Common sorted list
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
Heap sort | Merge sort | Patience sort | Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
Given an integer array nums, the goal is create common sorted list with unique elements.
- Example
nums = [5,1,3,8,9,4,8,7], [3,5,9,8,4], [1,3,7,9]
output = [1,3,4,5,7,8,9]
11l
F csl(nums)
Set[Int] r
L(num) nums
r.update(num)
R sorted(Array(r))
print(csl([[5, 1, 3, 8, 9, 4, 8, 7], [3, 5, 9, 8, 4], [1, 3, 7, 9]]))
- Output:
[1, 3, 4, 5, 7, 8, 9]
Action!
INCLUDE "D2:SORT.ACT" ;from the Action! Tool Kit
DEFINE PTR="CARD"
PROC PrintArray(BYTE ARRAY a BYTE len)
BYTE i
Print(" [")
IF len>0 THEN
FOR i=0 TO len-1
DO
PrintB(a(i))
IF i<len-1 THEN Put(' ) FI
OD
FI
PrintE("]")
RETURN
BYTE FUNC Contains(BYTE ARRAY a BYTE len,value)
BYTE i
IF len>0 THEN
FOR i=0 TO len-1
DO
IF a(i)=value THEN RETURN(1) FI
OD
FI
RETURN (0)
PROC CommonListElements(PTR ARRAY arrays
BYTE ARRAY lengths BYTE count
BYTE ARRAY res BYTE POINTER resLen)
BYTE ARRAY a
BYTE i,j,len,value,cnt,maxcnt
resLen^=0
IF count=0 THEN
RETURN
ELSEIF count=1 THEN
MoveBlock(res,a,len) RETURN
FI
FOR i=0 TO count-1
DO
a=arrays(i) len=lengths(i)
IF len>0 THEN
FOR j=0 TO len-1
DO
value=a(j)
IF Contains(res,resLen^,value)=0 THEN
res(resLen^)=value resLen^==+1
FI
OD
FI
OD
SortB(res,resLen^,0)
RETURN
PROC Test(PTR ARRAY arrays BYTE ARRAY lengths BYTE count)
BYTE ARRAY res(100)
BYTE len,i
CommonListElements(arrays,lengths,count,res,@len)
PrintE("Input:")
FOR i=0 TO count-1
DO
PrintArray(arrays(i),lengths(i))
OD
PrintE("Output:")
PrintArray(res,len) PutE()
RETURN
PROC Main()
PTR ARRAY arrays(3)
BYTE ARRAY
lengths(3)=[8 5 4],
a1(8)=[5 1 3 8 9 4 8 7],
a2(5)=[3 5 9 8 4],
a3(4)=[1 3 7 9],
a4(8)=[5 1 1 1 9 9 8 7],
a5(5)=[5 5 9 9 9],
a6(4)=[1 7 7 9]
BYTE len
Put(125) PutE() ;clear the screen
arrays(0)=a1 arrays(1)=a2 arrays(2)=a3
Test(arrays,lengths,3)
arrays(0)=a4 arrays(1)=a5 arrays(2)=a6
Test(arrays,lengths,3)
lengths(0)=0
Test(arrays,lengths,3)
RETURN
- Output:
Screenshot from Atari 8-bit computer
Input: [5 1 3 8 9 4 8 7] [3 5 9 8 4] [1 3 7 9] Output: [1 3 4 5 7 8 9] Input: [5 1 1 1 9 9 8 7] [5 5 9 9 9] [1 7 7 9] Output: [1 5 7 8 9] Input: [] [5 5 9 9 9] [1 7 7 9] Output: [1 5 7 9]
Ada
with Ada.Text_Io;
with Ada.Containers.Vectors;
procedure Sorted is
package Integer_Vectors is
new Ada.Containers.Vectors (Index_Type => Positive,
Element_Type => Integer);
use Integer_Vectors;
package Vector_Sorting is
new Integer_Vectors.Generic_Sorting;
use Vector_Sorting;
procedure Unique (Vec : in out Vector) is
Res : Vector;
begin
for E of Vec loop
if Res.Is_Empty or else Res.Last_Element /= E then
Res.Append (E);
end if;
end loop;
Vec := Res;
end Unique;
procedure Put (Vec : Vector) is
use Ada.Text_Io;
begin
Put ("[");
for E of Vec loop
Put (E'Image); Put (" ");
end loop;
Put ("]");
New_Line;
end Put;
A : constant Vector := 5 & 1 & 3 & 8 & 9 & 4 & 8 & 7;
B : constant Vector := 3 & 5 & 9 & 8 & 4;
C : constant Vector := 1 & 3 & 7 & 9;
R : Vector := A & B & C;
begin
Sort (R);
Unique (R);
Put (R);
end Sorted;
- Output:
[ 1 3 4 5 7 8 9 ]
APL
csl ← (⊂∘⍋⌷⊢)∪∘∊
- Output:
csl (5 1 3 8 9 4 8 7)(3 5 9 8 4)(1 3 7 9) 1 3 4 5 7 8 9
AppleScript
use AppleScript version "2.4" -- OS X 10.10 (Yosemite) or later
use framework "Foundation"
local nums, output
set nums to current application's class "NSArray"'s arrayWithArray:({{5, 1, 3, 8, 9, 4, 8, 7}, {3, 5, 9, 8, 4}, {1, 3, 7, 9}})
set output to (nums's valueForKeyPath:("@distinctUnionOfArrays.self"))'s sortedArrayUsingSelector:("compare:")
return output as list
- Output:
{1, 3, 4, 5, 7, 8, 9}
Or, as a composition of slightly more commonly-used generic functions
(given that distinctUnionOfArrays is a relatively specialised function,
while concat/flatten and nub/distinct are more atomic, and more frequently reached for):
use AppleScript version "2.4"
use framework "Foundation"
------------------- COMMON SORTED ARRAY ------------------
on run
sort(nub(concat({¬
{5, 1, 3, 8, 9, 4, 8, 7}, ¬
{3, 5, 9, 8, 4}, ¬
{1, 3, 7, 9}})))
end run
-------------------- GENERIC FUNCTIONS -------------------
-- concat :: [[a]] -> [a]
on concat(xs)
((current application's NSArray's arrayWithArray:xs)'s ¬
valueForKeyPath:"@unionOfArrays.self") as list
end concat
-- nub :: [a] -> [a]
on nub(xs)
((current application's NSArray's arrayWithArray:xs)'s ¬
valueForKeyPath:"@distinctUnionOfObjects.self") as list
end nub
-- sort :: Ord a => [a] -> [a]
on sort(xs)
((current application's NSArray's arrayWithArray:xs)'s ¬
sortedArrayUsingSelector:"compare:") as list
end sort
- Output:
{1, 3, 4, 5, 7, 8, 9}
Arturo
print sort unique flatten [[5 1 3 8 9 4 8 7] [3 5 9 8 4] [1 3 7 9]]
- Output:
1 3 4 5 7 8 9
AutoHotkey
Common_sorted_list(nums){
elements := [], output := []
for i, num in nums
for j, d in num
elements[d] := true
for val, bool in elements
output.push(val)
return output
}
Examples:
nums := [[5,1,3,8,9,4,8,7], [3,5,9,8,4], [1,3,7,9]]
output := Common_sorted_list(nums)
return
- Output:
[1, 3, 4, 5, 6, 7, 9]
AWK
# syntax: GAWK -f COMMON_SORTED_LIST.AWK
BEGIN {
PROCINFO["sorted_in"] = "@ind_num_asc"
nums = "[5,1,3,8,9,4,8,7],[3,5,9,8,4],[1,3,7,9]"
printf("%s : ",nums)
n = split(nums,arr1,"],?") - 1
for (i=1; i<=n; i++) {
gsub(/[\[\]]/,"",arr1[i])
split(arr1[i],arr2,",")
for (j in arr2) {
arr3[arr2[j]]++
}
}
for (j in arr3) {
printf("%s ",j)
}
printf("\n")
exit(0)
}
- Output:
[5,1,3,8,9,4,8,7],[3,5,9,8,4],[1,3,7,9] : 1 3 4 5 7 8 9
BQN
Joins all the arrays, deduplicate, sort.
arr ← ⟨⟨5,1,3,8,9,4,8,7⟩, ⟨3,5,9,8,4⟩, ⟨1,3,7,9⟩⟩
⟨ ⟨ 5 1 3 8 9 4 8 7 ⟩ ⟨ 3 5 9 8 4 ⟩ ⟨ 1 3 7 9 ⟩ ⟩
CSL ← ∧·⍷∾
∧(⍷∾)
CSL arr
⟨ 1 3 4 5 7 8 9 ⟩
C
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define COUNTOF(a) (sizeof(a)/sizeof(a[0]))
void fatal(const char* message) {
fprintf(stderr, "%s\n", message);
exit(1);
}
void* xmalloc(size_t n) {
void* ptr = malloc(n);
if (ptr == NULL)
fatal("Out of memory");
return ptr;
}
int icompare(const void* p1, const void* p2) {
const int* ip1 = p1;
const int* ip2 = p2;
return (*ip1 < *ip2) ? -1 : ((*ip1 > *ip2) ? 1 : 0);
}
size_t unique(int* array, size_t len) {
size_t out_index = 0;
int prev;
for (size_t i = 0; i < len; ++i) {
if (i == 0 || prev != array[i])
array[out_index++] = array[i];
prev = array[i];
}
return out_index;
}
int* common_sorted_list(const int** arrays, const size_t* lengths, size_t count, size_t* size) {
size_t len = 0;
for (size_t i = 0; i < count; ++i)
len += lengths[i];
int* array = xmalloc(len * sizeof(int));
for (size_t i = 0, offset = 0; i < count; ++i) {
memcpy(array + offset, arrays[i], lengths[i] * sizeof(int));
offset += lengths[i];
}
qsort(array, len, sizeof(int), icompare);
*size = unique(array, len);
return array;
}
void print(const int* array, size_t len) {
printf("[");
for (size_t i = 0; i < len; ++i) {
if (i > 0)
printf(", ");
printf("%d", array[i]);
}
printf("]\n");
}
int main() {
const int a[] = {5, 1, 3, 8, 9, 4, 8, 7};
const int b[] = {3, 5, 9, 8, 4};
const int c[] = {1, 3, 7, 9};
size_t len = 0;
const int* arrays[] = {a, b, c};
size_t lengths[] = {COUNTOF(a), COUNTOF(b), COUNTOF(c)};
int* sorted = common_sorted_list(arrays, lengths, COUNTOF(arrays), &len);
print(sorted, len);
free(sorted);
return 0;
}
- Output:
[1, 3, 4, 5, 7, 8, 9]
C++
#include <iostream>
#include <vector>
#include <set>
#include <algorithm>
template<typename T>
std::vector<T> common_sorted_list(const std::vector<std::vector<T>>& ll) {
std::set<T> resultset;
std::vector<T> result;
for (auto& list : ll)
for (auto& item : list)
resultset.insert(item);
for (auto& item : resultset)
result.push_back(item);
std::sort(result.begin(), result.end());
return result;
}
int main() {
std::vector<int> a = {5,1,3,8,9,4,8,7};
std::vector<int> b = {3,5,9,8,4};
std::vector<int> c = {1,3,7,9};
std::vector<std::vector<int>> nums = {a, b, c};
auto csl = common_sorted_list(nums);
for (auto n : csl) std::cout << n << " ";
std::cout << std::endl;
return 0;
}
- Output:
1 3 4 5 7 8 9
Clojure
Efficient transducer & sorted-set version
(defn common-sorted [& colls]
(into (sorted-set) cat colls))
(common-sorted [5 1 3 8 9 4 8 7] [3 5 9 8 4] [1 3 7 9])
;; => #{1 3 4 5 7 8 9}
Point-free, list-based version
(def common-sorted (comp sort distinct concat))
(common-sorted [5 1 3 8 9 4 8 7] [3 5 9 8 4] [1 3 7 9])
;; => (1 3 4 5 7 8 9)
DuckDB
The set_union() function defined here will produce the set-theoretic union of the lists in `lol`, which may be any DuckDB list of lists. The result is a sorted list with distinct elements.
As the second example shows, the usual DuckDB type conversion rules will be applied.
create or replace function set_union(lol) as (
flatten(lol)
.list_distinct()
.list_sort()
);
### Examples
.header off
.mode list
select set_union([[5,1,3,8,9,4,8,7], [3,5,9,8,4], [1,3,7,9]]);
- Output:
[1, 3, 4, 5, 7, 8, 9]
select set_union([[5,1,3,8,9,4,8,7]::FLOAT[], [3,5,9,8,4], [1,3,7,9]]); [1.0, 3.0, 4.0, 5.0, 7.0, 8.0, 9.0]
EasyLang
nums[][] = [ [ 2 5 1 3 8 9 4 6 ] [ 3 5 6 2 9 8 4 ] [ 1 3 7 6 9 ] ]
#
proc sort . d[] .
for i = 1 to len d[] - 1
for j = i + 1 to len d[]
if d[j] < d[i]
swap d[j] d[i]
.
.
.
.
#
for l to len nums[][]
for e in nums[l][]
h[] &= e
.
.
sort h[]
for e in h[]
if e <> last or len r[] = 0
r[] &= e
last = e
.
.
print r[]
Excel
LAMBDA
Binding the name COMMONSORTED to the following lambda expression in the Name Manager of the Excel WorkBook:
(See LAMBDA: The ultimate Excel worksheet function)
COMMONSORTED
=LAMBDA(grid,
SORT(
UNIQUE(
CONCATCOLS(grid)
)
)
)
and also assuming the following generic bindings in the Name Manager for the WorkBook:
CONCATCOLS
=LAMBDA(cols,
LET(
nRows, ROWS(cols),
ixs, SEQUENCE(
COLUMNS(cols) * nRows, 1,
1, 1
),
FILTERP(
LAMBDA(x, 0 < LEN("" & x))
)(
INDEX(cols,
LET(
r, MOD(ixs, nRows),
IF(0 = r, nRows, r)
),
1 + QUOTIENT(ixs - 1, nRows)
)
)
)
)
FILTERP
=LAMBDA(p,
LAMBDA(xs,
FILTER(xs, p(xs))
)
)
The formula in cell B2 defines a dynamic array of values, additionally populating further cells in column B.
- Output:
fx | =COMMONSORTED(C2:E9) | |||||
---|---|---|---|---|---|---|
A | B | C | D | E | ||
1 | Common sorted | |||||
2 | 1 | 5 | 3 | 1 | ||
3 | 3 | 1 | 5 | 3 | ||
4 | 4 | 3 | 9 | 7 | ||
5 | 5 | 8 | 8 | 9 | ||
6 | 7 | 9 | 4 | |||
7 | 8 | 4 | ||||
8 | 9 | 8 | ||||
9 | 7 |
F#
// Common sorted list. Nigel Galloway: February 25th., 2021
let nums=[|[5;1;3;8;9;4;8;7];[3;5;9;8;4];[1;3;7;9]|]
printfn "%A" (nums|>Array.reduce(fun n g->n@g)|>List.distinct|>List.sort)
- Output:
[1; 3; 4; 5; 7; 8; 9]
Factor
Note: in older versions of Factor, union-all
is called combine
.
USING: formatting kernel sets sorting ;
{ { 5 1 3 8 9 4 8 7 } { 3 5 9 8 4 } { 1 3 7 9 } }
dup union-all natural-sort
"Sorted union of %u is:\n%u\n" printf
- Output:
Sorted union of { { 5 1 3 8 9 4 8 7 } { 3 5 9 8 4 } { 1 3 7 9 } } is: { 1 3 4 5 7 8 9 }
FreeBASIC
Dim As Integer nums(2, 7) = {{5,1,3,8,9,4,8,7},{3,5,9,8,4},{1,3,7,9}}
Dim Shared As Integer sumNums()
Sub Sum(arr() As Integer, vals As Integer)
Redim Preserve arr(Ubound(arr) + 1)
arr(Ubound(arr)) = vals
End Sub
Sub Del(arr() As Integer, index As Integer)
For i As Integer = index To Ubound(arr) - 1
arr(i) = arr(i + 1)
Next i
Redim Preserve arr(Ubound(arr) - 1)
End Sub
Sub showArray(arr() As Integer)
Dim As String txt = ""
Print "[";
For n As Integer = 1 To Ubound(arr)
txt &= Str(arr(n)) & ","
Next n
txt = Left(txt, Len(txt) - 1)
txt &= "]"
Print txt
End Sub
Sub Sort(arr() As Integer)
Dim As Integer i, j
For i = 0 To Ubound(arr) - 1
For j = i + 1 To Ubound(arr)
If arr(i) > arr(j) Then Swap arr(i), arr(j)
Next j
Next i
End Sub
For n As Integer = 0 To Ubound(nums, 1)
For m As Integer = 0 To Ubound(nums, 2)
Sum(sumNums(), nums(n, m))
Next m
Next n
Sort(sumNums())
For n As Integer = Ubound(sumNums) To 1 Step -1
If sumNums(n) = sumNums(n - 1) Then
Del(sumNums(), n)
End If
Next n
Sort(sumNums())
Print "common sorted list elements are: ";
showArray(sumNums())
Sleep
- Output:
common sorted list elements are: [1,3,4,5,7,8,9]
Go
package main
import (
"fmt"
"sort"
)
func distinctSortedUnion(ll [][]int) []int {
var res []int
for _, l := range ll {
res = append(res, l...)
}
set := make(map[int]bool)
for _, e := range res {
set[e] = true
}
res = res[:0]
for key := range set {
res = append(res, key)
}
sort.Ints(res)
return res
}
func main() {
ll := [][]int{{5, 1, 3, 8, 9, 4, 8, 7}, {3, 5, 9, 8, 4}, {1, 3, 7, 9}}
fmt.Println("Distinct sorted union of", ll, "is:")
fmt.Println(distinctSortedUnion(ll))
}
- Output:
Distinct sorted union of [[5 1 3 8 9 4 8 7] [3 5 9 8 4] [1 3 7 9]] is: [1 3 4 5 7 8 9]
Haskell
import Data.List (nub, sort)
-------------------- COMMON SORTED LIST ------------------
commonSorted :: Ord a => [[a]] -> [a]
commonSorted = sort . nub . concat
--------------------------- TEST -------------------------
main :: IO ()
main =
print $
commonSorted
[ [5, 1, 3, 8, 9, 4, 8, 7],
[3, 5, 9, 8, 4],
[1, 3, 7, 9]
]
- Output:
[1,3,4,5,7,8,9]
J
csl =: /:~@~.@;
- Output:
nums =: 5 1 3 8 9 4 8 7;3 5 9 8 4;1 3 7 9 csl nums 1 3 4 5 7 8 9
JavaScript
(() => {
"use strict";
// --------------- COMMON SORTED LIST ----------------
// commonSorted :: Ord a => [[a]] -> [a]
const commonSorted = xs =>
sort(nub(concat(xs)));
// ---------------------- TEST -----------------------
const main = () =>
commonSorted([
[5, 1, 3, 8, 9, 4, 8, 7],
[3, 5, 9, 8, 4],
[1, 3, 7, 9]
]);
// --------------------- GENERIC ---------------------
// concat :: [[a]] -> [a]
const concat = xs =>
xs.flat(1);
// nub :: Eq a => [a] -> [a]
const nub = xs => [...new Set(xs)];
// sort :: Ord a => [a] -> [a]
const sort = xs =>
// An (ascending) sorted copy of xs.
xs.slice().sort();
return main();
})();
- Output:
[1, 3, 4, 5, 7, 8, 9]
jq
Works with gojq, the Go implementation of jq
Assuming the input is a single array of arrays, we can simply chain the `add` and `unique` filters:
jq -nc '[[5,1,3,8,9,4,8,7], [3,5,9,8,4], [1,3,7,9]] | add | unique'
- Output:
[1,3,4,5,7,8,9]
If the arrays are presented individually in an external stream, we could use the `-s` command-line option.
Alternatively, here's a stream-oriented version of `add` that could be used:
def add(s): reduce s as $x (null; . + $x);
For example:
jq -nc '
def add(s): reduce s as $x (null; . + $x);
add(inputs) | unique' <<< '[5,1,3,8,9,4,8,7] [3,5,9,8,4] [1,3,7,9]'
Julia
julia> sort(union([5,1,3,8,9,4,8,7], [3,5,9,8,4], [1,3,7,9]))
7-element Array{Int64,1}:
1
3
4
5
7
8
9
julia> sort(union([2, 3, 4], split("3.14 is not an integer", r"\s+")), lt=(x, y) -> "$x" < "$y")
8-element Array{Any,1}:
2
3
"3.14"
4
"an"
"integer"
"is"
"not"
M2000 Interpreter
We can sort arrays and lists (inventories), but not stacks (these are the three types of data containers).
There are many types of arrays:
- An array with parenthesis: Dim A(1 to 100, -5 to 30) as Long, B(10), C() ' C() is empty
- An auto array (1,2,3,4) or (,) or (1,), C()=(1,2,3,4)
- A squared bracket type: long long A[100][300] ' one or two dimension.
Here we use the variant type, so we may have an array of arrays. Also the first two types have iterator objects.
Using a List Object
Using a List object which use hash table
Document Doc$
nums = ((5,1,3,8,9,4,8,7), (3,5,9,8,4), (1,3,7,9))
outlist=list
finalArray=(,)
k=each(nums)
while k
z=array(k)
doc$="Array_"+(k^)+": ["+z#str$(", ")+{]
}
m=each(z)
while m
if not exist(outlist, array(m)) then append outlist, array(m)
end while
end while
sort outlist
// open a stack object
stack new {
k=each(outlist)
while k
data eval(k)
end while
// [] remove the stack object, placing a fresh one
finalArray=array([])
}
Doc$="Found "+(len(finalArray))+" different elements: ["+finalArray#str$(", ")+{]
}
Report Doc$
Clipboard Doc$
Using A Fold function
Each time run with one of three different confiquration of nums array.
module Union {
Document Doc$
uni=lambda (m as array)-> {
=lambda m, n=1 -> {
if stack.size=2 then shift 2 : drop
if n=1 then data !m: m=(,): n=2:
while not empty
read k
if m#nothave(k) then append m, (k,)
end while
push m
}
}
select case random(1, 3)
case 1
nums = ((1,3,7,9), (3,5,9,8,4), (5,1,3,8,9,4,8,7))
case 2
nums = ((1,3,7,9), (5,1,3,8,9,4,8,7), (3,5,9,8,4))
case 3
nums = ((5,1,3,8,9,4,8,7), (3,5,9,8,4), (1,3,7,9))
end select
k=each(nums)
while k
z=array(k)
doc$="Array_"+(k^)+": ["+z#str$(", ")+{]
}
end while
finalArray=nums#val(0)
k=each(nums, 2)
while k
finalArray=finalArray#fold(uni(array(k)), (,))
end while
finalArray=finalArray#Sort()
Doc$="Found "+(len(finalArray))+" different elements: ["+finalArray#str$(", ")+{]
}
Report Doc$
Clipboard Doc$
// one line if we know the number of arrays
REM : Print nums#val(0)#fold(uni(nums#val(1)), (,))#fold(uni(nums#val(2)), (,))#sort()#str$()="1 3 4 5 7 8 9"
}
union
- Output:
Array_0: [5, 1, 3, 8, 9, 4, 8, 7] Array_1: [3, 5, 9, 8, 4] Array_2: [1, 3, 7, 9] Found 7 different elements: [1, 3, 4, 5, 7, 8, 9]
Mathematica /Wolfram Language
Union[{5, 1, 3, 8, 9, 4, 8, 7}, {3, 5, 9, 8, 4}, {1, 3, 7, 9}]
- Output:
{1, 3, 4, 5, 7, 8, 9}
Maxima
common_sorted(lst):=unique(flatten(lst))$
nums:[[5,1,3,8,9,4,8,7],[3,5,9,8,4],[1,3,7,9]]$
common_sorted(nums);
- Output:
[1,3,4,5,7,8,9]
Nim
We could use a HashSet
or an IntSet
to deduplicate. We have rather chosen to use the procedure deduplicate
from module sequtils
applied to the sorted list.
import algorithm, sequtils
proc commonSortedList(list: openArray[seq[int]]): seq[int] =
sorted(concat(list)).deduplicate(true)
echo commonSortedList([@[5,1,3,8,9,4,8,7], @[3,5,9,8,4], @[1,3,7,9]])
- Output:
@[1, 3, 4, 5, 7, 8, 9]
Pascal
Free Pascal
Program CommonSortedList;
{$mode ObjFPC}{$H+}
Uses sysutils,fgl;
Type
tarr = array Of array Of integer;
Const List1: tarr = ((5,1,3,8,9,4,8,7), (3,5,9,8,4), (1,3,7,9));
Var list : specialize TFPGList<integer>;
Procedure addtolist(arr : tarr);
Var i : integer;
arr2 : array Of integer;
Begin
For arr2 In arr Do
For i In arr2 Do
If (list.indexof(i) = -1) {make sure number isn't in list already}
Then list.add(i);
End;
Function CompareInt(Const Item1,Item2: Integer): Integer;
Begin
result := item1 - item2;
End;
Var i : integer;
Begin
list := specialize TFPGList<integer>.create;
addtolist(list1);
List.Sort(@CompareInt); {quick sort the list}
For i In list Do
write(i:4);
list.destroy;
End.
- Output:
1 3 4 5 7 8 9
Perl
@c{@$_}++ for [5,1,3,8,9,4,8,7], [3,5,9,8,4], [1,3,7,9];
print join ' ', sort keys %c;
@c{@$_}++ for [qw<not all is integer ? is not ! 4.2>];
print join ' ', sort keys %c;
- Output:
1 3 4 5 7 8 9 ! 1 3 4 4.2 5 7 8 9 ? all integer is not
Phix
?unique(join({{5,1,3,8,9,4,8,7}, {3,5,9,8,4}, {1,3,7,9}, split("not everything is an integer")},{}))
Note the join(x,{}): the 2nd param is needed to prevent it putting 32 (ie the acsii code for a space) in the output.
- Output:
(Unexpectedly rather Yoda-esque)
{1,3,4,5,7,8,9,"an","everything","integer","is","not"}
Python
'''Common sorted list'''
from itertools import chain
# ------------------------- TEST -------------------------
# main :: IO ()
def main():
'''Sorted union of lists'''
print(
sorted(nub(concat([
[5, 1, 3, 8, 9, 4, 8, 7],
[3, 5, 9, 8, 4],
[1, 3, 7, 9]
])))
)
# ----------------------- GENERIC ------------------------
# concat :: [[a]] -> [a]
# concat :: [String] -> String
def concat(xs):
'''The concatenation of all the elements in a list.
'''
return list(chain(*xs))
# nub :: [a] -> [a]
def nub(xs):
'''A list containing the same elements as xs,
without duplicates, in the order of their
first occurrence.
'''
return list(dict.fromkeys(xs))
# MAIN ---
if __name__ == '__main__':
main()
- Output:
[1, 3, 4, 5, 7, 8, 9]
Quackery
uniquewith
is defined at Remove duplicate elements#Quackery.
' [ [ 5 1 3 8 9 4 8 7 ]
[ 3 5 9 8 4 ]
[ 1 3 7 9 ] ]
[] swap witheach [ witheach join ]
uniquewith > echo
- Output:
[ 1 3 4 5 7 8 9 ]
Raku
put sort keys [∪] [5,1,3,8,9,4,8,7], [3,5,9,8,4], [1,3,7,9];
put sort keys [∪] [5,1,3,8,9,4,8,7], [3,5,9,8,4], [1,3,7,9], [<not everything is an integer so why not avoid special cases # ~ 23 4.2>];
- Output:
1 3 4 5 7 8 9 # 1 3 4 4.2 5 7 8 9 23 an avoid cases everything integer is not so special why ~
REXX
/*REXX pgm creates and displays a common sorted list of a specified collection of sets*/
parse arg a /*obtain optional arguments from the CL*/
if a='' | a="," then a= '[5,1,3,8,9,4,8,7] [3,5,9,8,4] [1,3,7,9]' /*default sets.*/
x= translate(a, ,'],[') /*extract elements from collection sets*/
se= words(x)
#= 0; $= /*#: number of unique elements; $: list*/
$= /*the list of common elements (so far).*/
do j=1 for se; _= word(x, j) /*traipse through all elements in sets.*/
if wordpos(_, $)>0 then iterate /*Is element in the new list? Yes, skip*/
$= $ _; #= # + 1; @.#= _ /*add to list; bump counter; assign──►@*/
end /*j*/
$=
call eSort # /*use any short (small) exchange sort.*/
do k=1 for #; $= $ @.k /*rebuild the $ list, it's been sorted.*/
end /*k*/
say 'the list of sorted common elements in all sets: ' "["translate(space($), ',', " ")']'
exit 0 /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
eSort: procedure expose @.; arg h 1 z; do while h>1; h= h%2; do i=1 for z-h; j= i; k= h+i
do while @.k<@.j; t=@.j; @.j=@.k; @.k=t; if h>=j then leave; j=j-h; k=k-h; end;end
end; return /*this sort was used 'cause of brevity.*/
- output when using the default inputs:
the list of sorted common elements in all sets: [1,3,4,5,7,8,9]
Ring
nums = [[5,1,3,8,9,4,8,7],[3,5,9,8,4],[1,3,7,9]]
sumNums = []
for n = 1 to len(nums)
for m = 1 to len(nums[n])
add(sumNums,nums[n][m])
next
next
sumNums = sort(sumNums)
for n = len(sumNums) to 2 step -1
if sumNums[n] = sumNums[n-1]
del(sumNums,n)
ok
next
sumNums = sort(sumNums)
see "common sorted list elements are: "
showArray(sumNums)
func showArray(array)
txt = ""
see "["
for n = 1 to len(array)
txt = txt + array[n] + ","
next
txt = left(txt,len(txt)-1)
txt = txt + "]"
see txt
- Output:
common sorted list elements are: [1,3,4,5,7,8,9]
RPL
≪ ∑LIST SORT → nums ≪ { } 1 nums SIZE FOR j nums j GET IF DUP2 POS THEN DROP ELSE + END NEXT ≫ ≫ 'COMMON' STO
{ { 5 1 3 8 9 4 8 7 } { 3 5 9 8 4 } { 1 3 7 9 } } COMMON
- Output:
1: { 1 3 4 5 7 8 9 }
Ruby
nums = [5,1,3,8,9,4,8,7], [3,5,9,8,4], [1,3,7,9]
p nums.inject(:+).sort.uniq
- Output:
[1, 3, 4, 5, 7, 8, 9]
Uiua
F ← ⊏⍏.◴/◇⊂
- Output:
F {[5 1 3 8 9 4 8 7] [3 5 9 8 4] [1 3 7 9]} [1 3 4 5 7 8 9]
V (Vlang)
fn main() {
nums := [[5,1,3,8,9,4,8,7], [3,5,9,8,4], [1,3,7,9]]
println("Distinct sorted union of $nums is:")
println(common_sorted_list(nums))
}
fn common_sorted_list(nums [][]int) []int {
mut elements, mut output := map[int]bool{}, []int{}
for num in nums {
for value in num {
elements[value] = true
}
}
for key, _ in elements {
output << key
}
output.sort()
return output
}
- Output:
Distinct sorted union of [[5 1 3 8 9 4 8 7] [3 5 9 8 4] [1 3 7 9]] is: [1 3 4 5 7 8 9]
Wren
import "./seq" for Lst
import "./sort" for Sort
var distinctSortedUnion = Fn.new { |ll|
var res = ll.reduce([]) { |acc, l| acc + l }
res = Lst.distinct(res)
Sort.insertion(res)
return res
}
var ll = [[5, 1, 3, 8, 9, 4, 8, 7], [3, 5, 9, 8, 4], [1, 3, 7, 9]]
System.print("Distinct sorted union of %(ll) is:")
System.print(distinctSortedUnion.call(ll))
- Output:
Distinct sorted union of [[5, 1, 3, 8, 9, 4, 8, 7], [3, 5, 9, 8, 4], [1, 3, 7, 9]] is: [1, 3, 4, 5, 7, 8, 9]
- Draft Programming Tasks
- Sorting Algorithms
- Sorting
- 11l
- Action!
- Action! Tool Kit
- Ada
- APL
- AppleScript
- Arturo
- AutoHotkey
- AWK
- BQN
- C
- C++
- Clojure
- DuckDB
- EasyLang
- Excel
- F Sharp
- Factor
- FreeBASIC
- Go
- Haskell
- J
- JavaScript
- Jq
- Julia
- M2000 Interpreter
- Mathematica
- Wolfram Language
- Maxima
- Nim
- Pascal
- Free Pascal
- Perl
- Phix
- Phix/basics
- Python
- Quackery
- Raku
- REXX
- Ring
- RPL
- Ruby
- Uiua
- V (Vlang)
- Wren
- Wren-seq
- Wren-sort