit fractions
EF2 =: ef :: _1:&.> (</~ * %/~) i. 10^2x
NB. longest ef for 1- or 2-digit fraction
($ #: (i. >./)@:,)#&>EF2
8 97
# ef 8r97
8
NB. largest denom among for 1- and 2-digit fractions
($ #: (i. <./)@:|@:(<./&>)@:,) EF2
8 97
_80 ]\ ": % <./ ef 8r97
57950458706754280171310319185991860825103029195219542358352935765389941868634236
0361798689053273749372615043661810228371898539583862011424993909789665
NB. ef for all 1-,2-, and 3-digit fractions
EF3 =: ef :: _1:&.> (</~ * %/~) i. 10^3x
NB. longest ef for 1-, 2-,or 3-digit fraction
($ #: (i. >./)@:,)#&>EF3
529 914
# ef 529r914
13
NB. largest denom among for 1-, 2-, and 3-digit fractions
($ #: (i. <./)@:|@:(<./&>)@:,) EF3
36 457
_80 ]\ ": % <./ ef 36r457
83901882683345018663678152000701199926982040490675318024475929928783737889539760
56132614699956264987192898351123925304308405141021469986256665947569952734180156
00023494049208108894185781774002683063204252356172520941088783702738286944210460
71005931969126811028346744538102665362859976568473910538864231004478584490215707
69190037352315437817850733931761441676882524465414164664186084654585029979714254
28342769433127784560570193376772878336217849260872114137931351960543608384244009
50566425317387570523488957085392410564019361930133277698968824855502705439523790
75819512618682808991505743601648001879641672743230783110788675938440431491245962
71281252530924719121766925749760855109100066731841478262812686642693395896229983
74522627779305582060905834826915219008369570468576962201165515917427232664734269
55898181271263030381719687686504764130274592052910755716379575973568201880316551
22749743652301268394542123970892422944335857917641636041892192547135178153602038
87767761435828158110368552604132984149686341030588825523449501511591238851498111
35933875727204767441881692001305157196087473388101367282677840133523969109799045
45913458536243327311977805126410065576961237640824852114328884086581542091492600
31283842566692762767422705379389776739546532658984303577394434637294975990990556
12093342168471581566448842813005126999105300928709190618766157707085192438186763
66245477462042294267674677954783726990349386117468071932874021023714524610740225
81423514769395402791074167310398074974972810648398772160273867317300936280233709
29088477974994758953471128893395029284078080586702977221756866386787887386898039
45574002805677250463286479363670076942509109589495377221095405979217163821481666
64616081522122468656253053611661364530533592281952403782987896151817017796876836
48533990573577721416556223812801969086370315564364614042859304264369836581062887
33881761514992109680298995922754466040011586713812553117621857109517258943846004
17943252113184415624242835127018880391955439862008466851405450441406227601229249
73752382108865950062494534604147901476114221217821948488033487770618164608766979
45418158442269512987729152441940326466631610424906158237288218706447963113019239
55788548664731408535765189522611736476031539435462454791920913853918080782967254
59242395417581088771003317294701195263739287964476739518882895119648116330253698
21156695934557103429921063387965046715070102916811976552584464153981214277622597
30811344932046234168305520057657191024168661592453136819877094689385841005834822
19856031514281533824617111967342140858525237784226309076462359007523175710221315
69421231196329080023952364788544301495422061066036911772385739659997665503832444
52971354428695554831016616883788904614906129646105943223862160217972480951002477
21274970802584016949299731051848322146227856796515503684655248210628598374099075
38269572622296774545103747438431266995525592705
Java
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.MathContext;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
public class EgyptianFractions {
private static BigInteger gcd(BigInteger a, BigInteger b) {
if (b.equals(BigInteger.ZERO)) {
return a;
}
return gcd(b, a.mod(b));
}
private static class Frac implements Comparable<Frac> {
private BigInteger num, denom;
public Frac(BigInteger n, BigInteger d) {
if (d.equals(BigInteger.ZERO)) {
throw new IllegalArgumentException("Parameter d may not be zero.");
}
BigInteger nn = n;
BigInteger dd = d;
if (nn.equals(BigInteger.ZERO)) {
dd = BigInteger.ONE;
} else if (dd.compareTo(BigInteger.ZERO) < 0) {
nn = nn.negate();
dd = dd.negate();
}
BigInteger g = gcd(nn, dd).abs();
if (g.compareTo(BigInteger.ZERO) > 0) {
nn = nn.divide(g);
dd = dd.divide(g);
}
num = nn;
denom = dd;
}
public Frac(int n, int d) {
this(BigInteger.valueOf(n), BigInteger.valueOf(d));
}
public Frac plus(Frac rhs) {
return new Frac(
num.multiply(rhs.denom).add(denom.multiply(rhs.num)),
rhs.denom.multiply(denom)
);
}
public Frac unaryMinus() {
return new Frac(num.negate(), denom);
}
public Frac minus(Frac rhs) {
return plus(rhs.unaryMinus());
}
@Override
public int compareTo(Frac rhs) {
BigDecimal diff = this.toBigDecimal().subtract(rhs.toBigDecimal());
if (diff.compareTo(BigDecimal.ZERO) < 0) {
return -1;
}
if (BigDecimal.ZERO.compareTo(diff) < 0) {
return 1;
}
return 0;
}
@Override
public boolean equals(Object obj) {
if (null == obj || !(obj instanceof Frac)) {
return false;
}
Frac rhs = (Frac) obj;
return compareTo(rhs) == 0;
}
@Override
public String toString() {
if (denom.equals(BigInteger.ONE)) {
return num.toString();
}
return String.format("%s/%s", num, denom);
}
public BigDecimal toBigDecimal() {
BigDecimal bdn = new BigDecimal(num);
BigDecimal bdd = new BigDecimal(denom);
return bdn.divide(bdd, MathContext.DECIMAL128);
}
public List<Frac> toEgyptian() {
if (num.equals(BigInteger.ZERO)) {
return Collections.singletonList(this);
}
List<Frac> fracs = new ArrayList<>();
if (num.abs().compareTo(denom.abs()) >= 0) {
Frac div = new Frac(num.divide(denom), BigInteger.ONE);
Frac rem = this.minus(div);
fracs.add(div);
toEgyptian(rem.num, rem.denom, fracs);
} else {
toEgyptian(num, denom, fracs);
}
return fracs;
}
public void toEgyptian(BigInteger n, BigInteger d, List<Frac> fracs) {
if (n.equals(BigInteger.ZERO)) {
return;
}
BigDecimal n2 = new BigDecimal(n);
BigDecimal d2 = new BigDecimal(d);
BigDecimal[] divRem = d2.divideAndRemainder(n2, MathContext.UNLIMITED);
BigInteger div = divRem[0].toBigInteger();
if (divRem[1].compareTo(BigDecimal.ZERO) > 0) {
div = div.add(BigInteger.ONE);
}
fracs.add(new Frac(BigInteger.ONE, div));
BigInteger n3 = d.negate().mod(n);
if (n3.compareTo(BigInteger.ZERO) < 0) {
n3 = n3.add(n);
}
BigInteger d3 = d.multiply(div);
Frac f = new Frac(n3, d3);
if (f.num.equals(BigInteger.ONE)) {
fracs.add(f);
return;
}
toEgyptian(f.num, f.denom, fracs);
}
}
public static void main(String[] args) {
List<Frac> fracs = List.of(
new Frac(43, 48),
new Frac(5, 121),
new Frac(2014, 59)
);
for (Frac frac : fracs) {
List<Frac> list = frac.toEgyptian();
Frac first = list.get(0);
if (first.denom.equals(BigInteger.ONE)) {
System.out.printf("%s -> [%s] + ", frac, first);
} else {
System.out.printf("%s -> %s", frac, first);
}
for (int i = 1; i < list.size(); ++i) {
System.out.printf(" + %s", list.get(i));
}
System.out.println();
}
for (Integer r : List.of(98, 998)) {
if (r == 98) {
System.out.println("\nFor proper fractions with 1 or 2 digits:");
} else {
System.out.println("\nFor proper fractions with 1, 2 or 3 digits:");
}
int maxSize = 0;
List<Frac> maxSizeFracs = new ArrayList<>();
BigInteger maxDen = BigInteger.ZERO;
List<Frac> maxDenFracs = new ArrayList<>();
boolean[][] sieve = new boolean[r + 1][];
for (int i = 0; i < r + 1; ++i) {
sieve[i] = new boolean[r + 2];
}
for (int i = 1; i < r; ++i) {
for (int j = i + 1; j < r + 1; ++j) {
if (sieve[i][j]) continue;
Frac f = new Frac(i, j);
List<Frac> list = f.toEgyptian();
int listSize = list.size();
if (listSize > maxSize) {
maxSize = listSize;
maxSizeFracs.clear();
maxSizeFracs.add(f);
} else if (listSize == maxSize) {
maxSizeFracs.add(f);
}
BigInteger listDen = list.get(list.size() - 1).denom;
if (listDen.compareTo(maxDen) > 0) {
maxDen = listDen;
maxDenFracs.clear();
maxDenFracs.add(f);
} else if (listDen.equals(maxDen)) {
maxDenFracs.add(f);
}
if (i < r / 2) {
int k = 2;
while (true) {
if (j * k > r + 1) break;
sieve[i * k][j * k] = true;
k++;
}
}
}
}
System.out.printf(" largest number of items = %s\n", maxSize);
System.out.printf("fraction(s) with this number : %s\n", maxSizeFracs);
String md = maxDen.toString();
System.out.printf(" largest denominator = %s digits, ", md.length());
System.out.printf("%s...%s\n", md.substring(0, 20), md.substring(md.length() - 20, md.length()));
System.out.printf("fraction(s) with this denominator : %s\n", maxDenFracs);
}
}
}
- Output:
43/48 -> 1/2 + 1/3 + 1/16 5/121 -> 1/25 + 1/757 + 1/763309 + 1/873960180913 + 1/1527612795642093418846225 2014/59 -> [34] + + 1/8 + 1/95 + 1/14947 + 1/670223480 For proper fractions with 1 or 2 digits: largest number of items = 8 fraction(s) with this number : [8/97, 44/53] largest denominator = 150 digits, 57950458706754280171...62011424993909789665 fraction(s) with this denominator : [8/97] For proper fractions with 1, 2 or 3 digits: largest number of items = 13 fraction(s) with this number : [529/914, 641/796] largest denominator = 2847 digits, 83901882683345018663...38431266995525592705 fraction(s) with this denominator : [36/457, 529/914]
Julia
struct EgyptianFraction{T<:Integer} <: Real
int::T
frac::NTuple{N,Rational{T}} where N
end
Base.show(io::IO, ef::EgyptianFraction) = println(io, "[", ef.int, "] ", join(ef.frac, " + "))
Base.length(ef::EgyptianFraction) = !iszero(ef.int) + length(ef.frac)
function Base.convert(::Type{EgyptianFraction{T}}, fr::Rational) where T
fr, int::T = modf(fr)
fractions = Vector{Rational{T}}(0)
x::T, y::T = numerator(fr), denominator(fr)
iszero(x) && return EgyptianFraction{T}(int, (x // y,))
while x != one(x)
push!(fractions, one(T) // cld(y, x))
x, y = mod1(-y, x), y * cld(y, x)
d = gcd(x, y)
x ÷= d
y ÷= d
end
push!(fractions, x // y)
return EgyptianFraction{T}(int, tuple(fractions...))
end
Base.convert(::Type{EgyptianFraction}, fr::Rational{T}) where T = convert(EgyptianFraction{T}, fr)
Base.convert(::Type{EgyptianFraction{T}}, fr::EgyptianFraction) where T = EgyptianFraction{T}(convert(T, fr.int), convert.(Rational{T}, fr.frac))
Base.convert(::Type{Rational{T}}, fr::EgyptianFraction) where T = T(fr.int) + sum(convert.(Rational{T}, fr.frac))
Base.convert(::Type{Rational}, fr::EgyptianFraction{T}) where T = convert(Rational{T}, fr)
@show EgyptianFraction(43 // 48)
@show EgyptianFraction{BigInt}(5 // 121)
@show EgyptianFraction(2014 // 59)
function task(fractions::AbstractVector)
fracs = convert(Vector{EgyptianFraction{BigInt}}, fractions)
local frlenmax::EgyptianFraction{BigInt}
local lenmax = 0
local frdenmax::EgyptianFraction{BigInt}
local denmax = 0
for f in fracs
if length(f) ≥ lenmax
lenmax = length(f)
frlenmax = f
end
if denominator(last(f.frac)) ≥ denmax
denmax = denominator(last(f.frac))
frdenmax = f
end
end
return frlenmax, lenmax, frdenmax, denmax
end
fr = collect((x // y) for x in 1:100 for y in 1:100 if x != y) |> unique
frlenmax, lenmax, frdenmax, denmax = task(fr)
println("Longest fraction, with length $lenmax: \n", Rational(frlenmax), "\n = ", frlenmax)
println("Fraction with greatest denominator\n(that is $denmax):\n", Rational(frdenmax), "\n = ", frdenmax)
println("\n# For 1 digit-integers:")
fr = collect((x // y) for x in 1:10 for y in 1:10 if x != y) |> unique
frlenmax, lenmax, frdenmax, denmax = task(fr)
println("Longest fraction, with length $lenmax: \n", Rational(frlenmax), "\n = ", frlenmax)
println("Fraction with greatest denominator\n(that is $denmax):\n", Rational(frdenmax), "\n = ", frdenmax)
println("# For 3 digit-integers:")
fr = collect((x // y) for x in 1:1000 for y in 1:1000 if x != y) |> unique
frlenmax, lenmax, frdenmax, denmax = task(fr)
println("Longest fraction, with length $lenmax: \n", Rational(frlenmax), "\n = ", frlenmax)
println("Fraction with greatest denominator\n(that is $denmax):\n", Rational(frdenmax), "\n = ", frdenmax)
- Output:
EgyptianFraction(43 // 48) = [0] 1//2 + 1//3 + 1//16 EgyptianFraction{BigInt}(5 // 121) = [0] 1//25 + 1//757 + 1//763309 + 1//873960180913 + 1//1527612795642093418846225 EgyptianFraction(2014 // 59) = [34] 1//8 + 1//95 + 1//14947 + 1//670223480 Longest fraction, with length 9: 97//53 = [1] 1//2 + 1//4 + 1//13 + 1//307 + 1//120871 + 1//20453597227 + 1//697249399186783218655 + 1//1458470173998990524806872692984177836808420 Fraction with greatest denominator (that is 5795045870675428...424993909789665): 8//97 = [0] 1//13 + 1//181 + 1//38041 + 1//1736503177 + 1//3769304102927363485 + 1//18943537893793408504192074528154430149 + [...] # For 1 digit-integers: Longest fraction, with length 4: 10//7 = [1] 1//3 + 1//11 + 1//231 Fraction with greatest denominator (that is 231): 10//7 = [1] 1//3 + 1//11 + 1//231 # For 3 digit-integers: Longest fraction, with length 13: 950//457 = [2] 1//13 + 1//541 + 1//321409 + 1//114781617793 + 1//14821672255960844346913 + ... Fraction with greatest denominator (that is 8390188268334501866367815200...[2847 digits]): 950//457 = [2] 1//13 + 1//541 + 1//321409 + 1//114781617793 + 1//14821672255960844346913...
Kotlin
As the JDK lacks a fraction or rational class, I've included a basic one in the program.
// version 1.2.10
import java.math.BigInteger
import java.math.BigDecimal
import java.math.MathContext
val bigZero = BigInteger.ZERO
val bigOne = BigInteger.ONE
val bdZero = BigDecimal.ZERO
val context = MathContext.UNLIMITED
fun gcd(a: BigInteger, b: BigInteger): BigInteger
= if (b == bigZero) a else gcd(b, a % b)
class Frac : Comparable<Frac> {
val num: BigInteger
val denom: BigInteger
constructor(n: BigInteger, d: BigInteger) {
require(d != bigZero)
var nn = n
var dd = d
if (nn == bigZero) {
dd = bigOne
}
else if (dd < bigZero) {
nn = -nn
dd = -dd
}
val g = gcd(nn, dd).abs()
if (g > bigOne) {
nn /= g
dd /= g
}
num = nn
denom = dd
}
constructor(n: Int, d: Int) : this(n.toBigInteger(), d.toBigInteger())
operator fun plus(other: Frac) =
Frac(num * other.denom + denom * other.num, other.denom * denom)
operator fun unaryMinus() = Frac(-num, denom)
operator fun minus(other: Frac) = this + (-other)
override fun compareTo(other: Frac): Int {
val diff = this.toBigDecimal() - other.toBigDecimal()
return when {
diff < bdZero -> -1
diff > bdZero -> +1
else -> 0
}
}
override fun equals(other: Any?): Boolean {
if (other == null || other !is Frac) return false
return this.compareTo(other) == 0
}
override fun toString() = if (denom == bigOne) "$num" else "$num/$denom"
fun toBigDecimal() = num.toBigDecimal() / denom.toBigDecimal()
fun toEgyptian(): List<Frac> {
if (num == bigZero) return listOf(this)
val fracs = mutableListOf<Frac>()
if (num.abs() >= denom.abs()) {
val div = Frac(num / denom, bigOne)
val rem = this - div
fracs.add(div)
toEgyptian(rem.num, rem.denom, fracs)
}
else {
toEgyptian(num, denom, fracs)
}
return fracs
}
private tailrec fun toEgyptian(
n: BigInteger,
d: BigInteger,
fracs: MutableList<Frac>
) {
if (n == bigZero) return
val n2 = n.toBigDecimal()
val d2 = d.toBigDecimal()
var divRem = d2.divideAndRemainder(n2, context)
var div = divRem[0].toBigInteger()
if (divRem[1] > bdZero) div++
fracs.add(Frac(bigOne, div))
var n3 = (-d) % n
if (n3 < bigZero) n3 += n
val d3 = d * div
val f = Frac(n3, d3)
if (f.num == bigOne) {
fracs.add(f)
return
}
toEgyptian(f.num, f.denom, fracs)
}
}
fun main(args: Array<String>) {
val fracs = listOf(Frac(43, 48), Frac(5, 121), Frac(2014,59))
for (frac in fracs) {
val list = frac.toEgyptian()
if (list[0].denom == bigOne) {
val first = "[${list[0]}]"
println("$frac -> $first + ${list.drop(1).joinToString(" + ")}")
}
else {
println("$frac -> ${list.joinToString(" + ")}")
}
}
for (r in listOf(98, 998)) {
if (r == 98)
println("\nFor proper fractions with 1 or 2 digits:")
else
println("\nFor proper fractions with 1, 2 or 3 digits:")
var maxSize = 0
var maxSizeFracs = mutableListOf<Frac>()
var maxDen = bigZero
var maxDenFracs = mutableListOf<Frac>()
val sieve = List(r + 1) { BooleanArray(r + 2) } // to eliminate duplicates
for (i in 1..r) {
for (j in (i + 1)..(r + 1)) {
if (sieve[i][j]) continue
val f = Frac(i, j)
val list = f.toEgyptian()
val listSize = list.size
if (listSize > maxSize) {
maxSize = listSize
maxSizeFracs.clear()
maxSizeFracs.add(f)
}
else if (listSize == maxSize) {
maxSizeFracs.add(f)
}
val listDen = list[list.lastIndex].denom
if (listDen > maxDen) {
maxDen = listDen
maxDenFracs.clear()
maxDenFracs.add(f)
}
else if (listDen == maxDen) {
maxDenFracs.add(f)
}
if (i < r / 2) {
var k = 2
while (true) {
if (j * k > r + 1) break
sieve[i * k][j * k] = true
k++
}
}
}
}
println(" largest number of items = $maxSize")
println(" fraction(s) with this number : $maxSizeFracs")
val md = maxDen.toString()
print(" largest denominator = ${md.length} digits, ")
println("${md.take(20)}...${md.takeLast(20)}")
println(" fraction(s) with this denominator : $maxDenFracs")
}
}
- Output:
43/48 -> 1/2 + 1/3 + 1/16 5/121 -> 1/25 + 1/757 + 1/763309 + 1/873960180913 + 1/1527612795642093418846225 2014/59 -> [34] + 1/8 + 1/95 + 1/14947 + 1/670223480 For proper fractions with 1 or 2 digits: largest number of items = 8 fraction(s) with this number : [8/97, 44/53] largest denominator = 150 digits, 57950458706754280171...62011424993909789665 fraction(s) with this denominator : [8/97] For proper fractions with 1, 2 or 3 digits: largest number of items = 13 fraction(s) with this number : [529/914, 641/796] largest denominator = 2847 digits, 83901882683345018663...38431266995525592705 fraction(s) with this denominator : [36/457, 529/914]
Mathematica /Wolfram Language
frac[n_] /; IntegerQ[1/n] := frac[n] = {n};
frac[n_] :=
frac[n] =
With[{p = Numerator[n], q = Denominator[n]},
Prepend[frac[Mod[-q, p]/(q Ceiling[1/n])], 1/Ceiling[1/n]]];
disp[f_] :=
StringRiffle[
SequenceCases[f,
l : {_, 1 ...} :>
If[Length[l] == 1 && l[[1]] < 1, ToString[l[[1]], InputForm],
"[" <> ToString[Length[l]] <> "]"]], " + "] <> " = " <>
ToString[Numerator[Total[f]]] <> "/" <>
ToString[Denominator[Total[f]]];
Print[disp[frac[43/48]]];
Print[disp[frac[5/121]]];
Print[disp[frac[2014/59]]];
fracs = Flatten[Table[frac[p/q], {q, 99}, {p, q}], 1];
Print[disp[MaximalBy[fracs, Length@*Union][[1]]]];
Print[disp[MaximalBy[fracs, Denominator@*Last][[1]]]];
fracs = Flatten[Table[frac[p/q], {q, 999}, {p, q}], 1];
Print[disp[MaximalBy[fracs, Length@*Union][[1]]]];
Print[disp[MaximalBy[fracs, Denominator@*Last][[1]]]];
- Output:
1/2 + 1/3 + 1/16 = 43/48 1/25 + 1/757 + 1/763309 + 1/873960180913 + 1/1527612795642093418846225 = 5/121 [34] + 1/8 + 1/95 + 1/14947 + 1/670223480 = 2014/59 1/2 + 1/4 + 1/13 + 1/307 + 1/120871 + 1/20453597227 + 1/697249399186783218655 + 1/1458470173998990524806872692984177836808420 = 44/53 1/13 + 1/181 + 1/38041 + 1/1736503177 + 1/3769304102927363485 + 1/18943537893793408504192074528154430149 + 1/538286441900380211365817285104907086347439746130226973253778132494225813153 + 1/579504587067542801713103191859918608251030291952195423583529357653899418686342360361798689053273749372615043661810228371898539583862011424993909789665 = 8/97 1/2 + 1/4 + 1/19 + 1/379 + 1/159223 + 1/28520799973 + 1/929641178371338400861 + 1/1008271507277592391123742528036634174730681 + 1/1219933718865393655364635368068124756713122928811333803786753398211072842948484537833 + 1/1860297848030936654742608399135821395565274404917258533393305147319524009551744684579405649080712180254407780735949179513154143641842892458088536544987153757401025882029 + 1/4614277444518045184646591832326467411359277711335974416082881814986405515888533562332069783067894981850924485553345190160771506460024406127868096951360637582674289834858262576425271895218431296391169922044160278696744025988461165811212428548328350795432691637759392474030879286312785400132190057899968737693594392669884878193448874327093 + 1/31937334502481972335865307630139228000187060941658399518862518849553429993133277230560087986574331290756232125775998863890963263813589266879406694561350952988662850757053371133819179770003609046815203982179108798005308113258134895569927488690118483730232440575942894680942308888321353318333183158977270294582315388855860989819894602178852719674244639951777398683083694723999674418435726557523519535770015019287382321071804865681731226989916286199314883016472947639367666251368202759691810399195092598892275413777035275182318485652713871000041272524440519262054008953943029365257325370839037761555465335452562216651250516983405134378252470216494582635109781712938341456418881 + 1/2039986670246850822853427080268636607703538330430958135006350872460188775376402385474575383380701179275926633909293920375037781006938834602683282504456671345800481611955974906577358109966753513899436209725756764159504134559394933538420714469300931804842468643272796657406808805007786178371184391663721349034183315512035012402176731111044506314978549915206516847224339930494935465558632905912262959736737614637514921726288403470224139024425700070180324623265095949577758695292697562554242228453440276043742370033993859881981612938703208463591285870376619588297958810138295747858827756577616148419423031480258559516303907719233914603343421735341220080271152090557188286289527661792734931298102513902518914250419121432886312102736349552224188669212688846219382874287241971706387850290821170997846726526589069990513808709560793139660289273086403155344460608865436195352720549406793512677065107181955781264579349071905411393100989250722104770801720673437692418988638492506057962758754921169589084980707251205329924087857682559921447010465898318288868258062129919867004394488124710647843586978379399594154917914477913086776811741840849911967039211773201428676384229432761943488196359561416605048969002045397348240530911560634680322446588472763785839765588633770016209055874572792498932175778494089116461654628549726895871636209026849103988563732410165441 = 641/796 1/13 + 1/541 + 1/321409 + 1/114781617793 + 1/14821672255960844346913 + 1/251065106814993628596500876449600804290086881 + 1/73539302503361520198362339236500915390885795679264404865887253300925727812630083326272641 + 1/6489634815217096741758907148982381236931234341288936993640630568353888026513046373352130623124225014404918014072680355409470797372507720812828610332359154836067922616607391865217 + 1/52644200043597301715163084170074049765863371513744701000308778672552161021188727897845435784419167578097570308323221316037189809321236639774156001218848770417914304730719451756764847141999454715415348579218576135692260706546084789833559164567239198064491721524233401718052341737694961761810858726456915514545036448002629051435498625211733293978125476206145 + 1/3695215730973720191743335450900515442837964059737103132125137784392340041085824276783333540815086968586494259680343732030671448522298751008735945486795776365973142745077411841504712940444458881229478108614230774637316342940593842925604630011475333378620376362943942755446627099104200059416153812858633723638212819657597061963458758259287734950993940819872945202809437805131650984566124057319228963533088559443909352453788455968978250113376533423265233637558939144535732287317303130488802163512444658441011602922480039143050047663394967808639154754442570791381496210122415541628843804495020590646687354364355396925939868087995781911240513904752765014910531863571167632659092232428610030201325032663259931238141889 + 1/20481928947653467858867964360215698922460866349989714221296388791180533521147068328398292448571350580917144516243144419767021450972552458770890215041236338405232471846144964422722088363577942656244304369314740680337368003341749927848292268159627280776486153786277410225081205358330757686606252814923029488556248114378465151886875778980493919811102286892641254175976181063891774788890129279669791215911728886439002027991447164421080590166911130116483359749418047307595497010369457711350953018694479942850146580996402187310635505278301929397030213544531068769667892360925519410013180703331321321833900350008776368272790481252519169303988218210095146759870287941250090204506960847016059468728275311477613271084474766715488264771177830115028195215223644336345646870679050787515340804351339449474385172464387868299006904638274425855008729765086091731260299397062138670321522563954731398813138738073326593694555049353805161855854036423870334342280080335804850998490793742536882308453307029152812821729798744074167237835462214043679643723245065093600037959124662392297413473130606861784229249604290090458912391096328362137163951398211801143455350336317188806956746282700489013366856863803112203078858200161688528939040348825835610989725020068306497091337571398894447440161081470240965873628208205669354804691958270783090585006358905094926094885655359774269830169287513005586562246433405044654325439410730648108371520856384706590593 + 1/839018826833450186636781520007011999269820404906753180244759299287837378895397605613261469995626498719289835112392530430840514102146998625666594756995273418015600023494049208108894185781774002683063204252356172520941088783702738286944210460710059319691268110283467445381026653628599765684739105388642310044785844902157076919003735231543781785073393176144167688252446541416466418608465458502997971425428342769433127784560570193376772878336217849260872114137931351960543608384244009505664253173875705234889570853924105640193619301332776989688248555027054395237907581951261868280899150574360164800187964167274323078311078867593844043149124596271281252530924719121766925749760855109100066731841478262812686642693395896229983745226277793055820609058348269152190083695704685769622011655159174272326647342695589818127126303038171968768650476413027459205291075571637957597356820188031655122749743652301268394542123970892422944335857917641636041892192547135178153602038877677614358281581103685526041329841496863410305888255234495015115912388514981113593387572720476744188169200130515719608747338810136728267784013352396910979904545913458536243327311977805126410065576961237640824852114328884086581542091492600312838425666927627674227053793897767395465326589843035773944346372949759909905561209334216847158156644884281300512699910530092870919061876615770708519243818676366245477462042294267674677954783726990349386117468071932874021023714524610740225814235147693954027910741673103980749749728106483987721602738673173009362802337092908847797499475895347112889339502928407808058670297722175686638678788738689803945574002805677250463286479363670076942509109589495377221095405979217163821481666646160815221224686562530536116613645305335922819524037829878961518170177968768364853399057357772141655622381280196908637031556436461404285930426436983658106288733881761514992109680298995922754466040011586713812553117621857109517258943846004179432521131844156242428351270188803919554398620084668514054504414062276012292497375238210886595006249453460414790147611422121782194848803348777061816460876697945418158442269512987729152441940326466631610424906158237288218706447963113019239557885486647314085357651895226117364760315394354624547919209138539180807829672545924239541758108877100331729470119526373928796447673951888289511964811633025369821156695934557103429921063387965046715070102916811976552584464153981214277622597308113449320462341683055200576571910241686615924531368198770946893858410058348221985603151428153382461711196734214085852523778422630907646235900752317571022131569421231196329080023952364788544301495422061066036911772385739659997665503832444529713544286955548310166168837889046149061296461059432238621602179724809510024772127497080258401694929973105184832214622785679651550368465524821062859837409907538269572622296774545103747438431266995525592705 = 36/457
Microsoft Small Basic
Small Basic but large (not huge) integers.
'Egyptian fractions - 26/07/2018
xx=2014
yy=59
x=xx
y=yy
If x>=y Then
q=Math.Floor(x/y)
tt="+("+q+")"
x=Math.Remainder(x,y)
EndIf
If x<>0 Then
While x<>1
'i=modulo(-y,x)
u=-y
v=x
modulo()
i=ret
k=Math.Ceiling(y/x)
m=m+1
tt=tt+"+1/"+k
j=y*k
If i=1 Then
tt=tt+"+1/"+j
EndIf
'n=gcd(i,j)
x=i
y=j
gcd()
n=ret
x=i/n
y=j/n
EndWhile
EndIf
TextWindow.WriteLine(xx+"/"+yy+"="+Text.GetSubTextToEnd(tt,2))
Sub modulo
wr=Math.Remainder(u,v)
While wr<0
wr=wr+v
EndWhile
ret=wr
EndSub
Sub gcd
wx=i
wy=j
wr=1
While wr<>0
wr=Math.Remainder(wx,wy)
wx=wy
wy=wr
EndWhile
ret=wx
EndSub
- Output:
43/48=1/2+1/3 5/121=1/25+1/757+1/763309+1/873960180913+1/1527612795642093418846225 2014/59=(34)+1/8+1/95+1/14947+1/670223480
Nim
import strformat, strutils
import bignum
let
Zero = newInt(0)
One = newInt(1)
#---------------------------------------------------------------------------------------------------
proc toEgyptianrecursive(rat: Rat; fracs: seq[Rat]): seq[Rat] =
if rat.isZero: return fracs
let iquo = cdiv(rat.denom, rat.num)
let rquo = newRat(1, iquo)
result = fracs & rquo
let num2 = cmod(-rat.denom, rat.num)
if num2 < Zero:
num2 += rat.num
let denom2 = rat.denom * iquo
let f = newRat(num2, denom2)
if f.num == One:
result.add(f)
else:
result = f.toEgyptianrecursive(result)
#---------------------------------------------------------------------------------------------------
proc toEgyptian(rat: Rat): seq[Rat] =
if rat.num.isZero: return @[rat]
if abs(rat.num) >= rat.denom:
let iquo = rat.num div rat.denom
let rquo = newRat(iquo, 1)
let rrem = rat - rquo
result = rrem.toEgyptianrecursive(@[rquo])
else:
result = rat.toEgyptianrecursive(@[])
#———————————————————————————————————————————————————————————————————————————————————————————————————
for frac in [newRat(43, 48), newRat(5, 121), newRat(2014, 59)]:
let list = frac.toEgyptian()
if list[0].denom == One:
let first = fmt"[{list[0].num}]"
let rest = list[1..^1].join(" + ")
echo fmt"{frac} -> {first} + {rest}"
else:
let all = list.join(" + ")
echo fmt"{frac} -> {all}"
for r in [98, 998]:
if r == 98:
echo "\nFor proper fractions with 1 or 2 digits:"
else:
echo "\nFor proper fractions with 1, 2 or 3 digits:"
var maxSize = 0
var maxSizeFracs: seq[Rat]
var maxDen = Zero
var maxDenFracs: seq[Rat]
var sieve = newSeq[seq[bool]](r + 1) # To eliminate duplicates.
for item in sieve.mitems: item.setLen(r + 2)
for i in 1..r:
for j in (i + 1)..(r + 1):
if sieve[i][j]: continue
let f = newRat(i, j)
let list = f.toEgyptian()
let listSize = list.len
if listSize > maxSize:
maxSize = listSize
maxSizeFracs.setLen(0)
maxSizeFracs.add(f)
elif listSize == maxSize:
maxSizeFracs.add(f)
let listDen = list[^1].denom()
if listDen > maxDen:
maxDen = listDen
maxDenFracs.setLen(0)
maxDenFracs.add(f)
elif listDen == maxDen:
maxDenFracs.add(f)
if i < r div 2:
var k = 2
while j * k <= r + 1:
sieve[i * k][j * k] = true
inc k
echo fmt" largest number of items = {maxSize}"
echo fmt" fraction(s) with this number : {maxSizeFracs.join("", "")}"
let md = $maxDen
echo fmt" largest denominator = {md.len} digits, {md[0..19]}...{md[^20..^1]}"
echo fmt" fraction(s) with this denominator : {maxDenFracs.join("", "")}"
- Output:
43/48 -> 1/2 + 1/3 + 1/16 5/121 -> 1/25 + 1/757 + 1/763309 + 1/873960180913 + 1/1527612795642093418846225 2014/59 -> [34] + 1/8 + 1/95 + 1/14947 + 1/670223480 For proper fractions with 1 or 2 digits: largest number of items = 8 fraction(s) with this number : 8/97, 44/53 largest denominator = 150 digits, 57950458706754280171...62011424993909789665 fraction(s) with this denominator : 8/97 For proper fractions with 1, 2 or 3 digits: largest number of items = 13 fraction(s) with this number : 529/914, 641/796 largest denominator = 2847 digits, 83901882683345018663...38431266995525592705 fraction(s) with this denominator : 36/457, 529/914
PARI/GP
efrac(f)=my(v=List());while(f,my(x=numerator(f),y=denominator(f));listput(v,ceil(y/x));f=(-y)%x/y/v[#v]);Vec(v);
show(f)=my(n=f\1,v=efrac(f-n)); print1(f" = ["n"; "v[1]); for(i=2,#v,print1(", "v[i])); print("]");
best(n)=my(denom,denomAt,term,termAt,v); for(a=1,n-1,for(b=a+1,n, v=efrac(a/b); if(#v>term, termAt=a/b; term=#v); if(v[#v]>denom, denomAt=a/b; denom=v[#v]))); print("Most terms is "termAt" with "term); print("Biggest denominator is "denomAt" with "denom)
apply(show, [43/48, 5/121, 2014/59]);
best(9)
best(99)
best(999)
- Output:
43/48 = [0; 2, 3, 16] 5/121 = [0; 25, 757, 763309, 873960180913, 1527612795642093418846225] 2014/59 = [34; 8, 95, 14947, 670223480] Most terms is 3/7 with 3 Biggest denominator is 3/7 with 231 Most terms is 8/97 with 8 Biggest denominator is 8/97 with 579504587067542801713103191859918608251030291952195423583529357653899418686342360361798689053273749372615043661810228371898539583862011424993909789665 Most terms is 529/914 with 13 Biggest denominator is 36/457 with 839...705
Perl
use strict;
use warnings;
use bigint;
sub isEgyption{
my $nr = int($_[0]);
my $de = int($_[1]);
if($nr == 0 or $de == 0){
#Invalid input
return;
}
if($de % $nr == 0){
# They divide so print
printf "1/" . int($de/$nr);
return;
}
if($nr % $de == 0){
# Invalid fraction
printf $nr/$de;
return;
}
if($nr > $de){
printf int($nr/$de) . " + ";
isEgyption($nr%$de, $de);
return;
}
# Floor to find ceiling and print as fraction
my $tmp = int($de/$nr) + 1;
printf "1/" . $tmp . " + ";
isEgyption($nr*$tmp-$de, $de*$tmp);
}
my $nrI = 2014;
my $deI = 59;
printf "\nEgyptian Fraction Representation of " . $nrI . "/" . $deI . " is: \n\n";
isEgyption($nrI,$deI);
- Output:
Egyptian Fraction Representation of 2014/59 is: 34 + 1/8 + 1/95 + 1/14947 + 1/670223480
Phix
The sieve copied from Go
with javascript_semantics include mpfr.e function egyptian(integer num, denom) mpz n = mpz_init(num), d = mpz_init(denom), t = mpz_init() sequence result = {} while mpz_cmp_si(n,0)!=0 do mpz_cdiv_q(t, d, n) result = append(result,"1/"&mpz_get_str(t)) mpz_neg(d,d) mpz_mod(n,d,n) mpz_neg(d,d) mpz_mul(d,d,t) end while {n,d} = mpz_free({n,d}) return result end function procedure efrac(integer num, denom) string fraction = sprintf("%d/%d",{num,denom}), prefix = "" if num>=denom then integer whole = floor(num/denom) num -= whole*denom prefix = sprintf("[%d] + ",whole) end if string e = join(egyptian(num, denom)," + ") printf(1,"%s -> %s%s\n",{fraction,prefix,e}) end procedure efrac(43,48) efrac(5,121) efrac(2014,59) integer maxt = 0, maxd = 0 string maxts = "", maxds = "", maxda = "" for r=98 to 998 by 900 do -- (iterates just twice!) sequence sieve = repeat(repeat(false,r+1),r) -- to eliminate duplicates for n=1 to r do for d=n+1 to r+1 do if sieve[n][d]=false then string term = sprintf("%d/%d",{n,d}) sequence terms = egyptian(n,d) integer nterms = length(terms) if nterms>maxt then maxt = nterms maxts = term elsif nterms=maxt then maxts &= ", " & term end if integer mlen = length(terms[$])-2 if mlen>maxd then maxd = mlen maxds = term maxda = terms[$] elsif mlen=maxd then maxds &= ", " & term end if if n<r/2 then for k=2 to 9999 do if d*k > r+1 then exit end if sieve[n*k][d*k] = true end for end if end if end for end for printf(1,"\nfor proper fractions with 1 to %d digits\n",{length(sprint(r))}) printf(1,"Largest number of terms is %d for %s\n",{maxt,maxts}) maxda = maxda[3..$] -- (strip the "1/") maxda[6..-6]="..." -- (show only first/last 5 digits) printf(1,"Largest size for denominator is %d digits (%s) for %s\n",{maxd,maxda,maxds}) end for
- Output:
43/48 -> 1/2 + 1/3 + 1/16 5/121 -> 1/25 + 1/757 + 1/763309 + 1/873960180913 + 1/1527612795642093418846225 2014/59 -> [34] + 1/8 + 1/95 + 1/14947 + 1/670223480 for proper fractions with 1 to 2 digits Largest number of terms is 8 for 8/97, 44/53 Largest size for denominator is 150 digits (57950...89665) for 8/97 for proper fractions with 1 to 3 digits Largest number of terms is 13 for 529/914, 641/796 Largest size for denominator is 2847 digits (83901...92705) for 36/457, 529/914
Prolog
count_digits(Number, Count):-
atom_number(A, Number),
atom_length(A, Count).
integer_to_atom(Number, Atom):-
atom_number(A, Number),
atom_length(A, Count),
(Count =< 20 ->
Atom = A
;
sub_atom(A, 0, 10, _, A1),
P is Count - 10,
sub_atom(A, P, 10, _, A2),
atom_concat(A1, '...', A3),
atom_concat(A3, A2, Atom)
).
egyptian(0, _, []):- !.
egyptian(X, Y, [Z|E]):-
Z is (Y + X - 1)//X,
X1 is -Y mod X,
Y1 is Y * Z,
egyptian(X1, Y1, E).
print_egyptian([]):- !.
print_egyptian([N|List]):-
integer_to_atom(N, A),
write(1/A),
(List = [] -> true; write(' + ')),
print_egyptian(List).
print_egyptian(X, Y):-
writef('Egyptian fraction for %t/%t: ', [X, Y]),
(X > Y ->
N is X//Y,
writef('[%t] ', [N]),
X1 is X mod Y
;
X1 = X
),
egyptian(X1, Y, E),
print_egyptian(E),
nl.
max_terms_and_denominator1(D, Max_terms, Max_denom, Max_terms1, Max_denom1):-
max_terms_and_denominator1(D, 1, Max_terms, Max_denom, Max_terms1, Max_denom1).
max_terms_and_denominator1(D, D, Max_terms, Max_denom, Max_terms, Max_denom):- !.
max_terms_and_denominator1(D, N, Max_terms, Max_denom, Max_terms1, Max_denom1):-
Max_terms1 = f(_, _, _, Len1),
Max_denom1 = f(_, _, _, Max1),
egyptian(N, D, E),
length(E, Len),
last(E, Max),
(Len > Len1 ->
Max_terms2 = f(N, D, E, Len)
;
Max_terms2 = Max_terms1
),
(Max > Max1 ->
Max_denom2 = f(N, D, E, Max)
;
Max_denom2 = Max_denom1
),
N1 is N + 1,
max_terms_and_denominator1(D, N1, Max_terms, Max_denom, Max_terms2, Max_denom2).
max_terms_and_denominator(N, Max_terms, Max_denom):-
max_terms_and_denominator(N, 1, Max_terms, Max_denom, f(0, 0, [], 0),
f(0, 0, [], 0)).
max_terms_and_denominator(N, N, Max_terms, Max_denom, Max_terms, Max_denom):-!.
max_terms_and_denominator(N, N1, Max_terms, Max_denom, Max_terms1, Max_denom1):-
max_terms_and_denominator1(N1, Max_terms2, Max_denom2, Max_terms1, Max_denom1),
N2 is N1 + 1,
max_terms_and_denominator(N, N2, Max_terms, Max_denom, Max_terms2, Max_denom2).
show_max_terms_and_denominator(N):-
writef('Proper fractions with most terms and largest denominator, limit = %t:\n', [N]),
max_terms_and_denominator(N, f(N_max_terms, D_max_terms, E_max_terms, Len),
f(N_max_denom, D_max_denom, E_max_denom, Max)),
writef('Most terms (%t): %t/%t = ', [Len, N_max_terms, D_max_terms]),
print_egyptian(E_max_terms),
nl,
count_digits(Max, Digits),
writef('Largest denominator (%t digits): %t/%t = ', [Digits, N_max_denom, D_max_denom]),
print_egyptian(E_max_denom),
nl.
main:-
print_egyptian(43, 48),
print_egyptian(5, 121),
print_egyptian(2014, 59),
nl,
show_max_terms_and_denominator(100),
nl,
show_max_terms_and_denominator(1000).
- Output:
Egyptian fraction for 43/48: 1/2 + 1/3 + 1/16 Egyptian fraction for 5/121: 1/25 + 1/757 + 1/763309 + 1/873960180913 + 1/1527612795...3418846225 Egyptian fraction for 2014/59: [34] 1/8 + 1/95 + 1/14947 + 1/670223480 Proper fractions with most terms and largest denominator, limit = 100: Most terms (8): 44/53 = 1/2 + 1/4 + 1/13 + 1/307 + 1/120871 + 1/20453597227 + 1/6972493991...6783218655 + 1/1458470173...7836808420 Largest denominator (150 digits): 8/97 = 1/13 + 1/181 + 1/38041 + 1/1736503177 + 1/3769304102927363485 + 1/1894353789...8154430149 + 1/5382864419...4225813153 + 1/5795045870...3909789665 Proper fractions with most terms and largest denominator, limit = 1000: Most terms (13): 641/796 = 1/2 + 1/4 + 1/19 + 1/379 + 1/159223 + 1/28520799973 + 1/9296411783...1338400861 + 1/1008271507...4174730681 + 1/1219933718...8484537833 + 1/1860297848...1025882029 + 1/4614277444...8874327093 + 1/3193733450...1456418881 + 1/2039986670...2410165441 Largest denominator (2847 digits): 36/457 = 1/13 + 1/541 + 1/321409 + 1/114781617793 + 1/1482167225...0844346913 + 1/2510651068...4290086881 + 1/7353930250...3326272641 + 1/6489634815...7391865217 + 1/5264420004...5476206145 + 1/3695215730...1238141889 + 1/2048192894...4706590593 + 1/8390188268...5525592705
Python
Procedural
from fractions import Fraction
from math import ceil
class Fr(Fraction):
def __repr__(self):
return '%s/%s' % (self.numerator, self.denominator)
def ef(fr):
ans = []
if fr >= 1:
if fr.denominator == 1:
return [[int(fr)], Fr(0, 1)]
intfr = int(fr)
ans, fr = [[intfr]], fr - intfr
x, y = fr.numerator, fr.denominator
while x != 1:
ans.append(Fr(1, ceil(1/fr)))
fr = Fr(-y % x, y* ceil(1/fr))
x, y = fr.numerator, fr.denominator
ans.append(fr)
return ans
if __name__ == '__main__':
for fr in [Fr(43, 48), Fr(5, 121), Fr(2014, 59)]:
print('%r ─► %s' % (fr, ' '.join(str(x) for x in ef(fr))))
lenmax = denommax = (0, None)
for fr in set(Fr(a, b) for a in range(1,100) for b in range(1, 100)):
e = ef(fr)
#assert sum((f[0] if type(f) is list else f) for f in e) == fr, 'Whoops!'
elen, edenom = len(e), e[-1].denominator
if elen > lenmax[0]:
lenmax = (elen, fr, e)
if edenom > denommax[0]:
denommax = (edenom, fr, e)
print('Term max is %r with %i terms' % (lenmax[1], lenmax[0]))
dstr = str(denommax[0])
print('Denominator max is %r with %i digits %s...%s' %
(denommax[1], len(dstr), dstr[:5], dstr[-5:]))
- Output:
43/48 ─► 1/2 1/3 1/16 5/121 ─► 1/25 1/757 1/763309 1/873960180913 1/1527612795642093418846225 2014/59 ─► [34] 1/8 1/95 1/14947 1/670223480 Term max is 97/53 with 9 terms Denominator max is 8/97 with 150 digits 57950...89665
Composition of pure functions
The derivation of a sequence of unit fractions from a single fraction is a classic case of an anamorphism or unfold abstraction – dual to a fold or catamorphism. Rather than reducing, collapsing or summarizing a structure to a single value, it builds a structure from a single value.
See the unfoldr function below:
'''Egyptian fractions'''
from fractions import Fraction
from functools import reduce
from operator import neg
# eqyptianFraction :: Ratio Int -> Ratio Int
def eqyptianFraction(nd):
'''The rational number nd as a sum
of the series of unit fractions
obtained by application of the
greedy algorithm.'''
def go(x):
n, d = x.numerator, x.denominator
r = 1 + d // n if n else None
return Just((0, x) if 1 == n else (
(fr(n % d, d), fr(n // d, 1)) if n > d else (
fr(-d % n, d * r), fr(1, r)
)
)) if n else Nothing()
fr = Fraction
f = unfoldr(go)
return list(map(neg, f(-nd))) if 0 > nd else f(nd)
# TESTS ---------------------------------------------------
# maxEqyptianFraction :: Int -> (Ratio Int -> a)
# -> (Ratio Int, a)
def maxEqyptianFraction(nDigits):
'''An Egyptian Fraction, representing a
proper fraction with numerators and
denominators of up to n digits each,
which returns a maximal value for the
supplied function f.'''
# maxVals :: ([Ratio Int], a) -> (Ratio Int, a)
# -> ([Ratio Int], a)
def maxima(xsv, ndfx):
xs, v = xsv
nd, fx = ndfx
return ([nd], fx) if fx > v else (
xs + [nd], v
) if fx == v and nd not in xs else xsv
# go :: (Ratio Int -> a) -> ([Ratio Int], a)
def go(f):
iLast = int(nDigits * '9')
fs, mx = reduce(
maxima, [
(nd, f(eqyptianFraction(nd))) for nd in [
Fraction(n, d)
for n in enumFromTo(1)(iLast)
for d in enumFromTo(1 + n)(iLast)
]
],
([], 0)
)
return f.__name__ + ' -> [' + ', '.join(
map(str, fs)
) + '] -> ' + str(mx)
return lambda f: go(f)
# main :: IO ()
def main():
'''Tests'''
ef = eqyptianFraction
fr = Fraction
print('Three values as Eqyptian fractions:')
print('\n'.join([
str(fr(*nd)) + ' -> ' + ' + '.join(map(str, ef(fr(*nd))))
for nd in [(43, 48), (5, 121), (2014, 59)]
]))
# maxDenominator :: [Ratio Int] -> Int
def maxDenominator(ef):
return max(map(lambda nd: nd.denominator, ef))
# maxTermCount :: [Ratio Int] -> Int
def maxTermCount(ef):
return len(ef)
for i in [1, 2, 3]:
print(
'\nMaxima for proper fractions with up to ' + (
str(i) + ' digit(s):'
)
)
for f in [maxTermCount, maxDenominator]:
print(maxEqyptianFraction(i)(f))
# GENERIC -------------------------------------------------
# Just :: a -> Maybe a
def Just(x):
'''Constructor for an inhabited Maybe (option type) value.'''
return {'type': 'Maybe', 'Nothing': False, 'Just': x}
# Nothing :: Maybe a
def Nothing():
'''Constructor for an empty Maybe (option type) value.'''
return {'type': 'Maybe', 'Nothing': True}
# enumFromTo :: (Int, Int) -> [Int]
def enumFromTo(m):
'''Integer enumeration from m to n.'''
return lambda n: list(range(m, 1 + n))
# unfoldr :: (b -> Maybe (b, a)) -> b -> [a]
def unfoldr(f):
'''Dual to reduce or foldr.
Where catamorphism reduces a list to a summary value,
the anamorphic unfoldr builds a list from a seed value.
As long as f returns Just(a, b), a is prepended to the list,
and the residual b is used as the argument for the next
application of f.
When f returns Nothing, the completed list is returned.'''
def go(xr):
mb = f(xr[0])
if mb.get('Nothing'):
return []
else:
y, r = mb.get('Just')
return [r] + go((y, r))
return lambda x: go((x, x))
# MAIN ---
if __name__ == '__main__':
main()
- Output:
Three values as Eqyptian fractions: 43/48 -> 1/2 + 1/3 + 1/16 5/121 -> 1/25 + 1/757 + 1/763309 + 1/873960180913 + 1/1527612795642093418846225 2014/59 -> 34 + 1/8 + 1/95 + 1/14947 + 1/670223480 Maxima for proper fractions with up to 1 digit(s): maxTermCount -> [3/7, 4/5, 5/7, 6/7, 7/8, 7/9, 8/9] -> 3 maxDenominator -> [3/7] -> 231 Maxima for proper fractions with up to 2 digit(s): maxTermCount -> [8/97, 44/53] -> 8 maxDenominator -> [8/97] -> 579504587067542801713103191859918608251030291952195423583529357653899418686342360361798689053273749372615043661810228371898539583862011424993909789665 Maxima for proper fractions with up to 3 digit(s): maxTermCount -> [529/914, 641/796] -> 13 maxDenominator -> [36/457, 529/914] -> 839018826833450186636781520007011999269820404906753180244759299287837378895397605613261469995626498719289835112392530430840514102146998625666594756995273418015600023494049208108894185781774002683063204252356172520941088783702738286944210460710059319691268110283467445381026653628599765684739105388642310044785844902157076919003735231543781785073393176144167688252446541416466418608465458502997971425428342769433127784560570193376772878336217849260872114137931351960543608384244009505664253173875705234889570853924105640193619301332776989688248555027054395237907581951261868280899150574360164800187964167274323078311078867593844043149124596271281252530924719121766925749760855109100066731841478262812686642693395896229983745226277793055820609058348269152190083695704685769622011655159174272326647342695589818127126303038171968768650476413027459205291075571637957597356820188031655122749743652301268394542123970892422944335857917641636041892192547135178153602038877677614358281581103685526041329841496863410305888255234495015115912388514981113593387572720476744188169200130515719608747338810136728267784013352396910979904545913458536243327311977805126410065576961237640824852114328884086581542091492600312838425666927627674227053793897767395465326589843035773944346372949759909905561209334216847158156644884281300512699910530092870919061876615770708519243818676366245477462042294267674677954783726990349386117468071932874021023714524610740225814235147693954027910741673103980749749728106483987721602738673173009362802337092908847797499475895347112889339502928407808058670297722175686638678788738689803945574002805677250463286479363670076942509109589495377221095405979217163821481666646160815221224686562530536116613645305335922819524037829878961518170177968768364853399057357772141655622381280196908637031556436461404285930426436983658106288733881761514992109680298995922754466040011586713812553117621857109517258943846004179432521131844156242428351270188803919554398620084668514054504414062276012292497375238210886595006249453460414790147611422121782194848803348777061816460876697945418158442269512987729152441940326466631610424906158237288218706447963113019239557885486647314085357651895226117364760315394354624547919209138539180807829672545924239541758108877100331729470119526373928796447673951888289511964811633025369821156695934557103429921063387965046715070102916811976552584464153981214277622597308113449320462341683055200576571910241686615924531368198770946893858410058348221985603151428153382461711196734214085852523778422630907646235900752317571022131569421231196329080023952364788544301495422061066036911772385739659997665503832444529713544286955548310166168837889046149061296461059432238621602179724809510024772127497080258401694929973105184832214622785679651550368465524821062859837409907538269572622296774545103747438431266995525592705
Racket
#lang racket
(define (real->egyptian-list R)
(define (inr r rv)
(match* ((exact-floor r) (numerator r) (denominator r))
[(0 0 1) (reverse rv)]
[(0 1 d) (reverse (cons (/ d) rv))]
[(0 x y) (let ((^y/x (exact-ceiling (/ y x))))
(inr (/ (modulo (- y) x) (* y ^y/x)) (cons (/ ^y/x) rv)))]
[(flr _ _) (inr (- r flr) (cons flr rv))]))
(inr R null))
(define (real->egyptian-string f)
(define e.f.-list (real->egyptian-list f))
(define fmt-part
(match-lambda
[(? integer? (app number->string s)) s]
[(app (compose number->string /) s) (format "/~a"s)]))
(string-join (map fmt-part e.f.-list) " + "))
(define (stat-egyptian-fractions max-b+1)
(define-values (max-l max-l-f max-d max-d-f)
(for*/fold ((max-l 0) (max-l-f #f) (max-d 0) (max-d-f #f))
((b (in-range 1 max-b+1)) (a (in-range 1 b)) #:when (= 1 (gcd a b)))
(define f (/ a b))
(define e.f (real->egyptian-list (/ a b)))
(define l (length e.f))
(define d (denominator (last e.f)))
(values (max max-l l) (if (> l max-l) f max-l-f)
(max max-d d) (if (> d max-d) f max-d-f))))
(printf #<<EOS
max #terms: ~a has ~a
[~.a]
max denominator: ~a has ~a
[~.a]
EOS
max-l-f max-l (real->egyptian-string max-l-f)
max-d-f max-d (real->egyptian-string max-d-f)))
(displayln (real->egyptian-string 43/48))
(displayln (real->egyptian-string 5/121))
(displayln (real->egyptian-string 2014/59))
(newline)
(stat-egyptian-fractions 100)
(newline)
(stat-egyptian-fractions 1000)
(module+ test (require tests/eli-tester)
(test (real->egyptian-list 43/48) => '(1/2 1/3 1/16)))
- Output:
(Line continuations have been manually added to this "post-production")
/2 + /3 + /16 /25 + /757 + /763309 + /873960180913 + /1527612795642093418846225 34 + /8 + /95 + /14947 + /670223480 max #terms: 44/53 has 8 [/2 + /4 + /13 + /307 + /120871 + /20453597227 + /697249399186783218655 + /1458\ 470173998990524806872692984177836808420] max denominator: 8/97 has 57950458706754280171310319185991860825103029195219542\ 3583529357653899418686342360361798689053273749372615043661810228371898539583862\ 011424993909789665 [/13 + /181 + /38041 + /1736503177 + /3769304102927363485 + /189435378937934085\ 04192074528154430149 + /5382864419003802113658172851049070863474397461302269732\ 53778132494225813153 + /5795045870675428017131031918599186082510302919521954235\ 83529357653...] max #terms: 641/796 has 13 [/2 + /4 + /19 + /379 + /159223 + /28520799973 + /929641178371338400861 + /1008\ 271507277592391123742528036634174730681 + /121993371886539365536463536806812475\ 6713122928811333803786753398211072842948484537833 + /18602978480309366547426083\ 99135821395...] max denominator: 36/457 has 839018826833450186636781520007011999269820404906753\ 1802447592992878373788953976056132614699956264987192898351123925304308405141021\ 4699862566659475699527341801560002349404920810889418578177400268306320425235617\ 2520941088783702738286944210460710059319691268110283467445381026653628599765684\ 7391053886423100447858449021570769190037352315437817850733931761441676882524465\ 4141646641860846545850299797142542834276943312778456057019337677287833621784926\ 0872114137931351960543608384244009505664253173875705234889570853924105640193619\ 3013327769896882485550270543952379075819512618682808991505743601648001879641672\ 7432307831107886759384404314912459627128125253092471912176692574976085510910006\ 6731841478262812686642693395896229983745226277793055820609058348269152190083695\ 7046857696220116551591742723266473426955898181271263030381719687686504764130274\ 5920529107557163795759735682018803165512274974365230126839454212397089242294433\ 5857917641636041892192547135178153602038877677614358281581103685526041329841496\ 8634103058882552344950151159123885149811135933875727204767441881692001305157196\ 0874733881013672826778401335239691097990454591345853624332731197780512641006557\ 6961237640824852114328884086581542091492600312838425666927627674227053793897767\ 3954653265898430357739443463729497599099055612093342168471581566448842813005126\ 9991053009287091906187661577070851924381867636624547746204229426767467795478372\ 6990349386117468071932874021023714524610740225814235147693954027910741673103980\ 7497497281064839877216027386731730093628023370929088477974994758953471128893395\ 0292840780805867029772217568663867878873868980394557400280567725046328647936367\ 0076942509109589495377221095405979217163821481666646160815221224686562530536116\ 6136453053359228195240378298789615181701779687683648533990573577721416556223812\ 8019690863703155643646140428593042643698365810628873388176151499210968029899592\ 2754466040011586713812553117621857109517258943846004179432521131844156242428351\ 2701888039195543986200846685140545044140622760122924973752382108865950062494534\ 6041479014761142212178219484880334877706181646087669794541815844226951298772915\ 2441940326466631610424906158237288218706447963113019239557885486647314085357651\ 8952261173647603153943546245479192091385391808078296725459242395417581088771003\ 3172947011952637392879644767395188828951196481163302536982115669593455710342992\ 1063387965046715070102916811976552584464153981214277622597308113449320462341683\ 0552005765719102416866159245313681987709468938584100583482219856031514281533824\ 6171119673421408585252377842263090764623590075231757102213156942123119632908002\ 3952364788544301495422061066036911772385739659997665503832444529713544286955548\ 3101661688378890461490612964610594322386216021797248095100247721274970802584016\ 9492997310518483221462278567965155036846552482106285983740990753826957262229677\ 4545103747438431266995525592705 [/13 + /541 + /321409 + /114781617793 + /14821672255960844346913 + /25106510681\ 4993628596500876449600804290086881 + /73539302503361520198362339236500915390885\ 795679264404865887253300925727812630083326272641 + /648963481521709674175890714\ 89823812369...] 1 test passed
Raku
(formerly Perl 6)
role Egyptian {
method gist {
join ' + ',
("[{self.floor}]" if self.abs >= 1),
map {"1/$_"}, self.denominators;
}
method denominators {
my ($x, $y) = self.nude;
$x %= $y;
my @denom = gather ($x, $y) = -$y % $x, $y * take ($y / $x).ceiling
while $x;
}
}
say .nude.join('/'), " = ", $_ but Egyptian for 43/48, 5/121, 2014/59;
my @sample = map { $_ => .denominators },
grep * < 1,
map {$_ but Egyptian},
(2 .. 99 X/ 2 .. 99);
say .key.nude.join("/"),
" has max denominator, namely ",
.value.max
given max :by(*.value.max), @sample;
say .key.nude.join("/"),
" has max number of denominators, namely ",
.value.elems
given max :by(*.value.elems), @sample;
- Output:
43/48 = 1/2 + 1/3 + 1/16 5/121 = 1/25 + 1/757 + 1/763309 + 1/873960180913 + 1/1527612795642093418846225 2014/59 = [34] + 1/8 + 1/95 + 1/14947 + 1/670223480 8/97 has max denominator, namely 579504587067542801713103191859918608251030291952195423583529357653899418686342360361798689053273749372615043661810228371898539583862011424993909789665 8/97 has max number of denominators, namely 8
Because the harmonic series diverges (albeit very slowly), it is possible to write even improper fractions as a sum of distinct unit fractions. Here is a code to do that:
role Egyptian {
method gist { join ' + ', map {"1/$_"}, self.list }
method list {
my $sum = 0;
gather for 2 .. * {
last if $sum == self;
$sum += 1 / .take unless $sum + 1 / $_ > self;
}
}
}
say 5/4 but Egyptian;
- Output:
1/2 + 1/3 + 1/4 + 1/6
The list of terms grows exponentially with the value of the fraction, though.
REXX
/*REXX program converts a fraction (can be improper) to an Egyptian fraction. */
parse arg fract '' -1 t; z=$egyptF(fract) /*compute the Egyptian fraction. */
if t\==. then say fract ' ───► ' z /*show Egyptian fraction from C.L.*/
return z /*stick a fork in it, we're done.*/
/*────────────────────────────────$EGYPTF subroutine──────────────────────────*/
$egyptF: parse arg z 1 zn '/' zd,,$; if zd=='' then zd=1 /*whole number ?*/
if z='' then call erx "no fraction was specified."
if zd==0 then call erx "denominator can't be zero:" zd
if zn==0 then call erx "numerator can't be zero:" zn
if zd<0 | zn<0 then call erx "fraction can't be negative" z
if \datatype(zn,'W') then call erx "numerator must be an integer:" zn
if \datatype(zd,'W') then call erx "denominator must be an integer:" zd
_=zn%zd /*check if it's an improper fraction. */
if _>=1 then do /*if improper fraction, then append it.*/
$='['_"]" /*append the whole # part of fraction. */
zn=zn-_*zd /*now, just use the proper fraction. */
if zn==0 then return $ /*Is there no fraction? Then we're done*/
end
if zd//zn==0 then do; zd=zd%zn; zn=1; end
do forever
if zn==1 & datatype(zd,'W') then return $ "1/"zd /*append Egyptian fract.*/
nd=zd%zn+1; $=$ '1/'nd /*add unity to integer fraction, append*/
z=$fractSub(zn'/'zd, "-", 1'/'nd) /*go and subtract the two fractions. */
parse var z zn '/' zd /*extract the numerator and denominator*/
L=2*max(length(zn),length(zd)) /*calculate if need more decimal digits*/
if L>=digits() then numeric digits L+L /*yes, then bump the decimal digits*/
end /*forever*/ /* [↑] the DO forever ends when zn==1.*/
/*────────────────────────────────$FRACTSUB subroutine────────────────────────*/
$fractSub: procedure; parse arg z.1,,z.2 1 zz.2; arg ,op
do j=1 for 2; z.j=translate(z.j,'/',"_"); end
if z.1=='' then z.1=(op\=="+" & op\=='-') /*unary +,- first fraction.*/
if z.2=='' then z.2=(op\=="+" & op\=='-') /*unary +.- second fraction.*/
do j=1 for 2 /*process both of the fractions*/
if pos('/',z.j)==0 then z.j=z.j"/1"; parse var z.j n.j '/' d.j
if \datatype(n.j,'N') then call erx "numerator isn't an integer:" n.j
if \datatype(d.j,'N') then call erx "denominator isn't an integer:" d.j
n.j=n.j/1; d.j=d.j/1 /*normalize numerator/denominator.*/
do while \datatype(n.j,'W'); n.j=n.j*10/1; d.j=d.j*10/1; end /*while*/
/* [↑] normalize both numbers. */
if d.j=0 then call erx "denominator can't be zero:" z.j
g=gcd(n.j,d.j); if g=0 then iterate; n.j=n.j/g; d.j=d.j/g
end /*j*/
l=lcm(d.1 d.2); do j=1 for 2; n.j=l*n.j/d.j; d.j=l; end /*j*/
if op=='-' then n.2=-n.2
t=n.1+n.2; u=l; if t==0 then return 0
g=gcd(t,u); t=t/g; u=u/g; if u==1 then return t
return t'/'u
/*─────────────────────────────general 1─line subs────────────────────────────*/
erx: say; say '***error!***' arg(1); say; exit 13
gcd:procedure;$=;do i=1 for arg();$=$ arg(i);end;parse var $ x z .;if x=0 then x=z;x=abs(x);do j=2 to words($);y=abs(word($,j));if y=0 then iterate;do until _==0;_=x//y;x=y;y=_;end;end;return x
lcm:procedure;y=;do j=1 for arg();y=y arg(j);end;x=word(y,1);do k=2 to words(y);!=abs(word(y,k));if !=0 then return 0;x=x*!/gcd(x,!);end;return x
p: return word(arg(1),1)
output when the input used is: 43/48
43/48 ───► 1/2 1/3 1/16
output when the input used is: 5/121
5/121 ───► 1/25 1/757 1/763309 1/873960180913 1/1527612795642093418846225
output when the input used is: 2014/59
2014/59 ───► [34] 1/8 1/95 1/14947 1/670223480
The following is a driver program to address the requirements to find
the largest number of terms for a
1- or 2-digit integer, and the largest denominator.
Also, the same program is used for the 1-, 2-, and 3-digit extra credit task.
/*REXX pgm runs the EGYPTIAN program to find biggest denominator & # of terms.*/
parse arg top . /*get optional parameter from the C.L. */
if top=='' then top=99 /*Not specified? Then use the default.*/
oTop=top; top=abs(top) /*oTop used as a flag to display maxD. */
maxT=0; maxD=0; bigD=; bigT= /*initialize some REXX variables. */
/* [↓] determine biggest andlongest. */
do n=2 to top /*traipse through the numerators. */
do d=n+1 to top /* " " " denominators */
fract=n'/'d /*create the fraction to be used. */
y='EGYPTIAN'(fract||.) /*invoke the REXX program EGYPTIAN.REX*/
t=words(y) /*number of terms in Egyptian fraction.*/
if t>maxT then bigT=fract /*is this a new high for number terms? */
maxT=max(maxT,T) /*find the maximum number of terms. */
b=substr(word(y,t),3) /*get denominator from Egyptian fract. */
if b>maxD then bigD=fract /*is this a new denominator high ? */
maxD=max(maxD,b) /*find the maximum denominator. */
end /*d*/ /* [↑] only use proper fractions. */
end /*n*/ /* [↑] ignore the 1/n fractions. */
/* [↑] display the longest and biggest*/
@= 'in the Egyptian fractions used is' /*literal is used to make a shorter SAY*/
say 'largest number of terms' @ maxT "terms for" bigT
say
say 'highest denominator' @ length(maxD) "digits for" bigD
if oTop>0 then say maxD /*stick a fork in it, we're all done. */
output for all 1- and 2-digit integers when using the default input:
largest number of terms in the Egyptian fractions used is 8 terms for 8/97 largest denominator in the Egyptian fractions is 150 digits is for 8/97 579504587067542801713103191859918608251030291952195423583529357653899418686342360361798689053273749372615043661810228371898539583862011424993909789665
output for all 1-, 2-, and 3-digit integers when using for input: -999
largest number of terms in the Egyptian fractions used is 13 terms for 529/914 largest denominator in the Egyptian fractions is 2847 digits is for 36/457
RPL
GCD
is defined at Greatest common divisor
RPL code | Comment |
---|---|
≪ DUP IM LAST RE / CEIL SWAP RE LAST IM DUP NEG ROT MOD SWAP 3 PICK * DUP2 GCD ROT OVER / ROT ROT / R→C ≫ 'SPLIT' STO ≪ DUP 3 EXGET SWAP 1 EXGET IF DUP2 > THEN SWAP OVER MOD LAST / IP SWAP ROT ELSE 0 ROT ROT END R→C WHILE DUP RE REPEAT SPLIT "'1/" ROT →STR + "'" + STR→ ROT SWAP + SWAP END ≫ 'EGYPF' STO |
SPLIT ( (x1,y1) → n1 (x2,y2) ) n1 = ceil(y1/x1) x2 = mod(-y1,x1) y2 = n1*y1 simplify x2/y2 EGYPF ( 'x/y' → 'sum_of_Egyptian_fractions') put x and y in stack if x > y first term of sum is x//y and x = mod(x,y) else first term is 0 convert to complex to ease handling in stack loop while xk ≠ 0 get nk and (xk, yk) convert nk into '1/nk' add '1/nk' to the sum end loop return sum |
'43/48' EGYPF '5/121' EGYPF '2014/59' EGYPF
- Output:
3: 'INV(2)+INV(3)+INV(16)' 2: 'INV(25)+INV(757)+INV(763309)+INV(873960180913)+INV(1.52761279564E+24)' 1: '34+INV(8)+INV(95)+INV(14947)+INV(670223480)'
In algebraic expressions, RPL automatically replaces 1/n
by INV(n)
Quest for the largest number of items for proper fractions 2.99/2..99
≪ '1/1' 0 2 99 FOR d 2 d 1 - FOR n "'" n →STR + "/" + d →STR + "'" + STR→ DUP EGYPF SIZE → f sf ≪ IF sf OVER > THEN DROP2 f sf END ≫ NEXT NEXT DROP ≫ 'TASK'
- Output:
1: '44/53'
Limited precision of basic RPL prevents from searching the largest denominator.
Ruby
def ef(fr)
ans = []
if fr >= 1
return [[fr.to_i], Rational(0, 1)] if fr.denominator == 1
intfr = fr.to_i
ans, fr = [intfr], fr - intfr
end
x, y = fr.numerator, fr.denominator
while x != 1
ans << Rational(1, (1/fr).ceil)
fr = Rational(-y % x, y * (1/fr).ceil)
x, y = fr.numerator, fr.denominator
end
ans << fr
end
for fr in [Rational(43, 48), Rational(5, 121), Rational(2014, 59)]
puts '%s => %s' % [fr, ef(fr).join(' + ')]
end
lenmax = denommax = [0]
for b in 2..99
for a in 1...b
fr = Rational(a,b)
e = ef(fr)
elen, edenom = e.length, e[-1].denominator
lenmax = [elen, fr] if elen > lenmax[0]
denommax = [edenom, fr] if edenom > denommax[0]
end
end
puts 'Term max is %s with %i terms' % [lenmax[1], lenmax[0]]
dstr = denommax[0].to_s
puts 'Denominator max is %s with %i digits' % [denommax[1], dstr.size], dstr
- Output:
43/48 => 1/2 + 1/3 + 1/16 5/121 => 1/25 + 1/757 + 1/763309 + 1/873960180913 + 1/1527612795642093418846225 2014/59 => 34 + 1/8 + 1/95 + 1/14947 + 1/670223480 Term max is 44/53 with 8 terms Denominator max is 8/97 with 150 digits 579504587067542801713103191859918608251030291952195423583529357653899418686342360361798689053273749372615043661810228371898539583862011424993909789665
Rust
use num_bigint::BigInt;
use num_integer::Integer;
use num_traits::{One, Zero};
use std::fmt;
#[derive(Debug, Clone, PartialEq, PartialOrd)]
struct Rational {
nominator: BigInt,
denominator: BigInt,
}
impl Rational {
fn new(n: &BigInt, d: &BigInt) -> Rational {
assert!(!d.is_zero(), "denominator cannot be 0");
// simplify if possible
let c = n.gcd(d);
Rational {
nominator: n / &c,
denominator: d / &c,
}
}
fn is_proper(&self) -> bool {
self.nominator < self.denominator
}
fn to_egyptian(&self) -> Vec<Rational> {
let mut frac: Vec<Rational> = Vec::new();
let mut current: Rational;
if !self.is_proper() {
// input is grater than 1
// store the integer part
frac.push(Rational::new(
&self.nominator.div_floor(&self.denominator),
&One::one(),
));
// calculate the remainder
current = Rational::new(
&self.nominator.mod_floor(&self.denominator),
&self.denominator,
);
} else {
current = self.clone();
}
while !current.nominator.is_one() {
let div = current.denominator.div_ceil(¤t.nominator);
// store the term
frac.push(Rational::new(&One::one(), &div));
current = Rational::new(
&(-¤t.denominator).mod_floor(¤t.nominator),
match current.denominator.checked_mul(&div).as_ref() {
Some(r) => r,
_ => break,
},
);
}
frac.push(current);
frac
}
}
impl fmt::Display for Rational {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if self.denominator.is_one() {
// for integers only display the integer part
write!(f, "{}", self.nominator)
} else {
write!(f, "{}/{}", self.nominator, self.denominator)
}
}
}
fn rational_vec_to_string(vec: Vec<Rational>) -> String {
let mut p = vec
.iter()
.fold(String::new(), |acc, num| (acc + &num.to_string() + ", "));
if p.len() > 1 {
p.truncate(p.len() - 2);
}
format!("[{}]", p)
}
fn run_max_searches(x: usize) {
// generate all proper fractions with 2 digits
let pairs = (1..x).flat_map(move |i| (i + 1..x).map(move |j| (i, j)));
let mut max_length = (0, Rational::new(&BigInt::from(1), &BigInt::from(1)));
let mut max_denom = (
Zero::zero(),
Rational::new(&BigInt::from(1), &BigInt::from(1)),
);
for (i, j) in pairs {
let e = Rational::new(&BigInt::from(i), &BigInt::from(j)).to_egyptian();
if e.len() > max_length.0 {
max_length = (e.len(), Rational::new(&BigInt::from(i), &BigInt::from(j)));
}
if e.last().unwrap().denominator > max_denom.0 {
max_denom = (
e.last().unwrap().denominator.clone(),
Rational::new(&BigInt::from(i), &BigInt::from(j)),
);
}
}
println!(
"Maximum length of terms is for {} with {} terms",
max_length.1, max_length.0
);
println!("{}", rational_vec_to_string(max_length.1.to_egyptian()));
println!(
"Maximum denominator is for {} with {} terms",
max_denom.1, max_denom.0
);
println!("{}", rational_vec_to_string(max_denom.1.to_egyptian()));
}
fn main() {
let tests = [
Rational::new(&BigInt::from(43), &BigInt::from(48)),
Rational::new(&BigInt::from(5), &BigInt::from(121)),
Rational::new(&BigInt::from(2014), &BigInt::from(59)),
];
for test in tests.iter() {
println!("{} -> {}", test, rational_vec_to_string(test.to_egyptian()));
}
run_max_searches(100);
run_max_searches(1000);
}
- Output:
43/48 -> [1/2, 1/3, 1/16] 5/121 -> [1/25, 1/757, 1/763309, 1/873960180913, 1/1527612795642093418846225] 2014/59 -> [34, 1/8, 1/95, 1/14947, 1/670223480] Maximum length of terms is for 8/97 with 8 terms [1/13, 1/181, 1/38041, 1/1736503177, 1/3769304102927363485, 1/18943537893793408504192074528154430149, 1/538286441900380211365817285104907086347439746130226973253778132494225813153, 1/579504587067542801713103191859918608251030291952195423583529357653899418686342360361798689053273749372615043661810228371898539583862011424993909789665] Maximum denominator is for 8/97 with 5795045870675428017131...3909789665 terms (150 digits) [1/13, 1/181, 1/38041, 1/1736503177, 1/3769304102927363485, 1/18943537893793408504192074528154430149, 1/538286441900380211365817285104907086347439746130226973253778132494225813153, 1/5795045870675428017131...3909789665] Maximum length of terms is for 529/914 with 13 terms: [1/2, 1/13, 1/541, 1/321409, 1/114781617793, 1/14821672255960844346913, 1/251065106814993628596500876449600804290086881, 1/73539302503361520198362339236500915390885795679264404865887253300925727812630083326272641, 1/6489634815217096741...91865217, 1/52644200043...5476206145, 1/36952157309...38141889, 1/204819289476534...06590593, 1/83901882683...25592705] Maximum denominator is for 36/457 with 83901882683...25592705 (2847 digits)
Scala
import scala.annotation.tailrec
import scala.collection.mutable
import scala.collection.mutable.{ArrayBuffer, ListBuffer}
abstract class Frac extends Comparable[Frac] {
val num: BigInt
val denom: BigInt
def toEgyptian: List[Frac] = {
if (num == 0) {
return List(this)
}
val fracs = new ArrayBuffer[Frac]
if (num.abs >= denom.abs) {
val div = Frac(num / denom, 1)
val rem = this - div
fracs += div
egyptian(rem.num, rem.denom, fracs)
} else {
egyptian(num, denom, fracs)
}
fracs.toList
}
@tailrec
private def egyptian(n: BigInt, d: BigInt, fracs: mutable.Buffer[Frac]): Unit = {
if (n == 0) {
return
}
val n2 = BigDecimal.apply(n)
val d2 = BigDecimal.apply(d)
val (divbd, rembd) = d2./%(n2)
var div = divbd.toBigInt()
if (rembd > 0) {
div = div + 1
}
fracs += Frac(1, div)
var n3 = -d % n
if (n3 < 0) {
n3 = n3 + n
}
val d3 = d * div
val f = Frac(n3, d3)
if (f.num == 1) {
fracs += f
return
}
egyptian(f.num, f.denom, fracs)
}
def unary_-(): Frac = {
Frac(-num, denom)
}
def +(rhs: Frac): Frac = {
Frac(
num * rhs.denom + rhs.num * denom,
denom * rhs.denom
)
}
def -(rhs: Frac): Frac = {
Frac(
num * rhs.denom - rhs.num * denom,
denom * rhs.denom
)
}
override def compareTo(rhs: Frac): Int = {
val ln = num * rhs.denom
val rn = rhs.num * denom
ln.compare(rn)
}
def canEqual(other: Any): Boolean = other.isInstanceOf[Frac]
override def equals(other: Any): Boolean = other match {
case that: Frac =>
(that canEqual this) &&
num == that.num &&
denom == that.denom
case _ => false
}
override def hashCode(): Int = {
val state = Seq(num, denom)
state.map(_.hashCode()).foldLeft(0)((a, b) => 31 * a + b)
}
override def toString: String = {
if (denom == 1) {
return s"$num"
}
s"$num/$denom"
}
}
object Frac {
def apply(n: BigInt, d: BigInt): Frac = {
if (d == 0) {
throw new IllegalArgumentException("Parameter d may not be zero.")
}
var nn = n
var dd = d
if (nn == 0) {
dd = 1
} else if (dd < 0) {
nn = -nn
dd = -dd
}
val g = nn.gcd(dd)
if (g > 0) {
nn /= g
dd /= g
}
new Frac {
val num: BigInt = nn
val denom: BigInt = dd
}
}
}
object EgyptianFractions {
def main(args: Array[String]): Unit = {
val fracs = List.apply(
Frac(43, 48),
Frac(5, 121),
Frac(2014, 59)
)
for (frac <- fracs) {
val list = frac.toEgyptian
val it = list.iterator
print(s"$frac -> ")
if (it.hasNext) {
val value = it.next()
if (value.denom == 1) {
print(s"[$value]")
} else {
print(value)
}
}
while (it.hasNext) {
val value = it.next()
print(s" + $value")
}
println()
}
for (r <- List(98, 998)) {
println()
if (r == 98) {
println("For proper fractions with 1 or 2 digits:")
} else {
println("For proper fractions with 1, 2 or 3 digits:")
}
var maxSize = 0
var maxSizeFracs = new ListBuffer[Frac]
var maxDen = BigInt(0)
var maxDenFracs = new ListBuffer[Frac]
val sieve = Array.ofDim[Boolean](r + 1, r + 2)
for (i <- 0 until r + 1) {
for (j <- i + 1 until r + 1) {
if (!sieve(i)(j)) {
val f = Frac(i, j)
val list = f.toEgyptian
val listSize = list.size
if (listSize > maxSize) {
maxSize = listSize
maxSizeFracs.clear()
maxSizeFracs += f
} else if (listSize == maxSize) {
maxSizeFracs += f
}
val listDen = list.last.denom
if (listDen > maxDen) {
maxDen = listDen
maxDenFracs.clear()
maxDenFracs += f
} else if (listDen == maxDen) {
maxDenFracs += f
}
if (i < r / 2) {
var k = 2
while (j * k <= r + 1) {
sieve(i * k)(j * k) = true
k = k + 1
}
}
}
}
}
println(s" largest number of items = $maxSize")
println(s"fraction(s) with this number : ${maxSizeFracs.toList}")
val md = maxDen.toString()
print(s" largest denominator = ${md.length} digits, ")
println(s"${md.substring(0, 20)}...${md.substring(md.length - 20)}")
println(s"fraction(s) with this denominator : ${maxDenFracs.toList}")
}
}
}
- Output:
43/48 -> 1/2 + 1/3 + 1/16 5/121 -> 1/25 + 1/757 + 1/763309 + 1/873960180913 + 1/1527612795642093418846225 2014/59 -> [34] + 1/8 + 1/95 + 1/14947 + 1/670223480 For proper fractions with 1 or 2 digits: largest number of items = 8 fraction(s) with this number : List(8/97, 44/53) largest denominator = 150 digits, 57950458706754280171...62011424993909789665 fraction(s) with this denominator : List(8/97) For proper fractions with 1, 2 or 3 digits: largest number of items = 13 fraction(s) with this number : List(529/914, 641/796) largest denominator = 2847 digits, 83901882683345018663...38431266995525592705 fraction(s) with this denominator : List(36/457, 529/914)
Sidef
func ef(fr) {
var ans = []
if (fr >= 1) {
return([fr]) if (fr.is_int)
var intfr = fr.int
ans << intfr
fr -= intfr
}
var (x, y) = fr.nude
while (x != 1) {
ans << fr.inv.ceil.inv
fr = ((-y % x) / y*fr.inv.ceil)
(x, y) = fr.nude
}
ans << fr
return ans
}
for fr in [43/48, 5/121, 2014/59] {
"%s => %s\n".printf(fr.as_rat, ef(fr).map{.as_rat}.join(' + '))
}
var lenmax = (var denommax = [0])
for b in range(2, 99) {
for a in range(1, b-1) {
var fr = a/b
var e = ef(fr)
var (elen, edenom) = (e.length, e[-1].denominator)
lenmax = [elen, fr] if (elen > lenmax[0])
denommax = [edenom, fr] if (edenom > denommax[0])
}
}
"Term max is %s with %i terms\n".printf(lenmax[1].as_rat, lenmax[0])
"Denominator max is %s with %i digits\n".printf(denommax[1].as_rat, denommax[0].size)
say denommax[0]
- Output:
43/48 => 1/2 + 1/3 + 1/16 5/121 => 1/25 + 1/757 + 1/763309 + 1/873960180913 + 1/1527612795642093418846225 2014/59 => 34 + 1/8 + 1/95 + 1/14947 + 1/670223480 Term max is 44/53 with 8 terms Denominator max is 8/97 with 150 digits 579504587067542801713103191859918608251030291952195423583529357653899418686342360361798689053273749372615043661810228371898539583862011424993909789665
Tcl
# Just compute the denominator terms, as the numerators are always 1
proc egyptian {num denom} {
set result {}
while {$num} {
# Compute ceil($denom/$num) without floating point inaccuracy
set term [expr {$denom / $num + ($denom/$num*$num < $denom)}]
lappend result $term
set num [expr {-$denom % $num}]
set denom [expr {$denom * $term}]
}
return $result
}
Demonstrating:
package require Tcl 8.6
proc efrac {fraction} {
scan $fraction "%d/%d" x y
set prefix ""
if {$x > $y} {
set whole [expr {$x / $y}]
set x [expr {$x - $whole*$y}]
set prefix "\[$whole\] + "
}
return $prefix[join [lmap y [egyptian $x $y] {format "1/%lld" $y}] " + "]
}
foreach f {43/48 5/121 2014/59} {
puts "$f = [efrac $f]"
}
set maxt 0
set maxtf {}
set maxd 0
set maxdf {}
for {set d 1} {$d < 100} {incr d} {
for {set n 1} {$n < $d} {incr n} {
set e [egyptian $n $d]
if {[llength $e] >= $maxt} {
set maxt [llength $e]
set maxtf $n/$d
}
if {[lindex $e end] > $maxd} {
set maxd [lindex $e end]
set maxdf $n/$d
}
}
}
puts "$maxtf has maximum number of terms = [efrac $maxtf]"
puts "$maxdf has maximum denominator = [efrac $maxdf]"
- Output:
43/48 = 1/2 + 1/3 + 1/16 5/121 = 1/25 + 1/757 + 1/763309 + 1/873960180913 + 1/1527612795642093418846225 2014/59 = [34] + 1/8 + 1/95 + 1/14947 + 1/670223480 8/97 has maximum number of terms = 1/13 + 1/181 + 1/38041 + 1/1736503177 + 1/3769304102927363485 + 1/18943537893793408504192074528154430149 + 1/538286441900380211365817285104907086347439746130226973253778132494225813153 + 1/579504587067542801713103191859918608251030291952195423583529357653899418686342360361798689053273749372615043661810228371898539583862011424993909789665 8/97 has maximum denominator = 1/13 + 1/181 + 1/38041 + 1/1736503177 + 1/3769304102927363485 + 1/18943537893793408504192074528154430149 + 1/538286441900380211365817285104907086347439746130226973253778132494225813153 + 1/579504587067542801713103191859918608251030291952195423583529357653899418686342360361798689053273749372615043661810228371898539583862011424993909789665
Note also that also has 8 terms.
Visual Basic .NET
Imports System.Numerics
Imports System.Text
Module Module1
Function Gcd(a As BigInteger, b As BigInteger) As BigInteger
If b = 0 Then
If a < 0 Then
Return -a
Else
Return a
End If
Else
Return Gcd(b, a Mod b)
End If
End Function
Function Lcm(a As BigInteger, b As BigInteger) As BigInteger
Return a / Gcd(a, b) * b
End Function
Public Class Rational
Dim num As BigInteger
Dim den As BigInteger
Public Sub New(n As BigInteger, d As BigInteger)
Dim c = Gcd(n, d)
num = n / c
den = d / c
If den < 0 Then
num = -num
den = -den
End If
End Sub
Public Sub New(n As BigInteger)
num = n
den = 1
End Sub
Public Function Numerator() As BigInteger
Return num
End Function
Public Function Denominator() As BigInteger
Return den
End Function
Public Overrides Function ToString() As String
If den = 1 Then
Return num.ToString()
Else
Return String.Format("{0}/{1}", num, den)
End If
End Function
'Arithmetic operators
Public Shared Operator +(lhs As Rational, rhs As Rational) As Rational
Return New Rational(lhs.num * rhs.den + rhs.num * lhs.den, lhs.den * rhs.den)
End Operator
Public Shared Operator -(lhs As Rational, rhs As Rational) As Rational
Return New Rational(lhs.num * rhs.den - rhs.num * lhs.den, lhs.den * rhs.den)
End Operator
'Comparison operators
Public Shared Operator =(lhs As Rational, rhs As Rational) As Boolean
Return lhs.num = rhs.num AndAlso lhs.den = rhs.den
End Operator
Public Shared Operator <>(lhs As Rational, rhs As Rational) As Boolean
Return lhs.num <> rhs.num OrElse lhs.den <> rhs.den
End Operator
Public Shared Operator <(lhs As Rational, rhs As Rational) As Boolean
'a/b < c/d
'ad < bc
Dim ad = lhs.num * rhs.den
Dim bc = lhs.den * rhs.num
Return ad < bc
End Operator
Public Shared Operator >(lhs As Rational, rhs As Rational) As Boolean
'a/b > c/d
'ad > bc
Dim ad = lhs.num * rhs.den
Dim bc = lhs.den * rhs.num
Return ad > bc
End Operator
Public Shared Operator <=(lhs As Rational, rhs As Rational) As Boolean
Return lhs < rhs OrElse lhs = rhs
End Operator
Public Shared Operator >=(lhs As Rational, rhs As Rational) As Boolean
Return lhs > rhs OrElse lhs = rhs
End Operator
'Conversion operators
Public Shared Widening Operator CType(ByVal bi As BigInteger) As Rational
Return New Rational(bi)
End Operator
Public Shared Widening Operator CType(ByVal lo As Long) As Rational
Return New Rational(lo)
End Operator
End Class
Function Egyptian(r As Rational) As List(Of Rational)
Dim result As New List(Of Rational)
If r >= 1 Then
If r.Denominator() = 1 Then
result.Add(r)
result.Add(New Rational(0))
Return result
End If
result.Add(New Rational(r.Numerator / r.Denominator))
r -= result(0)
End If
Dim modFunc = Function(m As BigInteger, n As BigInteger)
Return ((m Mod n) + n) Mod n
End Function
While r.Numerator() <> 1
Dim q = (r.Denominator() + r.Numerator() - 1) / r.Numerator()
result.Add(New Rational(1, q))
r = New Rational(modFunc(-r.Denominator(), r.Numerator()), r.Denominator * q)
End While
result.Add(r)
Return result
End Function
Function FormatList(Of T)(col As List(Of T)) As String
Dim iter = col.GetEnumerator()
Dim sb As New StringBuilder
sb.Append("[")
If iter.MoveNext() Then
sb.Append(iter.Current)
End If
While iter.MoveNext()
sb.Append(", ")
sb.Append(iter.Current)
End While
sb.Append("]")
Return sb.ToString()
End Function
Sub Main()
Dim rs = {New Rational(43, 48), New Rational(5, 121), New Rational(2014, 59)}
For Each r In rs
Console.WriteLine("{0} => {1}", r, FormatList(Egyptian(r)))
Next
Dim lenMax As Tuple(Of ULong, Rational) = Tuple.Create(0UL, New Rational(0))
Dim denomMax As Tuple(Of BigInteger, Rational) = Tuple.Create(New BigInteger(0), New Rational(0))
Dim query = (From i In Enumerable.Range(1, 100)
From j In Enumerable.Range(1, 100)
Select New Rational(i, j)).Distinct().ToList()
For Each r In query
Dim e = Egyptian(r)
Dim eLen As ULong = e.Count
Dim eDenom = e.Last().Denominator()
If eLen > lenMax.Item1 Then
lenMax = Tuple.Create(eLen, r)
End If
If eDenom > denomMax.Item1 Then
denomMax = Tuple.Create(eDenom, r)
End If
Next
Console.WriteLine("Term max is {0} with {1} terms", lenMax.Item2, lenMax.Item1)
Dim dStr = denomMax.Item1.ToString()
Console.WriteLine("Denominator max is {0} with {1} digits {2}...{3}", denomMax.Item2, dStr.Length, dStr.Substring(0, 5), dStr.Substring(dStr.Length - 5, 5))
End Sub
End Module
- Output:
43/48 => [1/2, 1/3, 1/16] 5/121 => [1/25, 1/757, 1/763309, 1/873960180913, 1/1527612795642093418846225] 2014/59 => [34, 1/8, 1/95, 1/14947, 1/670223480] Term max is 97/53 with 9 terms Denominator max is 8/97 with 150 digits 57950...89665
Wren
We use the BigRat class in the above module to represent arbitrary size fractions.
import "./big" for BigInt, BigRat
var toEgyptianHelper // recursive
toEgyptianHelper = Fn.new { |n, d, fracs|
if (n == BigInt.zero) return
var divRem = d.divMod(n)
var div = divRem[0]
if (divRem[1] > BigInt.zero) div = div.inc
fracs.add(BigRat.new(BigInt.one, div))
var n2 = (-d) % n
if (n2 < BigInt.zero) n2 = n2 + n
var d2 = d * div
var f = BigRat.new(n2, d2)
if (f.num == BigInt.one) {
fracs.add(f)
return
}
toEgyptianHelper.call(f.num, f.den, fracs)
}
var toEgyptian = Fn.new { |r|
if (r.num == BigInt.zero) return [r]
var fracs = []
if (r.num.abs >= r.den.abs) {
var div = BigRat.new(r.num/r.den, BigInt.one)
var rem = r - div
fracs.add(div)
toEgyptianHelper.call(rem.num, rem.den, fracs)
} else {
toEgyptianHelper.call(r.num, r.den, fracs)
}
return fracs
}
BigRat.showAsInt = true
var fracs = [BigRat.new(43, 48), BigRat.new(5, 121), BigRat.new(2014, 59)]
for (frac in fracs) {
var list = toEgyptian.call(frac)
System.print("%(frac) -> %(list.join(" + "))")
}
for (r in [98, 998]) {
if (r == 98) {
System.print("\nFor proper fractions with 1 or 2 digits:")
} else {
System.print("\nFor proper fractions with 1, 2 or 3 digits:")
}
var maxSize = 0
var maxSizeFracs = []
var maxDen = BigInt.zero
var maxDenFracs = []
var sieve = List.filled(r + 1, null) // to eliminate duplicates
for (i in 0..r) sieve[i] = List.filled(r + 2, false)
for (i in 1..r) {
for (j in (i + 1)..(r + 1)) {
if (!sieve[i][j]) {
var f = BigRat.new(i, j)
var list = toEgyptian.call(f)
var listSize = list.count
if (listSize > maxSize) {
maxSize = listSize
maxSizeFracs.clear()
maxSizeFracs.add(f)
} else if (listSize == maxSize) {
maxSizeFracs.add(f)
}
var listDen = list[-1].den
if (listDen > maxDen) {
maxDen = listDen
maxDenFracs.clear()
maxDenFracs.add(f)
} else if (listDen == maxDen) {
maxDenFracs.add(f)
}
if (i < r / 2) {
var k = 2
while (true) {
if (j * k > r + 1) break
sieve[i * k][j * k] = true
k = k + 1
}
}
}
}
}
System.print(" largest number of items = %(maxSize)")
System.print(" fraction(s) with this number : %(maxSizeFracs)")
var md = maxDen.toString
System.write(" largest denominator = %(md.count) digits, ")
System.print("%(md[0...20])...%(md[-20..-1])")
System.print(" fraction(s) with this denominator : %(maxDenFracs)")
}
- Output:
43/48 -> 1/2 + 1/3 + 1/16 5/121 -> 1/25 + 1/757 + 1/763309 + 1/873960180913 + 1/1527612795642093418846225 2014/59 -> 34 + 1/8 + 1/95 + 1/14947 + 1/670223480 For proper fractions with 1 or 2 digits: largest number of items = 8 fraction(s) with this number : [8/97, 44/53] largest denominator = 150 digits, 57950458706754280171...62011424993909789665 fraction(s) with this denominator : [8/97] For proper fractions with 1, 2 or 3 digits: largest number of items = 13 fraction(s) with this number : [529/914, 641/796] largest denominator = 2847 digits, 83901882683345018663...38431266995525592705 fraction(s) with this denominator : [36/457, 529/914]
zkl
# Just compute the denominator terms, as the numerators are always 1
fcn egyptian(num,denom){
result,t := List(),Void;
t,num=num.divr(denom); // reduce fraction
if(t) result.append(T(t)); // signal t isn't a denominator
while(num){
# Compute ceil($denom/$num) without floating point inaccuracy
term:=denom/num + (denom/num*num < denom);
result.append(term);
z:=denom%num;
num=(if(z) num-z else 0);
denom*=term;
}
result
}
fcn efrac(fraction){ // list to string, format list of denominators
fraction.pump(List,fcn(denom){
if(denom.isType(List)) denom[0]
else String("1/",denom);
}).concat(" + ")
}
foreach n,d in (T(T(43,48), T(5,121), T(2014,59))){
println("%s/%s --> %s".fmt(n,d, egyptian(n,d):efrac(_)));
}
- Output:
43/48 --> 1/2 + 1/3 + 1/16 5/121 --> 1/25 + 1/757 + 1/763309 + 1/873960180913 + 1/1025410058030422033 2014/59 --> 34 + 1/8 + 1/95 + 1/14947 + 1/670223480
For the big denominators, use GMP (Gnu Multi Precision).
var [const] BN=Import("zklBigNum"); // libGMP
lenMax,denomMax := List(0,Void),List(0,Void);
foreach n,d in (Walker.cproduct([1..99],[1..99])){ // 9801 fractions
e,eLen,eDenom := egyptian(BN(n),BN(d)), e.len(), e[-1];
if(eDenom.isType(List)) eDenom=1;
if(eLen >lenMax[0]) lenMax.clear(eLen,T(n,d));
if(eDenom>denomMax[0]) denomMax.clear(eDenom,T(n,d));
}
println("Term max is %s/%s with %d terms".fmt(lenMax[1].xplode(), lenMax[0]));
dStr:=denomMax[0].toString();
println("Denominator max is %s/%s with %d digits %s...%s"
.fmt(denomMax[1].xplode(), dStr.len(), dStr[0,5], dStr[-5,*]));
- Output:
Term max is 97/53 with 9 terms Denominator max is 8/97 with 150 digits 57950...89665
- Programming Tasks
- Solutions by Programming Task
- ALGOL 68
- C
- C sharp
- C++
- Boost
- Common Lisp
- D
- Erlang
- F Sharp
- Factor
- FreeBASIC
- GMP
- Frink
- Fōrmulæ
- Go
- Haskell
- J
- Java
- Julia
- Kotlin
- Mathematica
- Wolfram Language
- Microsoft Small Basic
- Nim
- Bignum
- PARI/GP
- Perl
- Phix
- Phix/mpfr
- Prolog
- Python
- Racket
- Raku
- REXX
- RPL
- Ruby
- Rust
- Scala
- Sidef
- Tcl
- Visual Basic .NET
- Wren
- Wren-big
- Zkl