# Find first missing positive

Find first missing positive is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

Given an integer array nums   (which may or may not be sorted),   find the smallest missing positive integer.

Example
•    nums  =   [1,2,0], [3,4,-1,1], [7,8,9,11,12]
•   output =   3, 2, 1

## 11l

```V nums = [[1, 2, 0], [3, 4, -1, 1], [7, 8, 9, 11, 12]]

L(l) nums
L(n) 1..
I n !C l
print(l‘ -> ’n)
L.break```
Output:
```[1, 2, 0] -> 3
[3, 4, -1, 1] -> 2
[7, 8, 9, 11, 12] -> 1
```

## Action!

```DEFINE PTR="CARD"

BYTE FUNC Contains(INT ARRAY a INT len,x)
INT i

FOR i=0 TO len-1
DO
IF a(i)=x THEN
RETURN (1)
FI
OD
RETURN (0)

BYTE FUNC FindFirstPositive(INT ARRAY a INT len)
INT res

res=1
WHILE Contains(a,len,res)
DO
res==+1
OD
RETURN (res)

PROC PrintArray(INT ARRAY a INT len)
INT i

Put('[)
FOR i=0 TO len-1
DO
IF i>0 THEN Put(' ) FI
PrintI(a(i))
OD
Put('])
RETURN

PROC Test(PTR ARRAY arr INT ARRAY lengths INT count)
INT ARRAY a
INT i,len,first

FOR i=0 TO count-1
DO
a=arr(i) len=lengths(i)
PrintArray(a,len)
Print(" -> ")
first=FindFirstPositive(a,len)
PrintIE(first)
OD
RETURN

PROC Main()
DEFINE COUNT="5"
PTR ARRAY arr(COUNT)
INT ARRAY
lengths=[3 4 5 3 0],
a1=[1 2 0],
a2=[3 4 65535 1],
a3=[7 8 9 11 12],
a4=[65534 65530 65520]

arr(0)=a1 arr(1)=a2 arr(2)=a3
arr(3)=a4 arr(4)=a4
Test(arr,lengths,COUNT)
RETURN```
Output:
```[1 2 0] -> 3
[3 4 -1 1] -> 2
[7 8 9 11 12] -> 1
[-2 -6 -16] -> 1
[] -> 1
```

## ALGOL 68

Uses the observation in the J sample that the maximum possible minimum missing positive integer is one more than the length of the list.

```BEGIN # find the lowest positive integer not present in various arrays #
# returns the lowest positive integer not present in r #
PROC min missing positive = ( []INT r )INT:
BEGIN
[]INT a = r[ AT 1 ]; # a is r wih lower bound 1 #
# as noted in the J sample, the maximum possible minimum #
# missing positive integer is one more than the length of the array #
# note the values between 1 and UPB a present in a #
[ 1 : UPB a ]BOOL present;
FOR i TO UPB a DO present[ i ] := FALSE OD;
FOR i TO UPB a DO
INT ai = a[ i ];
IF ai >= 1 AND ai <= UPB a THEN
present[ ai ] := TRUE
FI
OD;
# find the lowest value not in present #
INT result := UPB a + 1;
BOOL found := FALSE;
IF NOT present[ i ] THEN
found  := TRUE;
result := i
FI
OD;
result
END # min missing positive # ;
print( ( " ", whole( min missing positive( ( 1, 2,  0         ) ), 0 ) ) );
print( ( " ", whole( min missing positive( ( 3, 4, -1,  1     ) ), 0 ) ) );
print( ( " ", whole( min missing positive( ( 7, 8,  9, 11, 12 ) ), 0 ) ) )
END```
Output:
``` 3 2 1
```

## APL

Works with: Dyalog APL
```fmp ← ⊃(⍳1+⌈/)~⊢
```
Output:
```      fmp¨ (1 2 0) (3 4 ¯1 1) (7 8 9 11 12)
3 2 1```

## AppleScript

### Procedural

```local output, aList, n
set output to {}
repeat with aList in {{1, 2, 0}, {3, 4, -1, 1}, {7, 8, 9, 11, 12}}
set n to 1
repeat while (aList contains n)
set n to n + 1
end repeat
set end of output to n
end repeat
return output
```
Output:
```{3, 2, 1}
```

### Functional

Defining the value required in terms of pre-existing generic primitives:

```--------------- FIRST MISSING NATURAL NUMBER -------------

-- firstGap :: [Int] -> Int
on firstGap(xs)
script p
on |λ|(x)
xs does not contain x
end |λ|
end script

find(p, enumFrom(1))
end firstGap

--------------------------- TEST -------------------------
on run
script test
on |λ|(xs)
showList(xs) & " -> " & (firstGap(xs) as string)
end |λ|
end script

unlines(map(test, ¬
{{1, 2, 0}, {3, 4, -1, 1}, {7, 8, 9, 11, 12}}))

--> {1, 2, 0} -> 3
--> {3, 4, -1, 1} -> 2
--> {7, 8, 9, 11, 12} -> 1
end run

------------------------- GENERIC ------------------------

-- enumFrom :: Enum a => a -> [a]
on enumFrom(x)
script
property v : missing value
on |λ|()
if missing value is not v then
set v to 1 + v
else
set v to x
end if
return v
end |λ|
end script
end enumFrom

-- find :: (a -> Bool) -> Gen [a] -> Maybe a
on find(p, gen)
-- The first match for the predicate p
-- in the generator stream gen, or missing value
-- if no match is found.
set mp to mReturn(p)
set v to gen's |λ|()
repeat until missing value is v or (|λ|(v) of mp)
set v to (|λ|() of gen)
end repeat
v
end find

-- intercalate :: String -> [String] -> String
on intercalate(delim, xs)
set {dlm, my text item delimiters} to ¬
{my text item delimiters, delim}
set s to xs as text
set my text item delimiters to dlm
s
end intercalate

-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
-- The list obtained by applying f
-- to each element of xs.
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, i, xs)
end repeat
return lst
end tell
end map

-- mReturn :: First-class m => (a -> b) -> m (a -> b)
on mReturn(f)
-- 2nd class handler function lifted into 1st class script wrapper.
if script is class of f then
f
else
script
property |λ| : f
end script
end if
end mReturn

-- showList :: [a] -> String
on showList(xs)
script go
on |λ|(x)
x as string
end |λ|
end script
"{" & intercalate(", ", map(go, xs)) & "}"
end showList

-- unlines :: [String] -> String
on unlines(xs)
-- A single string formed by the intercalation
-- of a list of strings with the newline character.
set {dlm, my text item delimiters} to ¬
{my text item delimiters, linefeed}
set s to xs as text
set my text item delimiters to dlm
s
end unlines
```
Output:
```{1, 2, 0} -> 3
{3, 4, -1, 1} -> 2
{7, 8, 9, 11, 12} -> 1```

## Arturo

```sets: @[[1 2 0] @[3 4 neg 1 1] [7 8 9 11 12]]

loop sets 's ->
print [
"Set:" s
"-> First missing positive integer:" first select.first 1..∞ 'x -> not? in? x s
]
```
Output:
```Set: [1 2 0] -> First missing positive integer: 3
Set: [3 4 -1 1] -> First missing positive integer: 2
Set: [7 8 9 11 12] -> First missing positive integer: 1```

## AutoHotkey

```First_Missing_Positive(obj){
Arr := [], i := 0
for k, v in obj
Arr[v] := true
while (++i<Max(obj*))
if !Arr[i]{
m := i
break
}
m := m ? m : Max(obj*) + 1
return m>0 ? m : 1
}
```
Examples:
```nums := [[1,2,0], [3,4,-1,1], [7,8,9,11,12], [-4,-2,-3], []]
for i, obj in nums{
m := First_Missing_Positive(obj)
output .= m ", "
}
MsgBox % Trim(output, ", ")
return
```
Output:
`3, 2, 1, 1, 1`

## AWK

```# syntax: GAWK -f FIND_FIRST_MISSING_POSITIVE.AWK
BEGIN {
PROCINFO["sorted_in"] = "@ind_num_asc"
nums = "[1,2,0],[3,4,-1,1],[7,8,9,11,12]"
printf("%s : ",nums)
n = split(nums,arr1,"],?") - 1
for (i=1; i<=n; i++) {
gsub(/[\[\]]/,"",arr1[i])
split(arr1[i],arr2,",")
for (j in arr2) {
arr3[arr2[j]]++
}
for (j in arr3) {
if (j <= 0) {
continue
}
if (!(1 in arr3)) {
ans = 1
break
}
if (!(j+1 in arr3)) {
ans = j + 1
break
}
}
printf("%d ",ans)
delete arr3
}
printf("\n")
exit(0)
}
```
Output:
```[1,2,0],[3,4,-1,1],[7,8,9,11,12] : 3 2 1
```

## BASIC

```10 DEFINT A-Z: DIM D(100)
30 FOR A=1 TO X
50 FOR I=1 TO N
70 PRINT D(I);
80 NEXT I
90 PRINT "==>";
100 M=1
110 FOR I=1 TO N
120 IF M<D(I) THEN M=D(I)
130 NEXT I
140 FOR I=1 TO M+1
150 FOR J=1 TO N
160 IF D(J)=I GOTO 200
170 NEXT J
180 PRINT I
190 GOTO 210
200 NEXT I
210 NEXT A
220 DATA 3
230 DATA 3, 1,2,0
240 DATA 4, 3,4,-1,1
250 DATA 5, 7,8,9,11,12
```
Output:
``` 1  2  0 ==> 3
3  4 -1  1 ==> 2
7  8  9  11  12 ==> 1```

## BCPL

```get "libhdr"

let max(v, n) = valof
\$(  let x = !v
for i=1 to n-1
if x<v!i do x := v!i
resultis x
\$)

let contains(v, n, el) = valof
\$(  for i=0 to n-1
if v!i=el resultis true
resultis false
\$)

let fmp(v, n) = valof
for i=1 to max(v,n)+1
unless contains(v,n,i) resultis i

let show(len, v) be
\$(  for i=0 to len-1 do writef("%N ", v!i)
writef("==> %N*N", fmp(v, len))
\$)

let start() be
\$(  show(3, table 1,2,0)
show(4, table 3,4,-1,1)
show(5, table 7,8,9,11,12)
\$)```
Output:
```1 2 0 ==> 3
3 4 -1 1 ==> 2
7 8 9 11 12 ==> 1```

## BQN

```FMP ← ⊢(⊑(¬∊˜ )/⊢)1+(↕1+⌈´)

FMP¨ ⟨⟨1,2,0⟩,⟨3,4,¯1,1⟩,⟨7,8,9,11,12⟩⟩
```
Output:
`⟨ 3 2 1 ⟩`

## C++

```#include <iostream>
#include <unordered_set>
#include <vector>

int FindFirstMissing(const std::vector<int>& r)
{
// put them into an associative container
std::unordered_set us(r.begin(), r.end());
size_t result = 0;
while (us.contains(++result)); // find the first number that isn't there
return (int)result;
}

int main()
{
std::vector<std::vector<int>> nums {{1,2,0}, {3,4,-1,1}, {7,8,9,11,12}};
std::for_each(nums.begin(), nums.end(),
[](auto z){std::cout << FindFirstMissing(z) << " "; });
}
```
Output:
`3 2 1 `

## CLU

```contains = proc [T, U: type] (needle: T, haystack: U) returns (bool)
where T has equal: proctype (T,T) returns (bool),
U has elements: itertype (U) yields (T)
for item: T in U\$elements(haystack) do
if item = needle then return(true) end
end
return(false)
end contains

fmp = proc [T: type] (list: T) returns (int)
where T has elements: itertype (T) yields (int)
n: int := 1
while contains[int, T](n, list) do
n := n + 1
end
return(n)
end fmp

start_up = proc ()
si = sequence[int]
ssi = sequence[si]
po: stream := stream\$primary_output()
tests: ssi := ssi\$[si\$[1,2,0], si\$[3,4,-1,1], si\$[7,8,9,11,12]]

for test: si in ssi\$elements(tests) do
for i: int in si\$elements(test) do
stream\$puts(po, int\$unparse(i) || " ")
end
stream\$putl(po, "==> " || int\$unparse(fmp[si](test)))
end
end start_up```
Output:
```1 2 0 ==> 3
3 4 -1 1 ==> 2
7 8 9 11 12 ==> 1```

## Delphi

Works with: Delphi version 6.0

Uses the Delphi "TList" object to search the list for missing integers.

```var List1: array [0..2] of integer =(1,2,0);
var List2: array [0..3] of integer =(3,4,-1,1);
var List3: array [0..4] of integer =(7,8,9,11,12);

function FindMissingInt(IA: array of integer): integer;
var I,Inx: integer;
var List: TList;
begin
List:=TList.Create;
try
Result:=-1;
for I:=0 to High(IA) do List.Add(Pointer(IA[I]));
for Result:=1 to High(integer) do
begin
Inx:=List.IndexOf(Pointer(Result));
if Inx<0 then exit;
end;
finally List.Free; end;
end;

function GetIntStr(IA: array of integer): string;
var I: integer;
begin
Result:='[';
for I:=0 to High(IA) do
begin
if I>0 then Result:=Result+',';
Result:=Result+Format('%3.0d',[IA[I]]);
end;
Result:=Result+']';
end;

procedure ShowMissingInts(Memo: TMemo);
var S: string;
var M: integer;
begin
S:=GetIntStr(List1);
M:=FindMissingInt(List1);

S:=GetIntStr(List2);
M:=FindMissingInt(List2);

S:=GetIntStr(List3);
M:=FindMissingInt(List3);
end;
```
Output:
```[  1,  2,  0] = 3
[  3,  4, -1,  1] = 2
[  7,  8,  9, 11, 12] = 1

```

## F#

```// Find first missing positive. Nigel Galloway: February 15., 2021
let fN g=let g=0::g|>List.filter((<) -1)|>List.sort|>List.distinct
match g|>List.pairwise|>List.tryFind(fun(n,g)->g>n+1) with Some(n,_)->n+1 |_->List.max g+1
[[1;2;0];[3;4;-1;1];[7;8;9;11;12]]|>List.iter(fN>>printf "%d "); printfn ""
```
Output:
```3 2 1
```

## Factor

```USING: formatting fry hash-sets kernel math sequences sets ;

: first-missing ( seq -- n )
>hash-set 1 swap '[ dup _ in? ] [ 1 + ] while ;

{ { 1 2 0 } { 3 4 1 1 } { 7 8 9 11 12 } { 1 2 3 4 5 }
{ -6 -5 -2 -1 } { 5 -5 } { -2 } { 1 } { } }
[ dup first-missing "%u ==> %d\n" printf ] each
```
Output:
```{ 1 2 0 } ==> 3
{ 3 4 1 1 } ==> 2
{ 7 8 9 11 12 } ==> 1
{ 1 2 3 4 5 } ==> 6
{ -6 -5 -2 -1 } ==> 1
{ 5 -5 } ==> 1
{ -2 } ==> 1
{ 1 } ==> 2
{ } ==> 1
```

## FreeBASIC

```function is_in( n() as integer, k as uinteger ) as boolean
for i as uinteger = 1 to ubound(n)
if n(i) = k then return true
next i
return false
end function

function fmp( n() as integer ) as integer
dim as uinteger i = 1
while is_in( n(), i )
i+=1
wend
return i
end function

dim as integer a(1 to 3) = {1, 2, 0}
dim as integer b(1 to 4) = {3, 4, -1, 1}
dim as integer c(1 to 5) = {7, 8, 9, 11, 12}

print fmp(a())
print fmp(b())
print fmp(c())```
Output:
```
3
2
1

```

## Go

Translation of: Wren
```package main

import (
"fmt"
"sort"
)

func firstMissingPositive(a []int) int {
var b []int
for _, e := range a {
if e > 0 {
b = append(b, e)
}
}
sort.Ints(b)
le := len(b)
if le == 0 || b > 1 {
return 1
}
for i := 1; i < le; i++ {
if b[i]-b[i-1] > 1 {
return b[i-1] + 1
}
}
return b[le-1] + 1
}

func main() {
fmt.Println("The first missing positive integers for the following arrays are:\n")
aa := [][]int{
{1, 2, 0}, {3, 4, -1, 1}, {7, 8, 9, 11, 12}, {1, 2, 3, 4, 5},
{-6, -5, -2, -1}, {5, -5}, {-2}, {1}, {}}
for _, a := range aa {
fmt.Println(a, "->", firstMissingPositive(a))
}
}
```
Output:
```The first missing positive integers for the following arrays are:

[1 2 0] -> 3
[3 4 -1 1] -> 2
[7 8 9 11 12] -> 1
[1 2 3 4 5] -> 6
[-6 -5 -2 -1] -> 1
[5 -5] -> 1
[-2] -> 1
 -> 2
[] -> 1
```

Translation of: Wren
```import Data.List (sort)

task :: Integral a => [a] -> a
task = go . (0 :) . sort . filter (> 0)
where
go [x] = succ x
go (w : xs@(x : _))
| x == succ w = go xs
| otherwise = succ w

main :: IO ()
main =
print \$
map
[[1, 2, 0], [3, 4, -1, 1], [7, 8, 9, 11, 12]]
```
Output:
`[3,2,1]`

Or simply as a filter over an infinite list:

```---------- FIRST MISSING POSITIVE NATURAL NUMBER ---------

firstGap :: [Int] -> Int
firstGap xs = head \$ filter (`notElem` xs) [1 ..]

--------------------------- TEST -------------------------
main :: IO ()
main =
(putStrLn . unlines) \$
fmap
(\xs -> show xs <> " -> " <> (show . firstGap) xs)
[ [1, 2, 0],
[3, 4, -1, 1],
[7, 8, 9, 11, 12]
]
```

and if xs were large, it could be defined as a set:

```import Data.Set (fromList, notMember)

---------- FIRST MISSING POSITIVE NATURAL NUMBER ---------

firstGap :: [Int] -> Int
firstGap xs = head \$ filter (`notMember` seen) [1 ..]
where
seen = fromList xs
```
Output:

Same output for notElem and notMember versions above:

```[1,2,0] -> 3
[3,4,-1,1] -> 2
[7,8,9,11,12] -> 1```

## J

The first missing positive can be no larger than 1 plus the length of the list, thus:

```fmp=: {{ {.y-.~1+i.1+#y }}S:0
```

(The {{ }} delimiters on definitions, used here, was introduced in J version 9.2)

Example use:

```   fmp 1 2 0;3 4 _1 1; 7 8 9 11 12
3 2 1
```

Also, with this approach:

```   fmp 'abc'
1
```

## JavaScript

```(() => {
"use strict";

// ---------- FIRST MISSING NATURAL NUMBER -----------

// firstGap :: [Int] -> Int
const firstGap = xs => {
const seen = new Set(xs);

return filterGen(
x => !seen.has(x)
)(
enumFrom(1)
)
.next()
.value;
};

// ---------------------- TEST -----------------------
// main :: IO ()
const main = () => [
[1, 2, 0],
[3, 4, -1, 1],
[7, 8, 9, 11, 12]
]
.map(xs => `\${show(xs)} -> \${firstGap(xs)}`)
.join("\n");

// --------------------- GENERIC ---------------------

// enumFrom :: Int -> [Int]
const enumFrom = function* (x) {
// A non-finite succession of
// integers, starting with n.
let v = x;

while (true) {
yield v;
v = 1 + v;
}
};

// filterGen :: (a -> Bool) -> Gen [a] -> Gen [a]
const filterGen = p =>
// A stream of values which are drawn
// from a generator, and satisfy p.
xs => {
const go = function* () {
let x = xs.next();

while (!x.done) {
const v = x.value;

if (p(v)) {
yield v;
}
x = xs.next();
}
};

return go(xs);
};

// show :: a -> String
const show = x => JSON.stringify(x);

// MAIN ---
return main();
})();
```
Output:
```[1,2,0] -> 3
[3,4,-1,1] -> 2
[7,8,9,11,12] -> 1```

## jq

Works with: jq

Works with gojq, the Go implementation of jq

In case the target array is very long, it probably makes sense either to sort it, or to use a hash, for quick lookup. For the sake of illustration, we'll use a hash:

```# input: an array of integers
def first_missing_positive:
INDEX(.[]; tostring) as \$dict
| first(range(1; infinite)
| . as \$n
| select(\$dict|has(\$n|tostring)|not) ) ;

def examples:
[1,2,0], [3,4,-1,1], [7,8,9,11,12], [-5, -2, -6, -1];

examples
| "\(first_missing_positive) is missing from \(.)"```
Output:
```3 is missing from [1,2,0]
2 is missing from [3,4,-1,1]
1 is missing from [7,8,9,11,12]
1 is missing from [-5,-2,-6,-1]
```

## Julia

```for array in [[1,2,0], [3,4,-1,1], [7,8,9,11,12], [-5, -2, -6, -1]]
for n in 1:typemax(Int)
!(n in array) && (println("\$array  =>  \$n"); break)
end
end
```
Output:
```[1, 2, 0]  =>  3
[3, 4, -1, 1]  =>  2
[7, 8, 9, 11, 12]  =>  1
[-5, -2, -6, -1]  =>  1
```

## Nim

Translation of: Julia

In order to avoid the O(n) search in arrays, we could use an intermediate set built from the sequence. But this is useless with the chosen examples.

```for a in [@[1, 2, 0], @[3, 4, -1, 1], @[7, 8, 9, 11, 12], @[-5, -2, -6, -1]]:
for n in 1..int.high:
if n notin a:
echo a, " → ", n
break
```
Output:
```@[1, 2, 0] → 3
@[3, 4, -1, 1] → 2
@[7, 8, 9, 11, 12] → 1
@[-5, -2, -6, -1] → 1```

## Perl

```#!/usr/bin/perl -l

use strict;
use warnings;
use List::Util qw( first );

my @tests = ( [1,2,0], [3,4,-1,1], [7,8,9,11,12],
[3, 4, 1, 1], [1, 2, 3, 4, 5], [-6, -5, -2, -1], [5, -5], [-2], , []);

for my \$test ( @tests )
{
print "[ @\$test ]  ==>  ",
first { not { map { \$_ => 1 } @\$test }->{\$_}  } 1 .. @\$test + 1;
}
```
Output:
```[ 1 2 0 ]  ==>  3
[ 3 4 -1 1 ]  ==>  2
[ 7 8 9 11 12 ]  ==>  1
[ 3 4 1 1 ]  ==>  2
[ 1 2 3 4 5 ]  ==>  6
[ -6 -5 -2 -1 ]  ==>  1
[ 5 -5 ]  ==>  1
[ -2 ]  ==>  1
[ 1 ]  ==>  2
[  ]  ==>  1
```

## Phix

```with javascript_semantics
procedure test(sequence s)
for missing=1 to length(s)+1 do
if not find(missing,s) then
printf(1,"%v -> %v\n",{s,missing})
exit
end if
end for
end procedure
papply({{1,2,0},{3,4,-1,1},{7,8,9,11,12},{1,2,3,4,5},{-6,-5,-2,-1},{5,-5},{-2},{1},{}} ,test)
```
Output:
```{1,2,0} -> 3
{3,4,-1,1} -> 2
{7,8,9,11,12} -> 1
{1,2,3,4,5} -> 6
{-6,-5,-2,-1} -> 1
{5,-5} -> 1
{-2} -> 1
{1} -> 2
{} -> 1
```

## Python

```'''First missing natural number'''

from itertools import count

# firstGap :: [Int] -> Int
def firstGap(xs):
return next(x for x in count(1) if x not in xs)

# ------------------------- TEST -------------------------
# main :: IO ()
def main():
'''First missing natural number in each list'''
print('\n'.join([
f'{repr(xs)} -> {firstGap(xs)}' for xs in [
[1, 2, 0],
[3, 4, -1, 1],
[7, 8, 9, 11, 12]
]
]))

# MAIN ---
if __name__ == '__main__':
main()
```
Output:
```[1, 2, 0] -> 3
[3, 4, -1, 1] -> 2
[7, 8, 9, 11, 12] -> 1```

## QBasic

Works with: QBasic
Works with: QuickBasic version 4.5
```DECLARE FUNCTION isin (n(), k)
DECLARE FUNCTION fmp (n())

DIM a(3)
FOR x = 1 TO UBOUND(a): READ a(x): NEXT x
DIM b(4)
FOR x = 1 TO UBOUND(b): READ b(x): NEXT x
DIM c(5)
FOR x = 1 TO UBOUND(c): READ c(x): NEXT x

PRINT fmp(a())
PRINT fmp(b())
PRINT fmp(c())
Sleep
END

DATA 1,2,0
DATA 3,4,-1,1
DATA 7,8,9,11,12

FUNCTION fmp (n())
j = 1
WHILE isin(n(), j)
j = j + 1
WEND
fmp = j
END FUNCTION

FUNCTION isin (n(), k)
FOR i = LBOUND(n) TO UBOUND(n)
IF n(i) = k THEN isin = 1
NEXT i
END FUNCTION
```
Output:
```3
2
1```

## Quackery

### Using a bitmap as a set

Treat a number (BigInt) as a set of integers. Add the positive integers to the set, then find the first positive integer not in the set.

```  [ 0 0 rot
witheach
[ dup 0 > iff
[ bit | ]
else drop ]
[ dip 1+
1 >> dup 1 &
0 = until ]
drop ]          is task ( [ --> n )

' [ [ 1 2 0 ] [ 3 4 -1 1 ] [ 7 8 9 11 12 ] ]

witheach [ task echo sp ]```
Output:
`3 2 1`

### Using filtering and sorting

Filter out the non-positive integers, and then non-unique elements (after adding zero).

`uniquewith` is defined at Remove duplicate elements#Quackery and conveniently sorts the nest.

Then hunt for the first item which does not have the same value as its index. If they all have the same values as their indices, the missing integer is the same as the size of the processed nest.

```  [ [] swap
witheach
[ dup 0 > iff
join
else drop ]
0 join
uniquewith >
dup size swap
witheach
[ i^ != if
[ drop i^
conclude ] ] ] is task ( [ --> n )

' [ [ 1 2 0 ] [ 3 4 -1 1 ] [ 7 8 9 11 12 ] ]

witheach [ task echo sp ]```
Output:
`3 2 1`

### Brute force

Search for each integer. The largest the missing integer can be is one more than the number of items in the nest.

```  [ dup size
dup 1+ unrot
times
[ i^ 1+
over find
over found not if
[ dip
[ drop i^ 1+ ]
conclude ] ]
drop ]                  is task ( [ --> n )

' [ [ 1 2 0 ] [ 3 4 -1 1 ] [ 7 8 9 11 12 ] ]

witheach [ task echo sp ]```
Output:
`3 2 1`

## Raku

```say \$_, " ==> ", (1..Inf).first( -> \n { n ∉ \$_ } ) for
[ 1, 2, 0], [3, 4, 1, 1], [7, 8, 9, 11, 12], [1, 2, 3, 4, 5], [-6, -5, -2, -1], [5, -5], [-2], , []
```
Output:
```[1 2 0] ==> 3
[3 4 1 1] ==> 2
[7 8 9 11 12] ==> 1
[1 2 3 4 5] ==> 6
[-6 -5 -2 -1] ==> 1
[5 -5] ==> 1
[-2] ==> 1
 ==> 2
[] ==> 1```

## REXX

This REXX version doesn't need to sort the elements of the sets,   it uses an associated array.

```/*REXX program finds the smallest missing positive integer in a given list of integers. */
parse arg a                                      /*obtain optional arguments from the CL*/
if a='' | a=","  then a= '[1,2,0]  [3,4,-1,1]  [7,8,9,11,12]  [1,2,3,4,5]' ,
"[-6,-5,-2,-1]  [5,-5]  [-2]    []"    /*maybe use defaults.*/
say 'the smallest missing positive integer for the following sets is:'
say
do j=1  for words(a)                         /*process each set  in  a list of sets.*/
set= translate( word(a, j), ,'],[')          /*extract   a   "  from "   "   "   "  */
#= words(set)                                /*obtain the number of elements in set.*/
@.= .                                        /*assign default value for set elements*/
do k=1  for #;  x= word(set, k)       /*obtain a set element  (an integer).  */
@.x= x                                /*assign it to a sparse array.         */
end   /*k*/

do m=1  for #  until @.m==.           /*now, search for the missing integer. */
end   /*m*/
if @.m==''  then m= 1                        /*handle the case of a  "null"  set.   */
say right( word(a, j), 40)   ' ───► '   m    /*show the set and the missing integer.*/
end          /*j*/                           /*stick a fork in it,  we're all done. */
```
output   when using the default inputs:
```the smallest missing positive integer for the following sets is:

[1,2,0]  ───►  3
[3,4,-1,1]  ───►  2
[7,8,9,11,12]  ───►  1
[1,2,3,4,5]  ───►  6
[-6,-5,-2,-1]  ───►  1
[5,-5]  ───►  1
[-2]  ───►  1
  ───►  2
[]  ───►  1
```

## Ring

```nums = [[1,2,0], [3,4,-1,1], [7,8,9,11,12], [1,2,3,4,5],
[-6,-5,-2,-1], [5,-5], [-2], , []]

for n = 1 to len(nums)
see "the smallest missing positive integer for "
? (arrayToStr(nums[n]) + ": " + fmp(nums[n]))
next

func fmp(ary)
if len(ary) > 0
for m = 1 to max(ary) + 1
if find(ary, m) < 1 return m ok
next ok return 1

func arrayToStr(ary)
res = "[" s = ","
for n = 1 to len(ary)
if n = len(ary) s = "" ok
res += "" + ary[n] + s
next return res + "]"```
Output:
```the smallest missing positive integer for [1,2,0]: 3
the smallest missing positive integer for [3,4,-1,1]: 2
the smallest missing positive integer for [7,8,9,11,12]: 1
the smallest missing positive integer for [1,2,3,4,5]: 6
the smallest missing positive integer for [-6,-5,-2,-1]: 1
the smallest missing positive integer for [5,-5]: 1
the smallest missing positive integer for [-2]: 1
the smallest missing positive integer for : 2
the smallest missing positive integer for []: 1```

## RPL

```≪ 1 WHILE DUP2 POS REPEAT 1 + END SWAP DROP ≫ 'FINDF' STO
```
```{ { 1 2 0 } { 3 4 -1 1 } { 7 8 9 11 12 } } 1 ≪ FINDF ≫ DOLIST
```
Output:
```1: { 3 2 1 }
```

## Ruby

```nums  =   [1,2,0], [3,4,-1,1], [7,8,9,11,12]
puts nums.map{|ar|(1..).find{|candidate| !ar.include?(candidate) }}.join(", ")
```
Output:
`3, 2, 1`

## Sidef

```[[1,2,0], [3,4,1,1], [7,8,9,11,12],[1,2,3,4,5],
[-6,-5,-2,-1], [5,-5], [-2], , []].each {|arr|
var s = Set(arr...)
say (arr, " ==> ", 1..Inf -> first {|k| !s.has(k) })
}
```
Output:
```[1, 2, 0] ==> 3
[3, 4, 1, 1] ==> 2
[7, 8, 9, 11, 12] ==> 1
[1, 2, 3, 4, 5] ==> 6
[-6, -5, -2, -1] ==> 1
[5, -5] ==> 1
[-2] ==> 1
 ==> 2
[] ==> 1```

## True BASIC

```FUNCTION isin (n(), k)
FOR i = LBOUND(n) TO UBOUND(n)
IF n(i) = k THEN LET isin = 1
NEXT i
END FUNCTION

FUNCTION fmp (n())
LET j = 1
DO WHILE isin(n(), j) = 1
LET j = j + 1
LOOP
LET fmp = j
END FUNCTION

DIM a(3)
FOR x = 1 TO UBOUND(a)
NEXT x
DIM b(4)
FOR x = 1 TO UBOUND(b)
NEXT x
DIM c(5)
FOR x = 1 TO UBOUND(c)
NEXT x

PRINT fmp(a())
PRINT fmp(b())
PRINT fmp(c())

DATA 1,2,0
DATA 3,4,-1,1
DATA 7,8,9,11,12
END
```

## V (Vlang)

Translation of: go
```fn first_missing_positive(a []int) int {
mut b := []int{}
for e in a {
if e > 0 {
b << e
}
}
b.sort<int>()
le := b.len
if le == 0 || b > 1 {
return 1
}
for i in 1..le {
if b[i]-b[i-1] > 1 {
return b[i-1] + 1
}
}
return b[le-1] + 1
}

fn main() {
println("The first missing positive integers for the following arrays are:\n")
aa := [
[1, 2, 0], [3, 4, -1, 1], [7, 8, 9, 11, 12], [1, 2, 3, 4, 5],
[-6, -5, -2, -1], [5, -5], [-2], ]
for a in aa {
println("\$a -> \${first_missing_positive(a)}")
}
}```
Output:
`Same as go entry`

## Wren

Library: Wren-sort
```import "./sort" for Sort

var firstMissingPositive = Fn.new { |a|
var b = a.where { |i| i > 0 }.toList
Sort.insertion(b)
if (b.isEmpty || b > 1) return 1
var i = 1
while (i < b.count) {
if (b[i] - b[i-1] > 1) return b[i-1] + 1
i = i + 1
}
return b[-1] + 1
}

System.print("The first missing positive integers for the following arrays are:\n")
var aa = [
[ 1, 2, 0], [3, 4, -1, 1], [7, 8, 9, 11, 12], [1, 2, 3, 4, 5],
[-6, -5, -2, -1], [5, -5], [-2], , []
]
for (a in aa) System.print("%(a) -> %(firstMissingPositive.call(a))")
```
Output:
```The first missing positive integers for the following arrays are:

[1, 2, 0] -> 3
[3, 4, -1, 1] -> 2
[7, 8, 9, 11, 12] -> 1
[1, 2, 3, 4, 5] -> 6
[-6, -5, -2, -1] -> 1
[5, -5] -> 1
[-2] -> 1
 -> 2
[] -> 1
```

## XPL0

```proc ShowMissing(Arr, Len);
int  Arr, Len, N, N0, I;
[N:= 1;
repeat  N0:= N;
for I:= 0 to Len-1 do
if Arr(I) = N then N:= N+1;
until   N = N0;
IntOut(0, N);  ChOut(0, ^ );
];

int I, Nums;
[for I:= 0 to 2 do
[Nums:= [[1,2,0], [3,4,-1,1], [7,8,9,11,12], ];
ShowMissing( Nums(I), (Nums(I+1)-Nums(I))/4 );
];
]```
Output:
```3 2 1
```