Chaos game
You are encouraged to solve this task according to the task description, using any language you may know.
The Chaos Game is a method of generating the attractor of an iterated function system (IFS).
One of the best-known and simplest examples creates a fractal, using a polygon and an initial point selected at random.
- Task
Play the Chaos Game using the corners of an equilateral triangle as the reference points. Add a starting point at random (preferably inside the triangle). Then add the next point halfway between the starting point and one of the reference points. This reference point is chosen at random.
After a sufficient number of iterations, the image of a Sierpinski Triangle should emerge.
- See also
8086 Assembly
This program will run on a PC with CGA-compatible graphics. It will keep running until a key is pressed.
cpu 8086
bits 16
vmode: equ 0Fh ; Get current video mode
time: equ 2Ch ; Get current system time
CGALO: equ 4 ; Low-res (4-color) CGA mode
MDA: equ 7 ; MDA text mode
section .text
org 100h
mov ah,vmode ; Get current video mode
int 10h
cmp al,MDA ; If MDA mode, no CGA supported, so stop
jne gr_ok
ret
gr_ok: push ax ; Store old video mode on stack
mov ax,CGALO ; Switch to low-resolution CGA mode
int 10h
mov ah,time ; Get system time
int 21h
mov di,cx ; Store as RNG seed
mov bp,dx
genX: call random ; Generate random X coordinate
cmp al,200
jae genX
mov dh,al ; DH = X
genY: call random ; Generate random Y coordinate
cmp al,173
jae genY
mov dl,al ; DL = Y
mloop: mov ah,1 ; Is a key pressed?
int 16h
jz point ; If not, calculate another point
pop ax ; But if so, restore the old video mode
cbw
int 10h
ret ; And quit
point: call random ; Generate random direction
and al,3
cmp al,3
je point
mov ah,al ; Keep direction (for color later)
dec al ; Select direction
jz d2
dec al
jz d3
shr dh,1 ; X /= 2
shr dl,1 ; Y /= 2
jmp plot
d2: mov cl,ah ; Keep color in CL
mov si,100 ; X = 100+(100-X)/2
xor ax,ax ; (doing intermediate math in 16 bits)
mov al,dh
neg ax
add ax,si
shr ax,1
add ax,si
mov dh,al
mov si,173 ; Y = 173-(173-Y)/2
xor ax,ax ; (doing intermediate math in 16 bits)
mov al,dl
neg ax
add ax,si
shr ax,1
neg ax
add ax,si
mov dl,al
mov ah,cl ; Restore color
jmp plot
d3: mov cl,ah ; Keep color
mov si,200 ; X = 200-(200-X)/2
xor ax,ax ; (doing intermediate math in 16 bits)
mov al,dh
neg ax
add ax,si
shr ax,1
neg ax
add ax,si
mov dh,al
mov ah,cl ; Restore color
shr dl,1 ; Y /= 2
plot: mov cl,dl ; There's a plot function in the BIOS, but it's
clc ; behind an INT and needs all the registers,
rcr cl,1 ; so we'll do it by hand.
sbb bh,bh ; The even rows are at B800:NNNN, odd at BA00,
xor bl,bl ; CL (Y coord) is divided by two, and if odd
and bh,2 ; we add 2(00) to B8(00) to get the right
add bh,0B8h ; segment.
mov ds,bx ; We can safely stick it in DS since we're not
xor bx,bx ; using any RAM otherwise. 80 bytes per line,
mov bl,cl ; so BX=Y * 80,
xor ch,ch
shl bx,1
shl bx,1
add bx,cx
mov cl,4
shl bx,cl
mov cl,dh ; and 4 pixels per byte, so BX += Y/4
shr cl,1
shr cl,1
add bx,cx
inc ah ; Add 1 to direction to get 1 of 3 colors
mov ch,dh ; See which pixel within the byte we're
and ch,3 ; looking at
mov cl,3 ; Leftmost pixel is in highest bits
sub cl,ch
shl cl,1 ; Pixels are 2 bits wide
shl ah,cl ; Shift AH into place
or [bx],ah ; Set the pixel in video memory
jmp mloop ; Next pixel
random: xchg bx,bp ; Load RNG state into byte-addressable
xchg cx,di ; registers.
inc bl ; X++
xor bh,ch ; A ^= C
xor bh,bl ; A ^= X
add cl,bh ; B += A
mov al,cl ; C' = B
shr al,1 ; C' >>= 1
add al,ch ; C' += C
xor al,bh ; C' ^= A
mov ch,al ; C = C'
xchg bx,bp ; Restore the registers
xchg cx,di
ret
Action!
PROC Main()
INT x,w=[220],h=[190]
BYTE y,i,CH=$02FC,COLOR1=$02C5,COLOR2=$02C6
Graphics(8+16)
Color=1
COLOR1=$0C
COLOR2=$02
x=Rand(w)
y=Rand(h)
DO
i=Rand(3)
IF i=0 THEN
x==/2
y==/2
ELSEIF i=1 THEN
x=w/2+(w/2-x)/2
y=h-(h-y)/2
ELSE
x=w-(w-x)/2
y=y/2
FI
Plot((320-w)/2+x,191-y)
UNTIL CH#$FF
OD
CH=$FF
RETURN
- Output:
Screenshot from Atari 8-bit computer
Amazing Hopper
Considerar que Hopper no usa modos gráficos, y solo imprime el caracter ascii 219 achicando el tamaño de caracteres de la terminal, dado la ilusión de un modo gráfico "arcaico".
/* Chaos game - JAMBO hopper */
#include <jambo.h>
#define LIMITE 50000
Main
ancho = 700, alto = 150
x=0,y=0,color=0
vertice=0,
c=0, Let( c := Utf8(Chr(219)))
Let(x := Int(Rand(ancho)))
Let(y := Int(Rand(alto)))
mid ancho=0, Let( mid ancho:= Div(ancho,2))
Cls
i=LIMITE
Void(pixeles)
Loop
Ceil(Rand(3)), On gosub( EQ1, EQ2, EQ3 )
Set( Int(y), Int(x), color),Apndrow(pixeles)
--i
Back if (i) is not zero
Canvas-term
Cls
i=1
Iterator(++i, Leq(i,LIMITE), Colorfore([i,3]Get(pixeles)), \
Locate( [i,1]Get(pixeles), [i,2]Get(pixeles) ), Print(c) )
Pause
End
Subrutines
EQ1:
Let(x := Div(x, 2))
Let(y := Div(y, 2))
Let(color:=9), Return
EQ2:
Let(x := Add( mid ancho, Div(Sub(mid ancho, x), 2) ) )
Let(y := Sub( alto, Div( Sub(alto, y), 2 )))
Let(color:=10), Return
EQ3:
Let(x := Sub(ancho, Div( Sub(ancho, x), 2)))
Let(y := Div(y, 2))
Let(color:=4), Return
- Output:
BASIC
This should require minimal adaptation to work with any of the older Microsoft-style BASICs. Users of other dialects will need to replace lines 10 and 150 with the appropriate statements to select a graphics output mode (if necessary) and to plot a pixel at x,y in colour v; they should also add LET throughout and 170 END if their dialects require those things.
10 SCREEN 1
20 X = INT(RND(0) * 200)
30 Y = INT(RND(0) * 173)
40 FOR I=1 TO 20000
50 V = INT(RND(0) * 3) + 1
60 ON V GOTO 70,100,130
70 X = X/2
80 Y = Y/2
90 GOTO 150
100 X = 100 + (100-X)/2
110 Y = 173 - (173-Y)/2
120 GOTO 150
130 X = 200 - (200-X)/2
140 Y = Y/2
150 PSET X,Y,V
160 NEXT I
Applesoft BASIC
Adapted from the code given above.
10 HGR2
20 X = INT(RND(1) * 200)
30 Y = INT(RND(1) * 173)
40 FOR I=1 TO 20000
50 V = INT(RND(1) * 3) + 1
60 ON V GOTO 70,100,130
70 X = X/2
80 Y = Y/2
90 GOTO 150
100 X = 100 + (100-X)/2
110 Y = 173 - (173-Y)/2
120 GOTO 150
130 X = 200 - (200-X)/2
140 Y = Y/2
150 HCOLOR=V+4
160 HPLOT X,Y
170 NEXT I
BASIC256
#Chaos game
ancho = 500 : alto = 300
x = Int(Rand * ancho)
y = Int(Rand * alto)
Clg
FastGraphics
Graphsize ancho , alto
For iteracion = 1 To 30000
vertice = Int(Rand * 3) + 1
Begin Case
Case vertice = 1
x = x / 2
y = y / 2
Color red
Case vertice = 2
x = (ancho/2) + ((ancho/2)-x) / 2
y = alto - (alto-y) / 2
Color green
Case vertice = 3
x = ancho - (ancho-x) / 2
y = y / 2
Color blue
End Case
#Pset (x,y),vertice
Plot (x,y)
Next iteracion
Refresh
ImgSave "chaos_game.jpg", "jpg"
End
GW-BASIC
100 REM Chaos game
110 CLS
120 SCREEN 7 '320x200 EGA Color
130 X = INT(RND(1) * 200)
140 Y = INT(RND(1) * 173)
150 FOR I=1 TO 20000
160 V = INT(RND(1) * 3) + 1
170 ON V GOTO 180,210,240
180 X = X/2
190 Y = Y/2
200 GOTO 260
210 X = 100 + (100-X)/2
220 Y = 173 - (173-Y)/2
230 GOTO 260
240 X = 200 - (200-X)/2
250 Y = Y/2
260 PSET(X,Y),V
270 NEXT I
280 END
IS-BASIC
100 PROGRAM "ChaosGam.bas"
110 RANDOMIZE
120 GRAPHICS HIRES 4
130 LET X=RND(800):LET Y=RND(600)
140 FOR I=1 TO 20000
150 LET VERTEX=RND(3)
160 SELECT CASE VERTEX
170 CASE 0
180 LET X=X/2
190 LET Y=Y/2
200 CASE 1
210 LET X=400+(400-X)/2
220 LET Y=600-(600-Y)/2
230 CASE 2
240 LET X=800-(800-X)/2
250 LET Y=Y/2
260 END SELECT
270 SET INK VERTEX+1
280 PLOT X,Y
290 NEXT
Locomotive Basic
Adapted from the generic BASIC version. In CPCBasic this program completes in less than a second. But on a real CPC (or equivalent emulator), the same program takes over six minutes to run. So using CPCBasic is strongly advised. On CPCBasic, one can also use "mode 3" instead of mode 1 in line 10 and increase iterations to e.g. 2000000 in line 40, resulting in a higher-resolution image.
10 mode 1:randomize time:defint a-z
20 x = 640 * rnd
30 y = 400 * rnd
40 for i=1 to 20000
50 v = rnd * 2 + 1
60 on v goto 70,100,130
70 x = x/2
80 y = y/2
90 goto 150
100 x = 320 + (320-x)/2
110 y = 400 - (400-y)/2
120 goto 150
130 x = 640 - (640-x)/2
140 y = y/2
150 plot x,y,v
160 next i
MSX Basic
100 REM Chaos game
110 CLS
120 SCREEN 2
130 X = INT(RND(1) * 256)
140 Y = INT(RND(1) * 192)
150 FOR I=1 TO 20000
160 V = INT(RND(1) * 3) + 1
170 ON V GOTO 180,220,260
180 X = X/2
190 Y = Y/2
200 V = 8 'red
210 GOTO 290
220 X = 128 + (128-X)/2
230 Y = 192 - (192-Y)/2
240 V = 3 'green
250 GOTO 290
260 X = 256 - (256-X)/2
270 Y = Y/2
280 V = 7 'blue
290 PSET(X,Y),V
300 NEXT I
310 END
Sinclair ZX81 BASIC
Adapted from the other BASIC versions. Monochrome and low-resolution, of course. Works with only 1k of RAM. If you like, you can try changing line 30
to go round the loop a different number of times.
Note that ZX81 BASIC does not have an explicit computed GOTO
; we can, however, actually compute the value of an expression and then GOTO
it as a line number.
10 LET X=RND*46
20 LET Y=RND*40
30 FOR I=1 TO 5000
40 LET VERTEX=INT (RND*3)
50 GOTO 60+VERTEX*30
60 LET X=X/2
70 LET Y=Y/2
80 GOTO 140
90 LET X=23+(23-X)/2
100 LET Y=40-(40-Y)/2
110 GOTO 140
120 LET X=46-(46-X)/2
130 LET Y=Y/2
140 PLOT X,42-Y
150 NEXT I
- Output:
Screenshot here. As with most ZX81 graphics, you can obtain the very best results by making it quite small and looking at it from a long way away.
ZX Spectrum Basic
The final INK
statement sets the foreground colour back to black.
10 LET x=RND*200
20 LET y=RND*173
30 FOR i=1 TO 20000
40 LET vertex=INT (RND*3)
50 IF vertex=1 THEN GO TO 100
60 IF vertex=2 THEN GO TO 130
70 LET x=x/2
80 LET y=y/2
90 GO TO 150
100 LET x=100+(100-x)/2
110 LET y=173-(173-y)/2
120 GO TO 150
130 LET x=200-(200-x)/2
140 LET y=y/2
150 INK vertex+1
160 PLOT x,y
170 NEXT i
180 INK 0
C
Interactive code which asks the side length of the starting triangle and number of iterations as inputs, a larger number of iterations produces a more accurate approximation of the Sierpinski fractal. Requires the WinBGIm library.
#include<graphics.h>
#include<stdlib.h>
#include<stdio.h>
#include<math.h>
#include<time.h>
#define pi M_PI
int main(){
time_t t;
double side, vertices[3][3],seedX,seedY,windowSide;
int i,iter,choice;
printf("Enter triangle side length : ");
scanf("%lf",&side);
printf("Enter number of iterations : ");
scanf("%d",&iter);
windowSide = 10 + 2*side;
initwindow(windowSide,windowSide,"Sierpinski Chaos");
for(i=0;i<3;i++){
vertices[i][0] = windowSide/2 + side*cos(i*2*pi/3);
vertices[i][1] = windowSide/2 + side*sin(i*2*pi/3);
putpixel(vertices[i][0],vertices[i][1],15);
}
srand((unsigned)time(&t));
seedX = rand()%(int)(vertices[0][0]/2 + (vertices[1][0] + vertices[2][0])/4);
seedY = rand()%(int)(vertices[0][1]/2 + (vertices[1][1] + vertices[2][1])/4);
putpixel(seedX,seedY,15);
for(i=0;i<iter;i++){
choice = rand()%3;
seedX = (seedX + vertices[choice][0])/2;
seedY = (seedY + vertices[choice][1])/2;
putpixel(seedX,seedY,15);
}
getch();
closegraph();
return 0;
}
C#
using System.Diagnostics;
using System.Drawing;
namespace RosettaChaosGame
{
class Program
{
static void Main(string[] args)
{
var bm = new Bitmap(600, 600);
var referencePoints = new Point[] {
new Point(0, 600),
new Point(600, 600),
new Point(300, 81)
};
var r = new System.Random();
var p = new Point(r.Next(600), r.Next(600));
for (int count = 0; count < 10000; count++)
{
bm.SetPixel(p.X, p.Y, Color.Magenta);
int i = r.Next(3);
p.X = (p.X + referencePoints[i].X) / 2;
p.Y = (p.Y + referencePoints[i].Y) / 2;
}
const string filename = "Chaos Game.png";
bm.Save(filename);
Process.Start(filename);
}
}
}
C++
This program will generate the Sierpinski Triangle and save it to your hard drive.
#include <windows.h>
#include <ctime>
#include <string>
#include <iostream>
const int BMP_SIZE = 600;
class myBitmap {
public:
myBitmap() : pen( NULL ), brush( NULL ), clr( 0 ), wid( 1 ) {}
~myBitmap() {
DeleteObject( pen ); DeleteObject( brush );
DeleteDC( hdc ); DeleteObject( bmp );
}
bool create( int w, int h ) {
BITMAPINFO bi;
ZeroMemory( &bi, sizeof( bi ) );
bi.bmiHeader.biSize = sizeof( bi.bmiHeader );
bi.bmiHeader.biBitCount = sizeof( DWORD ) * 8;
bi.bmiHeader.biCompression = BI_RGB;
bi.bmiHeader.biPlanes = 1;
bi.bmiHeader.biWidth = w;
bi.bmiHeader.biHeight = -h;
HDC dc = GetDC( GetConsoleWindow() );
bmp = CreateDIBSection( dc, &bi, DIB_RGB_COLORS, &pBits, NULL, 0 );
if( !bmp ) return false;
hdc = CreateCompatibleDC( dc );
SelectObject( hdc, bmp );
ReleaseDC( GetConsoleWindow(), dc );
width = w; height = h;
return true;
}
void clear( BYTE clr = 0 ) {
memset( pBits, clr, width * height * sizeof( DWORD ) );
}
void setBrushColor( DWORD bClr ) {
if( brush ) DeleteObject( brush );
brush = CreateSolidBrush( bClr );
SelectObject( hdc, brush );
}
void setPenColor( DWORD c ) {
clr = c; createPen();
}
void setPenWidth( int w ) {
wid = w; createPen();
}
void saveBitmap( std::string path ) {
BITMAPFILEHEADER fileheader;
BITMAPINFO infoheader;
BITMAP bitmap;
DWORD wb;
GetObject( bmp, sizeof( bitmap ), &bitmap );
DWORD* dwpBits = new DWORD[bitmap.bmWidth * bitmap.bmHeight];
ZeroMemory( dwpBits, bitmap.bmWidth * bitmap.bmHeight * sizeof( DWORD ) );
ZeroMemory( &infoheader, sizeof( BITMAPINFO ) );
ZeroMemory( &fileheader, sizeof( BITMAPFILEHEADER ) );
infoheader.bmiHeader.biBitCount = sizeof( DWORD ) * 8;
infoheader.bmiHeader.biCompression = BI_RGB;
infoheader.bmiHeader.biPlanes = 1;
infoheader.bmiHeader.biSize = sizeof( infoheader.bmiHeader );
infoheader.bmiHeader.biHeight = bitmap.bmHeight;
infoheader.bmiHeader.biWidth = bitmap.bmWidth;
infoheader.bmiHeader.biSizeImage = bitmap.bmWidth * bitmap.bmHeight * sizeof( DWORD );
fileheader.bfType = 0x4D42;
fileheader.bfOffBits = sizeof( infoheader.bmiHeader ) + sizeof( BITMAPFILEHEADER );
fileheader.bfSize = fileheader.bfOffBits + infoheader.bmiHeader.biSizeImage;
GetDIBits( hdc, bmp, 0, height, ( LPVOID )dwpBits, &infoheader, DIB_RGB_COLORS );
HANDLE file = CreateFile( path.c_str(), GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL );
WriteFile( file, &fileheader, sizeof( BITMAPFILEHEADER ), &wb, NULL );
WriteFile( file, &infoheader.bmiHeader, sizeof( infoheader.bmiHeader ), &wb, NULL );
WriteFile( file, dwpBits, bitmap.bmWidth * bitmap.bmHeight * 4, &wb, NULL );
CloseHandle( file );
delete [] dwpBits;
}
HDC getDC() const { return hdc; }
int getWidth() const { return width; }
int getHeight() const { return height; }
private:
void createPen() {
if( pen ) DeleteObject( pen );
pen = CreatePen( PS_SOLID, wid, clr );
SelectObject( hdc, pen );
}
HBITMAP bmp; HDC hdc;
HPEN pen; HBRUSH brush;
void *pBits; int width, height, wid;
DWORD clr;
};
class chaos {
public:
void start() {
POINT org;
fillPts(); initialPoint( org ); initColors();
int cnt = 0, i;
bmp.create( BMP_SIZE, BMP_SIZE );
bmp.clear( 255 );
while( cnt++ < 1000000 ) {
switch( rand() % 6 ) {
case 0: case 3: i = 0; break;
case 1: case 5: i = 1; break;
case 2: case 4: i = 2;
}
setPoint( org, myPoints[i], i );
}
// --- edit this path --- //
bmp.saveBitmap( "F:/st.bmp" );
}
private:
void setPoint( POINT &o, POINT v, int i ) {
POINT z;
o.x = ( o.x + v.x ) >> 1; o.y = ( o.y + v.y ) >> 1;
SetPixel( bmp.getDC(), o.x, o.y, colors[i] );
}
void fillPts() {
int a = BMP_SIZE - 1;
myPoints[0].x = BMP_SIZE >> 1; myPoints[0].y = 0;
myPoints[1].x = 0; myPoints[1].y = myPoints[2].x = myPoints[2].y = a;
}
void initialPoint( POINT& p ) {
p.x = ( BMP_SIZE >> 1 ) + rand() % 2 ? rand() % 30 + 10 : -( rand() % 30 + 10 );
p.y = ( BMP_SIZE >> 1 ) + rand() % 2 ? rand() % 30 + 10 : -( rand() % 30 + 10 );
}
void initColors() {
colors[0] = RGB( 255, 0, 0 );
colors[1] = RGB( 0, 255, 0 );
colors[2] = RGB( 0, 0, 255 );
}
myBitmap bmp;
POINT myPoints[3];
COLORREF colors[3];
};
int main( int argc, char* argv[] ) {
srand( ( unsigned )time( 0 ) );
chaos c; c.start();
return 0;
}
Common Lisp
(defpackage #:chaos
(:use #:cl
#:opticl))
(in-package #:chaos)
(defparameter *image-size* 600)
(defparameter *margin* 50)
(defparameter *edge-size* (- *image-size* *margin* *margin*))
(defparameter *iterations* 1000000)
(defun chaos ()
(let ((image (make-8-bit-rgb-image *image-size* *image-size* :initial-element 255))
(a (list (- *image-size* *margin*) *margin*))
(b (list (- *image-size* *margin*) (- *image-size* *margin*)))
(c (list (- *image-size* *margin* (round (* (tan (/ pi 3)) *edge-size*) 2))
(round *image-size* 2)))
(point (list (+ (random *edge-size*) *margin*)
(+ (random *edge-size*) *margin*))))
(dotimes (i *iterations*)
(let ((ref (ecase (random 3)
(0 a)
(1 b)
(2 c))))
(setf point (list (round (+ (first point) (first ref)) 2)
(round (+ (second point) (second ref)) 2))))
(setf (pixel image (first point) (second point))
(values 255 0 0)))
(write-png-file "chaos.png" image)))
Delphi
unit main;
interface
uses
Winapi.Windows, System.Classes, Vcl.Graphics, Vcl.Forms, Vcl.ExtCtrls,
System.Generics.Collections;
type
TColoredPoint = record
P: TPoint;
Index: Integer;
constructor Create(PX, PY: Integer; ColorIndex: Integer);
end;
TForm1 = class(TForm)
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure FormPaint(Sender: TObject);
private
Buffer: TBitmap;
Points: array[0..2] of TPoint;
Stack: TStack<TColoredPoint>;
Tick: TTimer;
procedure Run(Sender: TObject);
procedure AddPoint;
function HalfWayPoint(a: TColoredPoint; b: TPoint; index: Integer): TColoredPoint;
{ Private declarations }
public
{ Public declarations }
end;
const
Colors: array[0..2] of Tcolor = (clRed, clGreen, clBlue);
var
Form1: TForm1;
implementation
{$R *.dfm}
{ TColoredPoint }
constructor TColoredPoint.Create(PX, PY: Integer; ColorIndex: Integer);
begin
self.P := Tpoint.Create(PX, PY);
self.Index := ColorIndex;
end;
{ TForm1 }
procedure TForm1.FormCreate(Sender: TObject);
begin
Buffer := TBitmap.Create;
Stack := TStack<TColoredPoint>.Create;
Tick := TTimer.Create(nil);
Caption := 'Chaos Game';
DoubleBuffered := True;
ClientHeight := 640;
ClientWidth := 640;
var margin := 60;
var size := ClientWidth - 2 * margin;
Points[0] := TPoint.Create(ClientWidth div 2, margin);
Points[1] := TPoint.Create(margin, size);
Points[2] := TPoint.Create(margin + size, size);
Stack.Push(TColoredPoint.Create(-1, -1, Colors[0]));
Tick.Interval := 10;
Tick.OnTimer := Run;
end;
function TForm1.HalfWayPoint(a: TColoredPoint; b: TPoint; index: Integer): TColoredPoint;
begin
Result := TColoredPoint.Create((a.p.X + b.x) div 2, (a.p.y + b.y) div 2, index);
end;
procedure TForm1.AddPoint;
begin
var colorIndex := Random(3);
var p1 := Stack.Peek;
var p2 := Points[colorIndex];
Stack.Push(HalfWayPoint(p1, p2, colorIndex));
end;
procedure TForm1.Run(Sender: TObject);
begin
if Stack.Count < 50000 then
begin
for var i := 0 to 999 do
AddPoint;
Invalidate;
end;
end;
procedure TForm1.FormDestroy(Sender: TObject);
begin
Tick.Free;
Buffer.Free;
Stack.Free;
end;
procedure TForm1.FormPaint(Sender: TObject);
begin
for var p in Stack do
begin
with Canvas do
begin
Pen.Color := Colors[p.Index];
Brush.Color := Colors[p.Index];
Brush.Style := bsSolid;
Ellipse(p.p.X - 1, p.p.y - 1, p.p.X + 1, p.p.y + 1);
end;
end;
end;
end.
EasyLang
color 900
x[] = [ 0 100 50 ]
y[] = [ 7 7 93 ]
x = randomf * 100
y = randomf * 100
for i = 1 to 100000
move x y
rect 0.3 0.3
h = random 3
x = (x + x[h]) / 2
y = (y + y[h]) / 2
.
Emacs Lisp
; Chaos game
(defun make-array (size)
"Create an empty array with size*size elements."
(setq m-array (make-vector size nil))
(dotimes (i size)
(setf (aref m-array i) (make-vector size 0)))
m-array)
(defun chaos-next (p)
"Return the next coordinates."
(let* ((points (list (cons 1 0) (cons -1 0) (cons 0 (sqrt 3))))
(v (elt points (random 3)))
(x (car p))
(y (cdr p))
(x2 (car v))
(y2 (cdr v)))
(setq nx (/ (+ x x2) 2.0))
(setq ny (/ (+ y y2) 2.0))
(cons nx ny)))
(defun chaos-lines (arr size)
"Turn array into a string for XPM conversion."
(setq all "")
(dotimes (y size)
(setq line "")
(dotimes (x size)
(setq line (concat line (if (= (elt (elt arr y) x) 1) "*" "."))))
(setq all (concat all "\"" line "\",\n")))
all)
(defun chaos-show (arr size)
"Convert size*size array to XPM image and show it."
(insert-image (create-image (concat (format "/* XPM */
static char * chaos[] = {
\"%i %i 2 1\",
\". c #000000\",
\"* c #00ff00\"," size size)
(chaos-lines arr size) "};") 'xpm t)))
(defun chaos (size scale max-iter)
"Play the chaos game."
(let ((arr (make-array size))
(p (cons 0 0)))
(dotimes (it max-iter)
(setq p (chaos-next p))
(setq x (round (+ (/ size 2) (* scale (car p)))))
(setq y (round (+ (- size 10) (* -1 scale (cdr p)))))
(setf (elt (elt arr y) x) 1))
(chaos-show arr size)))
(chaos 400 180 50000)
F#
open System.Windows.Forms
open System.Drawing
open System
let sz = 300
let polygon = [Point(sz/2, int (float sz*(1.0-sin(Math.PI/3.0)))); Point(0, sz-1); Point(sz-1, sz-1)]
let bmp = new Bitmap(sz, sz)
let paint (p: Point) = bmp.SetPixel(p.X, p.Y, Color.Black)
let random = Random()
let seed = Point(int (random.NextDouble() * float sz), int (random.NextDouble() * float sz))
let midpoint (p1: Point) (p2: Point) = Point((p1.X + p2.X) / 2, (p1.Y + p2.Y) / 2)
let randomVertex() = polygon.[random.Next(polygon.Length)]
let step p _ =
paint p
midpoint p (randomVertex())
Seq.init 100000 id |> Seq.fold step seed
let f = new Form()
f.ClientSize <- bmp.Size
f.Paint.Add (fun args -> args.Graphics.DrawImage(bmp, Point(0, 0)))
f.Show()
Forth
#! /usr/bin/gforth
\ Chaos Game
require random.fs
\ initialize the random number generator with a time-dependent seed
utime drop seed !
\ parses a number from a string
: parse-number ( -- n )
s>number? invert throw drop
;
\ parse the width of the triangle, the number of steps and the output filename from the command-line
." width: " next-arg parse-number dup . cr CONSTANT WIDTH
." steps: " next-arg parse-number dup . cr CONSTANT STEPS
." output: " next-arg 2dup type cr 2CONSTANT OUT-FILE
\ height of the triangle: height = sqrt(3) / 2 * width
WIDTH 0 d>f 3e fsqrt f* 2e f/ fround f>d drop CONSTANT HEIGHT \ height of the triangle: height = sqrt(3) / 2 * width
\ coordinates of the three corners of the triangle
0 CONSTANT X1
0 CONSTANT Y1
WIDTH CONSTANT X2
0 CONSTANT Y2
WIDTH 2 / CONSTANT X3
HEIGHT CONSTANT Y3
\ minimal and maximal x and y coordinates
X1 X2 X3 min min CONSTANT XMIN
X1 X2 X3 max max CONSTANT XMAX
Y1 Y2 Y3 min min CONSTANT YMIN
Y1 Y2 Y3 max max CONSTANT YMAX
XMAX XMIN - 1+ CONSTANT XSIZE
YMAX YMIN - 1+ CONSTANT YSIZE
\ initialize array for all possible points
XSIZE YSIZE *
dup CREATE ARR cells allot
ARR swap cells erase
\ address of the cell corresponding to point (x,y)
: addr? ( x y -- addr )
XSIZE * + cells ARR +
;
\ scalar product of the 2-vectors
: sp ( x1 y1 x2 y2 -- n )
swap >r * r> rot * +
;
\ is the point (x,y) on the left of the ray from (px,py) to (qx,qy)?
: left? ( px py qx qy x y -- f )
{ px py qx qy x y }
py qy -
qx px -
x px -
y py -
sp 0>=
;
\ is the point (x,y) in the triangle?
: in-triangle? ( x y -- f )
{ x y }
X1 Y1 X2 Y2 x y left?
X2 Y2 X3 Y3 x y left?
X3 Y3 X1 Y1 x y left?
and and
;
\ generates a random number in [a,b]
: random-in-range ( a b -- n )
over - 1+ random +
;
\ generates a random point in the triangle
: random-in-triangle ( -- x y )
0 0
BEGIN
2drop
XMIN XMAX random-in-range
YMIN YMAX random-in-range
2dup in-triangle?
UNTIL
;
\ finds the middle of to points (px,py) and (qx,qy)
: middle ( px py qx qy -- x y )
swap -rot
+ 2/ -rot
+ 2/ swap
;
\ plays the chaos game for a number of steps
: game ( n -- )
random-in-triangle
rot
0 DO
2dup addr? true swap !
3 random CASE
0 OF X1 Y1 ENDOF
1 OF X2 Y2 ENDOF
2 OF X3 Y3 ENDOF
ENDCASE
middle
LOOP
2drop
;
\ writes the result in pbm-format
: write-pbm ( -- )
." P1" cr
XSIZE . YSIZE . cr
YMIN 1- YMAX -DO
XMAX 1+ XMIN DO
i j addr? @ IF 1 . ELSE 0 . THEN
LOOP
cr
1 -LOOP
;
\ writes the result to a pbm-file
: to-pbm ( c-addr u -- )
w/o create-file throw ['] write-pbm over outfile-execute close-file throw
;
\ play the game and save the result
STEPS game OUT-FILE to-pbm
bye
- Output:
playing a million steps on a triangle with base length 1000:
./chaos-game.fs 1000 1000000 chao-game.pbm:]
[1]
Fortran
This FORTRAN code creates an output file which can be drawn with gnuplot.
PROGRAM CHAOS
IMPLICIT NONE
REAL, DIMENSION(3):: KA, KN ! Koordinates old/new
REAL, DIMENSION(3):: DA, DB, DC ! Triangle
INTEGER:: I, Z
INTEGER, PARAMETER:: UT = 17
! Define corners of triangle
DA = (/ 0., 0., 0. /)
DB = (/ 600., 0., 0. /)
DC = (/ 500., 0., 400. /)
! Define starting point
KA = (/ 500., 0., 100. /)
OPEN (UNIT = UT, FILE = 'aus.csv')
DO I=1, 1000000
Z = ZAHL()
WRITE (UT, '(3(F12.6, ";"))') KA
SELECT CASE (Z)
CASE (1)
CALL MITTELP(KA, DA, KN)
CASE (2)
CALL MITTELP(KA, DB, KN)
CASE (3)
CALL MITTELP(KA, DC, KN)
END SELECT
KA = KN
END DO
CLOSE (UT)
CONTAINS
! Calculates center of two points
SUBROUTINE MITTELP(P1, P2, MP)
REAL, INTENT(IN), DIMENSION(3):: P1, P2
REAL, INTENT(OUT), DIMENSION(3):: MP
MP = (P1 + P2) / 2.
END SUBROUTINE MITTELP
! Returns random number
INTEGER FUNCTION ZAHL()
REAL:: ZZ
CALL RANDOM_NUMBER(ZZ)
ZZ = ZZ * 3.
ZAHL = FLOOR(ZZ) + 1
IF (ZAHL .GT. 3) ZAHL = 3
END FUNCTION ZAHL
END PROGRAM CHAOS
Gnuplot Code to draw file:
set terminal jpeg enhanced size 1600,960
set output 'chaos.jpg'
set nokey
set style line 1 lc rgb '#0060ad' lt 1 lw 3 pt 7 ps 0.3
plot 'aus.csv' using 1:3 with points ls 1 notitle
FreeBASIC
' Chaos game
Const ancho = 320, alto = 240
Dim As Integer x, y, iteracion, vertice
x = Int(Rnd * ancho)
y = Int(Rnd * alto)
Screenres ancho, alto, 8
Cls
For iteracion = 1 To 30000
vertice = Int(Rnd * 3) + 1
Select Case vertice
Case 1
x = x / 2
y = y / 2
vertice = 4 'red
Case 2
x = (ancho/2) + ((ancho/2)-x) / 2
y = alto - (alto-y) / 2
vertice = 2 'green
Case 3
x = ancho - (ancho-x) / 2
y = y / 2
vertice = 1 'blue
End Select
Pset (x,y),vertice
Next iteracion
Sleep
End
Fōrmulæ
Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text. Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for storage and transfer purposes more than visualization and edition.
Programs in Fōrmulæ are created/edited online in its website.
In this page you can see and run the program(s) related to this task and their results. You can also change either the programs or the parameters they are called with, for experimentation, but remember that these programs were created with the main purpose of showing a clear solution of the task, and they generally lack any kind of validation.
Solution
Test case. Sierpiński triangle
FutureBasic
void local fn DoIt
long w = 460, h = 400, i, x = rnd(w), y = rnd(h)
for i = 1 to 50000
select ( rnd(3)-1 )
case 1
x = w/2+(w/2-x)/2
y = h-(h-y)/2
pen ,fn ColorRed
case 2
x = w-(w-x)/2
y = y/2
pen ,fn ColorGreen
case else
x = x/2
y = y/2
pen ,fn ColorBlue
end select
line x-0.5,y-0.5,x+0.5,y+0.5
next
end fn
window 1, @"Chaos Game", (0,0,460,400)
WindowSetBackgroundColor( 1, fn ColorWhite )
fn DoIt
HandleEvents
GML
Create two new objects and rename them to "Game" and "Point" respectively.
"Game" Object Create Event:
offset = 32; //Distance from triangle vertices to edges of window
//triangle vertex coordinates
x1 = room_width / 2;
y1 = offset;
x2 = room_width - offset;
y2 = room_height - offset;
x3 = offset;
y3 = room_height - offset;
//Coords of randomly chosen vertex (set to 0 to start, will automatically be set in step event)
vx = 0;
vy = 0;
//Coords of current point
px = random(room_width);
py = random(room_height);
//Make sure the point is within the triangle
while(!point_in_triangle(px, py, x1, y1, x2, y2, x3, y3))
{
px = random(room_width);
py = random(room_height);
}
vertex = 0; //This determines which vertex coords are chosen
max_iterations = 8000;
step = true; //Used with the interval alarm to change the step speed
step_count = 0;
interval = 1; //Number of frames between each step. 1 = no delay
alarm[0] = interval;
"Game" Object Step Event:
if(step and step_count < max_iterations) //Wait for alarm to finish, or stop completely
{ // if the desired number of iterations is hit
vertex = choose(1, 2, 3);
step = false;
alarm[0] = interval;
switch(vertex)
{
case 1:
vx = x1;
vy = y1;
break;
case 2:
vx = x2;
vy = y2;
break;
case 3:
vx = x3;
vy = y3;
break;
}
var dir = point_direction(px, py, vx, vy);
var mid_dist = point_distance(px, py, vx, vy);
var midx = px + lengthdir_x(mid_dist / 2, dir);
var midy = py + lengthdir_y(mid_dist / 2, dir);
instance_create_layer(midx, midy, "Instances", Point);
px = midx;
py = midy;
step_count++;
}
"Game" Object Draw Event:
if(step_count < max_iterations)
{
draw_triangle(x1, y1, x2, y2, x3, y3, true);
draw_circle(px, py, 1, false);
draw_line(px, py, vx, vy);
}
"Game" Object Alarm 0:
step = true;
alarm[0] = interval;
"Point" Object Draw Event:
draw_circle(x, y, 5, false);
Gnuplot
## Chaos Game (Sierpinski triangle) 2/16/17 aev
reset
fn="ChGS3Gnu1"; clr='"red"';
ttl="Chaos Game (Sierpinski triangle)"
sz=600; sz1=sz/2; sz2=sz1*sqrt(3);
x=y=xf=yf=v=0;
dfn=fn.".dat"; ofn=fn.".png";
set terminal png font arial 12 size 640,640
set print dfn append
set output ofn
unset border; unset xtics; unset ytics; unset key;
set size square
set title ttl font "Arial:Bold,12"
lim=30000; max=100; x=y=xw=yw=p=0;
randgp(top) = floor(rand(0)*top)
x=randgp(sz); y=randgp(sz2);
do for [i=1:lim] {
v=randgp(3);
if (v==0) {x=x/2; y=y/2}
if (v==1) {x=sz1+(sz1-x)/2; y=sz2-(sz2-y)/2}
if (v==2) {x=sz-(sz-x)/2; y=y/2}
xf=floor(x); yf=floor(y);
if(!(xf<1||xf>sz||yf<1||yf>sz)) {print xf," ",yf};
}
plot dfn using 1:2 with points pt 7 ps 0.5 lc @clr
set output
unset print
- Output:
File: ChGS3Gnu1.png
Go
This writes a simple GIF animation of the method.
package main
import (
"fmt"
"image"
"image/color"
"image/draw"
"image/gif"
"log"
"math"
"math/rand"
"os"
"time"
)
var bwPalette = color.Palette{
color.Transparent,
color.White,
color.RGBA{R: 0xff, A: 0xff},
color.RGBA{G: 0xff, A: 0xff},
color.RGBA{B: 0xff, A: 0xff},
}
func main() {
const (
width = 160
frames = 100
pointsPerFrame = 50
delay = 100 * time.Millisecond
filename = "chaos_anim.gif"
)
var tan60 = math.Sin(math.Pi / 3)
height := int(math.Round(float64(width) * tan60))
b := image.Rect(0, 0, width, height)
vertices := [...]image.Point{
{0, height}, {width, height}, {width / 2, 0},
}
// Make a filled triangle.
m := image.NewPaletted(b, bwPalette)
for y := b.Min.Y; y < b.Max.Y; y++ {
bg := int(math.Round(float64(b.Max.Y-y) / 2 / tan60))
for x := b.Min.X + bg; x < b.Max.X-bg; x++ {
m.SetColorIndex(x, y, 1)
}
}
// Pick starting point
var p image.Point
rand.Seed(time.Now().UnixNano())
p.Y = rand.Intn(height) + b.Min.Y
p.X = rand.Intn(width) + b.Min.X // TODO: make within triangle
anim := newAnim(frames, delay)
addFrame(anim, m)
for i := 1; i < frames; i++ {
for j := 0; j < pointsPerFrame; j++ {
// Pick a random vertex
vi := rand.Intn(len(vertices))
v := vertices[vi]
// Move p halfway there
p.X = (p.X + v.X) / 2
p.Y = (p.Y + v.Y) / 2
m.SetColorIndex(p.X, p.Y, uint8(2+vi))
}
addFrame(anim, m)
}
if err := writeAnim(anim, filename); err != nil {
log.Fatal(err)
}
fmt.Printf("wrote to %q\n", filename)
}
// Stuff for making a simple GIF animation.
func newAnim(frames int, delay time.Duration) *gif.GIF {
const gifDelayScale = 10 * time.Millisecond
g := &gif.GIF{
Image: make([]*image.Paletted, 0, frames),
Delay: make([]int, 1, frames),
}
g.Delay[0] = int(delay / gifDelayScale)
return g
}
func addFrame(anim *gif.GIF, m *image.Paletted) {
b := m.Bounds()
dst := image.NewPaletted(b, m.Palette)
draw.Draw(dst, b, m, image.ZP, draw.Src)
anim.Image = append(anim.Image, dst)
if len(anim.Delay) < len(anim.Image) {
anim.Delay = append(anim.Delay, anim.Delay[0])
}
}
func writeAnim(anim *gif.GIF, filename string) error {
f, err := os.Create(filename)
if err != nil {
return err
}
err = gif.EncodeAll(f, anim)
if cerr := f.Close(); err == nil {
err = cerr
}
return err
}
Groovy
import javafx.animation.AnimationTimer
import javafx.application.Application
import javafx.scene.Scene
import javafx.scene.layout.Pane
import javafx.scene.paint.Color
import javafx.scene.shape.Circle
import javafx.stage.Stage
class ChaosGame extends Application {
final randomNumberGenerator = new Random()
@Override
void start(Stage primaryStage) {
primaryStage.title = 'Chaos Game'
primaryStage.scene = getScene()
primaryStage.show()
}
def getScene() {
def colors = [Color.RED, Color.GREEN, Color.BLUE]
final width = 640, height = 640, margin = 60
final size = width - 2 * margin
def points = [
new Circle(width / 2, margin, 1, colors[0]),
new Circle(margin, size, 1, colors[1]),
new Circle(margin + size, size, 1, colors[2])
]
def pane = new Pane()
pane.style = '-fx-background-color: black;'
points.each {
pane.children.add it
}
def currentPoint = new Circle().with {
centerX = randomNumberGenerator.nextInt(size - margin) + margin
centerY = randomNumberGenerator.nextInt(size - margin) + margin
it
}
({
def newPoint = generatePoint(currentPoint, points, colors)
pane.children.add newPoint
currentPoint = newPoint
} as AnimationTimer).start()
new Scene(pane, width, height)
}
def generatePoint(currentPoint, points, colors) {
def selection = randomNumberGenerator.nextInt 3
new Circle().with {
centerX = (currentPoint.centerX + points[selection].centerX) / 2
centerY = (currentPoint.centerY + points[selection].centerY) / 2
radius = 1
fill = colors[selection]
it
}
}
static main(args) {
launch(ChaosGame)
}
}
Haskell
import Control.Monad (replicateM)
import Control.Monad.Random (fromList)
type Point = (Float,Float)
type Transformations = [(Point -> Point, Float)] -- weighted transformations
-- realization of the game for given transformations
gameOfChaos :: MonadRandom m => Int -> Transformations -> Point -> m [Point]
gameOfChaos n transformations x = iterateA (fromList transformations) x
where iterateA f x = scanr ($) x <$> replicateM n f
Some transformations:
-- the Sierpinsky`s triangle
triangle = [ (mid (0, 0), 1)
, (mid (1, 0), 1)
, (mid (0.5, 0.86), 1) ]
where mid (a,b) (x,y) = ((a+x)/2, (b+y)/2)
-- the Barnsley's fern
fern = [(f1, 1), (f2, 85), (f3, 7), (f4, 7)]
where f1 (x,y) = (0, 0.16*y)
f2 (x,y) = (0.85*x + 0.04*y, -0.04*x + 0.85*y + 1.6)
f3 (x,y) = (0.2*x - 0.26*y, 0.23*x + 0.22*y + 1.6)
f4 (x,y) = (-0.15*x + 0.28*y, 0.26*x + 0.24*y + 0.44)
-- A dragon curve
dragon = [(f1, 1), (f2, 1)]
where f1 (x,y) = (0.5*x - 0.5*y, 0.5*x + 0.5*y)
f2 (x,y) = (-0.5*x + 0.5*y+1, -0.5*x - 0.5*y)
Drawing the result:
import Control.Monad.Random (getRandomR)
import Graphics.Gloss
main = do x <- getRandomR (0,1)
y <- getRandomR (0,1)
pts <- gameOfChaos 500000 triangle (x,y)
display window white $ foldMap point pts
where window = InWindow "Game of Chaos" (400,400) (0,0)
point (x,y) = translate (100*x) (100*y) $ circle 0.02
J
Note 'plan, Working in complex plane'
Make an equilateral triangle.
Make a list of N targets
Starting with a random point near the triangle,
iteratively generate new points.
plot the new points.
j has a particularly rich notation for numbers.
1ad_90 specifies a complex number with radius 1
at an angle of negative 90 degrees.
2p1 is 2 times (pi raised to the first power).
)
N=: 3000
require'plot'
TAU=: 2p1 NB. tauday.com
mean=: +/ % #
NB. equilateral triangle with vertices on unit circle
NB. rotated for fun.
TRIANGLE=: *(j./2 1 o.(TAU%6)*?0)*1ad_90 1ad150 1ad30
TARGETS=: (N ?@:# 3) { TRIANGLE
NB. start on unit circle
START=: j./2 1 o.TAU*?0
NEW_POINTS=: (mean@:(, {.) , ])/ TARGETS , START
'marker'plot NEW_POINTS
Java
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import javax.swing.*;
import javax.swing.Timer;
public class ChaosGame extends JPanel {
static class ColoredPoint extends Point {
int colorIndex;
ColoredPoint(int x, int y, int idx) {
super(x, y);
colorIndex = idx;
}
}
Stack<ColoredPoint> stack = new Stack<>();
Point[] points = new Point[3];
Color[] colors = {Color.red, Color.green, Color.blue};
Random r = new Random();
public ChaosGame() {
Dimension dim = new Dimension(640, 640);
setPreferredSize(dim);
setBackground(Color.white);
int margin = 60;
int size = dim.width - 2 * margin;
points[0] = new Point(dim.width / 2, margin);
points[1] = new Point(margin, size);
points[2] = new Point(margin + size, size);
stack.push(new ColoredPoint(-1, -1, 0));
new Timer(10, (ActionEvent e) -> {
if (stack.size() < 50_000) {
for (int i = 0; i < 1000; i++)
addPoint();
repaint();
}
}).start();
}
private void addPoint() {
try {
int colorIndex = r.nextInt(3);
Point p1 = stack.peek();
Point p2 = points[colorIndex];
stack.add(halfwayPoint(p1, p2, colorIndex));
} catch (EmptyStackException e) {
e.printStackTrace();
}
}
void drawPoints(Graphics2D g) {
for (ColoredPoint p : stack) {
g.setColor(colors[p.colorIndex]);
g.fillOval(p.x, p.y, 1, 1);
}
}
ColoredPoint halfwayPoint(Point a, Point b, int idx) {
return new ColoredPoint((a.x + b.x) / 2, (a.y + b.y) / 2, idx);
}
@Override
public void paintComponent(Graphics gg) {
super.paintComponent(gg);
Graphics2D g = (Graphics2D) gg;
g.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);
drawPoints(g);
}
public static void main(String[] args) {
SwingUtilities.invokeLater(() -> {
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setTitle("Chaos Game");
f.setResizable(false);
f.add(new ChaosGame(), BorderLayout.CENTER);
f.pack();
f.setLocationRelativeTo(null);
f.setVisible(true);
});
}
}
JavaScript
Plots the fractal on an HTML canvas element.
<html>
<head>
<meta charset="UTF-8">
<title>Chaos Game</title>
</head>
<body>
<p>
<canvas id="sierpinski" width=400 height=346></canvas>
</p>
<p>
<button onclick="chaosGame()">Click here to see a Sierpiński triangle</button>
</p>
<script>
function chaosGame() {
var canv = document.getElementById('sierpinski').getContext('2d');
var x = Math.random() * 400;
var y = Math.random() * 346;
for (var i=0; i<30000; i++) {
var vertex = Math.floor(Math.random() * 3);
switch(vertex) {
case 0:
x = x / 2;
y = y / 2;
canv.fillStyle = 'green';
break;
case 1:
x = 200 + (200 - x) / 2
y = 346 - (346 - y) / 2
canv.fillStyle = 'red';
break;
case 2:
x = 400 - (400 - x) / 2
y = y / 2;
canv.fillStyle = 'blue';
}
canv.fillRect(x,y, 1,1);
}
}
</script>
</body>
</html>
Julia
Run in REPL.
using Luxor
function chaos()
width = 1000
height = 1000
Drawing(width, height, "./chaos.png")
t = Turtle(0, 0, true, 0, (0., 0., 0.))
x = rand(1:width)
y = rand(1:height)
for l in 1:30_000
v = rand(1:3)
if v == 1
x /= 2
y /= 2
elseif v == 2
x = width/2 + (width/2 - x)/2
y = height - (height - y)/2
else
x = width - (width - x)/2
y = y / 2
end
Reposition(t, x, height-y)
Circle(t, 3)
end
end
chaos()
finish()
preview()
Kotlin
//Version 1.1.51
import java.awt.*
import java.util.Stack
import java.util.Random
import javax.swing.JPanel
import javax.swing.JFrame
import javax.swing.Timer
import javax.swing.SwingUtilities
class ChaosGame : JPanel() {
class ColoredPoint(x: Int, y: Int, val colorIndex: Int) : Point(x, y)
val stack = Stack<ColoredPoint>()
val points: List<Point>
val colors = listOf(Color.red, Color.green, Color.blue)
val r = Random()
init {
val dim = Dimension(640, 640)
preferredSize = dim
background = Color.white
val margin = 60
val size = dim.width - 2 * margin
points = listOf(
Point(dim.width / 2, margin),
Point(margin, size),
Point(margin + size, size)
)
stack.push(ColoredPoint(-1, -1, 0))
Timer(10) {
if (stack.size < 50_000) {
for (i in 0 until 1000) addPoint()
repaint()
}
}.start()
}
private fun addPoint() {
val colorIndex = r.nextInt(3)
val p1 = stack.peek()
val p2 = points[colorIndex]
stack.add(halfwayPoint(p1, p2, colorIndex))
}
fun drawPoints(g: Graphics2D) {
for (cp in stack) {
g.color = colors[cp.colorIndex]
g.fillOval(cp.x, cp.y, 1, 1)
}
}
fun halfwayPoint(a: Point, b: Point, idx: Int) =
ColoredPoint((a.x + b.x) / 2, (a.y + b.y) / 2, idx)
override fun paintComponent(gg: Graphics) {
super.paintComponent(gg)
val g = gg as Graphics2D
g.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON)
drawPoints(g)
}
}
fun main(args: Array<String>) {
SwingUtilities.invokeLater {
val f = JFrame()
with (f) {
defaultCloseOperation = JFrame.EXIT_ON_CLOSE
title = "Chaos Game"
isResizable = false
add(ChaosGame(), BorderLayout.CENTER)
pack()
setLocationRelativeTo(null)
isVisible = true
}
}
}
- Output:
Same as Java entry
Logo
to chaosgame :sidelength :iterations
make "width :sidelength
make "height (:sidelength/2 * sqrt 3)
make "x (random :width)
make "y (random :height)
repeat :iterations [
make "vertex (random 3)
if :vertex = 0 [
make "x (:x / 2)
make "y (:y / 2)
setpencolor "green
]
if :vertex = 1 [
make "x (:width / 2 + ((:width / 2 - :x) / 2))
make "y (:height - ((:height - :y) / 2))
setpencolor "red
]
if :vertex = 2 [
make "x (:width - ((:width - :x) / 2))
make "y (:y / 2)
setpencolor "blue
]
penup
setxy (:x - :width / 2) (:y - :height / 2)
pendown
forward 1
]
hideturtle
end
Lua
Needs LÖVE 2d Engine
math.randomseed( os.time() )
colors, orig = { { 255, 0, 0 }, { 0, 255, 0 }, { 0, 0, 255 } }, {}
function love.load()
wid, hei = love.graphics.getWidth(), love.graphics.getHeight()
orig[1] = { wid / 2, 3 }
orig[2] = { 3, hei - 3 }
orig[3] = { wid - 3, hei - 3 }
local w, h = math.random( 10, 40 ), math.random( 10, 40 )
if math.random() < .5 then w = -w end
if math.random() < .5 then h = -h end
orig[4] = { wid / 2 + w, hei / 2 + h }
canvas = love.graphics.newCanvas( wid, hei )
love.graphics.setCanvas( canvas ); love.graphics.clear()
love.graphics.setColor( 255, 255, 255 )
love.graphics.points( orig )
love.graphics.setCanvas()
end
function love.draw()
local iter = 100 --> make this number bigger to speed up rendering
for rp = 1, iter do
local r, pts = math.random( 6 ), {}
if r == 1 or r == 4 then
pt = 1
elseif r == 2 or r == 5 then
pt = 2
else
pt = 3
end
local x, y = ( orig[4][1] + orig[pt][1] ) / 2, ( orig[4][2] + orig[pt][2] ) / 2
orig[4][1] = x; orig[4][2] = y
pts[1] = { x, y, colors[pt][1], colors[pt][2], colors[pt][3], 255 }
love.graphics.setCanvas( canvas )
love.graphics.points( pts )
end
love.graphics.setCanvas()
love.graphics.draw( canvas )
end
M2000 Interpreter
Old style programming (GOTO, ON GOTO) inside Module. Export bitmap to Clipboard.
Module Chaos {
01 Read Ox as integer, Oy as Integer
02 def Screen$
05 cls 0,0 // black background, row for split screen
10 def integer x,y,i,v
20 x = 640 * rnd
30 y = 400 * rnd
40 for i=1 to 20000
50 v = rnd * 2 + 1
60 on v goto 70,100,130
70 x = x/2
80 y = y/2
90 goto 150
100 x = 320 + (320-x)/2
110 y = 400 - (400-y)/2
120 goto 150
130 x = 640 - (640-x)/2
140 y = y/2
150 pset v*2, x*twipsX+Ox,y*twipsY+Oy
160 next i
170 Move Ox, Oy
180 Copy 640*twipsX, 400*twipsY to Screen$
190 Clipboard Screen$
}
Call Chaos 3000, 3000
- Output:
Maple
chaosGame := proc(numPoints)
local points, i;
randomize();
use geometry in
RegularPolygon(triSideways, 3, point(cent, [0, 0]), 1);
rotation(tri, triSideways, Pi/2, counterclockwise);
randpoint(currentP, -1/2*sqrt(3)..1/2*sqrt(3), -1/2..1/2);
points := [coordinates(currentP)];
for i to numPoints do
midpoint(mid, currentP, parse(cat("rotate_triSideways_", rand(1..3)(), "_tri")));
points := [op(points), coordinates(mid)];
point(currentP, coordinates(mid));
end do:
end use;
use plottools in
plots:-display( seq([plots:-display([seq(point(points[i]), i = 1..j)])], j = 1..numelems(points) ), insequence=true);
end use;
end proc:
Mathematica /Wolfram Language
points = 5000;
a = {0, 0};
b = {1, 0};
c = {0.5, 1};
d = {.7, .3};
S = {};
For[i = 1, i < points, i++, t = RandomInteger[2];
If[t == 0, d = Mean[{a, d}],
If[t == 1, d = Mean[{b, d}], d = Mean[{c, d}]]]; AppendTo[S, d]]
Graphics[Point[S]]
Nim
Using a game library
The "rapid" library is no longer maintained and this program fails to compile with last available version.
import random
import rapid/gfx
var
window = initRWindow()
.title("Rosetta Code - Chaos Game")
.open()
surface = window.openGfx()
sierpinski = window.newRCanvas()
points: array[3, Vec2[float]]
for i in 0..<3:
points[i] = vec2(cos(PI * 2 / 3 * i.float), sin(PI * 2 / 3 * i.float)) * 300
var point = vec2(rand(0.0..surface.width), rand(0.0..surface.height))
surface.vsync = false
surface.loop:
draw ctx, step:
let vertex = sample(points)
point = (point + vertex) / 2
ctx.renderTo(sierpinski):
ctx.transform():
ctx.translate(surface.width / 2, surface.height / 2)
ctx.rotate(-PI / 2)
ctx.begin()
ctx.point((point.x, point.y))
ctx.draw(prPoints)
ctx.clear(gray(0))
ctx.begin()
ctx.texture = sierpinski
ctx.rect(0, 0, surface.width, surface.height)
ctx.draw()
ctx.noTexture()
update step:
discard
Using SDL
## needs sdl2 ("nimble install sdl2")
import sdl2, random
let
max_it = 50000
size = [800, 600]
v = [
[0, 0],
[size[0] - 1, 0],
[size[0] div 2, size[1] - 1]
]
discard sdl2.init(INIT_EVERYTHING)
var
window: WindowPtr
render: RendererPtr
window = createWindow("chaos", 100, 100, cint(size[0]), cint(size[1]), SDL_WINDOW_SHOWN)
render = createRenderer(window, -1, Renderer_Accelerated or
Renderer_PresentVsync or Renderer_TargetTexture)
var
evt = sdl2.defaultEvent
runGame = true
it = 0
r: Point
r.x = cint(rand(size[0] - 1))
r.y = cint(rand(size[1] - 1))
render.setDrawColor(0, 0, 0)
render.clear
while it < max_it:
let vn = rand(2)
r.x = cint((r.x + v[vn][0]) div 2)
r.y = cint((r.y + v[vn][1]) div 2)
if vn == 0:
render.setDrawColor(255, 0, 0)
elif vn == 1:
render.setDrawColor(0, 255, 0)
else:
render.setDrawColor(0, 0, 255)
render.drawPoint(r.x, r.y)
inc it
while runGame:
render.present
delay(100)
while pollEvent(evt):
if evt.kind == QuitEvent:
runGame = false
break
destroy render
destroy window
Writing result into an image
import math
import random
import imageman
const
Width = 400
Height = 400
Margin = 20
type Coords = tuple[x, y: float]
# The triangle.
const T = [Coords (0.0, 0.0), (1.0, 0.0), (0.5, 0.5 * tan(PI / 3))]
#---------------------------------------------------------------------------------------------------
func toPoint(v: Coords): Point =
## Convert [0..1] coordinates to image coordinates.
## We have to change scale, then to change position of y-axis.
result = ((Margin + v.x * (Width - 2 * Margin)).toInt,
((Height - Margin) - v.y * (Height - 2 * Margin)).toInt)
#---------------------------------------------------------------------------------------------------
func side(p, p1, p2: Coords): float =
## Auxiliary function to check if a point is in a triangle.
(p2.y - p1.y) * (p.x - p1.x) + (p1.x - p2.x) * (p.y - p1.y)
#---------------------------------------------------------------------------------------------------
proc firstPoint(): Coords =
## Choose the first point.
while true:
result = (x: rand(1.0), y: rand(1.0))
let b1 = side(result, T[0], T[1]) >= 0
let b2 = side(result, T[1], T[2]) >= 0
let b3 = side(result, T[2], T[0]) >= 0
if b1 == b2 and b2 == b3:
# The point is in the triangle. Keep it.
return
#———————————————————————————————————————————————————————————————————————————————————————————————————
const
Iterations = 50_000
Black = ColorRGBU [byte 0, 0, 0]
White = ColorRGBU [byte 255, 255, 255]
PointColor = ColorRGBU [byte 255, 255, 0] # Color for points.
# Points in image coordinates.
const
A = T[0].toPoint
B = T[1].toPoint
C = T[2].toPoint
randomize()
var image = initImage[ColorRGBU](Width, Height)
image.fill(Black)
# Draw the triangle.
image.drawLine(A, B, White)
image.drawLine(B, C, White)
image.drawLine(C, A, White)
var p = firstPoint()
for _ in 1..Iterations:
let pt = p.toPoint
image[pt.x, pt.y] = PointColor
# Find position of next point.
let idx = rand(2)
p = ((p.x + T[idx].x) / 2, (p.y + T[idx].y) / 2)
image.savePNG("chaos_game.png", compression = 9)
PARI/GP
Note: Find plotmat() here on RosettaCode Wiki.
\\ Chaos Game (Sierpinski triangle) 2/15/17 aev
pChaosGameS3(size,lim)={
my(sz1=size\2,sz2=sz1*sqrt(3),M=matrix(size,size),x,y,xf,yf,v);
x=random(size); y=random(sz2);
for(i=1,lim, v=random(3);
if(v==0, x/=2; y/=2;);
if(v==1, x=sz1+(sz1-x)/2; y=sz2-(sz2-y)/2;);
if(v==2, x=size-(size-x)/2; y/=2;);
xf=floor(x); yf=floor(y); if(xf<1||xf>size||yf<1||yf>size, next);
M[xf,yf]=1;
);\\fend
plotmat(M);
}
\\ Test:
pChaosGameS3(600,30000); \\ SierpTri1.png
- Output:
> pChaosGameS3(600,30000); \\ SierpTri1.png *** matrix(600x600) 18696 DOTS time = 751 ms.
Pascal
program ChaosGame;
// FPC 3.0.2
uses
Graph, windows, math;
// Return a point on a circle defined by angle and the circles radius
// Angle 0 = Radius points to the left
// Angle 90 = Radius points upwards
Function PointOfCircle(Angle: SmallInt; Radius: integer): TPoint;
var Ia: Double;
begin
Ia:=DegToRad(-Angle);
result.x:=round(cos(Ia)*Radius);
result.y:=round(sin(Ia)*Radius);
end;
{ Main }
var
GraphDev,GraphMode: smallint;
Triangle: array[0..2] of Tpoint; // Corners of the triangle
TriPnt: Byte; // Point in ^^^^
Origin: TPoint; // Defines center of triangle
Itterations: integer; // Number of Itterations
Radius: Integer;
View: viewPorttype;
CurPnt: TPoint;
Rect: TRect;
Counter: integer;
begin
Repeat {forever}
// Get the Itteration count 0=exit
Write('Itterations: ');
ReadLn(Itterations);
if Itterations=0 then halt;
// Set Up Graphics screen (everythings Auto detect)
GraphDev:=Detect;
GraphMode:=0;
InitGraph(GraphDev,GraphMode,'');
if GraphResult<>grok then
begin
Writeln('Graphics doesn''t work');
Halt;
end;
// set Origin to center of the _Triangle_ (Not the creen)
GetViewSettings(View);
Rect.Create(View.x1,View.y1+10,View.x2,View.y2-10);
Origin:=Rect.CenterPoint;
Origin.Offset(0,Rect.Height div 6); // Center Triangle on screen
// Define Equilateral triangle,
Radius:=Origin.y; // Radius of Circumscribed circle
for Counter:=0 to 2 do
Triangle[Counter]:=PointOfCircle((Counter*120)+90,Radius)+Origin;
// Choose random starting point, in the incsribed circle of the triangle
Radius:=Radius div 2; // Radius of inscribed circle
CurPnt:=PointOfCircle(random(360),random(Radius div 2))+Origin;
// Play the Chaos Game
for Counter:=0 to Itterations do
begin
TriPnt:=Random(3); // Select Triangle Point
Rect.Create(Triangle[TriPnt],CurPnt);; // Def. rect. between TriPnt and CurPnt
CurPnt:=Rect.CenterPoint; // New CurPnt is center of rectangle
putPixel(CurPnt.x,CurPnt.y,cyan); // Plot the new CurPnt
end;
until False;
end.
Perl
use Imager;
my $width = 1000;
my $height = 1000;
my @points = (
[ $width/2, 0],
[ 0, $height-1],
[$height-1, $height-1],
);
my $img = Imager->new(
xsize => $width,
ysize => $height,
channels => 3,
);
my $color = Imager::Color->new('#ff0000');
my $r = [int(rand($width)), int(rand($height))];
foreach my $i (1 .. 100000) {
my $p = $points[rand @points];
my $h = [
int(($p->[0] + $r->[0]) / 2),
int(($p->[1] + $r->[1]) / 2),
];
$img->setpixel(
x => $h->[0],
y => $h->[1],
color => $color,
);
$r = $h;
}
$img->write(file => 'chaos_game_triangle.png');
Phix
Implements five of the fractals on the wikipedia page.
You can run this online here. Press space to cycle through the five fractals.
-- -- demo\rosetta\Chaos_game.exw -- =========================== -- with javascript_semantics include pGUI.e Ihandle dlg, canvas cdCanvas cddbuffer, cdcanvas enum TRI,SQ1,SQ2,SQ3,PENT sequence descs = {"Sierpinsky Triangle", "Square 1", "Square 2", "Square 3", "Pentagon"} integer mode = TRI function redraw_cb(Ihandle /*ih*/, integer /*posx*/, /*posy*/) atom {w,h} = IupGetIntInt(canvas, "DRAWSIZE") atom {x,y} = {w*0.05,h*0.05} {w,h} = {w*0.9,h*0.9} sequence points = iff(mode<SQ1?{{x,y},{x+w/2,y+h},{x+w,y}}: iff(mode<PENT?{{x,y},{x,y+h},{x+w,y+h},{x+w,y}} :{{x+w/6,y},{x,y+h*2/3},{x+w/2,y+h},{x+w,y+h*2/3},{x+w*5/6,y}})) cdCanvasActivate(cddbuffer) integer last = 0 for i=1 to 1000 do integer r = rand(length(points)) if mode=TRI or r!=last then atom {nx,ny} = points[r] {x,y} = {(x+nx)/2,(y+ny)/2} cdCanvasPixel(cddbuffer, x, y, CD_GREY) if mode=SQ2 or mode=SQ3 then r = mod(r,length(points))+1 if mode=SQ3 then r = mod(r,length(points))+1 end if end if last = r end if end for cdCanvasFlush(cddbuffer) IupSetStrAttribute(dlg, "TITLE", "Chaos Game (%s)", {descs[mode]}) return IUP_DEFAULT end function function timer_cb(Ihandle /*ih*/) IupUpdate(canvas) return IUP_IGNORE end function function map_cb(Ihandle ih) cdcanvas = cdCreateCanvas(CD_IUP, ih) cddbuffer = cdCreateCanvas(CD_DBUFFER, cdcanvas) cdCanvasSetBackground(cddbuffer, CD_WHITE) cdCanvasSetForeground(cddbuffer, CD_GRAY) return IUP_DEFAULT end function function key_cb(Ihandle /*ih*/, atom c) if c=K_ESC then return IUP_CLOSE end if if c=' ' then mode += 1 if mode>PENT then mode = TRI end if cdCanvasClear(cddbuffer) IupRedraw(canvas) end if return IUP_CONTINUE end function procedure main() IupOpen() canvas = IupCanvas("RASTERSIZE=640x640") IupSetCallbacks(canvas, {"MAP_CB", Icallback("map_cb"), "ACTION", Icallback("redraw_cb")}) dlg = IupDialog(canvas, `TITLE="Chaos Game"`) IupSetCallback(dlg, "KEY_CB", Icallback("key_cb")) IupShow(dlg) IupSetAttribute(canvas, "RASTERSIZE", NULL) Ihandle timer = IupTimer(Icallback("timer_cb"), 40) if platform()!=JS then IupMainLoop() IupClose() end if end procedure main()
Plain English
To run:
Start up.
Initialize our reference points.
Clear the screen to the lightest gray color.
Play the chaos game.
Refresh the screen.
Wait for the escape key.
Shut down.
To play the chaos game:
Pick a spot within 2 inches of the screen's center.
Loop.
Draw the spot.
If a counter is past 20000, exit.
Pick a reference spot.
Find a middle spot of the spot and the reference spot.
Put the middle spot into the spot.
Repeat.
To find a middle spot of a spot and another spot:
Put the spot's x coord plus the other spot's x coord divided by 2 into the middle spot's x coord.
Put the spot's y coord plus the other spot's y coord divided by 2 into the middle spot's y coord.
The top spot is a spot.
The left spot is a spot.
The right spot is a spot.
To initialize our reference points:
Move up 2-1/2 inches.
Put the context's spot into the top spot.
Turn right. Turn 1/6 of the way around.
Move 5 inches.
Put the context's spot into the right spot.
Turn 1/3 of the way around.
Move 5 inches.
Put the context's spot into the left spot.
To pick a reference spot:
Pick a number between 1 and 3.
If the number is 1, put the top spot into the reference spot.
If the number is 2, put the right spot into the reference spot.
If the number is 3, put the left spot into the reference spot.
- Output:
Processing
size(300, 260);
background(#ffffff); // white
int x = floor(random(width));
int y = floor(random(height));
int colour = #ffffff;
for (int i=0; i<30000; i++) {
int v = floor(random(3));
switch (v) {
case 0:
x = x / 2;
y = y / 2;
colour = #00ff00; // green
break;
case 1:
x = width/2 + (width/2 - x)/2;
y = height - (height - y)/2;
colour = #ff0000; // red
break;
case 2:
x = width - (width - x)/2;
y = y / 2;
colour = #0000ff; // blue
}
set(x, height-y, colour);
}
Processing Python mode
from __future__ import division
size(300, 260)
background(255) # white
x = floor(random(width))
y = floor(random(height))
for _ in range(30000):
v = floor(random(3))
if v == 0:
x = x / 2
y = y / 2
colour = color(0, 255, 0) # green
elif v == 1:
x = width / 2 + (width / 2 - x) / 2
y = height - (height - y) / 2
colour = color(255, 0, 0) # red
elif v == 2:
x = width - (width - x) / 2
y = y / 2
colour = color(0, 0, 255) # blue
set(x, height - y, colour)
Python
import argparse
import random
import shapely.geometry as geometry
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
def main(args):
# Styles
plt.style.use("ggplot")
# Creating figure
fig = plt.figure()
line, = plt.plot([], [], ".")
# Limit axes
plt.xlim(0, 1)
plt.ylim(0, 1)
# Titles
title = "Chaos Game"
plt.title(title)
fig.canvas.set_window_title(title)
# Getting data
data = get_data(args.frames)
# Creating animation
line_ani = animation.FuncAnimation(
fig=fig,
func=update_line,
frames=args.frames,
fargs=(data, line),
interval=args.interval,
repeat=False
)
# To save the animation install ffmpeg and uncomment
# line_ani.save("chaos_game.gif")
plt.show()
def get_data(n):
"""
Get data to plot
"""
leg = 1
triangle = get_triangle(leg)
cur_point = gen_point_within_poly(triangle)
data = []
for _ in range(n):
data.append((cur_point.x, cur_point.y))
cur_point = next_point(triangle, cur_point)
return data
def get_triangle(n):
"""
Create right triangle
"""
ax = ay = 0.0
a = ax, ay
bx = 0.5 * n
by = 0.75 * (n ** 2)
b = bx, by
cx = n
cy = 0.0
c = cx, cy
triangle = geometry.Polygon([a, b, c])
return triangle
def gen_point_within_poly(poly):
"""
Generate random point inside given polygon
"""
minx, miny, maxx, maxy = poly.bounds
while True:
x = random.uniform(minx, maxx)
y = random.uniform(miny, maxy)
point = geometry.Point(x, y)
if point.within(poly):
return point
def next_point(poly, point):
"""
Generate next point according to chaos game rules
"""
vertices = poly.boundary.coords[:-1] # Last point is the same as the first one
random_vertex = geometry.Point(random.choice(vertices))
line = geometry.linestring.LineString([point, random_vertex])
return line.centroid
def update_line(num, data, line):
"""
Update line with new points
"""
new_data = zip(*data[:num]) or [(), ()]
line.set_data(new_data)
return line,
if __name__ == "__main__":
arg_parser = argparse.ArgumentParser(description="Chaos Game by Suenweek (c) 2017")
arg_parser.add_argument("-f", dest="frames", type=int, default=1000)
arg_parser.add_argument("-i", dest="interval", type=int, default=10)
main(arg_parser.parse_args())
Quackery
[ $ "turtleduck.qky" loadfile ] now!
[ 2 3 circle ] is dot ( --> )
[ 1 fly
-1 4 turn
1 fly
1 4 turn ] is toxy ( n n --> )
[ swap 2dup toxy
dot
1 2 turn
toxy
1 2 turn ] is plot ( n n --> )
[ 200 random
346 random
over 346 *
over 200 * < if
[ dip [ 400 + ]
692 swap - ] ] is intriangle ( --> n n )
[ 3 random
[ table
[ 2 /
dip [ 2 / ] ]
[ 2 /
dip [ 800 + 2 / ] ]
[ 692 + 2 /
dip [ 400 + 2 / ] ] ]
do ] is tovertex ( n n --> )
turtle
0 frames
-400 1 fly
1 4 turn
340 1 fly
-1 4 turn
intriangle
10000 times
[ i^ 100 mod 0= if frame
2dup plot
tovertex ]
2drop
1 frames
- Output:
R
Note: Find plotmat() here on RosettaCode Wiki.
# Chaos Game (Sierpinski triangle) 2/15/17 aev
# pChaosGameS3(size, lim, clr, fn, ttl)
# Where: size - defines matrix and picture size; lim - limit of the dots;
# fn - file name (.ext will be added); ttl - plot title;
pChaosGameS3 <- function(size, lim, clr, fn, ttl)
{
cat(" *** START:", date(), "size=",size, "lim=",lim, "clr=",clr, "\n");
sz1=floor(size/2); sz2=floor(sz1*sqrt(3)); xf=yf=v=0;
M <- matrix(c(0), ncol=size, nrow=size, byrow=TRUE);
x <- sample(1:size, 1, replace=FALSE);
y <- sample(1:sz2, 1, replace=FALSE);
pf=paste0(fn, ".png");
for (i in 1:lim) { v <- sample(0:3, 1, replace=FALSE);
if(v==0) {x=x/2; y=y/2;}
if(v==1) {x=sz1+(sz1-x)/2; y=sz2-(sz2-y)/2;}
if(v==2) {x=size-(size-x)/2; y=y/2;}
xf=floor(x); yf=floor(y); if(xf<1||xf>size||yf<1||yf>size) {next};
M[xf,yf]=1;
}
plotmat(M, fn, clr, ttl, 0, size);
cat(" *** END:",date(),"\n");
}
pChaosGameS3(600, 30000, "red", "SierpTriR1", "Sierpinski triangle")
- Output:
> pChaosGameS3(600, 30000, "red", "SierpTriR1", "Sierpinski triangle") *** START: Wed Feb 15 21:40:48 2017 size= 600 lim= 30000 clr= red *** Matrix( 600 x 600 ) 15442 DOTS *** END: Wed Feb 15 21:40:51 2017
Alternative code:
pta = c(1,2)
ptb = c(4,2)
ptc = c(2.5,4)
spt = c(1,2)
plot(t(data.frame(pta,ptb,ptc)),
xlab= "", ylab = "", pch = 19, asp =1,
xaxt='n',yaxt='n', ann=FALSE,frame.plot=FALSE)
points(x = spt[1], y = spt[2], col = "blue", pch = 19)
ittt = 100000
ptcex = .2
for (i in 1:ittt) {
d = sample(1:6,1,TRUE)
if (d == 1 | d == 2) {
pta1 = spt + ((pta-spt)/2)
points(pta1[1],pta1[2], col = "red", pch = 19, cex = ptcex)
spt=pta1
}
if (d == 3 | d == 4) {
ptb1 = spt + (ptb-spt)/2
points(ptb1[1],ptb1[2], col = "red", pch = 19, cex = ptcex)
spt=ptb1
}
if (d == 5 | d == 6) {
ptc1 = spt + (ptc-spt)/2
points(ptc1[1],ptc1[2], col = "red", pch = 19, cex = ptcex)
spt=ptc1
}
}
Racket
#lang racket
(require 2htdp/image)
(define SIZE 300)
(define (game-of-chaos fns WIDTH HEIGHT SIZE
#:offset-x [offset-x 0] #:offset-y [offset-y 0]
#:iters [iters 10000]
#:bg [bg 'white] #:fg [fg 'black])
(define dot (square 1 'solid fg))
(define all-choices (apply + (map first fns)))
(for/fold ([image (empty-scene WIDTH HEIGHT bg)]
[x (random)] [y (random)]
#:result image)
([i (in-range iters)])
(define picked (random all-choices))
(define fn (for/fold ([acc 0] [result #f] #:result result) ([fn (in-list fns)])
#:break (> acc picked)
(values (+ (first fn) acc) (second fn))))
(match-define (list x* y*) (fn x y))
(values (place-image dot (+ offset-x (* SIZE x*)) (+ offset-y (* SIZE y*)) image)
x* y*)))
(define (draw-triangle)
(define ((mid a b) x y) (list (/ (+ a x) 2) (/ (+ b y) 2)))
(define (triangle-height x) (* (sqrt 3) 0.5 x))
(game-of-chaos (list (list 1 (mid 0 0))
(list 1 (mid 1 0))
(list 1 (mid 0.5 (triangle-height 1))))
SIZE (triangle-height SIZE) SIZE))
(define (draw-fern)
(define (f1 x y) (list 0 (* 0.16 y)))
(define (f2 x y) (list (+ (* 0.85 x) (* 0.04 y)) (+ (* -0.04 x) (* 0.85 y) 1.6)))
(define (f3 x y) (list (+ (* 0.2 x) (* -0.26 y)) (+ (* 0.23 x) (* 0.22 y) 1.6)))
(define (f4 x y) (list (+ (* -0.15 x) (* 0.28 y)) (+ (* 0.26 x) (* 0.24 y) 0.44)))
(game-of-chaos (list (list 1 f1) (list 85 f2) (list 7 f3) (list 7 f4))
(/ SIZE 2) SIZE (/ SIZE 11) #:offset-x 70 #:offset-y 10
#:bg 'black #:fg 'white))
(define (draw-dragon)
(game-of-chaos
(list (list 1 (λ (x y) (list (+ (* 0.5 x) (* -0.5 y)) (+ (* 0.5 x) (* 0.5 y)))))
(list 1 (λ (x y) (list (+ (* -0.5 x) (* 0.5 y) 1) (+ (* -0.5 x) (* -0.5 y))))))
SIZE (* 0.8 SIZE) (/ SIZE 1.8) #:offset-x 64 #:offset-y 120))
(draw-triangle)
(draw-fern)
(draw-dragon)
Raku
(formerly Perl 6)
use Image::PNG::Portable;
my ($w, $h) = (640, 640);
my $png = Image::PNG::Portable.new: :width($w), :height($h);
my @vertex = [0, 0], [$w, 0], [$w/2, $h];
my @xy = [0,0], [0,0], [0,0], [0,0];
# :degree must be equal to or less than @xy elements.
(^1e5).race(:4degree).map: {
my $p = ++$ % +@xy;
@xy[$p] = do given @vertex.pick -> @v { ((@xy[$p] »+« @v) »/» 2)».Int };
$png.set: |@xy[$p], 0, 255, 0;
}
$png.write: 'Chaos-game-perl6.png';
REXX
/*REXX pgm draws a Sierpinski triangle by running the chaos game with a million points*/
parse value scrsize() with sd sw . /*obtain the depth and width of screen.*/
sw= sw - 2 /*adjust the screen width down by two. */
sd= sd - 4 /* " " " depth " " four.*/
parse arg pts chr seed . /*obtain optional arguments from the CL*/
if pts=='' | pts=="," then pts= 1000000 /*Not specified? Then use the default.*/
if chr=='' | chr=="," then chr= '∙' /* " " " " " " */
if datatype(seed,'W') then call random ,,seed /*Is specified? " " RANDOM seed.*/
x= sw; hx= x % 2; y= sd /*define the initial starting position.*/
@.= ' ' /* " all screen points as a blank. */
do pts; ?= random(1, 3) /* [↓] draw a # of (million?) points.*/
select /*?: will be a random number: 1 ──► 3.*/
when ?==1 then parse value x%2 y%2 with x y
when ?==2 then parse value hx+(hx-x)%2 sd-(sd-y)%2 with x y
otherwise parse value sw-(sw-x)%2 y%2 with x y
end /*select*/
@.x.y= chr /*set the X, Y point to a bullet.*/
end /*pts*/ /* [↑] one million points ≡ overkill? */
/* [↓] display the points to the term.*/
do row=sd to 0 by -1; _= /*display the points, one row at a time*/
do col=0 for sw+2 /* " a row (one line) of image. */
_= _ || @.col.row /*construct a " " " " " */
end /*col*/ /*Note: display image from top──►bottom*/
/* [↑] strip trailing blanks (output).*/
say strip(_, 'T') /*display one row (line) of the image. */
end /*row*/ /*stick a fork in it, we're all done. */
This REXX program makes use of SCRSIZE REXX program (or
BIF) which is used to determine the screen
width and depth of the terminal (console). Some REXXes don't
have this BIF.
The SCRSIZE.REX REXX program is included here ───► SCRSIZE.REX.
(Shown at 1/10 size on a 426×201 screen.)
- output when using the following input: , █
█ ███ █████ ███████ █████████ █████ █████ █████████████ ███████████████ █████ █████ ███████ ███████ █████████ █████████ ████ █████ █████ ████ █████████████████████████ ███████████████████████████ █████ ████ ██████ ███████ █████████ █████████ ████ ████ ████ ████ ██████ ██████ ██████ ██████ ███████████████ ███████████████ ████ ████ ████ ████ ██████ ██████ ██████ ██████ ████████ ████████ ████████ ████████ ███ ███ ████ ███ ███ ████ ███ ███ █████ ██████ ██████ ███████████ ██████ █████ ██████ █████████████████████████████████████████████████████ ███ ███ █████ █████ ███████ ████████ ███ ███ ███ ███ ██████ █████ █████ ██████ ██████████████ ██████████████ ████████████████ ████████████████ █████ █████ █████ █████ ███████ ███████ ███████ ███████ █████████ ██████████ █████████ █████████ █████ ████ █████ █████ █████ █████ ████ █████ ███████████████████████████ ███████████████████████████ █████████████████████████████ █████████████████████████████ ████ █████ █████ ████ ██████ ███████ ███████ ██████ ████████ █████████ █████████ ████████ ████ ████ ████ ████ ████ ████ ████ █████ ██████████████ █████████████ ██████ ██████ █████████ ███ ████████████████ ███████████████ ███████████████ ███████████████ ████ ████ ████ ████ ████ ████ ████ ████ ██████ ██████ ██████ ██████ ██████ ██████ ███████ ██████ █████████ ████████ ████████ █████████ ████████ ████████ █████████ ████████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ███ ████ ████ ███ ████ ██████ ████████████ ██████ ████████████ ██████ ██████████████████ ██████ ████████████ ████████████ ██████ ███████████████████████████████████████████████████████████████████████████████████████████████████████████ ███ ███ █████ █████ ███████ ███████ ███ ███ ███ ███ █████ █████ ██████ █████ ██████████████ ██████████████ ███ ███ ███ ███ █████ █████ █████ █████ ████████ ████████ ███████ ████████ ██████████ ██████████ ██████████ ██████████ █████ █████ █████ █████ █████ █████ █████ █████ ███████████████████████████ ███████████████████████████ █████████████████████████████ █████████████████████████████ ████ █████ █████ █████ ███████ ███████ ███████ ███████ █████████ █████████ █████████ █████████ ████ █████ █████ ████ ████ █████ █████ ████ ██████████████ █████████████ █████████████ █████████████ ████████████████ ███████████████ ████████████████ ███████████████ █████ ████ ████ ████ █████ ████ ████ ████ ███ ███ ██████ ██████ ███████ ███ ███ ██████ ██████ ███████ █████████ ████████ ████████ █████████ █████████ ████████ ████████ █████████ ████ ████ █████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ██████ ███████████████████ ████████████ ██████ ██████ ██████ ███████████████████ ███████████████████ ██████ ███████████████████████████████████████████████████████ ███████████████████████████████████████████████████████ ████ ████ ███ ████ ██████ ██████ ██████ ██████ ████████ ████████ ████████ ████████ ███ ████ ███ ████ ███ ████ ███ ████ █████ ██████ ████████████ ██████ ██████ █████ ██████ ███████████████ ██████████████ ███████████████ ██████████████ ████ ███ ███ ███ ████ ███ ███ ███ ██████ █████ █████ █████ ██████ █████ █████ █████ ████████ ███████ ███████ ███████ ████████ ███████ ███████ ███████ ███ ███ ████ ███ ████ ███ ███ ████ ███ ███ ████ ███ ████ ███ ███ ████ █████ █████ ██████ █████ ██████ █████ █████ ██████ █████ █████ ██████ █████ ██████ █████ █████ ██████ ███████████████████████████ ████████████████████████████ ███████████████████████████ ████████████████████████████ █████████████████████████████ ██████████████████████████████ █████████████████████████████ ██████████████████████████████ █████ ████ █████ █████ █████ █████ █████ █████ ███████ ████████ ███████ ███████ ███████ ████████ ███████ ███████ █████████ ██████████ █████████ █████████ █████████ ██████████ █████████ █████████ ████ █████ █████ █████ █████ ████ ████ █████ ████ █████ █████ █████ █████ █████ ████ █████ █████████████ ██████████████ █████████████ ██████████████ █████████████ ██████████████ █████████████ ██████████████ ████████████████ ████████████████ ███████████████ ████████████████ ████████████████ ████████████████ ███████████████ ████████████████ █████ ████ █████ █████ ████ █████ █████ ████ █████ ████ █████ █████ ████ ████ █████ ████ ███████ ██████ ███████ ███████ ██████ ███████ ███████ ███████ ███████ ██████ ███████ ███████ ██████ ███████ ███████ ██████ █████████ ████████ █████████ █████████ █████████ █████████ █████████ █████████ █████████ ████████ █████████ █████████ █████████ █████████ █████████ █████████ ████ ████ █████ █████ ████ █████ ████ ████ █████ ████ ████ █████ ████ ████ █████ ████ ████ ████ █████ ████ ████ ████ ████ ████ █████ ████ ████ █████ ████ ████ █████ ████ ██████████████████████████████████████████████████████████████████ █████████ █████████ █████████ █████████████████████████ █████████ ███████████████████ █████████ █████████ █████████ █████████ █████████ █████████ ███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████ ████ ████ ██████ ██████ ████████ ████████ ████ ████ ████ ████ ████████████ ████████████ ██████████████ ██████████████ ████ ███ ████ ████ ██████ ██████ ██████ ██████ ████████ ████████ ████████ ████████ ███ ████ ███ ████ ███ ████ ███ ████ █████ ██████ █████ ██████ █████ ██████ █████ ██████ ███████████████████████████ ███████████████████████████ ███ ███ ███ ███ █████ █████ █████ █████ ████████ ███████ ████████ ███████ ██████████ █████████ ██████████ █████████ █████ █████ █████ █████ █████ █████ █████ █████ ██████████████ ██████████████ ██████████████ ██████████████ ████████████████ ████████████████ ████████████████ ████████████████ █████ █████ █████ ████ █████ █████ █████ ████ ███████ ███████ ███████ ███████ ███████ ███████ ███████ ███████ █████████ █████████ █████████ █████████ █████████ █████████ █████████ █████████ ████ ████ █████ █████ █████ ████ █████ █████ █████ ████ █████ ████ █████ ████ ████ █████ █████████████████████████████████████████████████████ █████████████████████████████████████████████████████ ███████████████████████████████████████████████████████ ███████████████████████████████████████████████████████ ████ ████ ████ ████ ██████ ███████ ██████ ███████ █████████ █████████ █████████ █████████ ████ ████ ████ ████ █████ ████ ████ ████ █████████████ █████████████ ██████ ██████ █████████████ ███████████████ ███████████████ ███████████████ ███████████████ ████ ████ ████ ████ ████ ████ ████ ████ ██████ ██████ ██████ ██████ ██████ ██████ ██████ ██████ ████████ ████████ ████████ ████████ ████████ ████████ ████████ ████████ ████ ███ ████ ████ ████ ███ ████ ███ ████ ███ ████ ███ ████ ███ ████ ████ ████████████ ██████ ██████ ██████ █████ ██████ ██████ ██████ █████ ██████ ██████ ████████████ ██████ ██████ ████████████████████████████ ████████████████████████████ ████████████████████████████ ████████████████████████████ ███ ████ ███ ████ ███ ████ ███ ████ █████ ██████ █████ ██████ █████ ██████ █████ ██████ ████████ ████████ ████████ ████████ ███████ ████████ ███████ ████████ ████ ███ ███ ███ ████ ███ ███ ███ ████ ███ ███ ███ ████ ███ ███ ███ ██████ █████ █████ █████ ██████ █████ █████ █████ ██████ █████ █████ █████ ██████ █████ █████ █████ ██████████████ ██████████████ ██████████████ ██████████████ ██████████████ ██████████████ ██████████████ ██████████████ ████████████████ ████████████████ ████████████████ ████████████████ ████████████████ ████████████████ ████████████████ ████████████████ █████ ██████ █████ █████ █████ ██████ █████ █████ █████ ██████ █████ █████ █████ █████ █████ █████ ███████ ████████ ███████ ███████ ███████ ████████ ███████ ███████ ███████ ████████ ███████ ███████ ███████ ████████ ███████ ███████ █████████ ██████████ █████████ █████████ █████████ ██████████ █████████ █████████ █████████ ██████████ █████████ █████████ █████████ ██████████ █████████ █████████ █████ ████ █████ █████ █████ █████ █████ ████ █████ ████ █████ █████ ████ █████ █████ █████ █████ ████ █████ █████ ████ █████ █████ ████ █████ ████ █████ █████ ████ █████ █████ █████ ██████████████████████████████████████████████████████████████████████████████████████████████████████████ ██████████████████████████████████████████████████████████████████████████████████████████████████████████ █████████████████████████████████████████████████████████████████████████████████████████████████████████████ █████████████████████████████████████████████████████████████████████████████████████████████████████████████ ████ █████ ████ █████ ██████ ███████ ██████ ███████ ████████ █████████ ████████ █████████ ████ █████ █████ ████ ████ █████ █████ ████ █████████████ █████████████ █████████████ ███ █████████ ███████████████ ███████████████ ███████████████ ███████████████ █████ ████ ████ ████ █████ ████ ████ ████ ██████ ██████ ██████ ██████ ███████ ██████ ██████ ██████ █████████ █████████ ████████ ████████ █████████ █████████ ████████ ████████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ███ ██████ ████████████ ██████ ████████████ ██████ ██████ ██████ ████████████ ██████ ████████████ ██████ ██████ ████████████████████████████ ████████████████████████████ ████████████████████████████ ████████████████████████████ ████ ███ ███ ████ ████ ████ ███ ████ ██████ ██████ █████ ██████ ██████ ██████ ██████ ██████ ████████ ████████ ████████ ████████ ████████ ████████ ████████ ████████ ███ ████ ████ ███ ████ ███ ███ ████ ███ ████ ████ ███ ████ ███ ███ ████ █████ ██████ ██████ █████ ██████ █████ █████ ██████ █████ ██████ ██████ █████ ██████ █████ █████ ██████ ██████████████ ███████████████ ███████████████ ██████████████ ██████████████ ███████████████ ███████████████ ██████████████ ███ ███ ███ ████ ███ ████ ███ ███ ███ ███ ███ ████ ███ ████ ███ ███ ██████ █████ █████ ██████ █████ ██████ ██████ █████ ██████ █████ █████ ██████ █████ ██████ █████ █████ ████████ ███████ ███████ ████████ ███████ ████████ ████████ ███████ ████████ ███████ ███████ ████████ ███████ ████████ ████████ ███████ ██████████ █████████ ██████████ ██████████ █████████ ██████████ ██████████ █████████ ██████████ █████████ ██████████ ██████████ ██████████ ██████████ ██████████ █████████ █████ █████ █████ █████ █████ ██████ █████ █████ █████ ██████ █████ █████ █████ █████ █████ █████ █████ █████ █████ █████ █████ █████ █████ █████ █████ █████ █████ █████ █████ █████ █████ █████ ██████████████████████████████████████████████████████ █████████████████████████████████████████████████████ ██████████████████████████████████████████████████████ █████████████████████████████████████████████████████ ████████████████████████████████████████████████████████ ████████████████████████████████████████████████████████ ████████████████████████████████████████████████████████ ████████████████████████████████████████████████████████ █████ █████ ████ █████ █████ █████ ████ █████ ███████ ███████ ███████ ███████ ███████ ███████ ██████ ███████ █████████ █████████ █████████ █████████ █████████ █████████ ██████████ █████████ █████ █████ █████ ████ █████ █████ ████ █████ █████ ████ █████ ████ █████ █████ ████ █████ █████████████ ██████████████ ██████████████ █████████████ █████████████ █████████████ ██████████████ █████████████ ███████████████ ████████████████ ████████████████ ███████████████ ███████████████ ████████████████ ████████████████ ███████████████ ████ ████ ████ █████ █████ █████ █████ ████ ████ ████ ████ █████ █████ █████ █████ ████ ██████ ██████ ██████ ███████ ███████ ███████ ███████ ██████ ██████ ██████ ██████ ███ ███ ███ ███ ███████ ███████ ██████ ████████ ████████ █████████ █████████ █████████ █████████ █████████ ████████ ████████ ████████ █████████ █████████ █████████ █████████ █████████ ████████ █████ ████ ████ █████ ████ █████ ████ ████ ████ ████ ████ ████ ████ ████ █████ ████ █████ ████ ████ █████ ████ █████ ████ ████ ████ ████ ████ ████ ████ ████ █████ ████ █████████████ █████████████ ███████████████████ ██████ ██████ ████████████ ██████ ██████ ███████████████████ █████████████ █████████████ ███████████████████ ██████ ██████ ████████████ ██████ ██████ ███████████████████ █████████████████████████████ ████████████████████████████ ████████████████████████████ █████████████████████████████ █████████████████████████████ ████████████████████████████ ████████████████████████████ █████████████████████████████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ████ ██████ ██████ ███████ ██████ ██████ ██████ ██████ ██████ ██████ ██████ ███████ ██████ ██████ █████ ██████ ██████ ████████ ████████ █████████ ████████ ████████ ████████ ████████ ████████ ████████ ████████ █████████ ████████ ████████ █████████ ████████ ████████ ████ ███ ███ ████ ████ ████ ████ ███ ███ ████ ████ ████ ████ ████ ████ ████ ████ ███ ███ ████ ████ ████ ████ ███ ███ ████ ████ ████ ████ ████ ████ ████ ██████ █████ █████ ██████ ██████ ██████ ████████████ ██████ ██████ ██████ ██████ ████████████ ██████ ██████ ██████ ██████ ████████████ ██████ ██████ ████████████ █████ ██████ ██████ ██████ ████████████ ██████ ██████ ███████████████ ██████████████ ███████████████ ███████████████ ██████████████ ███████████████ ██████████████ ███████████████ ███████████████ ██████████████ ███████████████ ███████████████ ███████████████ ███████████████ ██████████████ ███████████████ ███ ████ ███ ███ ████ ████ ███ ████ ████ ███ ████ ████ ███ ███ ████ ███ ███ ████ ████ ███ ████ ████ ███ ████ ████ ███ ████ ████ ███ ███ ████ ███ █████ ██████ ██████ █████ ██████ ██████ █████ ██████ ██████ █████ ██████ ██████ █████ ██████ ██████ ██████ █████ ██████ ██████ █████ ██████ ██████ █████ ██████ ██████ █████ ██████ ██████ █████ ██████ ██████ █████ ████████ ████████ ████████ ████████ ████████ ████████ ███████ ████████ ████████ ███████ ████████ ████████ ███████ ████████ ████████ ████████ ████████ ████████ ████████ ████████ ████████ ████████ ███████ ████████ ████████ ███████ ████████ ████████ ████████ ████████ ████████ ████████ ███ ███ ███ ███ ████ ███ ███ ████ ███ ███ ████ ███ ███ ████ ███ ███ ███ ███ ████ ███ ███ ████ ███ ███ ████ ███ ███ ████ ███ ███ ████ ███ ███ ████ ███ ███ ████ ███ ███ ████ ███ ███ ████ ███ ███ ███ ███ ████ ███ ███ ████ ███ ███ ███ ███ ███ ████ ███ ███ ████ ███ ███ ████ ███ █████ ██████ █████ █████ ██████ █████ █████ ██████ █████ ██████ ██████ █████ █████ ██████ █████ ██████ █████ █████ ██████ █████ █████ ██████ █████ █████ ██████ █████ █████ ██████ █████ █████ ██████ █████ █████ ██████ █████ █████ ██████ █████ █████ ██████ █████ █████ ██████ █████ █████ ██████ █████ ██████ ██████ █████ ██████ ██████ █████ ██████ █████ █████ ██████ █████ █████ ██████ █████ █████ ██████ █████
Ring
# Project : Chaos game
load "guilib.ring"
paint = null
new qapp
{
win1 = new qwidget() {
setwindowtitle("Archimedean spiral")
setgeometry(100,100,500,600)
label1 = new qlabel(win1) {
setgeometry(10,10,400,400)
settext("")
}
new qpushbutton(win1) {
setgeometry(150,500,100,30)
settext("draw")
setclickevent("draw()")
}
show()
}
exec()
}
func draw
p1 = new qpicture()
color = new qcolor() {
setrgb(0,0,255,255)
}
pen = new qpen() {
setcolor(color)
setwidth(1)
}
paint = new qpainter() {
begin(p1)
setpen(pen)
x = floor(random(10)/10 * 200)
y = floor(random(10/10) * 173)
for i = 1 to 20000
v = floor(random(10)/10 * 3) + 1
if v = 1
x = x/2
y = y/2
ok
if v = 2
x = 100 + (100-x)/2
y = 173 - (173-y)/2
ok
if v = 3
x = 200 - (200-x)/2
y = y/2
ok
drawpoint(x,y)
next
endpaint()
}
label1 {setpicture(p1) show()}
Run BASIC
x = int(rnd(0) * 200)
y = int(rnd(0) * 173)
graphic #g, 200,200
#g color("green")
for i =1 TO 20000
v = int(rnd(0) * 3) + 1
if v = 1 then
x = x/2
y = y/2
end if
if v = 2 then
x = 100 + (100-x)/2
y = 173 - (173-y)/2
end if
if v = 3 then
x = 200 - (200-x)/2
y = y/2
end if
#g set(x,y)
next
render #g
Rust
Dependencies: image, rand
extern crate image;
extern crate rand;
use rand::prelude::*;
use std::f32;
fn main() {
let max_iterations = 50_000;
let img_side = 800;
let tri_size = 400.0;
// Create a new ImgBuf
let mut imgbuf = image::ImageBuffer::new(img_side, img_side);
// Create triangle vertices
let mut vertices: [[f32; 2]; 3] = [[0.0, 0.0]; 3];
for i in 0..vertices.len() {
vertices[i][0] = (img_side as f32 / 2.0)
+ (tri_size / 2.0) * (f32::consts::PI * i as f32 * 2.0 / 3.0).cos();
vertices[i][1] = (img_side as f32 / 2.0)
+ (tri_size / 2.0) * (f32::consts::PI * i as f32 * 2.0 / 3.0).sin();
}
for v in &vertices {
imgbuf.put_pixel(v[0] as u32, v[1] as u32, image::Luma([255u8]));
}
println!("Verticies: {:?}", vertices);
// Iterate chaos game
let mut rng = rand::thread_rng();
let mut x = img_side as f32 / 2.0;
let mut y = img_side as f32 / 2.0;
for _ in 0..max_iterations {
let choice = rng.gen_range(0..vertices.len());
x = (x + vertices[choice][0]) / 2.0;
y = (y + vertices[choice][1]) / 2.0;
imgbuf.put_pixel(x as u32, y as u32, image::Luma([255u8]));
}
// Save image
imgbuf.save("fractal.png").unwrap();
}
Scala
Java Swing Interoperability
import javax.swing._
import java.awt._
import java.awt.event.ActionEvent
import scala.collection.mutable
import scala.util.Random
object ChaosGame extends App {
SwingUtilities.invokeLater(() =>
new JFrame("Chaos Game") {
class ChaosGame extends JPanel {
private val (dim, margin)= (new Dimension(640, 640), 60)
private val sizez: Int = dim.width - 2 * margin
private val (stack, r) = (new mutable.Stack[ColoredPoint], new Random)
private val points = Seq(new Point(dim.width / 2, margin),
new Point(margin, sizez),
new Point(margin + sizez, sizez)
)
private val colors = Seq(Color.red, Color.green, Color.blue)
override def paintComponent(gg: Graphics): Unit = {
val g = gg.asInstanceOf[Graphics2D]
def drawPoints(g: Graphics2D): Unit = {
for (p <- stack) {
g.setColor(colors(p.colorIndex))
g.fillOval(p.x, p.y, 1, 1)
}
}
super.paintComponent(gg)
g.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON)
drawPoints(g)
}
private def addPoint(): Unit = {
val colorIndex = r.nextInt(3)
def halfwayPoint(a: Point, b: Point, idx: Int) =
new ColoredPoint((a.x + b.x) / 2, (a.y + b.y) / 2, idx)
stack.push(halfwayPoint(stack.top, points(colorIndex), colorIndex))
}
class ColoredPoint(x: Int, y: Int, val colorIndex: Int) extends Point(x, y)
stack.push(new ColoredPoint(-1, -1, 0))
new Timer(100, (_: ActionEvent) => {
if (stack.size < 50000) {
for (i <- 0 until 1000) addPoint()
repaint()
}
}).start()
setBackground(Color.white)
setPreferredSize(dim)
}
add(new ChaosGame, BorderLayout.CENTER)
pack()
setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE)
setLocationRelativeTo(null)
setResizable(false)
setVisible(true)
}
)
}
Scilab
This script uses complex numbers to represent (x,y) coordinates: real part as x position, and imaginary part as y position.
//Input
n_sides = 3;
side_length = 1;
ratio = 0.5;
n_steps = 1.0d5;
first_step = 0;
if n_sides<3 then
error("n_sides should be at least 3.");
end
//Calculating vertices' positions
theta = (2 * %pi) / n_sides;
alpha = (180 - (360/n_sides)) / 2 * (%pi/180);
radius = (sin(theta) / side_length) / sin(alpha);
vertices = zeros(1,n_sides);
for i=1:n_sides
vertices(i) = radius * exp( %i * theta * (i-1) ); //equally spaced vertices over a circumference
//centered on 0 + 0i, or (0,0)
end
clear theta alpha radius i
//Iterations
tic();
points = zeros(1,n_steps);
points(1) = first_step;
i = 2;
while i <= n_steps
random=grand(1,'prm',[1:n_sides]'); //sort vertices randomly
random=random(1); //choose the first random vertices
points(i) = ( vertices(random) - points(i-1) ) * (1-ratio) + points(i-1);
i = i + 1;
end
time=toc();
disp('Time: '+string(time)+'s.');
//Ploting
scf(0); clf();
xname('Chaos game: '+string(n_sides)+'-sides polygon');
plot2d(real(points),imag(points),0)
plot2d(real(vertices),imag(vertices),-3);
set(gca(),'isoview','on');
- Output:
It outputs a graphic window and prints on the console the time elapsed during iterations.
Time: 1.0424433s.
Sidef
require('Imager')
var width = 600
var height = 600
var points = [
[width//2, 0],
[ 0, height-1],
[height-1, height-1],
]
var img = %O|Imager|.new(
xsize => width,
ysize => height,
)
var color = %O|Imager::Color|.new('#ff0000')
var r = [(width-1).irand, (height-1).irand]
30000.times {
var p = points.rand
r[] = (
(p[0] + r[0]) // 2,
(p[1] + r[1]) // 2,
)
img.setpixel(
x => r[0],
y => r[1],
color => color,
)
}
img.write(file => 'chaos_game.png')
Output image: Chaos game
Simula
BEGIN
INTEGER U, COLUMNS, LINES;
COLUMNS := 40;
LINES := 80;
U := ININT;
BEGIN
CHARACTER ARRAY SCREEN(0:LINES, 0:COLUMNS);
INTEGER X, Y, I, VERTEX;
FOR X := 0 STEP 1 UNTIL LINES-1 DO
FOR Y := 0 STEP 1 UNTIL COLUMNS-1 DO
SCREEN(X, Y) := ' ';
X := RANDINT(0, LINES - 1, U);
Y := RANDINT(0, COLUMNS - 1, U);
FOR I := 1 STEP 1 UNTIL 5000 DO
BEGIN
VERTEX := RANDINT(1, 3, U);
IF VERTEX = 1 THEN BEGIN X := X // 2;
Y := Y // 2;
END ELSE
IF VERTEX = 2 THEN BEGIN X := LINES // 2 + (LINES // 2 - X) // 2;
Y := COLUMNS - (COLUMNS - Y) // 2;
END ELSE
IF VERTEX = 3 THEN BEGIN X := LINES - (LINES - X) // 2;
Y := Y // 2;
END ELSE ERROR("VERTEX OUT OF BOUNDS");
SCREEN(X, Y) := 'X';
END;
FOR Y := 0 STEP 1 UNTIL COLUMNS-1 DO
BEGIN
FOR X := 0 STEP 1 UNTIL LINES-1 DO
OUTCHAR(SCREEN(X, Y));
OUTIMAGE;
END;
END;
END
- Input:
678
- Output:
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXX XXX XXXX XXXX XXX XXXX XXX XXXX XXX XXXX XXXX XXX XXX XXX XXXX XXXX XXXXXXX XXXXXX XXXXXXX XXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXX XX XXX XX XXX XXX XXX XXX XX XXXXXXXXXXX XXXXXXXXXXX XXXXXXXXXXX XXXXXXXXXX XXXX XXX XXXX XXXX XXXX XXXX XXX XXXX XXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXX XX XX XXXXX XXXXX XXX XXX XXX XX XXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXXXXX XXXXXXX XXXX XX XX XXXX XXXXX XXXXX XXXXX XXXXX XXX XXXX XXX XXX XXXXXXXXXXX XXXXXXXXXXX XXXX XXXX XXXXXXXXX XXXXX XX XXXXXXX XXXXX XXXX XXX XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XX XX XXX XXX XX XXX XXX XX XXXXX XXXXX XXXXX XXXXXX XXXX XXX XXX XXX XXXXXXXXXXXX XXXXXXXXXXX XXXXXXXXX XXXX XXXX XXX XX XXX XX XXXXX XXXXXX XXX XXXX XXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXX XXX XXX XXX XXXXXX XXXXXX XXXX XXXX X XXXXXXXX XX XXXXXXXXX XXX XXX XXXXX XXX
Uiua
Dim ← 500
Points ← [[50 ⌊÷2Dim] [-50Dim 50] [-50Dim -50Dim]]
# Uncomment to try different square or pentagonal references.
# Points ← [[50 50] [-50Dim 50] [50 -50Dim][-50Dim -50Dim]]
# Points ← [[50 ⌊÷2Dim] [⌊×0.4Dim 50] [⌊×0.4Dim -50Dim] [-50Dim 120] [-50Dim -120Dim]]
Colours ← [[1 0 0] [0 1 0] [0 0 1] [1 1 0] [1 0 1] [0 1 1]]
Rand ← ⌊×⚂
↯Dim_Dim_3 0
∧(⍜(⊡|[1 1 1]◌))Points
⊟Rand Dim Rand Dim
⍥(
Rand⧻Points
# Set next point and colour based on target.
⊃(⌊÷2+⊡:Points|⊙◌⊡:Colours)
⟜⍜⊡◌⊙:
)10000
◌
# Uncomment to save image.
# &fwa "UiuaChaosGameSerpinski.png" &ime "png"
- Output:
Wren
import "dome" for Window
import "graphics" for Canvas, Color
import "math" for Point
import "random" for Random
import "./dynamic" for Tuple
import "./seq" for Stack
var ColoredPoint = Tuple.create("ColoredPoint", ["x", "y", "colorIndex"])
class ChaosGame {
construct new(width, height) {
Window.resize(width, height)
Canvas.resize(width, height)
Window.title = "Chaos game"
_width = width
_height = height
_stack = Stack.new()
_points = null
_colors = [Color.red, Color.green, Color.blue]
_r = Random.new()
}
init() {
Canvas.cls(Color.white)
var margin = 60
var size = _width - 2 * margin
_points = [
Point.new((_width/2).floor, margin),
Point.new(margin, size),
Point.new(margin + size, size)
]
_stack.push(ColoredPoint.new(-1, -1, 0))
}
addPoint() {
var colorIndex = _r.int(3)
var p1 = _stack.peek()
var p2 = _points[colorIndex]
_stack.push(halfwayPoint(p1, p2, colorIndex))
}
drawPoints() {
for (cp in _stack) {
var c = _colors[cp.colorIndex]
Canvas.circlefill(cp.x, cp.y, 1, c)
}
}
halfwayPoint(a, b, idx) { ColoredPoint.new(((a.x + b.x)/2).floor, ((a.y + b.y)/2).floor, idx) }
update() {
if (_stack.count < 50000) {
for (i in 0...25) addPoint()
}
}
draw(alpha) {
drawPoints()
}
}
var Game = ChaosGame.new(640, 640)
X86 Assembly
Sixty bytes handles it.
1 ;Assemble with: tasm, tlink /t
2 0000 .model tiny
3 0000 .code
4 .386
5 org 100h
6 ;assume: ax=0, bx=0, cx=00FFh, dx=cs, si=0100h
7
8 0100 B0 12 start: mov al, 12h ;set 640x480x4 graphic screen
9 0102 CD 10 int 10h
10
11 0104 69 04 4E35 cha10: imul ax, [si], 4E35h ;generate random number
12 0108 40 inc ax
13 0109 89 04 mov [si], ax ;save seed
14 010B 8A C4 mov al, ah ;use high byte
15 010D D4 03 aam 3 ;al:= rem(al/3)
16 010F 8A D8 mov bl, al
17 0111 02 DB add bl, bl ;double to index words
18
19 0113 03 8F 0130r add cx, [bx+Tx] ;X:= (X+Tx(R)) /2
20 0117 D1 E9 shr cx, 1
21
22 0119 03 97 0136r add dx, [bx+Ty] ;Y:= (Y+Ty(R)) /2
23 011D D1 EA shr dx, 1
24
25 011F B8 0C02 mov ax, 0C02h ;write green (2) graphics pixel
26 0122 CD 10 int 10h ;(bh=0)
27
28 0124 B4 01 mov ah, 01h ;loop until keystroke
29 0126 CD 16 int 16h
30 0128 74 DA jz cha10
31
32 012A B8 0003 mov ax, 0003h ;restore normal text-mode screen
33 012D CD 10 int 10h
34 012F C3 ret ;return to DOS
35
36 0130 0140 002B 0255 Tx dw 320, 320-277, 320+277 ;equilateral triangle
37 0136 0000 01DF 01DF Ty dw 0, 479, 479
38 end start
XPL0
int Tx, Ty, X, Y, R;
[SetVid($12); \640x480x4 graphics
Tx:= [320, 320-277, 320+277]; \equilateral triangle
Ty:= [0, 479, 479]; \277 = 480 / (2*Sin(60))
X:= Ran(640); \random starting point
Y:= Ran(480);
repeat R:= Ran(3); \select random triangle point
X:= (X+Tx(R))/2; \new point is halfway to it
Y:= (Y+Ty(R))/2;
Point(X, Y, 2\green\); \plot new point
until KeyHit;
SetVid($03); \restore normal text mode
]
Yabasic
width = 640 : height = 480
open window width, height
window origin "lb"
x = ran(width)
y = ran(height)
for i = 1 to 200000
vertex = int(ran(3))
if vertex = 1 then
x = width / 2 + (width / 2 - x) / 2
y = height - (height - y) / 2
elseif vertex = 2 then
x = width - (width - x) / 2
y = y / 2
else
x = x / 2
y = y / 2
end if
color 255 * (vertex = 0), 255 * (vertex = 1), 255 * (vertex = 2)
dot x, y
next
Z80 Assembly
This program runs on an MSX-2, in "SCREEN 5" (256x192 graphics mode). It assembles to a .COM file that runs under MSX-DOS, and it will run until you press the space key.
VREG: equ 99h ; VDP register port
VR0: equ 0F3DFh ; Copy of VDP R0 in memory
VR1: equ 0F3E0h ; Copy of VDP R1 in memory
NEWKEY: equ 0FBE5h ; MSX BIOS puts key data here
VDP: equ 98h ; VDP data port
ROM: equ 0FCC0h ; Main ROM slot
JIFFY: equ 0FCE9h ; BIOS timer
calslt: equ 1Ch ; Interslot call routine
initxt: equ 6Ch ; Switch to default text mode
org 100h
ld bc,(JIFFY) ; Initialize RNG with time
ld d,b
ld e,c
exx ; RNG state stored in alternate registers
di ; Set up the VDP for 256x192 graphics mode
ld a,(VR0) ; Get old value of R0
and 112 ; Blank out mode bits
or 6 ; Set high 3 bits = 011(0)
out (VREG),a
ld a,128 ; Store in register 0
out (VREG),a
ld a,(VR1) ; Get old value of R1
and 99 ; Blank out mode bits
out (VREG),a
ld a,129 ; Low mode bits are 0 so we can just send it
out (VREG),a
ld a,31 ; Bitmap starts at beginning of VRAM
out (VREG),a
ld a,130
out (VREG),a
xor a ; Zero out the VRAM - set address to 0
out (VREG),a
ld a,142
out (VREG),a
xor a
out (VREG),a
ld a,64 ; Tell VDP to allow writing to VRAM
out (VREG),a
xor a ; Write zeroes to the VDP
ld c,192 ; 2 pixels per byte, meaning 128*192 bytes
zero1: ld b,128
zero2: out (VDP),a
djnz zero2
dec c
jr nz,zero1
ei
genX: call random ; Generate starting X coordinate
cp 200
jr nc,genX
ld b,a ; B = X
genY: call random ; Generate starting Y coordinate
cp 173
jr nc,genY
ld c,a ; C = Y
step: call random ; Get direction
and a,3 ; Directions {0,1,2}
cp a,3
jr z,step
ld ixh,a ; Store direction in IXH for color
dec a ; Select direction
jr z,d1
dec a
jr z,d2
xor a ; X /= 2
rr b
xor a ; Y /= 2
rr c
jr plot
d1: xor a ; There's a 16-bit SBC but not a 16-bit SUB
ld hl,100 ; (16-bit math or intermediate values won't fit)
ld d,a ; DE = X
ld e,b
sbc hl,de ; 100 - X
xor a
rr h ; (100 - X) / 2
rr l
ld e,100 ; (100 - X) / 2 + 100
add hl,de
ld b,l ; -> X
xor a
ld hl,173 ; 173
ld e,c
sbc hl,de ; (173 - Y)
rr h ; (173 - Y) / 2
rr l
ex de,hl
ld l,173
xor a
sbc hl,de ; 173 - (173-Y)/2
ld c,l ; -> Y
jr plot
d2: xor a
rr c ; Y /= 2
xor a
ld hl,200
ld d,a ; DE = X
ld e,b
sbc hl,de ; 200-X
xor a
rr h ; (200-X)/2
rr l
ex de,hl
ld l,200
sbc hl,de ; 200 - (200-X)/2
ld b,l ; -> X
plot: ld d,c ; Write address = CB/2
ld e,b
xor a
rr d
rr e
ld a,d ; First control byte =
rlca ; high 2 bytes of address
rlca
and 3
ld h,a ; Keep this value, we'll need it again
di
out (VREG),a
ld a,142 ; To port 14
out (VREG),a
ld a,e ; 2nd control byte = low 8 bits
out (VREG),a
ld a,d ; 3rd control byte = middle 6 bits
and 63 ; Bit 6 off = read
out (VREG),a
nop ; Give it some processing time
nop
in a,(VDP) ; Read the two pixels there
ld l,a ; Keep this byte
ld a,h ; Now set the VDP to write to that address
out (VREG),a
ld a,142
out (VREG),a
ld a,e
out (VREG),a
ld a,d
and 63 ; Bit 6 on = write
or 64
out (VREG),a
ld a,ixh ; Get color
add a,12
ld d,b ; Left or right pixel?
rr d
jr c,wpix
rlca ; Shift left if X is even
rlca
rlca
rlca
wpix: or l ; OR with other pixel in the byte
out (VDP),a ; Write byte
ei
wkey: ld a,(NEWKEY+8)
inc a ; Check if space key pushed
jp z,step ; If not, do another step
ld iy,ROM ; Switch back to text mode and quit
ld ix,initxt
jp calslt
random: exx ; RNG state stored in alternate registers
inc b ; X++
ld a,b ; X,
xor e ; ^ C,
xor c ; ^ A,
ld c,a ; -> A
add a,d ; + B
ld d,a ; -> B
rra ; >> 1
xor c ; ^ A,
add a,e ; + C,
ld e,a ; -> C
exx
ret
zkl
This is a half assed animated process - a bunch of pixels are drawn every couple of seconds and the pixmap written [to the file system]. So, if you open the output file ("chaosGame.jpg") it will [auto] update and show the progression of the image.
Uses the PPM class from http://rosettacode.org/wiki/Bitmap/Bresenham%27s_line_algorithm#zkl
w,h:=640,640;
bitmap:=PPM(w,h,0xFF|FF|FF); // White background
colors:=T(0xFF|00|00,0x00|FF|00,0x00|00|FF); // red,green,blue
margin,size:=60, w - 2*margin;
points:=T(T(w/2, margin), T(margin,size), T(margin + size,size) );
N,done:=Atomic.Int(0),Atomic.Bool(False);
Thread.HeartBeat('wrap(hb){ // a thread
var a=List(-1,-1);
if(N.inc()<50){
do(500){
colorIndex:=(0).random(3); // (0..2)
b,p:=points[colorIndex], halfwayPoint(a,b);
x,y:=p;
bitmap[x,y]=colors[colorIndex];
a=p;
}
bitmap.writeJPGFile("chaosGame.jpg",True);
}
else{ hb.cancel(); done.set(); } // stop thread and signal done
},2).go(); // run every 2 seconds, starting now
fcn halfwayPoint([(ax,ay)], [(bx,by)]){ T((ax + bx)/2, (ay + by)/2) }
done.wait(); // don't exit until thread is done
println("Done");
- Programming Tasks
- Solutions by Programming Task
- 8086 Assembly
- Action!
- Amazing Hopper
- BASIC
- Applesoft BASIC
- BASIC256
- GW-BASIC
- IS-BASIC
- Locomotive Basic
- MSX Basic
- Sinclair ZX81 BASIC
- ZX Spectrum Basic
- C
- C sharp
- C++
- Common Lisp
- Opticl
- Delphi
- Winapi.Windows
- System.Classes
- Vcl.Graphics
- Vcl.Forms
- Vcl.ExtCtrls
- System.Generics.Collections
- EasyLang
- Emacs Lisp
- F Sharp
- Forth
- Fortran
- FreeBASIC
- Fōrmulæ
- FutureBasic
- GML
- Gnuplot
- Pages with broken file links
- Go
- Groovy
- JavaFX
- Haskell
- J
- Java
- JavaScript
- Julia
- Kotlin
- Logo
- Lua
- M2000 Interpreter
- Maple
- Mathematica
- Wolfram Language
- Nim
- Using a game library
- Rapid
- Using SDL
- SDL2
- Writing result into an image
- Imageman
- PARI/GP
- Pascal
- Perl
- Phix
- Phix/pGUI
- Phix/online
- Plain English
- Processing
- Processing Python mode
- Python
- Quackery
- R
- Racket
- Raku
- REXX
- Ring
- Run BASIC
- Rust
- Scala
- Scilab
- Sidef
- Simula
- Uiua
- Wren
- DOME
- Wren-dynamic
- Wren-seq
- X86 Assembly
- XPL0
- Yabasic
- Z80 Assembly
- Zkl