Faulhaber's formula
You are encouraged to solve this task according to the task description, using any language you may know.
In mathematics, Faulhaber's formula, named after Johann Faulhaber, expresses the sum of the p-th powers of the first n positive integers as a (p + 1)th-degree polynomial function of n, the coefficients involving Bernoulli numbers.
- Task
Generate the first 10 closed-form expressions, starting with p = 0.
- Related tasks
- See also
-
- The Wikipedia entry: Faulhaber's formula.
- The Wikipedia entry: Bernoulli numbers.
- The Wikipedia entry: binomial coefficients.
C
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
int binomial(int n, int k) {
int num, denom, i;
if (n < 0 || k < 0 || n < k) return -1;
if (n == 0 || k == 0) return 1;
num = 1;
for (i = k + 1; i <= n; ++i) {
num = num * i;
}
denom = 1;
for (i = 2; i <= n - k; ++i) {
denom *= i;
}
return num / denom;
}
int gcd(int a, int b) {
int temp;
while (b != 0) {
temp = a % b;
a = b;
b = temp;
}
return a;
}
typedef struct tFrac {
int num, denom;
} Frac;
Frac makeFrac(int n, int d) {
Frac result;
int g;
if (d == 0) {
result.num = 0;
result.denom = 0;
return result;
}
if (n == 0) {
d = 1;
} else if (d < 0) {
n = -n;
d = -d;
}
g = abs(gcd(n, d));
if (g > 1) {
n = n / g;
d = d / g;
}
result.num = n;
result.denom = d;
return result;
}
Frac negateFrac(Frac f) {
return makeFrac(-f.num, f.denom);
}
Frac subFrac(Frac lhs, Frac rhs) {
return makeFrac(lhs.num * rhs.denom - lhs.denom * rhs.num, rhs.denom * lhs.denom);
}
Frac multFrac(Frac lhs, Frac rhs) {
return makeFrac(lhs.num * rhs.num, lhs.denom * rhs.denom);
}
bool equalFrac(Frac lhs, Frac rhs) {
return (lhs.num == rhs.num) && (lhs.denom == rhs.denom);
}
bool lessFrac(Frac lhs, Frac rhs) {
return (lhs.num * rhs.denom) < (rhs.num * lhs.denom);
}
void printFrac(Frac f) {
printf("%d", f.num);
if (f.denom != 1) {
printf("/%d", f.denom);
}
}
Frac bernoulli(int n) {
Frac a[16];
int j, m;
if (n < 0) {
a[0].num = 0;
a[0].denom = 0;
return a[0];
}
for (m = 0; m <= n; ++m) {
a[m] = makeFrac(1, m + 1);
for (j = m; j >= 1; --j) {
a[j - 1] = multFrac(subFrac(a[j - 1], a[j]), makeFrac(j, 1));
}
}
if (n != 1) {
return a[0];
}
return negateFrac(a[0]);
}
void faulhaber(int p) {
Frac coeff, q;
int j, pwr, sign;
printf("%d : ", p);
q = makeFrac(1, p + 1);
sign = -1;
for (j = 0; j <= p; ++j) {
sign = -1 * sign;
coeff = multFrac(multFrac(multFrac(q, makeFrac(sign, 1)), makeFrac(binomial(p + 1, j), 1)), bernoulli(j));
if (equalFrac(coeff, makeFrac(0, 1))) {
continue;
}
if (j == 0) {
if (!equalFrac(coeff, makeFrac(1, 1))) {
if (equalFrac(coeff, makeFrac(-1, 1))) {
printf("-");
} else {
printFrac(coeff);
}
}
} else {
if (equalFrac(coeff, makeFrac(1, 1))) {
printf(" + ");
} else if (equalFrac(coeff, makeFrac(-1, 1))) {
printf(" - ");
} else if (lessFrac(makeFrac(0, 1), coeff)) {
printf(" + ");
printFrac(coeff);
} else {
printf(" - ");
printFrac(negateFrac(coeff));
}
}
pwr = p + 1 - j;
if (pwr > 1) {
printf("n^%d", pwr);
} else {
printf("n");
}
}
printf("\n");
}
int main() {
int i;
for (i = 0; i < 10; ++i) {
faulhaber(i);
}
return 0;
}
- Output:
0 : n 1 : 1/2n^2 + 1/2n 2 : 1/3n^3 + 1/2n^2 + 1/6n 3 : 1/4n^4 + 1/2n^3 + 1/4n^2 4 : 1/5n^5 + 1/2n^4 + 1/3n^3 - 1/30n 5 : 1/6n^6 + 1/2n^5 + 5/12n^4 - 1/12n^2 6 : 1/7n^7 + 1/2n^6 + 1/2n^5 - 1/6n^3 + 1/42n 7 : 1/8n^8 + 1/2n^7 + 7/12n^6 - 7/24n^4 + 1/12n^2 8 : 1/9n^9 + 1/2n^8 + 2/3n^7 - 7/15n^5 + 2/9n^3 - 1/30n 9 : 1/10n^10 + 1/2n^9 + 3/4n^8 - 7/10n^6 + 1/2n^4 - 3/20n^2
C#
using System;
namespace FaulhabersFormula {
internal class Frac {
private long num;
private long denom;
public static readonly Frac ZERO = new Frac(0, 1);
public static readonly Frac ONE = new Frac(1, 1);
public Frac(long n, long d) {
if (d == 0) {
throw new ArgumentException("d must not be zero");
}
long nn = n;
long dd = d;
if (nn == 0) {
dd = 1;
}
else if (dd < 0) {
nn = -nn;
dd = -dd;
}
long g = Math.Abs(Gcd(nn, dd));
if (g > 1) {
nn /= g;
dd /= g;
}
num = nn;
denom = dd;
}
private static long Gcd(long a, long b) {
if (b == 0) {
return a;
}
return Gcd(b, a % b);
}
public static Frac operator -(Frac self) {
return new Frac(-self.num, self.denom);
}
public static Frac operator +(Frac lhs, Frac rhs) {
return new Frac(lhs.num * rhs.denom + lhs.denom * rhs.num, rhs.denom * lhs.denom);
}
public static Frac operator -(Frac lhs, Frac rhs) {
return lhs + -rhs;
}
public static Frac operator *(Frac lhs, Frac rhs) {
return new Frac(lhs.num * rhs.num, lhs.denom * rhs.denom);
}
public static bool operator <(Frac lhs, Frac rhs) {
double x = (double)lhs.num / lhs.denom;
double y = (double)rhs.num / rhs.denom;
return x < y;
}
public static bool operator >(Frac lhs, Frac rhs) {
double x = (double)lhs.num / lhs.denom;
double y = (double)rhs.num / rhs.denom;
return x > y;
}
public static bool operator ==(Frac lhs, Frac rhs) {
return lhs.num == rhs.num && lhs.denom == rhs.denom;
}
public static bool operator !=(Frac lhs, Frac rhs) {
return lhs.num != rhs.num || lhs.denom != rhs.denom;
}
public override string ToString() {
if (denom == 1) {
return num.ToString();
}
return string.Format("{0}/{1}", num, denom);
}
public override bool Equals(object obj) {
var frac = obj as Frac;
return frac != null &&
num == frac.num &&
denom == frac.denom;
}
public override int GetHashCode() {
var hashCode = 1317992671;
hashCode = hashCode * -1521134295 + num.GetHashCode();
hashCode = hashCode * -1521134295 + denom.GetHashCode();
return hashCode;
}
}
class Program {
static Frac Bernoulli(int n) {
if (n < 0) {
throw new ArgumentException("n may not be negative or zero");
}
Frac[] a = new Frac[n + 1];
for (int m = 0; m <= n; m++) {
a[m] = new Frac(1, m + 1);
for (int j = m; j >= 1; j--) {
a[j - 1] = (a[j - 1] - a[j]) * new Frac(j, 1);
}
}
// returns 'first' Bernoulli number
if (n != 1) return a[0];
return -a[0];
}
static int Binomial(int n, int k) {
if (n < 0 || k < 0 || n < k) {
throw new ArgumentException();
}
if (n == 0 || k == 0) return 1;
int num = 1;
for (int i = k + 1; i <= n; i++) {
num = num * i;
}
int denom = 1;
for (int i = 2; i <= n - k; i++) {
denom = denom * i;
}
return num / denom;
}
static void Faulhaber(int p) {
Console.Write("{0} : ", p);
Frac q = new Frac(1, p + 1);
int sign = -1;
for (int j = 0; j <= p; j++) {
sign *= -1;
Frac coeff = q * new Frac(sign, 1) * new Frac(Binomial(p + 1, j), 1) * Bernoulli(j);
if (Frac.ZERO == coeff) continue;
if (j == 0) {
if (Frac.ONE != coeff) {
if (-Frac.ONE == coeff) {
Console.Write("-");
}
else {
Console.Write(coeff);
}
}
}
else {
if (Frac.ONE == coeff) {
Console.Write(" + ");
}
else if (-Frac.ONE == coeff) {
Console.Write(" - ");
}
else if (Frac.ZERO < coeff) {
Console.Write(" + {0}", coeff);
}
else {
Console.Write(" - {0}", -coeff);
}
}
int pwr = p + 1 - j;
if (pwr > 1) {
Console.Write("n^{0}", pwr);
}
else {
Console.Write("n");
}
}
Console.WriteLine();
}
static void Main(string[] args) {
for (int i = 0; i < 10; i++) {
Faulhaber(i);
}
}
}
}
- Output:
0 : n 1 : 1/2n^2 + 1/2n 2 : 1/3n^3 + 1/2n^2 + 1/6n 3 : 1/4n^4 + 1/2n^3 + 1/4n^2 4 : 1/5n^5 + 1/2n^4 + 1/3n^3 - 1/30n 5 : 1/6n^6 + 1/2n^5 + 5/12n^4 - 1/12n^2 6 : 1/7n^7 + 1/2n^6 + 1/2n^5 - 1/6n^3 + 1/42n 7 : 1/8n^8 + 1/2n^7 + 7/12n^6 - 7/24n^4 + 1/12n^2 8 : 1/9n^9 + 1/2n^8 + 2/3n^7 - 7/15n^5 + 2/9n^3 - 1/30n 9 : 1/10n^10 + 1/2n^9 + 3/4n^8 - 7/10n^6 + 1/2n^4 - 3/20n^2
C++
Uses C++17
#include <iostream>
#include <numeric>
#include <sstream>
#include <vector>
class Frac {
public:
Frac(long n, long d) {
if (d == 0) {
throw new std::runtime_error("d must not be zero");
}
long nn = n;
long dd = d;
if (nn == 0) {
dd = 1;
} else if (dd < 0) {
nn = -nn;
dd = -dd;
}
long g = abs(std::gcd(nn, dd));
if (g > 1) {
nn /= g;
dd /= g;
}
num = nn;
denom = dd;
}
Frac operator-() const {
return Frac(-num, denom);
}
Frac operator+(const Frac& rhs) const {
return Frac(num*rhs.denom + denom * rhs.num, rhs.denom*denom);
}
Frac operator-(const Frac& rhs) const {
return Frac(num*rhs.denom - denom * rhs.num, rhs.denom*denom);
}
Frac operator*(const Frac& rhs) const {
return Frac(num*rhs.num, denom*rhs.denom);
}
bool operator==(const Frac& rhs) const {
return num == rhs.num && denom == rhs.denom;
}
bool operator!=(const Frac& rhs) const {
return num != rhs.num || denom != rhs.denom;
}
bool operator<(const Frac& rhs) const {
if (denom == rhs.denom) {
return num < rhs.num;
}
return num * rhs.denom < rhs.num * denom;
}
friend std::ostream& operator<<(std::ostream&, const Frac&);
static Frac ZERO() {
return Frac(0, 1);
}
static Frac ONE() {
return Frac(1, 1);
}
private:
long num;
long denom;
};
std::ostream & operator<<(std::ostream & os, const Frac &f) {
if (f.num == 0 || f.denom == 1) {
return os << f.num;
}
std::stringstream ss;
ss << f.num << "/" << f.denom;
return os << ss.str();
}
Frac bernoulli(int n) {
if (n < 0) {
throw new std::runtime_error("n may not be negative or zero");
}
std::vector<Frac> a;
for (int m = 0; m <= n; m++) {
a.push_back(Frac(1, m + 1));
for (int j = m; j >= 1; j--) {
a[j - 1] = (a[j - 1] - a[j]) * Frac(j, 1);
}
}
// returns 'first' Bernoulli number
if (n != 1) return a[0];
return -a[0];
}
int binomial(int n, int k) {
if (n < 0 || k < 0 || n < k) {
throw new std::runtime_error("parameters are invalid");
}
if (n == 0 || k == 0) return 1;
int num = 1;
for (int i = k + 1; i <= n; i++) {
num *= i;
}
int denom = 1;
for (int i = 2; i <= n - k; i++) {
denom *= i;
}
return num / denom;
}
void faulhaber(int p) {
using namespace std;
cout << p << " : ";
auto q = Frac(1, p + 1);
int sign = -1;
for (int j = 0; j < p + 1; j++) {
sign *= -1;
auto coeff = q * Frac(sign, 1) * Frac(binomial(p + 1, j), 1) * bernoulli(j);
if (coeff == Frac::ZERO()) {
continue;
}
if (j == 0) {
if (coeff == -Frac::ONE()) {
cout << "-";
} else if (coeff != Frac::ONE()) {
cout << coeff;
}
} else {
if (coeff == Frac::ONE()) {
cout << " + ";
} else if (coeff == -Frac::ONE()) {
cout << " - ";
} else if (coeff < Frac::ZERO()) {
cout << " - " << -coeff;
} else {
cout << " + " << coeff;
}
}
int pwr = p + 1 - j;
if (pwr > 1) {
cout << "n^" << pwr;
} else {
cout << "n";
}
}
cout << endl;
}
int main() {
for (int i = 0; i < 10; i++) {
faulhaber(i);
}
return 0;
}
- Output:
0 : n 1 : 1/2n^2 + 1/2n 2 : 1/3n^3 + 1/2n^2 + 1/6n 3 : 1/4n^4 + 1/2n^3 + 1/4n^2 4 : 1/5n^5 + 1/2n^4 + 1/3n^3 - 1/30n 5 : 1/6n^6 + 1/2n^5 + 5/12n^4 - 1/12n^2 6 : 1/7n^7 + 1/2n^6 + 1/2n^5 - 1/6n^3 + 1/42n 7 : 1/8n^8 + 1/2n^7 + 7/12n^6 - 7/24n^4 + 1/12n^2 8 : 1/9n^9 + 1/2n^8 + 2/3n^7 - 7/15n^5 + 2/9n^3 - 1/30n 9 : 1/10n^10 + 1/2n^9 + 3/4n^8 - 7/10n^6 + 1/2n^4 - 3/20n^2
D
import std.algorithm : fold;
import std.exception : enforce;
import std.format : formattedWrite;
import std.numeric : cmp, gcd;
import std.range : iota;
import std.stdio;
import std.traits;
auto abs(T)(T val)
if (isNumeric!T) {
if (val < 0) {
return -val;
}
return val;
}
struct Frac {
long num;
long denom;
enum ZERO = Frac(0, 1);
enum ONE = Frac(1, 1);
this(long n, long d) in {
enforce(d != 0, "Parameter d may not be zero.");
} body {
auto nn = n;
auto dd = d;
if (nn == 0) {
dd = 1;
} else if (dd < 0) {
nn = -nn;
dd = -dd;
}
auto g = gcd(abs(nn), abs(dd));
if (g > 1) {
nn /= g;
dd /= g;
}
num = nn;
denom = dd;
}
auto opBinary(string op)(Frac rhs) const {
static if (op == "+" || op == "-") {
return mixin("Frac(num*rhs.denom"~op~"denom*rhs.num, rhs.denom*denom)");
} else if (op == "*") {
return Frac(num*rhs.num, denom*rhs.denom);
}
}
auto opUnary(string op : "-")() const {
return Frac(-num, denom);
}
int opCmp(Frac rhs) const {
return cmp(cast(real) this, cast(real) rhs);
}
bool opEquals(Frac rhs) const {
return num == rhs.num && denom == rhs.denom;
}
void toString(scope void delegate(const(char)[]) sink) const {
if (denom == 1) {
formattedWrite(sink, "%d", num);
} else {
formattedWrite(sink, "%d/%s", num, denom);
}
}
T opCast(T)() const if (isFloatingPoint!T) {
return cast(T) num / denom;
}
}
auto abs(Frac f) {
if (f.num >= 0) {
return f;
}
return -f;
}
auto bernoulli(int n) in {
enforce(n >= 0, "Parameter n must not be negative.");
} body {
Frac[] a;
a.length = n+1;
a[0] = Frac.ZERO;
foreach (m; 0..n+1) {
a[m] = Frac(1, m+1);
foreach_reverse (j; 1..m+1) {
a[j-1] = (a[j-1] - a[j]) * Frac(j, 1);
}
}
if (n != 1) {
return a[0];
}
return -a[0];
}
auto binomial(int n, int k) in {
enforce(n>=0 && k>=0 && n>=k);
} body {
if (n==0 || k==0) return 1;
auto num = iota(k+1, n+1).fold!"a*b"(1);
auto den = iota(2, n-k+1).fold!"a*b"(1);
return num / den;
}
auto faulhaber(int p) {
write(p, " : ");
auto q = Frac(1, p+1);
auto sign = -1;
foreach (j; 0..p+1) {
sign *= -1;
auto coeff = q * Frac(sign, 1) * Frac(binomial(p+1, j), 1) * bernoulli(j);
if (coeff == Frac.ZERO) continue;
if (j == 0) {
if (coeff == -Frac.ONE) {
write("-");
} else if (coeff != Frac.ONE) {
write(coeff);
}
} else {
if (coeff == Frac.ONE) {
write(" + ");
} else if (coeff == -Frac.ONE) {
write(" - ");
} else if (coeff > Frac.ZERO) {
write(" + ", coeff);
} else {
write(" - ", -coeff);
}
}
auto pwr = p + 1 - j;
if (pwr > 1) {
write("n^", pwr);
} else {
write("n");
}
}
writeln;
}
void main() {
foreach (i; 0..10) {
faulhaber(i);
}
}
- Output:
0 : n 1 : 1/2n^2 + 1/2n 2 : 1/3n^3 + 1/2n^2 + 1/6n 3 : 1/4n^4 + 1/2n^3 + 1/4n^2 4 : 1/5n^5 + 1/2n^4 + 1/3n^3 - 1/30n 5 : 1/6n^6 + 1/2n^5 + 5/12n^4 - 1/12n^2 6 : 1/7n^7 + 1/2n^6 + 1/2n^5 - 1/6n^3 + 1/42n 7 : 1/8n^8 + 1/2n^7 + 7/12n^6 - 7/24n^4 + 1/12n^2 8 : 1/9n^9 + 1/2n^8 + 2/3n^7 - 7/15n^5 + 2/9n^3 - 1/30n 9 : 1/10n^10 + 1/2n^9 + 3/4n^8 - 7/10n^6 + 1/2n^4 - 3/20n^2
EchoLisp
(lib 'math) ;; for bernoulli numbers
(string-delimiter "")
;; returns list of polynomial coefficients
(define (Faulhaber p)
(cons 0
(for/list ([k (in-range p -1 -1)])
(* (Cnp (1+ p) k) (bernoulli k)))))
;; prints formal polynomial
(define (task (pmax 10))
(for ((p pmax))
(writeln p '→ (/ 1 (1+ p)) '* (poly->string 'n (Faulhaber p)))))
;; extra credit - compute sums
(define (Faulcomp n p)
(printf "Σ(1..%d) n^%d = %d" n p (/ (poly n (Faulhaber p)) (1+ p) )))
- Output:
(task) 0 → 1 * n 1 → 1/2 * n^2 + n 2 → 1/3 * n^3 + 3/2 n^2 + 1/2 n 3 → 1/4 * n^4 + 2 n^3 + n^2 4 → 1/5 * n^5 + 5/2 n^4 + 5/3 n^3 -1/6 n 5 → 1/6 * n^6 + 3 n^5 + 5/2 n^4 -1/2 n^2 6 → 1/7 * n^7 + 7/2 n^6 + 7/2 n^5 -7/6 n^3 + 1/6 n 7 → 1/8 * n^8 + 4 n^7 + 14/3 n^6 -7/3 n^4 + 2/3 n^2 8 → 1/9 * n^9 + 9/2 n^8 + 6 n^7 -21/5 n^5 + 2 n^3 -3/10 n 9 → 1/10 * n^10 + 5 n^9 + 15/2 n^8 -7 n^6 + 5 n^4 -3/2 n^2 (Faulcomp 100 2) Σ(1..100) n^2 = 338350 (Faulcomp 100 1) Σ(1..100) n^1 = 5050 (lib 'bigint) (Faulcomp 100 9) Σ(1..100) n^9 = 10507499300049998000 ;; check it ... (for/sum ((n 101)) (expt n 9)) → 10507499300049998500
Factor
USING: formatting kernel math math.combinatorics math.extras
math.functions regexp sequences ;
: faulhaber ( p -- seq )
1 + dup recip swap dup <iota>
[ [ nCk ] [ -1 swap ^ ] [ bernoulli ] tri * * * ] 2with map ;
: (poly>str) ( seq -- str )
reverse [ 1 + "%un^%d" sprintf ] map-index reverse " + " join ;
: clean-up ( str -- str' )
R/ n\^1\z/ "n" re-replace ! Change n^1 to n.
R/ 1n/ "n" re-replace ! Change 1n to n.
R/ \+ -/ "- " re-replace ! Change + - to - .
R/ [+-] 0n(\^\d+ )?/ "" re-replace ; ! Remove terms of zero.
: poly>str ( seq -- str ) (poly>str) clean-up ;
10 [ dup faulhaber poly>str "%d: %s\n" printf ] each-integer
- Output:
0: n 1: 1/2n^2 + 1/2n 2: 1/3n^3 + 1/2n^2 + 1/6n 3: 1/4n^4 + 1/2n^3 + 1/4n^2 4: 1/5n^5 + 1/2n^4 + 1/3n^3 - 1/30n 5: 1/6n^6 + 1/2n^5 + 5/12n^4 - 1/12n^2 6: 1/7n^7 + 1/2n^6 + 1/2n^5 - 1/6n^3 + 1/42n 7: 1/8n^8 + 1/2n^7 + 7/12n^6 - 7/24n^4 + 1/12n^2 8: 1/9n^9 + 1/2n^8 + 2/3n^7 - 7/15n^5 + 2/9n^3 - 1/30n 9: 1/10n^10 + 1/2n^9 + 3/4n^8 - 7/10n^6 + 1/2n^4 - 3/20n^2
FreeBASIC
Type Fraction
As Integer num
As Integer den
End Type
Function Binomial(n As Integer, k As Integer) As Integer
If n < 0 Or k < 0 Then Print "Arguments must be non-negative integers": Exit Function
If n < k Then Print "The second argument cannot be more than the first.": Exit Function
If n = 0 Or k = 0 Then Return 1
Dim As Integer i, num, den
num = 1
For i = k + 1 To n
num *= i
Next i
den = 1
For i = 2 To n - k
den *= i
Next i
Return num / den
End Function
Function GCD(n As Integer, d As Integer) As Integer
Return Iif(d = 0, n, GCD(d, n Mod d))
End Function
Function makeFrac(n As Integer, d As Integer) As Fraction
Dim As Fraction result
Dim As Integer g
If d = 0 Then
result.num = 0
result.den = 0
Return result
End If
If n = 0 Then
d = 1
Elseif d < 0 Then
n = -n
d = -d
End If
g = Abs(gcd(n, d))
If g > 1 Then
n /= g
d /= g
End If
result.num = n
result.den = d
Return result
End Function
Function negateFrac(f As Fraction) As Fraction
Return makeFrac(-f.num, f.den)
End Function
Function subFrac(lhs As Fraction, rhs As Fraction) As Fraction
Return makeFrac(lhs.num * rhs.den - lhs.den * rhs.num, rhs.den * lhs.den)
End Function
Function multFrac(lhs As Fraction, rhs As Fraction) As Fraction
Return makeFrac(lhs.num * rhs.num, lhs.den * rhs.den)
End Function
Function equalFrac(lhs As Fraction, rhs As Fraction) As Integer
Return (lhs.num = rhs.num) And (lhs.den = rhs.den)
End Function
Function lessFrac(lhs As Fraction, rhs As Fraction) As Integer
Return (lhs.num * rhs.den) < (rhs.num * lhs.den)
End Function
Sub printFrac(f As Fraction)
Print Str(f.num);
If f.den <> 1 Then Print "/" & f.den;
End Sub
Function Bernoulli(n As Integer) As Fraction
If n < 0 Then Print "Argument must be non-negative": Exit Function
Dim As Fraction a(16)
Dim As Integer j, m
If (n < 0) Then
a(0).num = 0
a(0).den = 0
Return a(0)
End If
For m = 0 To n
a(m) = makeFrac(1, m + 1)
For j = m To 1 Step -1
a(j - 1) = multFrac(subFrac(a(j - 1), a(j)), makeFrac(j, 1))
Next j
Next m
If n <> 1 Then Return a(0)
Return negateFrac(a(0))
End Function
Sub Faulhaber(p As Integer)
Dim As Fraction coeff, q
Dim As Integer j, pwr, sign
Print p & " : ";
q = makeFrac(1, p + 1)
sign = -1
For j = 0 To p
sign = -1 * sign
coeff = multFrac(multFrac(multFrac(q, makeFrac(sign, 1)), makeFrac(Binomial(p + 1, j), 1)), Bernoulli(j))
If (equalFrac(coeff, makeFrac(0, 1))) Then Continue For
If j = 0 Then
If Not equalFrac(coeff, makeFrac(1, 1)) Then
If equalFrac(coeff, makeFrac(-1, 1)) Then
Print "-";
Else
printFrac(coeff)
End If
End If
Else
If equalFrac(coeff, makeFrac(1, 1)) Then
Print " + ";
Elseif equalFrac(coeff, makeFrac(-1, 1)) Then
Print " - ";
Elseif lessFrac(makeFrac(0, 1), coeff) Then
Print " + ";
printFrac(coeff)
Else
Print " - ";
printFrac(negateFrac(coeff))
End If
End If
pwr = p + 1 - j
Print Iif(pwr > 1, "n^" & pwr, "n");
Next j
Print
End Sub
For i As Integer = 0 To 9
Faulhaber(i)
Next i
Sleep
- Output:
Same as C entry.
Fōrmulæ
Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text. Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for storage and transfer purposes more than visualization and edition.
Programs in Fōrmulæ are created/edited online in its website.
In this page you can see and run the program(s) related to this task and their results. You can also change either the programs or the parameters they are called with, for experimentation, but remember that these programs were created with the main purpose of showing a clear solution of the task, and they generally lack any kind of validation.
Solution The following function creates the Faulhaber's coefficients up to a given number of rows, according to the paper of of Mohammad Torabi Dashti:
(This is exactly the as than the task Faulhaber's triangle)
The following function creates the sum of the p-th powers of the first n positive integers as a (p + 1)th-degree polynomial function of n:
Notes. The -1 index means the last element (-2 is the penultimate element, and so on). So it retrieves the last row of the triangle. |x| is the cardinality (number of elements) of x.
(This is exactly the as than the task Faulhaber's triangle)
This function can be used for both symbolic or numeric computation of the polynomial:
To generate the first 10 closed-form expressions, starting with p = 0:
GAP
Straightforward implementation using GAP polynomials, and two different formulas: one based on Stirling numbers of the second kind (sum1, see Python implementation below in this page), and the usual Faulhaber formula (sum2). No optimization is made (one could compute Stirling numbers row by row, or the product in sum1 may be kept from one call to the other). Notice the Bernoulli term in the first formula is here only to correct the value of sum1(0), which is off by one because sum1 computes sums from 0 to n.
n := X(Rationals, "n");
sum1 := p -> Sum([0 .. p], k -> Stirling2(p, k) * Product([0 .. k], j -> n + 1 - j) / (k + 1)) + 2 * Bernoulli(2 * p + 1);
sum2 := p -> Sum([0 .. p], j -> (-1)^j * Binomial(p + 1, j) * Bernoulli(j) * n^(p + 1 - j)) / (p + 1);
ForAll([0 .. 20], k -> sum1(k) = sum2(k));
for p in [0 .. 9] do
Print(sum1(p), "\n");
od;
n
1/2*n^2+1/2*n
1/3*n^3+1/2*n^2+1/6*n
1/4*n^4+1/2*n^3+1/4*n^2
1/5*n^5+1/2*n^4+1/3*n^3-1/30*n
1/6*n^6+1/2*n^5+5/12*n^4-1/12*n^2
1/7*n^7+1/2*n^6+1/2*n^5-1/6*n^3+1/42*n
1/8*n^8+1/2*n^7+7/12*n^6-7/24*n^4+1/12*n^2
1/9*n^9+1/2*n^8+2/3*n^7-7/15*n^5+2/9*n^3-1/30*n
1/10*n^10+1/2*n^9+3/4*n^8-7/10*n^6+1/2*n^4-3/20*n^2
Go
package main
import (
"fmt"
"math/big"
)
func bernoulli(z *big.Rat, n int64) *big.Rat {
if z == nil {
z = new(big.Rat)
}
a := make([]big.Rat, n+1)
for m := range a {
a[m].SetFrac64(1, int64(m+1))
for j := m; j >= 1; j-- {
d := &a[j-1]
d.Mul(z.SetInt64(int64(j)), d.Sub(d, &a[j]))
}
}
return z.Set(&a[0])
}
func main() {
// allocate needed big.Rat's once
q := new(big.Rat)
c := new(big.Rat) // coefficients
be := new(big.Rat) // for Bernoulli numbers
bi := big.NewRat(1, 1) // for binomials
for p := int64(0); p < 10; p++ {
fmt.Print(p, " : ")
q.SetFrac64(1, p+1)
neg := true
for j := int64(0); j <= p; j++ {
neg = !neg
if neg {
c.Neg(q)
} else {
c.Set(q)
}
bi.Num().Binomial(p+1, j)
bernoulli(be, j)
c.Mul(c, bi)
c.Mul(c, be)
if c.Num().BitLen() == 0 {
continue
}
if j == 0 {
fmt.Printf(" %4s", c.RatString())
} else {
fmt.Printf(" %+2d/%-2d", c.Num(), c.Denom())
}
fmt.Print("×n")
if exp := p + 1 - j; exp > 1 {
fmt.Printf("^%-2d", exp)
}
}
fmt.Println()
}
}
- Output:
0 : 1×n 1 : 1/2×n^2 -1/2 ×n 2 : 1/3×n^3 -1/2 ×n^2 +1/6 ×n 3 : 1/4×n^4 -1/2 ×n^3 +1/4 ×n^2 4 : 1/5×n^5 -1/2 ×n^4 +1/3 ×n^3 -1/30×n 5 : 1/6×n^6 -1/2 ×n^5 +5/12×n^4 -1/12×n^2 6 : 1/7×n^7 -1/2 ×n^6 +1/2 ×n^5 -1/6 ×n^3 +1/42×n 7 : 1/8×n^8 -1/2 ×n^7 +7/12×n^6 -7/24×n^4 +1/12×n^2 8 : 1/9×n^9 -1/2 ×n^8 +2/3 ×n^7 -7/15×n^5 +2/9 ×n^3 -1/30×n 9 : 1/10×n^10 -1/2 ×n^9 +3/4 ×n^8 -7/10×n^6 +1/2 ×n^4 -3/20×n^2
Groovy
import java.util.stream.IntStream
class FaulhabersFormula {
private static long gcd(long a, long b) {
if (b == 0) {
return a
}
return gcd(b, a % b)
}
private static class Frac implements Comparable<Frac> {
private long num
private long denom
public static final Frac ZERO = new Frac(0, 1)
public static final Frac ONE = new Frac(1, 1)
Frac(long n, long d) {
if (d == 0) throw new IllegalArgumentException("d must not be zero")
long nn = n
long dd = d
if (nn == 0) {
dd = 1
} else if (dd < 0) {
nn = -nn
dd = -dd
}
long g = Math.abs(gcd(nn, dd))
if (g > 1) {
nn /= g
dd /= g
}
num = nn
denom = dd
}
Frac plus(Frac rhs) {
return new Frac(num * rhs.denom + denom * rhs.num, rhs.denom * denom)
}
Frac negative() {
return new Frac(-num, denom)
}
Frac minus(Frac rhs) {
return this + -rhs
}
Frac multiply(Frac rhs) {
return new Frac(this.num * rhs.num, this.denom * rhs.denom)
}
@Override
int compareTo(Frac o) {
double diff = toDouble() - o.toDouble()
return Double.compare(diff, 0.0)
}
@Override
boolean equals(Object obj) {
return null != obj && obj instanceof Frac && this == (Frac) obj
}
@Override
String toString() {
if (denom == 1) {
return Long.toString(num)
}
return String.format("%d/%d", num, denom)
}
private double toDouble() {
return (double) num / denom
}
}
private static Frac bernoulli(int n) {
if (n < 0) throw new IllegalArgumentException("n may not be negative or zero")
Frac[] a = new Frac[n + 1]
Arrays.fill(a, Frac.ZERO)
for (int m = 0; m <= n; ++m) {
a[m] = new Frac(1, m + 1)
for (int j = m; j >= 1; --j) {
a[j - 1] = (a[j - 1] - a[j]) * new Frac(j, 1)
}
}
// returns 'first' Bernoulli number
if (n != 1) return a[0]
return -a[0]
}
private static int binomial(int n, int k) {
if (n < 0 || k < 0 || n < k) throw new IllegalArgumentException()
if (n == 0 || k == 0) return 1
int num = IntStream.rangeClosed(k + 1, n).reduce(1, { a, b -> a * b })
int den = IntStream.rangeClosed(2, n - k).reduce(1, { acc, i -> acc * i })
return num / den
}
private static void faulhaber(int p) {
print("$p : ")
Frac q = new Frac(1, p + 1)
int sign = -1
for (int j = 0; j <= p; ++j) {
sign *= -1
Frac coeff = q * new Frac(sign, 1) * new Frac(binomial(p + 1, j), 1) * bernoulli(j)
if (Frac.ZERO == coeff) continue
if (j == 0) {
if (Frac.ONE != coeff) {
if (-Frac.ONE == coeff) {
print("-")
} else {
print(coeff)
}
}
} else {
if (Frac.ONE == coeff) {
print(" + ")
} else if (-Frac.ONE == coeff) {
print(" - ")
} else if (coeff > Frac.ZERO) {
print(" + $coeff")
} else {
print(" - ${-coeff}")
}
}
int pwr = p + 1 - j
if (pwr > 1) {
print("n^$pwr")
} else {
print("n")
}
}
println()
}
static void main(String[] args) {
for (int i = 0; i <= 9; ++i) {
faulhaber(i)
}
}
}
- Output:
0 : n 1 : 1/2n^2 + 1/2n 2 : 1/3n^3 + 1/2n^2 + 1/6n 3 : 1/4n^4 + 1/2n^3 + 1/4n^2 4 : 1/5n^5 + 1/2n^4 + 1/3n^3 - 1/30n 5 : 1/6n^6 + 1/2n^5 + 5/12n^4 - 1/12n^2 6 : 1/7n^7 + 1/2n^6 + 1/2n^5 - 1/6n^3 + 1/42n 7 : 1/8n^8 + 1/2n^7 + 7/12n^6 - 7/24n^4 + 1/12n^2 8 : 1/9n^9 + 1/2n^8 + 2/3n^7 - 7/15n^5 + 2/9n^3 - 1/30n 9 : 1/10n^10 + 1/2n^9 + 3/4n^8 - 7/10n^6 + 1/2n^4 - 3/20n^2
Haskell
Bernouilli polynomials
import Data.Ratio ((%), numerator, denominator)
import Data.List (intercalate, transpose)
import Data.Bifunctor (bimap)
import Data.Char (isSpace)
import Data.Monoid ((<>))
import Data.Bool (bool)
------------------------- FAULHABER ------------------------
faulhaber :: [[Rational]]
faulhaber =
tail $
scanl
(\rs n ->
let xs = zipWith ((*) . (n %)) [2 ..] rs
in 1 - sum xs : xs)
[]
[0 ..]
polynomials :: [[(String, String)]]
polynomials = fmap ((ratioPower =<<) . reverse . flip zip [1 ..]) faulhaber
---------------------------- TEST --------------------------
main :: IO ()
main = (putStrLn . unlines . expressionTable . take 10) polynomials
--------------------- EXPRESSION STRINGS -------------------
-- Rows of (Power string, Ratio string) tuples -> Printable lines
expressionTable :: [[(String, String)]] -> [String]
expressionTable ps =
let cols = transpose (fullTable ps)
in expressionRow <$>
zip
[0 ..]
(transpose $
zipWith
(\(lw, rw) col ->
fmap (bimap (justifyLeft lw ' ') (justifyLeft rw ' ')) col)
(colWidths cols)
cols)
-- Value pair -> String pair (lifted into list for use with >>=)
ratioPower :: (Rational, Integer) -> [(String, String)]
ratioPower (nd, j) =
let (num, den) = ((,) . numerator <*> denominator) nd
sn
| num == 0 = []
| (j /= 1) = ("n^" <> show j)
| otherwise = "n"
sr
| num == 0 = []
| den == 1 && num == 1 = []
| den == 1 = show num <> "n"
| otherwise = intercalate "/" [show num, show den]
s = sr <> sn
in bool [(sn, sr)] [] (null s)
-- Rows of uneven length -> All rows padded to length of longest
fullTable :: [[(String, String)]] -> [[(String, String)]]
fullTable xs =
let lng = maximum $ length <$> xs
in (<>) <*> (flip replicate ([], []) . (-) lng . length) <$> xs
justifyLeft :: Int -> Char -> String -> String
justifyLeft n c s = take n (s <> replicate n c)
-- (Row index, Expression pairs) -> String joined by conjunctions
expressionRow :: (Int, [(String, String)]) -> String
expressionRow (i, row) =
concat
[ show i
, " -> "
, foldr
(\s a -> concat [s, bool " + " " " (blank a || head a == '-'), a])
[]
(polyTerm <$> row)
]
-- (Power string, Ratio String) -> Combined string with possible '*'
polyTerm :: (String, String) -> String
polyTerm (l, r)
| blank l || blank r = l <> r
| head r == '-' = concat ["- ", l, " * ", tail r]
| otherwise = intercalate " * " [l, r]
blank :: String -> Bool
blank = all isSpace
-- Maximum widths of power and ratio elements in each column
colWidths :: [[(String, String)]] -> [(Int, Int)]
colWidths =
fmap
(foldr
(\(ls, rs) (lMax, rMax) -> (max (length ls) lMax, max (length rs) rMax))
(0, 0))
-- Length of string excluding any leading '-'
unsignedLength :: String -> Int
unsignedLength xs =
let l = length xs
in bool (bool l (l - 1) ('-' == head xs)) 0 (0 == l)
- Output:
0 -> n 1 -> n^2 * 1/2 + n * 1/2 2 -> n^3 * 1/3 + n^2 * 1/2 + n * 1/6 3 -> n^4 * 1/4 + n^3 * 1/2 + n^2 * 1/4 4 -> n^5 * 1/5 + n^4 * 1/2 + n^3 * 1/3 - n * 1/30 5 -> n^6 * 1/6 + n^5 * 1/2 + n^4 * 5/12 - n^2 * 1/12 6 -> n^7 * 1/7 + n^6 * 1/2 + n^5 * 1/2 - n^3 * 1/6 + n * 1/42 7 -> n^8 * 1/8 + n^7 * 1/2 + n^6 * 7/12 - n^4 * 7/24 + n^2 * 1/12 8 -> n^9 * 1/9 + n^8 * 1/2 + n^7 * 2/3 - n^5 * 7/15 + n^3 * 2/9 - n * 1/30 9 -> n^10 * 1/10 + n^9 * 1/2 + n^8 * 3/4 - n^6 * 7/10 + n^4 * 1/2 - n^2 * 3/20
J
Implementation:
Bsecond=:verb define"0
+/,(<:*(_1^[)*!*(y^~1+[)%1+])"0/~i.1x+y
)
Bfirst=: Bsecond - 1&=
Faul=:adverb define
(0,|.(%m+1x) * (_1x&^ * !&(m+1) * Bfirst) i.1+m)&p.
)
Task example:
0 Faul
0 1x&p.
1 Faul
0 1r2 1r2&p.
2 Faul
0 1r6 1r2 1r3&p.
3 Faul
0 0 1r4 1r2 1r4&p.
4 Faul
0 _1r30 0 1r3 1r2 1r5&p.
5 Faul
0 0 _1r12 0 5r12 1r2 1r6&p.
6 Faul
0 1r42 0 _1r6 0 1r2 1r2 1r7&p.
7 Faul
0 0 1r12 0 _7r24 0 7r12 1r2 1r8&p.
8 Faul
0 _1r30 0 2r9 0 _7r15 0 2r3 1r2 1r9&p.
9 Faul
0 0 _3r20 0 1r2 0 _7r10 0 3r4 1r2 1r10&p.
Double checking our work:
Fcheck=: dyad def'+/(1+i.y)^x'"0
9 Faul i.5
0 1 513 20196 282340
9 Fcheck i.5
0 1 513 20196 282340
2 Faul i.5
0 1 5 14 30
2 Fcheck i.5
0 1 5 14 30
Java
import java.util.Arrays;
import java.util.stream.IntStream;
public class FaulhabersFormula {
private static long gcd(long a, long b) {
if (b == 0) {
return a;
}
return gcd(b, a % b);
}
private static class Frac implements Comparable<Frac> {
private long num;
private long denom;
public static final Frac ZERO = new Frac(0, 1);
public static final Frac ONE = new Frac(1, 1);
public Frac(long n, long d) {
if (d == 0) throw new IllegalArgumentException("d must not be zero");
long nn = n;
long dd = d;
if (nn == 0) {
dd = 1;
} else if (dd < 0) {
nn = -nn;
dd = -dd;
}
long g = Math.abs(gcd(nn, dd));
if (g > 1) {
nn /= g;
dd /= g;
}
num = nn;
denom = dd;
}
public Frac plus(Frac rhs) {
return new Frac(num * rhs.denom + denom * rhs.num, rhs.denom * denom);
}
public Frac unaryMinus() {
return new Frac(-num, denom);
}
public Frac minus(Frac rhs) {
return this.plus(rhs.unaryMinus());
}
public Frac times(Frac rhs) {
return new Frac(this.num * rhs.num, this.denom * rhs.denom);
}
@Override
public int compareTo(Frac o) {
double diff = toDouble() - o.toDouble();
return Double.compare(diff, 0.0);
}
@Override
public boolean equals(Object obj) {
return null != obj && obj instanceof Frac && this.compareTo((Frac) obj) == 0;
}
@Override
public String toString() {
if (denom == 1) {
return Long.toString(num);
}
return String.format("%d/%d", num, denom);
}
private double toDouble() {
return (double) num / denom;
}
}
private static Frac bernoulli(int n) {
if (n < 0) throw new IllegalArgumentException("n may not be negative or zero");
Frac[] a = new Frac[n + 1];
Arrays.fill(a, Frac.ZERO);
for (int m = 0; m <= n; ++m) {
a[m] = new Frac(1, m + 1);
for (int j = m; j >= 1; --j) {
a[j - 1] = a[j - 1].minus(a[j]).times(new Frac(j, 1));
}
}
// returns 'first' Bernoulli number
if (n != 1) return a[0];
return a[0].unaryMinus();
}
private static int binomial(int n, int k) {
if (n < 0 || k < 0 || n < k) throw new IllegalArgumentException();
if (n == 0 || k == 0) return 1;
int num = IntStream.rangeClosed(k + 1, n).reduce(1, (a, b) -> a * b);
int den = IntStream.rangeClosed(2, n - k).reduce(1, (acc, i) -> acc * i);
return num / den;
}
private static void faulhaber(int p) {
System.out.printf("%d : ", p);
Frac q = new Frac(1, p + 1);
int sign = -1;
for (int j = 0; j <= p; ++j) {
sign *= -1;
Frac coeff = q.times(new Frac(sign, 1)).times(new Frac(binomial(p + 1, j), 1)).times(bernoulli(j));
if (Frac.ZERO.equals(coeff)) continue;
if (j == 0) {
if (!Frac.ONE.equals(coeff)) {
if (Frac.ONE.unaryMinus().equals(coeff)) {
System.out.print("-");
} else {
System.out.print(coeff);
}
}
} else {
if (Frac.ONE.equals(coeff)) {
System.out.print(" + ");
} else if (Frac.ONE.unaryMinus().equals(coeff)) {
System.out.print(" - ");
} else if (coeff.compareTo(Frac.ZERO) > 0) {
System.out.printf(" + %s", coeff);
} else {
System.out.printf(" - %s", coeff.unaryMinus());
}
}
int pwr = p + 1 - j;
if (pwr > 1)
System.out.printf("n^%d", pwr);
else
System.out.print("n");
}
System.out.println();
}
public static void main(String[] args) {
for (int i = 0; i <= 9; ++i) {
faulhaber(i);
}
}
}
- Output:
0 : n 1 : 1/2n^2 + 1/2n 2 : 1/3n^3 + 1/2n^2 + 1/6n 3 : 1/4n^4 + 1/2n^3 + 1/4n^2 4 : 1/5n^5 + 1/2n^4 + 1/3n^3 - 1/30n 5 : 1/6n^6 + 1/2n^5 + 5/12n^4 - 1/12n^2 6 : 1/7n^7 + 1/2n^6 + 1/2n^5 - 1/6n^3 + 1/42n 7 : 1/8n^8 + 1/2n^7 + 7/12n^6 - 7/24n^4 + 1/12n^2 8 : 1/9n^9 + 1/2n^8 + 2/3n^7 - 7/15n^5 + 2/9n^3 - 1/30n 9 : 1/10n^10 + 1/2n^9 + 3/4n^8 - 7/10n^6 + 1/2n^4 - 3/20n^2
jq
Works with gojq, the Go implementation of jq, and with fq
The following assumes the following rational arithmetic functions as provided by the jq "rational" module at Arithmetic/Rational#jq:
- r/2 (constructor)
- requal/2 (equality)
- rlessthan/1
- rminus/1
- rminus/2 (subtraction)
- rmult/0 and rmult/2 (multiplication)
In addition, the pretty-printing function defined here (rpp) assumes rationals are JSON objects of the form {n,d}
include "rational" {search: "."}; # see [[Arithmetic/Rational#jq]]:
# Preliminaries
# for gojq
def idivide($j):
. as $i
| ($i % $j) as $mod
| ($i - $mod) / $j ;
# use idivide for precision
def binomial(n; k):
if k > n / 2 then binomial(n; n-k)
else reduce range(1; k+1) as $i (1; . * (n - $i + 1) | idivide($i))
end;
# pretty print a Rational assumed to have the {n,d} form
def rpp:
if .n == 0 then "0"
elif .d == 1 then .n | tostring
else "\(.n)/\(.d)"
end;
# The following definition reflects the "modern view" that B(1) is 1 // 2
def bernoulli:
if type != "number" or . < 0 then "bernoulli must be given a non-negative number vs \(.)" | error
else . as $n
| reduce range(0; $n+1) as $i ([];
.[$i] = r(1; $i + 1)
| reduce range($i; 0; -1) as $j (.;
.[$j-1] = rmult($j; rminus(.[$j-1]; .[$j])) ) )
| .[0] # the modern view
end;
# The task
def faulhaber($p):
# The traditional view:
def bernouilli($n):
$n | bernouilli | if $n==1 then rminus else . end;
r(1; $p+1) as $q
| { sign: -1 }
| reduce range(0; 1+$p) as $j (.;
.sign *= -1
| r(binomial($p+1; $j); 1) as $b
| ([$q, .sign, $b, ($j|bernoulli)] | rmult) as $coeff
| if requal($coeff; r(0;1))|not
then .emit +=
(if $j == 0
then (if requal($coeff; r( 1;1)) then ""
elif requal($coeff; r(-1;1)) then "-"
else "\($coeff|rpp) " end)
else (if requal($coeff; r(1;1)) then " + "
elif requal($coeff; r(-1;1)) then " - "
elif r(0;1)|rlessthan($coeff) then " + \($coeff|rpp) "
else " - \($coeff|rminus|rpp) "
end)
end)
| ($p + 1 - $j) as $pwr
| .emit += (if 1 < $pwr then "n^\($pwr)" else "n" end)
else .
end )
| .emit ;
range(0;10) | "\(.) : \(faulhaber(.))"
- Output:
0 : n 1 : 1/2 n^2 - 1/2 n 2 : 1/3 n^3 - 1/2 n^2 + 1/6 n 3 : 1/4 n^4 - 1/2 n^3 + 1/4 n^2 4 : 1/5 n^5 - 1/2 n^4 + 1/3 n^3 - 1/30 n 5 : 1/6 n^6 - 1/2 n^5 + 5/12 n^4 - 1/12 n^2 6 : 1/7 n^7 - 1/2 n^6 + 1/2 n^5 - 1/6 n^3 + 1/42 n 7 : 1/8 n^8 - 1/2 n^7 + 7/12 n^6 - 7/24 n^4 + 1/12 n^2 8 : 1/9 n^9 - 1/2 n^8 + 2/3 n^7 - 7/15 n^5 + 2/9 n^3 - 1/30 n 9 : 1/10 n^10 - 1/2 n^9 + 3/4 n^8 - 7/10 n^6 + 1/2 n^4 - 3/20 n^2
Julia
Module:
module Faulhaber
function bernoulli(n::Integer)
n ≥ 0 || throw(DomainError(n, "n must be a positive-or-0 number"))
a = fill(0 // 1, n + 1)
for m in 1:n
a[m] = 1 // (m + 1)
for j in m:-1:2
a[j - 1] = (a[j - 1] - a[j]) * j
end
end
return ifelse(n != 1, a[1], -a[1])
end
const _exponents = collect(Char, "⁰¹²³⁴⁵⁶⁷⁸⁹")
toexponent(n) = join(_exponents[reverse(digits(n)) .+ 1])
function formula(p::Integer)
print(p, ": ")
q = 1 // (p + 1)
s = -1
for j in 0:p
s *= -1
coeff = q * s * binomial(p + 1, j) * bernoulli(j)
iszero(coeff) && continue
if iszero(j)
print(coeff == 1 ? "" : coeff == -1 ? "-" : "$coeff")
else
print(coeff == 1 ? " + " : coeff == -1 ? " - " : coeff > 0 ? " + $coeff " : " - $(-coeff) ")
end
pwr = p + 1 - j
if pwr > 1
print("n", toexponent(pwr))
else
print("n")
end
end
println()
end
end # module Faulhaber
Main:
Faulhaber.formula.(1:10)
- Output:
1: + 1//2 n 2: + 1//2 n² + 1//3 n 3: + 1//2 n³ + 1//2 n² - 1//6 n 4: + 1//2 n⁴ + 2//3 n³ - 1//3 n² + 1//30 n 5: + 1//2 n⁵ + 5//6 n⁴ - 5//9 n³ + 1//12 n² + 1//30 n 6: + 1//2 n⁶ + n⁵ - 5//6 n⁴ + 1//6 n³ + 1//10 n² - 1//42 n 7: + 1//2 n⁷ + 7//6 n⁶ - 7//6 n⁵ + 7//24 n⁴ + 7//30 n³ - 1//12 n² - 1//42 n 8: + 1//2 n⁸ + 4//3 n⁷ - 14//9 n⁶ + 7//15 n⁵ + 7//15 n⁴ - 2//9 n³ - 2//21 n² + 1//30 n 9: + 1//2 n⁹ + 3//2 n⁸ - 2//1 n⁷ + 7//10 n⁶ + 21//25 n⁵ - 1//2 n⁴ - 2//7 n³ + 3//20 n² + 1//30 n 10: + 1//2 n¹⁰ + 5//3 n⁹ - 5//2 n⁸ + n⁷ + 7//5 n⁶ - n⁵ - 5//7 n⁴ + 1//2 n³ + 1//6 n² - 5//66 n
Kotlin
As Kotlin doesn't have support for rational numbers built in, a cut-down version of the Frac class in the Arithmetic/Rational task has been used in order to express the polynomial coefficients as fractions.
// version 1.1.2
fun gcd(a: Long, b: Long): Long = if (b == 0L) a else gcd(b, a % b)
class Frac : Comparable<Frac> {
val num: Long
val denom: Long
companion object {
val ZERO = Frac(0, 1)
val ONE = Frac(1, 1)
}
constructor(n: Long, d: Long) {
require(d != 0L)
var nn = n
var dd = d
if (nn == 0L) {
dd = 1
}
else if (dd < 0) {
nn = -nn
dd = -dd
}
val g = Math.abs(gcd(nn, dd))
if (g > 1) {
nn /= g
dd /= g
}
num = nn
denom = dd
}
constructor(n: Int, d: Int) : this(n.toLong(), d.toLong())
operator fun plus(other: Frac) =
Frac(num * other.denom + denom * other.num, other.denom * denom)
operator fun unaryMinus() = Frac(-num, denom)
operator fun minus(other: Frac) = this + (-other)
operator fun times(other: Frac) = Frac(this.num * other.num, this.denom * other.denom)
fun abs() = if (num >= 0) this else -this
override fun compareTo(other: Frac): Int {
val diff = this.toDouble() - other.toDouble()
return when {
diff < 0.0 -> -1
diff > 0.0 -> +1
else -> 0
}
}
override fun equals(other: Any?): Boolean {
if (other == null || other !is Frac) return false
return this.compareTo(other) == 0
}
override fun toString() = if (denom == 1L) "$num" else "$num/$denom"
fun toDouble() = num.toDouble() / denom
}
fun bernoulli(n: Int): Frac {
require(n >= 0)
val a = Array<Frac>(n + 1) { Frac.ZERO }
for (m in 0..n) {
a[m] = Frac(1, m + 1)
for (j in m downTo 1) a[j - 1] = (a[j - 1] - a[j]) * Frac(j, 1)
}
return if (n != 1) a[0] else -a[0] // returns 'first' Bernoulli number
}
fun binomial(n: Int, k: Int): Int {
require(n >= 0 && k >= 0 && n >= k)
if (n == 0 || k == 0) return 1
val num = (k + 1..n).fold(1) { acc, i -> acc * i }
val den = (2..n - k).fold(1) { acc, i -> acc * i }
return num / den
}
fun faulhaber(p: Int) {
print("$p : ")
val q = Frac(1, p + 1)
var sign = -1
for (j in 0..p) {
sign *= -1
val coeff = q * Frac(sign, 1) * Frac(binomial(p + 1, j), 1) * bernoulli(j)
if (coeff == Frac.ZERO) continue
if (j == 0) {
print(when {
coeff == Frac.ONE -> ""
coeff == -Frac.ONE -> "-"
else -> "$coeff"
})
}
else {
print(when {
coeff == Frac.ONE -> " + "
coeff == -Frac.ONE -> " - "
coeff > Frac.ZERO -> " + $coeff"
else -> " - ${-coeff}"
})
}
val pwr = p + 1 - j
if (pwr > 1)
print("n^${p + 1 - j}")
else
print("n")
}
println()
}
fun main(args: Array<String>) {
for (i in 0..9) faulhaber(i)
}
- Output:
0 : n 1 : 1/2n^2 + 1/2n 2 : 1/3n^3 + 1/2n^2 + 1/6n 3 : 1/4n^4 + 1/2n^3 + 1/4n^2 4 : 1/5n^5 + 1/2n^4 + 1/3n^3 - 1/30n 5 : 1/6n^6 + 1/2n^5 + 5/12n^4 - 1/12n^2 6 : 1/7n^7 + 1/2n^6 + 1/2n^5 - 1/6n^3 + 1/42n 7 : 1/8n^8 + 1/2n^7 + 7/12n^6 - 7/24n^4 + 1/12n^2 8 : 1/9n^9 + 1/2n^8 + 2/3n^7 - 7/15n^5 + 2/9n^3 - 1/30n 9 : 1/10n^10 + 1/2n^9 + 3/4n^8 - 7/10n^6 + 1/2n^4 - 3/20n^2
Lua
function binomial(n,k)
if n<0 or k<0 or n<k then return -1 end
if n==0 or k==0 then return 1 end
local num = 1
for i=k+1,n do
num = num * i
end
local denom = 1
for i=2,n-k do
denom = denom * i
end
return num / denom
end
function gcd(a,b)
while b ~= 0 do
local temp = a % b
a = b
b = temp
end
return a
end
function makeFrac(n,d)
local result = {}
if d==0 then
result.num = 0
result.denom = 0
return result
end
if n==0 then
d = 1
elseif d < 0 then
n = -n
d = -d
end
local g = math.abs(gcd(n, d))
if g>1 then
n = n / g
d = d / g
end
result.num = n
result.denom = d
return result
end
function negateFrac(f)
return makeFrac(-f.num, f.denom)
end
function subFrac(lhs, rhs)
return makeFrac(lhs.num * rhs.denom - lhs.denom * rhs.num, rhs.denom * lhs.denom)
end
function multFrac(lhs, rhs)
return makeFrac(lhs.num * rhs.num, lhs.denom * rhs.denom)
end
function equalFrac(lhs, rhs)
return (lhs.num == rhs.num) and (lhs.denom == rhs.denom)
end
function lessFrac(lhs, rhs)
return (lhs.num * rhs.denom) < (rhs.num * lhs.denom)
end
function printFrac(f)
io.write(f.num)
if f.denom ~= 1 then
io.write("/"..f.denom)
end
return nil
end
function bernoulli(n)
if n<0 then
return {num=0, denom=0}
end
local a = {}
for m=0,n do
a[m] = makeFrac(1, m+1)
for j=m,1,-1 do
a[j-1] = multFrac(subFrac(a[j-1], a[j]), makeFrac(j, 1))
end
end
if n~=1 then
return a[0]
end
return negateFrac(a[0])
end
function faulhaber(p)
io.write(p.." : ")
local q = makeFrac(1, p+1)
local sign = -1
for j=0,p do
sign = -1 * sign
local coeff = multFrac(multFrac(multFrac(q, makeFrac(sign, 1)), makeFrac(binomial(p + 1, j), 1)), bernoulli(j))
if not equalFrac(coeff, makeFrac(0, 1)) then
if j==0 then
if not equalFrac(coeff, makeFrac(1, 1)) then
if equalFrac(coeff, makeFrac(-1, 1)) then
io.write("-")
else
printFrac(coeff)
end
end
else
if equalFrac(coeff, makeFrac(1, 1)) then
io.write(" + ")
elseif equalFrac(coeff, makeFrac(-1, 1)) then
io.write(" - ")
elseif lessFrac(makeFrac(0, 1), coeff) then
io.write(" + ")
printFrac(coeff)
else
io.write(" - ")
printFrac(negateFrac(coeff))
end
end
local pwr = p + 1 - j
if pwr>1 then
io.write("n^"..pwr)
else
io.write("n")
end
end
end
print()
return nil
end
-- main
for i=0,9 do
faulhaber(i)
end
- Output:
0 : n 1 : 1/2n^2 + 1/2n 2 : 1/3n^3 + 1/2n^2 + 1/6n 3 : 1/4n^4 + 1/2n^3 + 1/4n^2 4 : 1/5n^5 + 1/2n^4 + 1/3n^3 - 1/30n 5 : 1/6n^6 + 1/2n^5 + 5/12n^4 - 1/12n^2 6 : 1/7n^7 + 1/2n^6 + 1/2n^5 - 1/6n^3 + 1/42n 7 : 1/8n^8 + 1/2n^7 + 7/12n^6 - 7/24n^4 + 1/12n^2 8 : 1/9n^9 + 1/2n^8 + 2/3n^7 - 7/15n^5 + 2/9n^3 - 1/30n 9 : 1/10n^10 + 1/2n^9 + 3/4n^8 - 7/10n^6 + 1/2n^4 - 3/20n^2
Mathematica / Wolfram Language
ClearAll[Faulhaber]
Faulhaber[n_, 0] := n
Faulhaber[n_, p_] := n^(p + 1)/(p + 1) + 1/2 n^p + Sum[BernoulliB[k]/k! p!/(p - k + 1)! n^(p - k + 1), {k, 2, p}]
Table[{p, Faulhaber[n, p]}, {p, 0, 9}] // Grid
- Output:
0 n 1 n/2+n^2/2 2 n/6+n^2/2+n^3/3 3 n^2/4+n^3/2+n^4/4 4 -(n/30)+n^3/3+n^4/2+n^5/5 5 -(n^2/12)+(5 n^4)/12+n^5/2+n^6/6 6 n/42-n^3/6+n^5/2+n^6/2+n^7/7 7 n^2/12-(7 n^4)/24+(7 n^6)/12+n^7/2+n^8/8 8 -(n/30)+(2 n^3)/9-(7 n^5)/15+(2 n^7)/3+n^8/2+n^9/9 9 -((3 n^2)/20)+n^4/2-(7 n^6)/10+(3 n^8)/4+n^9/2+n^10/10
Maxima
sum1(p):=sum(stirling2(p,k)*pochhammer(n-k+1,k+1)/(k+1),k,0,p)$
sum2(p):=sum((-1)^j*binomial(p+1,j)*bern(j)*n^(p-j+1),j,0,p)/(p+1)$
makelist(expand(sum1(p)-sum2(p)),p,1,10);
[0,0,0,0,0,0,0,0,0,0]
for p from 0 thru 9 do print(expand(sum2(p)));
- Output:
n n^2/2+n/2 n^3/3+n^2/2+n/6 n^4/4+n^3/2+n^2/4 n^5/5+n^4/2+n^3/3-n/30 n^6/6+n^5/2+(5*n^4)/12-n^2/12 n^7/7+n^6/2+n^5/2-n^3/6+n/42 n^8/8+n^7/2+(7*n^6)/12-(7*n^4)/24+n^2/12 n^9/9+n^8/2+(2*n^7)/3-(7*n^5)/15+(2*n^3)/9-n/30 n^10/10+n^9/2+(3*n^8)/4-(7*n^6)/10+n^4/2-(3*n^2)/20
Modula-2
MODULE Faulhaber;
FROM EXCEPTIONS IMPORT AllocateSource,ExceptionSource,GetMessage,RAISE;
FROM FormatString IMPORT FormatString;
FROM Terminal IMPORT WriteString,WriteLn,ReadChar;
VAR TextWinExSrc : ExceptionSource;
(* Helper Functions *)
PROCEDURE Abs(n : INTEGER) : INTEGER;
BEGIN
IF n < 0 THEN
RETURN -n
END;
RETURN n
END Abs;
PROCEDURE Binomial(n,k : INTEGER) : INTEGER;
VAR i,num,denom : INTEGER;
BEGIN
IF (n < 0) OR (k < 0) OR (n < k) THEN
RAISE(TextWinExSrc, 0, "Argument Exception.")
END;
IF (n = 0) OR (k = 0) THEN
RETURN 1
END;
num := 1;
FOR i:=k+1 TO n DO
num := num * i
END;
denom := 1;
FOR i:=2 TO n - k DO
denom := denom * i
END;
RETURN num / denom
END Binomial;
PROCEDURE GCD(a,b : INTEGER) : INTEGER;
BEGIN
IF b = 0 THEN
RETURN a
END;
RETURN GCD(b, a MOD b)
END GCD;
PROCEDURE WriteInteger(n : INTEGER);
VAR buf : ARRAY[0..15] OF CHAR;
BEGIN
FormatString("%i", buf, n);
WriteString(buf)
END WriteInteger;
(* Fraction Handling *)
TYPE Frac = RECORD
num,denom : INTEGER;
END;
PROCEDURE InitFrac(n,d : INTEGER) : Frac;
VAR nn,dd,g : INTEGER;
BEGIN
IF d = 0 THEN
RAISE(TextWinExSrc, 0, "The denominator must not be zero.")
END;
IF n = 0 THEN
d := 1
ELSIF d < 0 THEN
n := -n;
d := -d
END;
g := Abs(GCD(n, d));
IF g > 1 THEN
n := n / g;
d := d / g
END;
RETURN Frac{n, d}
END InitFrac;
PROCEDURE EqualFrac(a,b : Frac) : BOOLEAN;
BEGIN
RETURN (a.num = b.num) AND (a.denom = b.denom)
END EqualFrac;
PROCEDURE LessFrac(a,b : Frac) : BOOLEAN;
BEGIN
RETURN a.num * b.denom < b.num * a.denom
END LessFrac;
PROCEDURE NegateFrac(f : Frac) : Frac;
BEGIN
RETURN Frac{-f.num, f.denom}
END NegateFrac;
PROCEDURE SubFrac(lhs,rhs : Frac) : Frac;
BEGIN
RETURN InitFrac(lhs.num * rhs.denom - lhs.denom * rhs.num, rhs.denom * lhs.denom)
END SubFrac;
PROCEDURE MultFrac(lhs,rhs : Frac) : Frac;
BEGIN
RETURN InitFrac(lhs.num * rhs.num, lhs.denom * rhs.denom)
END MultFrac;
PROCEDURE Bernoulli(n : INTEGER) : Frac;
VAR
a : ARRAY[0..15] OF Frac;
i,j,m : INTEGER;
BEGIN
IF n < 0 THEN
RAISE(TextWinExSrc, 0, "n may not be negative or zero.")
END;
FOR m:=0 TO n DO
a[m] := Frac{1, m + 1};
FOR j:=m TO 1 BY -1 DO
a[j-1] := MultFrac(SubFrac(a[j-1], a[j]), Frac{j, 1})
END
END;
IF n # 1 THEN RETURN a[0] END;
RETURN NegateFrac(a[0])
END Bernoulli;
PROCEDURE WriteFrac(f : Frac);
BEGIN
WriteInteger(f.num);
IF f.denom # 1 THEN
WriteString("/");
WriteInteger(f.denom)
END
END WriteFrac;
(* Target *)
PROCEDURE Faulhaber(p : INTEGER);
VAR
j,pwr,sign : INTEGER;
q,coeff : Frac;
BEGIN
WriteInteger(p);
WriteString(" : ");
q := InitFrac(1, p + 1);
sign := -1;
FOR j:=0 TO p DO
sign := -1 * sign;
coeff := MultFrac(MultFrac(MultFrac(q, Frac{sign, 1}), Frac{Binomial(p + 1, j), 1}), Bernoulli(j));
IF EqualFrac(coeff, Frac{0, 1}) THEN CONTINUE END;
IF j = 0 THEN
IF NOT EqualFrac(coeff, Frac{1, 1}) THEN
IF EqualFrac(coeff, Frac{-1, 1}) THEN
WriteString("-")
ELSE
WriteFrac(coeff)
END
END
ELSE
IF EqualFrac(coeff, Frac{1, 1}) THEN
WriteString(" + ")
ELSIF EqualFrac(coeff, Frac{-1, 1}) THEN
WriteString(" - ")
ELSIF LessFrac(Frac{0, 1}, coeff) THEN
WriteString(" + ");
WriteFrac(coeff)
ELSE
WriteString(" - ");
WriteFrac(NegateFrac(coeff))
END
END;
pwr := p + 1 - j;
IF pwr > 1 THEN
WriteString("n^");
WriteInteger(pwr)
ELSE
WriteString("n")
END
END;
WriteLn
END Faulhaber;
(* Main *)
VAR i : INTEGER;
BEGIN
FOR i:=0 TO 9 DO
Faulhaber(i)
END;
ReadChar
END Faulhaber.
- Output:
0 : n 1 : 1/2n^2 + 1/2n 2 : 1/3n^3 + 1/2n^2 + 1/6n 3 : 1/4n^4 + 1/2n^3 + 1/4n^2 4 : 1/5n^5 + 1/2n^4 + 1/3n^3 - 1/30n 5 : 1/6n^6 + 1/2n^5 + 5/12n^4 - 1/12n^2 6 : 1/7n^7 + 1/2n^6 + 1/2n^5 - 1/6n^3 + 1/42n 7 : 1/8n^8 + 1/2n^7 + 7/12n^6 - 7/24n^4 + 1/12n^2 8 : 1/9n^9 + 1/2n^8 + 2/3n^7 - 7/15n^5 + 2/9n^3 - 1/30n 9 : 1/10n^10 + 1/2n^9 + 3/4n^8 - 7/10n^6 + 1/2n^4 - 3/20n^2
Nim
import math, rationals
type
Fraction = Rational[int]
FaulhaberSequence = seq[Fraction]
const
Zero = 0 // 1
One = 1 // 1
MinusOne = -1 // 1
Powers = ["⁰", "¹", "²", "³", "⁴", "⁵", "⁶", "⁷", "⁸", "⁹"]
#---------------------------------------------------------------------------------------------------
func bernoulli(n: Natural): Fraction =
## Return nth Bernoulli coefficient.
var a = newSeq[Fraction](n + 1)
for m in 0..n:
a[m] = 1 // (m + 1)
for k in countdown(m, 1):
a[k - 1] = (a[k - 1] - a[k]) * k
result = if n != 1: a[0] else: -a[0]
#---------------------------------------------------------------------------------------------------
func faulhaber(n: Natural): FaulhaberSequence =
## Return nth Faulhaber sequence.
var a = 1 // (n + 1)
var sign = -1
for k in 0..n:
sign = -sign
result.add(a * sign * binom(n + 1, k) * bernoulli(k))
#---------------------------------------------------------------------------------------------------
func npower(k: Natural): string =
## Return the string representing "n" at power "k".
if k == 0: return ""
if k == 1: return "n"
var k = k
result = "n"
while k != 0:
result.insert(Powers[k mod 10], 1)
k = k div 10
#---------------------------------------------------------------------------------------------------
func `$`(fs: FaulhaberSequence): string =
## Return the string representing a Faulhaber sequence.
for i, coeff in fs:
# Process coefficient.
if coeff.num == 0: continue
if i == 0:
if coeff == MinusOne: result.add(" - ")
elif coeff != One: result.add($coeff)
else:
if coeff == One: result.add(" + ")
elif coeff == MinusOne: result.add(" - ")
elif coeff > Zero: result.add(" + " & $coeff)
else: result.add(" - " & $(-coeff))
# Process power of "n".
let pwr = fs.len - i
result.add(npower(pwr))
#———————————————————————————————————————————————————————————————————————————————————————————————————
for n in 0..9:
echo n, ": ", faulhaber(n)
- Output:
0: n 1: 1/2n² + 1/2n 2: 1/3n³ + 1/2n² + 1/6n 3: 1/4n⁴ + 1/2n³ + 1/4n² 4: 1/5n⁵ + 1/2n⁴ + 1/3n³ - 1/30n 5: 1/6n⁶ + 1/2n⁵ + 5/12n⁴ - 1/12n² 6: 1/7n⁷ + 1/2n⁶ + 1/2n⁵ - 1/6n³ + 1/42n 7: 1/8n⁸ + 1/2n⁷ + 7/12n⁶ - 7/24n⁴ + 1/12n² 8: 1/9n⁹ + 1/2n⁸ + 2/3n⁷ - 7/15n⁵ + 2/9n³ - 1/30n 9: 1/10n¹⁰ + 1/2n⁹ + 3/4n⁸ - 7/10n⁶ + 1/2n⁴ - 3/20n²
PARI/GP
PARI/GP has 2 built in functions: bernfrac(n) for Bernoulli numbers and bernpol(n) for Bernoulli polynomials. Using Bernoulli polynomials in PARI/GP is more simple, clear and much faster. (See version #2).
Version #1. Using Bernoulli numbers.
This version is using "Faulhaber's" formula based on Bernoulli numbers.
It's not worth using Bernoulli numbers in PARI/GP, because too much cleaning if you are avoiding "dirty" (but correct) result.
Note: Find ssubstr() function here on RC.
\\ Using "Faulhaber's" formula based on Bernoulli numbers. aev 2/7/17
\\ In str string replace all occurrences of the search string ssrch with the replacement string srepl. aev 3/8/16
sreplace(str,ssrch,srepl)={
my(sn=#str,ssn=#ssrch,srn=#srepl,sres="",Vi,Vs,Vz,vin,vin1,vi,L=List(),tok,zi,js=1);
if(sn==0,return("")); if(ssn==0||ssn>sn,return(str));
\\ Vi - found ssrch indexes
Vi=sfindalls(str,ssrch); vin=#Vi;
if(vin==0,return(str));
vin1=vin+1; Vi=Vec(Vi,vin1); Vi[vin1]=sn+1;
for(i=1,vin1, vi=Vi[i];
for(j=js,sn, \\print("ij:",i,"/",j,": ",sres);
if(j!=vi, sres=concat(sres,ssubstr(str,j,1)),
sres=concat(sres,srepl); js=j+ssn; break)
); \\fend j
); \\fend i
return(sres);
}
B(n)=(bernfrac(n));
Comb(n,k)={my(r=0); if(k<=n, r=n!/(n-k)!/k!); return(r)};
Faulhaber2(p)={
my(s="",s1="",s2="",c1=0,c2=0);
for(j=0,p, c1=(-1)^j*Comb(p+1,j)*B(j); c2=(p+1-j);
s2="*n";
if(c1==0, next);
if(c2==1, s1="", s1=Str("^",c2));
s=Str(s,c1,s2,s1,"+") );
s=ssubstr(s,1,#s-1); s=sreplace(s,"1*n","n"); s=sreplace(s,"+-","-");
if(p==0, s="n", s=Str("(",s,")/",p+1)); print(p,": ",s);
}
{\\ Testing:
for(i=0,9, Faulhaber2(i))}
- Output:
0: n 1: (n^2+n)/2 2: (n^3+3/2*n^2+1/2*n)/3 3: (n^4+2*n^3+n^2)/4 4: (n^5+5/2*n^4+5/3*n^3-1/6*n)/5 5: (n^6+3*n^5+5/2*n^4-1/2*n^2)/6 6: (n^7+7/2*n^6+7/2*n^5-7/6*n^3+1/6*n)/7 7: (n^8+4*n^7+14/3*n^6-7/3*n^4+2/3*n^2)/8 8: (n^9+9/2*n^8+6*n^7-21/5*n^5+2*n^3-3/10*n)/9 9: (n^10+5*n^9+15/2*n^8-7*n^6+5*n^4-3/2*n^2)/10 time = 16 ms.
Version #2. Using Bernoulli polynomials.
This version is using the sums of pth powers formula from Bernoulli polynomials. It has small, simple and clear code, and produces instant result.
\\ Using a formula based on Bernoulli polynomials. aev 2/5/17
Faulhaber1(m)={
my(B,B1,B2,Bn);
Bn=bernpol(m+1);
x=n+1; B1=eval(Bn); x=0; B2=eval(Bn);
Bn=(B1-B2)/(m+1); if(m==0, Bn=Bn-1);
print(m,": ",Bn);
}
{\\ Testing:
for(i=0,9, Faulhaber1(i))}
- Output:
0: n 1: 1/2*n^2 + 1/2*n 2: 1/3*n^3 + 1/2*n^2 + 1/6*n 3: 1/4*n^4 + 1/2*n^3 + 1/4*n^2 4: 1/5*n^5 + 1/2*n^4 + 1/3*n^3 - 1/30*n 5: 1/6*n^6 + 1/2*n^5 + 5/12*n^4 - 1/12*n^2 6: 1/7*n^7 + 1/2*n^6 + 1/2*n^5 - 1/6*n^3 + 1/42*n 7: 1/8*n^8 + 1/2*n^7 + 7/12*n^6 - 7/24*n^4 + 1/12*n^2 8: 1/9*n^9 + 1/2*n^8 + 2/3*n^7 - 7/15*n^5 + 2/9*n^3 - 1/30*n 9: 1/10*n^10 + 1/2*n^9 + 3/4*n^8 - 7/10*n^6 + 1/2*n^4 - 3/20*n^2 > ## *** last result computed in 0 ms
Pascal
A console program that runs under Lazarus or Delphi. Does not make use of Bernoulli numbers.
program Faulhaber;
{$IFDEF FPC} // Lazarus
{$MODE Delphi} // ensure Lazarus accepts Delphi-style code
{$ASSERTIONS+} // by default, Lazarus does not compile 'Assert' statements
{$ELSE} // Delphi
{$APPTYPE CONSOLE}
{$ENDIF}
uses SysUtils;
type TRational = record
Num, Den : integer; // where Den > 0 and Num, Den are coprime
end;
const
ZERO : TRational = ( Num: 0; Den : 1);
HALF : TRational = ( Num: 1; Den : 2);
// Construct rational a/b, assuming b > 0.
function Rational( const a, b : integer) : TRational;
var
t, x, y : integer;
begin
if b <= 0 then raise SysUtils.Exception.Create( 'Denominator must be > 0');
// Find HCF of a and b (Euclid's algorithm) and cancel it out.
x := Abs(a);
y := b;
while y <> 0 do begin
t := x mod y;
x := y;
y := t;
end;
result.Num := a div x;
result.Den := b div x
end;
function Prod( r, s : TRational) : TRational; // result := r*s
begin
result := Rational( r.Num*s.Num, r.Den*s.Den);
end;
procedure DecRat( var r : TRational;
const s : TRational); // r := r - s
begin
r := Rational( r.Num*s.Den - s.Num*r.Den, r.Den * s.Den);
end;
// Write a term such as ' - (7/10)n^6' to the console.
procedure WriteTerm( coeff : TRational;
index : integer;
printPlus : boolean);
begin
if Coeff.Num = 0 then exit;
with coeff do begin
if Num < 0 then Write(' - ')
else if printPlus then Write(' + ');
// Put brackets round a fractional coefficient
if (Den > 1) then Write('(');
// If coefficient is 1, don't write it
if (Den > 1) or (Abs(Num) > 1) then Write( Abs(Num));
// Write denominator if it's not 1
if (Den > 1) then Write('/', Den, ')');
end;
Write('n');
if index > 1 then Write('^', index);
end;
{-------------------------------------------------------------------------------
Main routine. Calculation of Faulhaber polynomials
F_p(n) = 1^p + 2^p + ... + n^p, p = 0, 1, ..., p_max
}
var
p_max : integer;
c : array of array of TRational;
i, j, p : integer;
coeff_of_n : TRational;
begin
// User types program name, optionally followed by maximum power p (defaults to 9)
if ParamCount = 0 then p_max := 9
else p_max := SysUtils.StrToInt( ParamStr(1));
// c[p, i] is coefficient of n^i in the polynomial F_p(n).
// Initialize all coefficients to 0.
SetLength( c, p_max + 1, p_max + 2);
for i := 0 to p_max do
for j := 0 to p_max + 1 do
c[i, j] := ZERO;
c[0, 1] := Rational(1, 1); // F_0(n) = n, special case
for p := 1 to p_max do begin
// Initialize calculation of coefficient of n, needed if p is even.
// If p is odd, still calculate it as a check on the working (should be 0).
// Calculation uses the fact that F_p(1) = 1.
coeff_of_n := Rational(1, 1);
c[p, p+1] := Rational(1, p + 1);
DecRat( coeff_of_n, c[p, p + 1]);
c[p, p] := HALF;
DecRat( coeff_of_n, c[p, p]);
i := p - 1;
while (i >= 2) do begin
c[p, i] := Prod( Rational(p, i), c[p - 1, i - 1]);
DecRat( coeff_of_n, c[p, i]);
dec(i, 2);
end;
if i = 1 then // p is even
c[p, 1] := coeff_of_n // = the Bernoulli number B_p
else // p is odd
Assert( coeff_of_n.Num = 0); // just checking
end; // for p
// Print the result
for p := 0 to p_max do begin
Write( 'F_', p, '(n) = ');
for j := p + 1 downto 1 do WriteTerm( c[p, j], j, j <= p);
WriteLn;
end;
end.
- Output:
F_0(n) = n F_1(n) = (1/2)n^2 + (1/2)n F_2(n) = (1/3)n^3 + (1/2)n^2 + (1/6)n F_3(n) = (1/4)n^4 + (1/2)n^3 + (1/4)n^2 F_4(n) = (1/5)n^5 + (1/2)n^4 + (1/3)n^3 - (1/30)n F_5(n) = (1/6)n^6 + (1/2)n^5 + (5/12)n^4 - (1/12)n^2 F_6(n) = (1/7)n^7 + (1/2)n^6 + (1/2)n^5 - (1/6)n^3 + (1/42)n F_7(n) = (1/8)n^8 + (1/2)n^7 + (7/12)n^6 - (7/24)n^4 + (1/12)n^2 F_8(n) = (1/9)n^9 + (1/2)n^8 + (2/3)n^7 - (7/15)n^5 + (2/9)n^3 - (1/30)n F_9(n) = (1/10)n^10 + (1/2)n^9 + (3/4)n^8 - (7/10)n^6 + (1/2)n^4 - (3/20)n^2
Perl
use 5.014;
use Math::Algebra::Symbols;
sub bernoulli_number {
my ($n) = @_;
return 0 if $n > 1 && $n % 2;
my @A;
for my $m (0 .. $n) {
$A[$m] = symbols(1) / ($m + 1);
for (my $j = $m ; $j > 0 ; $j--) {
$A[$j - 1] = $j * ($A[$j - 1] - $A[$j]);
}
}
return $A[0];
}
sub binomial {
my ($n, $k) = @_;
return 1 if $k == 0 || $n == $k;
binomial($n - 1, $k - 1) + binomial($n - 1, $k);
}
sub faulhaber_s_formula {
my ($p) = @_;
my $formula = 0;
for my $j (0 .. $p) {
$formula += binomial($p + 1, $j)
* bernoulli_number($j)
* symbols('n')**($p + 1 - $j);
}
(symbols(1) / ($p + 1) * $formula)
=~ s/\$n/n/gr =~ s/\*\*/^/gr =~ s/\*/ /gr;
}
foreach my $i (0 .. 9) {
say "$i: ", faulhaber_s_formula($i);
}
- Output:
0: n 1: 1/2 n+1/2 n^2 2: 1/6 n+1/2 n^2+1/3 n^3 3: 1/4 n^2+1/2 n^3+1/4 n^4 4: -1/30 n+1/3 n^3+1/2 n^4+1/5 n^5 5: -1/12 n^2+5/12 n^4+1/2 n^5+1/6 n^6 6: 1/42 n-1/6 n^3+1/2 n^5+1/2 n^6+1/7 n^7 7: 1/12 n^2-7/24 n^4+7/12 n^6+1/2 n^7+1/8 n^8 8: -1/30 n+2/9 n^3-7/15 n^5+2/3 n^7+1/2 n^8+1/9 n^9 9: -3/20 n^2+1/2 n^4-7/10 n^6+3/4 n^8+1/2 n^9+1/10 n^10
Phix
with javascript_semantics include builtins\pfrac.e -- (0.8.0+) function bernoulli(integer n) sequence a = {} for m=0 to n do a = append(a,{1,m+1}) for j=m to 1 by -1 do a[j] = frac_mul({j,1},frac_sub(a[j+1],a[j])) end for end for if n!=1 then return a[1] end if return frac_uminus(a[1]) end function function binomial(integer n, k) if n<0 or k<0 or n<k then ?9/0 end if if n=0 or k=0 then return 1 end if integer num = 1, denom = 1 for i=k+1 to n do num *= i end for for i=2 to n-k do denom *= i end for return num / denom end function procedure faulhaber(integer p) string res = sprintf("%d : ", p) frac q = {1, p+1} for j=0 to p do frac bj = bernoulli(j) if frac_ne(bj,frac_zero) then frac coeff = frac_mul({binomial(p+1,j),p+1},bj) string s = frac_sprint(coeff) if j=0 then if s="1" then s = "" end if else if s[1]='-' then s[1..1] = " - " else s[1..0] = " + " end if end if res &= s&"n" integer pwr = p+1-j if pwr>1 then res &= sprintf("^%d", pwr) end if end if end for printf(1,"%s\n",{res}) end procedure for i=0 to 9 do faulhaber(i) end for
- Output:
0 : n 1 : 1/2n^2 + 1/2n 2 : 1/3n^3 + 1/2n^2 + 1/6n 3 : 1/4n^4 + 1/2n^3 + 1/4n^2 4 : 1/5n^5 + 1/2n^4 + 1/3n^3 - 1/30n 5 : 1/6n^6 + 1/2n^5 + 5/12n^4 - 1/12n^2 6 : 1/7n^7 + 1/2n^6 + 1/2n^5 - 1/6n^3 + 1/42n 7 : 1/8n^8 + 1/2n^7 + 7/12n^6 - 7/24n^4 + 1/12n^2 8 : 1/9n^9 + 1/2n^8 + 2/3n^7 - 7/15n^5 + 2/9n^3 - 1/30n 9 : 1/10n^10 + 1/2n^9 + 3/4n^8 - 7/10n^6 + 1/2n^4 - 3/20n^2
Python
The following implementation does not use Bernoulli numbers, but Stirling numbers of the second kind, based on the relation: .
Then summing: .
One has then to expand the product in order to get a polynomial in the variable . Also, for the sum of , the sum is too large by one (since we start at ), this has to be taken into account.
Note: a number of the formulae above are invisible to the majority of browsers, including Chrome, IE/Edge, Safari and Opera. They may (subject to the installation of necessary fonts) be visible to some Firefox installations.
from fractions import Fraction
def nextu(a):
n = len(a)
a.append(1)
for i in range(n - 1, 0, -1):
a[i] = i * a[i] + a[i - 1]
return a
def nextv(a):
n = len(a) - 1
b = [(1 - n) * x for x in a]
b.append(1)
for i in range(n):
b[i + 1] += a[i]
return b
def sumpol(n):
u = [0, 1]
v = [[1], [1, 1]]
yield [Fraction(0), Fraction(1)]
for i in range(1, n):
v.append(nextv(v[-1]))
t = [0] * (i + 2)
p = 1
for j, r in enumerate(u):
r = Fraction(r, j + 1)
for k, s in enumerate(v[j + 1]):
t[k] += r * s
yield t
u = nextu(u)
def polstr(a):
s = ""
q = False
n = len(a) - 1
for i, x in enumerate(reversed(a)):
i = n - i
if i < 2:
m = "n" if i == 1 else ""
else:
m = "n^%d" % i
c = str(abs(x))
if i > 0:
if c == "1":
c = ""
else:
m = " " + m
if x != 0:
if q:
t = " + " if x > 0 else " - "
s += "%s%s%s" % (t, c, m)
else:
t = "" if x > 0 else "-"
s = "%s%s%s" % (t, c, m)
q = True
if q:
return s
else:
return "0"
for i, p in enumerate(sumpol(10)):
print(i, ":", polstr(p))
- Output:
0 : n 1 : 1/2 n^2 + 1/2 n 2 : 1/3 n^3 + 1/2 n^2 + 1/6 n 3 : 1/4 n^4 + 1/2 n^3 + 1/4 n^2 4 : 1/5 n^5 + 1/2 n^4 + 1/3 n^3 - 1/30 n 5 : 1/6 n^6 + 1/2 n^5 + 5/12 n^4 - 1/12 n^2 6 : 1/7 n^7 + 1/2 n^6 + 1/2 n^5 - 1/6 n^3 + 1/42 n 7 : 1/8 n^8 + 1/2 n^7 + 7/12 n^6 - 7/24 n^4 + 1/12 n^2 8 : 1/9 n^9 + 1/2 n^8 + 2/3 n^7 - 7/15 n^5 + 2/9 n^3 - 1/30 n 9 : 1/10 n^10 + 1/2 n^9 + 3/4 n^8 - 7/10 n^6 + 1/2 n^4 - 3/20 n^2
Racket
Racket will simplify rational numbers; if this code simplifies the expressions too much for your tastes (e.g. you like 1/1 * (n)
) then tweak the simplify... clauses to taste.
#lang racket/base
(require racket/match
racket/string
math/number-theory)
(define simplify-arithmetic-expression
(letrec ((s-a-e
(match-lambda
[(list (and op '+) l ... (list '+ m ...) r ...) (s-a-e `(,op ,@l ,@m ,@r))]
[(list (and op '+) l ... (? number? n1) m ... (? number? n2) r ...) (s-a-e `(,op ,@l ,(+ n1 n2) ,@m ,@r))]
[(list (and op '+) (app s-a-e l _) ... 0 (app s-a-e r _) ...) (s-a-e `(,op ,@l ,@r))]
[(list (and op '+) (app s-a-e x _)) (values x #t)]
[(list (and op '*) l ... (list '* m ...) r ...) (s-a-e `(,op ,@l ,@m ,@r))]
[(list (and op '*) l ... (? number? n1) m ... (? number? n2) r ...) (s-a-e `(,op ,@l ,(* n1 n2) ,@m ,@r))]
[(list (and op '*) (app s-a-e l _) ... 1 (app s-a-e r _) ...) (s-a-e `(,op ,@l ,@r))]
[(list (and op '*) (app s-a-e l _) ... 0 (app s-a-e r _) ...) (values 0 #t)]
[(list (and op '*) (app s-a-e x _)) (values x #t)]
[(list 'expt (app s-a-e x x-simplified?) 1) (values x x-simplified?)]
[(list op (app s-a-e a #f) ...) (values `(,op ,@a) #f)]
[(list op (app s-a-e a _) ...) (s-a-e `(,op ,@a))]
[e (values e #f)])))
s-a-e))
(define (expression->infix-string e)
(define (parenthesise-maybe s p?)
(if p? (string-append "(" s ")") s))
(letrec ((e->is
(lambda (paren?)
(match-lambda
[(list (and op (or '+ '- '* '*)) (app (e->is #t) a p?) ...)
(define bits (map parenthesise-maybe a p?))
(define compound (string-join bits (format " ~a " op)))
(values (if paren? (string-append "(" compound ")") compound) #f)]
[(list 'expt (app (e->is #t) x xp?) (app (e->is #t) n np?))
(values (format "~a^~a" (parenthesise-maybe x xp?) (parenthesise-maybe n np?)) #f)]
[(? number? (app number->string s)) (values s #f)]
[(? symbol? (app symbol->string s)) (values s #f)]))))
(define-values (str needs-parens?) ((e->is #f) e))
str))
(define (faulhaber p)
(define p+1 (add1 p))
(define-values (simpler simplified?)
(simplify-arithmetic-expression
`(* ,(/ 1 p+1)
(+ ,@(for/list ((j (in-range p+1)))
`(* ,(* (expt -1 j)
(binomial p+1 j))
(* ,(bernoulli-number j)
(expt n ,(- p+1 j)))))))))
simpler)
(for ((p (in-range 0 (add1 9))))
(printf "f(~a) = ~a~%" p (expression->infix-string (faulhaber p))))
- Output:
f(0) = n f(1) = 1/2 * (n^2 + n) f(2) = 1/3 * (n^3 + (3/2 * n^2) + (1/2 * n)) f(3) = 1/4 * (n^4 + (2 * n^3) + n^2) f(4) = 1/5 * (n^5 + (5/2 * n^4) + (5/3 * n^3) + (-1/6 * n)) f(5) = 1/6 * (n^6 + (3 * n^5) + (5/2 * n^4) + (-1/2 * n^2)) f(6) = 1/7 * (n^7 + (7/2 * n^6) + (7/2 * n^5) + (-7/6 * n^3) + (1/6 * n)) f(7) = 1/8 * (n^8 + (4 * n^7) + (14/3 * n^6) + (-7/3 * n^4) + (2/3 * n^2)) f(8) = 1/9 * (n^9 + (9/2 * n^8) + (6 * n^7) + (-21/5 * n^5) + (2 * n^3) + (-3/10 * n)) f(9) = 1/10 * (n^10 + (5 * n^9) + (15/2 * n^8) + (-7 * n^6) + (5 * n^4) + (-3/2 * n^2))
Raku
(formerly Perl 6)
sub bernoulli_number($n) {
return 1/2 if $n == 1;
return 0/1 if $n % 2;
my @A;
for 0..$n -> $m {
@A[$m] = 1 / ($m + 1);
for $m, $m-1 ... 1 -> $j {
@A[$j - 1] = $j * (@A[$j - 1] - @A[$j]);
}
}
return @A[0];
}
sub binomial($n, $k) {
$k == 0 || $n == $k ?? 1 !! binomial($n-1, $k-1) + binomial($n-1, $k);
}
sub faulhaber_s_formula($p) {
my @formula = gather for 0..$p -> $j {
take '('
~ join('/', (binomial($p+1, $j) * bernoulli_number($j)).Rat.nude)
~ ")*n^{$p+1 - $j}";
}
my $formula = join(' + ', @formula.grep({!m{'(0/1)*'}}));
$formula .= subst(rx{ '(1/1)*' }, '', :g);
$formula .= subst(rx{ '^1'» }, '', :g);
"1/{$p+1} * ($formula)";
}
for 0..9 -> $p {
say "f($p) = ", faulhaber_s_formula($p);
}
- Output:
f(0) = 1/1 * (n) f(1) = 1/2 * (n^2 + n) f(2) = 1/3 * (n^3 + (3/2)*n^2 + (1/2)*n) f(3) = 1/4 * (n^4 + (2/1)*n^3 + n^2) f(4) = 1/5 * (n^5 + (5/2)*n^4 + (5/3)*n^3 + (-1/6)*n) f(5) = 1/6 * (n^6 + (3/1)*n^5 + (5/2)*n^4 + (-1/2)*n^2) f(6) = 1/7 * (n^7 + (7/2)*n^6 + (7/2)*n^5 + (-7/6)*n^3 + (1/6)*n) f(7) = 1/8 * (n^8 + (4/1)*n^7 + (14/3)*n^6 + (-7/3)*n^4 + (2/3)*n^2) f(8) = 1/9 * (n^9 + (9/2)*n^8 + (6/1)*n^7 + (-21/5)*n^5 + (2/1)*n^3 + (-3/10)*n) f(9) = 1/10 * (n^10 + (5/1)*n^9 + (15/2)*n^8 + (-7/1)*n^6 + (5/1)*n^4 + (-3/2)*n^2)
RPL
≪ → p
≪ 0
p 0 FOR m
p 1 + m 1 + COMB
p m - IBERNOULLI
IF LASTARG 1 == THEN NEG END
* EVAL + 'n' *
-1 STEP
p 1 + / EXPAN
≫ ≫ 'FAULH' STO
≪ P FAULH ≫ 'P' 0 9 1 SEQ
- Output:
1: {'n' '1/2n^2+1/2n' '1/3n^3+1/2n^2+1/6n' '1/4n^4+1/2n^3+1/4n^2' '1/5n^5+1/2n^4+1/3n^3-1/30n' '1/6n^6+1/2n^5+5/12n^4-1/12n^2' '1/7n^7+1/2n^6+1/2n^5-1/6n^3+1/42n' '1/8n^8+1/2n^7+7/12n^6-7/24n^4+1/12n^2' '1/9n^9+1/2n^8+2/3n^7-7/15n^5+2/9n^3-1/30n' '1/10n^10+1/2n^9+3/4n^8-7/10n^6+1/2n^4-3/20n^2'}
Ruby
def binomial(n,k)
if n < 0 or k < 0 or n < k then
return -1
end
if n == 0 or k == 0 then
return 1
end
num = 1
for i in k+1 .. n do
num = num * i
end
denom = 1
for i in 2 .. n-k do
denom = denom * i
end
return num / denom
end
def bernoulli(n)
if n < 0 then
raise "n cannot be less than zero"
end
a = Array.new(16)
for m in 0 .. n do
a[m] = Rational(1, m + 1)
for j in m.downto(1) do
a[j-1] = (a[j-1] - a[j]) * Rational(j)
end
end
if n != 1 then
return a[0]
end
return -a[0]
end
def faulhaber(p)
print("%d : " % [p])
q = Rational(1, p + 1)
sign = -1
for j in 0 .. p do
sign = -1 * sign
coeff = q * Rational(sign) * Rational(binomial(p+1, j)) * bernoulli(j)
if coeff == 0 then
next
end
if j == 0 then
if coeff != 1 then
if coeff == -1 then
print "-"
else
print coeff
end
end
else
if coeff == 1 then
print " + "
elsif coeff == -1 then
print " - "
elsif 0 < coeff then
print " + "
print coeff
else
print " - "
print -coeff
end
end
pwr = p + 1 - j
if pwr > 1 then
print "n^%d" % [pwr]
else
print "n"
end
end
print "\n"
end
def main
for i in 0 .. 9 do
faulhaber(i)
end
end
main()
- Output:
0 : n 1 : 1/2n^2 + 1/2n 2 : 1/3n^3 + 1/2n^2 + 1/6n 3 : 1/4n^4 + 1/2n^3 + 1/4n^2 4 : 1/5n^5 + 1/2n^4 + 1/3n^3 - 1/30n 5 : 1/6n^6 + 1/2n^5 + 5/12n^4 - 1/12n^2 6 : 1/7n^7 + 1/2n^6 + 1/2n^5 - 1/6n^3 + 1/42n 7 : 1/8n^8 + 1/2n^7 + 7/12n^6 - 7/24n^4 + 1/12n^2 8 : 1/9n^9 + 1/2n^8 + 2/3n^7 - 7/15n^5 + 2/9n^3 - 1/30n 9 : 1/10n^10 + 1/2n^9 + 3/4n^8 - 7/10n^6 + 1/2n^4 - 3/20n^2
Scala
import scala.math.Ordering.Implicits.infixOrderingOps
abstract class Frac extends Comparable[Frac] {
val num: BigInt
val denom: BigInt
def unary_-(): Frac = {
Frac(-num, denom)
}
def +(rhs: Frac): Frac = {
Frac(
num * rhs.denom + rhs.num * denom,
denom * rhs.denom
)
}
def -(rhs: Frac): Frac = {
Frac(
num * rhs.denom - rhs.num * denom,
denom * rhs.denom
)
}
def *(rhs: Frac): Frac = {
Frac(num * rhs.num, denom * rhs.denom)
}
override def compareTo(rhs: Frac): Int = {
val ln = num * rhs.denom
val rn = rhs.num * denom
ln.compare(rn)
}
def canEqual(other: Any): Boolean = other.isInstanceOf[Frac]
override def equals(other: Any): Boolean = other match {
case that: Frac =>
(that canEqual this) &&
num == that.num &&
denom == that.denom
case _ => false
}
override def hashCode(): Int = {
val state = Seq(num, denom)
state.map(_.hashCode()).foldLeft(0)((a, b) => 31 * a + b)
}
override def toString: String = {
if (denom == 1) {
return s"$num"
}
s"$num/$denom"
}
}
object Frac {
val ZERO: Frac = Frac(0)
val ONE: Frac = Frac(1)
def apply(n: BigInt): Frac = new Frac {
val num: BigInt = n
val denom: BigInt = 1
}
def apply(n: BigInt, d: BigInt): Frac = {
if (d == 0) {
throw new IllegalArgumentException("Parameter d may not be zero.")
}
var nn = n
var dd = d
if (nn == 0) {
dd = 1
} else if (dd < 0) {
nn = -nn
dd = -dd
}
val g = nn.gcd(dd)
if (g > 0) {
nn /= g
dd /= g
}
new Frac {
val num: BigInt = nn
val denom: BigInt = dd
}
}
}
object Faulhaber {
def bernoulli(n: Int): Frac = {
if (n < 0) {
throw new IllegalArgumentException("n may not be negative or zero")
}
val a = Array.fill(n + 1)(Frac.ZERO)
for (m <- 0 to n) {
a(m) = Frac(1, m + 1)
for (j <- m to 1 by -1) {
a(j - 1) = (a(j - 1) - a(j)) * Frac(j)
}
}
// returns 'first' Bernoulli number
if (n != 1) {
return a(0)
}
-a(0)
}
def binomial(n: Int, k: Int): Int = {
if (n < 0 || k < 0 || n < k) {
throw new IllegalArgumentException()
}
if (n == 0 || k == 0) {
return 1
}
val num = (k + 1 to n).product
val den = (2 to n - k).product
num / den
}
def faulhaber(p: Int): Unit = {
print(s"$p : ")
val q = Frac(1, p + 1)
var sign = -1
for (j <- 0 to p) {
sign *= -1
val coeff = q * Frac(sign) * Frac(binomial(p + 1, j)) * bernoulli(j)
if (Frac.ZERO != coeff) {
if (j == 0) {
if (Frac.ONE != coeff) {
if (-Frac.ONE == coeff) {
print('-')
} else {
print(coeff)
}
}
} else {
if (Frac.ONE == coeff) {
print(" + ")
} else if (-Frac.ONE == coeff) {
print(" - ")
} else if (coeff > Frac.ZERO) {
print(s" + ${coeff}")
} else {
print(s" - ${-coeff}")
}
}
val pwr = p + 1 - j
if (pwr > 1) {
print(s"n^${pwr}")
} else {
print('n')
}
}
}
println()
}
def main(args: Array[String]): Unit = {
for (i <- 0 to 9) {
faulhaber(i)
}
}
}
- Output:
0 : n 1 : 1/2n^2 + 1/2n 2 : 1/3n^3 + 1/2n^2 + 1/6n 3 : 1/4n^4 + 1/2n^3 + 1/4n^2 4 : 1/5n^5 + 1/2n^4 + 1/3n^3 - 1/30n 5 : 1/6n^6 + 1/2n^5 + 5/12n^4 - 1/12n^2 6 : 1/7n^7 + 1/2n^6 + 1/2n^5 - 1/6n^3 + 1/42n 7 : 1/8n^8 + 1/2n^7 + 7/12n^6 - 7/24n^4 + 1/12n^2 8 : 1/9n^9 + 1/2n^8 + 2/3n^7 - 7/15n^5 + 2/9n^3 - 1/30n 9 : 1/10n^10 + 1/2n^9 + 3/4n^8 - 7/10n^6 + 1/2n^4 - 3/20n^2
Sidef
func faulhaber_formula(p) {
(p+1).of { |j|
Poly(p - j + 1 => 1) * bernoulli(j) * binomial(p+1, j)
}.sum / (p+1)
}
for p in (^10) {
printf("%2d: %s\n", p, faulhaber_formula(p))
}
- Output:
0: x 1: 1/2*x^2 + 1/2*x 2: 1/3*x^3 + 1/2*x^2 + 1/6*x 3: 1/4*x^4 + 1/2*x^3 + 1/4*x^2 4: 1/5*x^5 + 1/2*x^4 + 1/3*x^3 - 1/30*x 5: 1/6*x^6 + 1/2*x^5 + 5/12*x^4 - 1/12*x^2 6: 1/7*x^7 + 1/2*x^6 + 1/2*x^5 - 1/6*x^3 + 1/42*x 7: 1/8*x^8 + 1/2*x^7 + 7/12*x^6 - 7/24*x^4 + 1/12*x^2 8: 1/9*x^9 + 1/2*x^8 + 2/3*x^7 - 7/15*x^5 + 2/9*x^3 - 1/30*x 9: 1/10*x^10 + 1/2*x^9 + 3/4*x^8 - 7/10*x^6 + 1/2*x^4 - 3/20*x^2
Visual Basic .NET
Module Module1
Function Gcd(a As Long, b As Long)
If b = 0 Then
Return a
End If
Return Gcd(b, a Mod b)
End Function
Class Frac
ReadOnly num As Long
ReadOnly denom As Long
Public Shared ReadOnly ZERO As New Frac(0, 1)
Public Shared ReadOnly ONE As New Frac(1, 1)
Public Sub New(n As Long, d As Long)
If d = 0 Then Throw New ArgumentException("d must not be zero")
Dim nn = n
Dim dd = d
If nn = 0 Then
dd = 1
ElseIf dd < 0 Then
nn = -nn
dd = -dd
End If
Dim g = Math.Abs(Gcd(nn, dd))
If g > 1 Then
nn /= g
dd /= g
End If
num = nn
denom = dd
End Sub
Public Shared Operator -(self As Frac) As Frac
Return New Frac(-self.num, self.denom)
End Operator
Public Shared Operator +(lhs As Frac, rhs As Frac) As Frac
Return New Frac(lhs.num * rhs.denom + lhs.denom * rhs.num, rhs.denom * lhs.denom)
End Operator
Public Shared Operator -(lhs As Frac, rhs As Frac) As Frac
Return lhs + -rhs
End Operator
Public Shared Operator *(lhs As Frac, rhs As Frac) As Frac
Return New Frac(lhs.num * rhs.num, lhs.denom * rhs.denom)
End Operator
Public Shared Operator <(lhs As Frac, rhs As Frac) As Boolean
Dim x = lhs.num / lhs.denom
Dim y = rhs.num / rhs.denom
Return x < y
End Operator
Public Shared Operator >(lhs As Frac, rhs As Frac) As Boolean
Dim x = lhs.num / lhs.denom
Dim y = rhs.num / rhs.denom
Return x > y
End Operator
Public Shared Operator =(lhs As Frac, rhs As Frac) As Boolean
Return lhs.num = rhs.num AndAlso lhs.denom = rhs.denom
End Operator
Public Shared Operator <>(lhs As Frac, rhs As Frac) As Boolean
Return lhs.num <> rhs.num OrElse lhs.denom <> rhs.denom
End Operator
Public Overloads Function Equals(obj As Object) As Boolean
Dim frac = CType(obj, Frac)
Return Not IsNothing(frac) AndAlso num = frac.num AndAlso denom = frac.denom
End Function
Public Overloads Function GetHashCode() As Integer
Dim hashCode = 1317992671
hashCode = hashCode * -1521134295 + num.GetHashCode()
hashCode = hashCode * -1521134295 + denom.GetHashCode()
Return hashCode
End Function
Public Overloads Function ToString() As String
If denom = 1 Then Return num.ToString()
Return String.Format("{0}/{1}", num, denom)
End Function
End Class
Function Bernoulli(n As Integer) As Frac
If n < 0 Then Throw New ArgumentException("n may not be negative or zero")
Dim a(n + 1) As Frac
For m = 0 To n
a(m) = New Frac(1, m + 1)
For j = m To 1 Step -1
a(j - 1) = (a(j - 1) - a(j)) * New Frac(j, 1)
Next
Next
'returns the first Bernoulli number
If n <> 1 Then Return a(0)
Return -a(0)
End Function
Function Binomial(n As Integer, k As Integer) As Integer
If n < 0 OrElse k < 0 OrElse n < k Then
Throw New ArgumentException()
End If
If n = 0 OrElse k = 0 Then
Return 1
End If
Dim num = 1
For i = k + 1 To n
num *= i
Next
Dim denom = 1
For i = 2 To n - k
denom *= i
Next
Return num / denom
End Function
Sub Faulhaber(p As Integer)
Console.Write("{0} : ", p)
Dim q As New Frac(1, p + 1)
Dim sign = -1
For j = 0 To p
sign *= -1
Dim coeff = q * New Frac(sign, 1) * New Frac(Binomial(p + 1, j), 1) * Bernoulli(j)
If Frac.ZERO = coeff Then Continue For
If j = 0 Then
If Frac.ONE <> coeff Then
If -Frac.ONE = coeff Then
Console.Write("-")
Else
Console.Write(coeff.ToString())
End If
End If
Else
If Frac.ONE = coeff Then
Console.Write(" + ")
ElseIf -Frac.ONE = coeff Then
Console.Write(" - ")
ElseIf Frac.ZERO < coeff Then
Console.Write(" + {0}", coeff.ToString())
Else
Console.Write(" - {0}", (-coeff).ToString())
End If
End If
Dim pwr = p + 1 - j
If pwr > 1 Then
Console.Write("n^{0}", pwr)
Else
Console.Write("n")
End If
Next
Console.WriteLine()
End Sub
Sub Main()
For i = 0 To 9
Faulhaber(i)
Next
End Sub
End Module
- Output:
0 : n 1 : 1/2n^2 + 1/2n 2 : 1/3n^3 + 1/2n^2 + 1/6n 3 : 1/4n^4 + 1/2n^3 + 1/4n^2 4 : 1/5n^5 + 1/2n^4 + 1/3n^3 - 1/30n 5 : 1/6n^6 + 1/2n^5 + 5/12n^4 - 1/12n^2 6 : 1/7n^7 + 1/2n^6 + 1/2n^5 - 1/6n^3 + 1/42n 7 : 1/8n^8 + 1/2n^7 + 7/12n^6 - 7/24n^4 + 1/12n^2 8 : 1/9n^9 + 1/2n^8 + 2/3n^7 - 7/15n^5 + 2/9n^3 - 1/30n 9 : 1/10n^10 + 1/2n^9 + 3/4n^8 - 7/10n^6 + 1/2n^4 - 3/20n^2
Wren
import "./math" for Int
import "./rat" for Rat
var bernoulli = Fn.new { |n|
if (n < 0) Fiber.abort("Argument must be non-negative")
var a = List.filled(n+1, null)
for (m in 0..n) {
a[m] = Rat.new(1, m+1)
var j = m
while (j >= 1) {
a[j-1] = (a[j-1] - a[j]) * Rat.new(j, 1)
j = j - 1
}
}
return (n != 1) ? a[0] : -a[0] // 'first' Bernoulli number
}
var binomial = Fn.new { |n, k|
if (n < 0 || k < 0) Fiber.abort("Arguments must be non-negative integers")
if (n < k) Fiber.abort("The second argument cannot be more than the first.")
if (n == k) return 1
var prod = 1
var i = n - k + 1
while (i <= n) {
prod = prod * i
i = i + 1
}
return prod / Int.factorial(k)
}
var faulhaber = Fn.new { |p|
System.write("%(p) : ")
var q = Rat.new(1, p+1)
var sign = -1
for (j in 0..p) {
sign = sign * -1
var b = Rat.new(binomial.call(p+1, j), 1)
var coeff = q * Rat.new(sign, 1) * b * bernoulli.call(j)
if (coeff != Rat.zero) {
if (j == 0) {
System.write((coeff == Rat.one) ? "" : (coeff == Rat.minusOne) ? "-" : "%(coeff)")
} else {
System.write((coeff == Rat.one) ? " + " : (coeff == Rat.minusOne) ? " - " :
(coeff > Rat.zero) ? " + %(coeff)" : " - %(-coeff)")
}
var pwr = p + 1 - j
System.write((pwr > 1) ? "n^%(pwr)" : "n")
}
}
System.print()
}
for (i in 0..9) faulhaber.call(i)
- Output:
0 : n 1 : 1/2n^2 + 1/2n 2 : 1/3n^3 + 1/2n^2 + 1/6n 3 : 1/4n^4 + 1/2n^3 + 1/4n^2 4 : 1/5n^5 + 1/2n^4 + 1/3n^3 - 1/30n 5 : 1/6n^6 + 1/2n^5 + 5/12n^4 - 1/12n^2 6 : 1/7n^7 + 1/2n^6 + 1/2n^5 - 1/6n^3 + 1/42n 7 : 1/8n^8 + 1/2n^7 + 7/12n^6 - 7/24n^4 + 1/12n^2 8 : 1/9n^9 + 1/2n^8 + 2/3n^7 - 7/15n^5 + 2/9n^3 - 1/30n 9 : 1/10n^10 + 1/2n^9 + 3/4n^8 - 7/10n^6 + 1/2n^4 - 3/20n^2
zkl
GNU Multiple Precision Arithmetic Library
Uses code from the Bernoulli numbers task (copied here).
var [const] BN=Import("zklBigNum"); // libGMP (GNU MP Bignum Library)
fcn faulhaberFormula(p){ //-->(Rational,Rational...)
[p..0,-1].pump(List(),'wrap(k){ B(k)*BN(p+1).binomial(k) })
.apply('*(Rational(1,p+1)))
}
foreach p in (10){
println("F(%d) --> %s".fmt(p,polyRatString(faulhaberFormula(p))))
}
class Rational{ // Weenie Rational class, can handle BigInts
fcn init(_a,_b){ var a=_a, b=_b; normalize(); }
fcn toString{
if(b==1) a.toString()
else "%d/%d".fmt(a,b)
}
var [proxy] isZero=fcn{ a==0 };
fcn normalize{ // divide a and b by gcd
g:= a.gcd(b);
a/=g; b/=g;
if(b<0){ a=-a; b=-b; } // denominator > 0
self
}
fcn __opAdd(n){
if(Rational.isChildOf(n)) self(a*n.b + b*n.a, b*n.b); // Rat + Rat
else self(b*n + a, b); // Rat + Int
}
fcn __opSub(n){ self(a*n.b - b*n.a, b*n.b) } // Rat - Rat
fcn __opMul(n){
if(Rational.isChildOf(n)) self(a*n.a, b*n.b); // Rat * Rat
else self(a*n, b); // Rat * Int
}
fcn __opDiv(n){ self(a*n.b,b*n.a) } // Rat / Rat
}
fcn B(N){ // calculate Bernoulli(n) --> Rational
var A=List.createLong(100,0); // aka static aka not thread safe
foreach m in (N+1){
A[m]=Rational(BN(1),BN(m+1));
foreach j in ([m..1, -1]){ A[j-1]= (A[j-1] - A[j])*j; }
}
A[0]
}
fcn polyRatString(terms){ // (a1,a2...)-->"a1n + a2n^2 ..."
str:=[1..].zipWith('wrap(n,a){ if(a.isZero) "" else "+ %sn^%s ".fmt(a,n) },
terms)
.pump(String)
.replace(" 1n"," n").replace("n^1 ","n ").replace("+ -","- ");
if(not str) return(" "); // all zeros
if(str[0]=="+") str[1,*]; // leave leading space
else String("-",str[2,*]);
}
- Output:
F(0) --> n F(1) --> 1/2n + 1/2n^2 F(2) --> 1/6n + 1/2n^2 + 1/3n^3 F(3) --> 1/4n^2 + 1/2n^3 + 1/4n^4 F(4) --> -1/30n + 1/3n^3 + 1/2n^4 + 1/5n^5 F(5) --> -1/12n^2 + 5/12n^4 + 1/2n^5 + 1/6n^6 F(6) --> 1/42n - 1/6n^3 + 1/2n^5 + 1/2n^6 + 1/7n^7 F(7) --> 1/12n^2 - 7/24n^4 + 7/12n^6 + 1/2n^7 + 1/8n^8 F(8) --> -1/30n + 2/9n^3 - 7/15n^5 + 2/3n^7 + 1/2n^8 + 1/9n^9 F(9) --> -3/20n^2 + 1/2n^4 - 7/10n^6 + 3/4n^8 + 1/2n^9 + 1/10n^10