Named parameters
You are encouraged to solve this task according to the task description, using any language you may know.
Create a function which takes in a number of arguments which are specified by name rather than (necessarily) position, and show how to call the function. If the language supports reordering the arguments or optionally omitting some of them, note this.
Note:
- Named parameters relies on being able to use the names given to function parameters when the function is defined, when assigning arguments when the function is called.
- For example, if a function were to be defined as
define func1( paramname1, paramname2)
; then it could be called normally asfunc1(argument1, argument2)
and in the called function paramname1 would be associated with argument1 and paramname2 with argument2. func1
must also be able to be called in a way that visually binds each parameter to its respective argument, irrespective of argument order, for example:func1(paramname2=argument2, paramname1=argument1)
which explicitly makes the same parameter/argument bindings as before.- Named parameters are often a feature of languages used in safety critical areas such as Verilog and VHDL.
See also:
11l
<lang 11l>F sqlen(x = 0, y = 0, z = 0)
R x*x + y*y + z*z
print(sqlen(z' 3)) // equivalent to print(sqlen(0, 0, 3))</lang>
Ada
All callable entities (procedures, functions, entries) require named arguments. All of them can be called using either positional or keyed association of the actual arguments. The arguments supplied with default values can be omitted. <lang Ada>procedure Foo (Arg_1 : Integer; Arg_2 : Float := 0.0);</lang> It can be equivalently called as: <lang Ada>Foo (1, 0.0); Foo (1); Foo (Arg_2 => 0.0, Arg_1 => 1); Foo (Arg_1 => 1);</lang>
ALGOL 68
<lang algol68>BEGIN
MODE OPTNAME = STRUCT(STRING name), OPTSPECIES = STRUCT(STRING species), OPTBREED = STRUCT(STRING breed), OWNER=STRUCT(STRING first name, middle name, last name);
# earlier versions of Algol 68G would allow empty options to be specified as () # # however more recent versions reject that and so we include VOID in the MODEs # # for options. Empty option lists can be written as (EMPTY) # MODE OPTIONS = FLEX[1:0]UNION(OPTNAME,OPTSPECIES,OPTBREED,OWNER,VOID);
# due to the Yoneda ambiguity simple arguments must have an unique operator defined # # E.g. a string cannot be coerced to a structure with a single string field # OP NAME = (STRING name)OPTNAME: (OPTNAME opt; name OF opt := name; opt), SPECIES = (STRING species)OPTSPECIES: (OPTSPECIES opt; species OF opt := species; opt), BREED = (STRING breed)OPTBREED: (OPTBREED opt; breed OF opt := breed; opt); PROC print pet = (OPTIONS option)VOID: ( STRING name:="Rex", species:="Dinosaur", breed:="Tyrannosaurus"; # Defaults # OWNER owner := ("George","W.","Bush"); FOR i TO UPB option DO CASE option[i] IN (OPTNAME option): name := name OF option, (OPTSPECIES option): species := species OF option, (OPTBREED option): breed := breed OF option, (OWNER option): owner := option ESAC OD; print(("Details: a ",breed, " ", species, " named ",name," owned by ",owner, newline)) ); print pet((NAME "Mike", SPECIES "Dog", BREED "Irish Setter", OWNER("Harry", "S.", "Truman"))); print pet((EMPTY))
END </lang> Output:
Details: a Irish Setter Dog named Mike owned by Harry S. Truman Details: a Tyrannosaurus Dinosaur named Rex owned by George W. Bush
AppleScript
AppleScript does not implement default or optional parameters, but they can be simulated using records. <lang AppleScript>on getName(x) set {firstName, lastName} to {"?", "?"} try set firstName to x's firstName end try try set lastName to x's lastName end try
return firstName & ", " & lastName end getName</lang> Examples: <lang AppleScript >getName({firstName:"John", lastName:"Doe"}) --> Returns: "John, Doe" getName({lastName:"Doe"}) --> Returns: "?, Doe"</lang>
An easier way to achieve the above is by concatenating a record containing default values for the expected properties to the record actually passed. The result will contain the labels and values from both records, except that where the same label exists in both records, there'll only be one instance in the result and its value will be that from the first record:
<lang applescript>on getName(x) -- x assumed to be a record for this demo.
set x to x & {firstName:"?", lastName:"?"} return x's firstName & ", " & x's lastName
end getName
getName({lastName:"Doe"}) --> "?, Doe"</lang>
One of AppleScript's handler types has long been "handlers with labeled parameters". These haven't proved particularly popular as they have a limited set of AppleScript-defined labels, which can require some creativity when choosing one to make sense in the script narrative. However, labelled parameters can be given in any order in calls:
<lang applescript>on getName from firstName beside lastName
return firstName & ", " & lastName
end getName
getName beside "Doe" from "John" --> "John, Doe"</lang>
However, it's also possible to define user labels, with the same flexibility of order, using a slightly different syntax:
<lang applescript>on getName given firstName:firstName, lastName:lastName
return firstName & ", " & lastName
end getName
getName given lastName:"Doe", firstName:"John" --> "John, Doe"</lang>
AppleScript-defined and user labels can be combined, but the AppleScript ones must be given first if used. The given syntax also has a neat feature whereby if the value to be passed is a boolean, the keyword with or without can be used instead in the call. In fact the compiler imposes this anyway when a boolean is hard-coded into the call:
<lang applescript>on getName given firstName:firstName, lastName:lastName, comma:comma
if (comma) then return firstName & ", " & lastName else return firstName & space & lastName end if
end getName
getName given lastName:"Doe", firstName:"John" comma:true -- compiles as: getName with comma given lastName:"Doe", firstName:"John" --> "John, Doe" getName without comma given lastName:"Doe", firstName:"John" --> "John Doe"</lang>
Since Mac OS X 10.10, it has been possible to make labelled parameters optional by defining default values for them in the handler declarations. But at least one parameter must be provided in any call:
<lang applescript>use AppleScript version "2.4" -- Mac OS X 10.10 (Yosemite) or later.
on getName under category : "Misc: " given firstName:firstName : "?", lastName:lastName : "?", comma:comma : true
if (comma) then return category & firstName & ", " & lastName else return category & firstName & space & lastName end if
end getName
getName given lastName:"Doe" --> "Misc: ?, Doe"</lang>
Applesoft BASIC
Function definitions in Applesoft BASIC using the DEF FN statement can only have one parameter. Subroutines and functions with many parameters can be simulated using global variables which are effectively named parameters. Default or optional parameters can be simulated with a check in the subroutine.
<lang ApplesoftBasic> 100 IF LAST$ = "" THEN PRINT "?";
110 IF LAST$ < > "" THEN PRINT LAST$; 120 IF FIRST$ < > "" THEN PRINT ", "FIRST$; 200 FIRST$ = "" 210 LAST$ = "" 220 RETURN</lang>
]FIRST$ = "JOHN" : GOSUB 100"PRINT NAME ?, JOHN ]LAST$ = "DOE" : GOSUB 100"PRINT NAME DOE ]FIRST$ = "JOHN" : LAST$ = "DOE" : GOSUB 100"PRINT NAME DOE, JOHN
AutoHotkey
AutoHotkey doesn't have named parameters, but they can be simulated as follows. ahk discussion <lang AutoHotkey>MyFunc( "Val=0, w=1024, Text=The Quick Brown Fox, newVar=I'm New" )
MyFunc( _overrides="" ) {
Static x=5, y=5, w=100, h=100, Count Name:="AutoHotkey", Type:="Scripting", Text:="qwerty", Val:=True Loop, Parse, _overrides,`,=, %A_Space% ; Override routine for Local/Static variables A_Index & 1 ? (_:=A_LoopField) : (%_%:=A_LoopField)
Listvars
WinWaitClose, %A_ScriptFullPath%
}</lang>
Bracmat
In Bracmat, all functions have exactly one argument, called "arg". To split the argument and assign values to local variables, you always have to use pattern matching. In this task, the pattern is just made a bit more complex than would have been the case without explicit parameter names in the argument. <lang bracmat>( ( testproc
= i x y z . out$"Calling testproc" & (=~):(=?i:?x:?y:?z) { initialise variables to 'failure' } & !arg : (? (i,?i) ?|?) { if "i" found, assign value to i. Otherwise just match with no side effect. } : (? (x,?x) ?|?) { if "x" found, assign value to x. Otherwise just match with no side effect. } : (? (y,?y) ?|?) { likewise } : (? (z,?z) ?|?) { likewise } & (~!i|put$(" i:=" !i)) { if variable doesn't fail, show its value } & (~!x|put$(" x:=" !x)) & (~!y|put$(" y:=" !y)) & (~!z|put$(" z:=" !z)) & put$\n { add new line } )
& testproc$((x,1) (y,2) (z,3)) & testproc$((x,3) (y,1) (z,2)) & testproc$((z,4) (x,2) (y,3)) { order is not important } & testproc$((i,1) (y,2) (z,3)) );</lang> Output:
Calling testproc x:= 1 y:= 2 z:= 3 Calling testproc x:= 3 y:= 1 z:= 2 Calling testproc x:= 2 y:= 3 z:= 4 Calling testproc i:= 1 y:= 2 z:= 3
C
C has no direct support for named parameters to functions, but it does permit named parameters to struct initializers. These can be used to simulate named function parameters:
<lang c>#include <stdio.h>
// 1. Named parameters
typedef struct { int x, y, z; } FTest_args;
void FTest (FTest_args args) { printf("x: %d, y: %d, z: %d\n", args.x, args.y, args.z); }
- define FT(...) FTest((FTest_args){ __VA_ARGS__ })
// 2. Default parameters
- define DFT(...) FTest((FTest_args){ .x = 142, .y = 143, .z = 144, __VA_ARGS__ })
// 3. Convenience wrapper to avoid accessing args as "args.name"
void FTest2 (int x, int y, int z) { printf("x: %d, y: %d, z: %d\n", x, y, z); }
static inline void FTest2_default_wrapper (FTest_args args) { return FTest2(args.x, args.y, args.z); }
- define DF2(...) FTest2_default_wrapper((FTest_args){ .x = 142, .y = 143, .z = 144, __VA_ARGS__ })
int main(int argc, char **argv)
{
// Named parameters
FTest((FTest_args){ .y = 10 });
FTest((FTest_args){ .y = 10, .z = 42 });
FT( .z = 47, .y = 10, .x = 42 );
// Default parameters DFT(); DFT( .z = 99 );
// Default parameters with wrapper DF2(); DF2( .z = 99 );
return 0; }</lang>
As a bonus, default values for the parameters left unspecified can be either implicitly set to zero by the struct initializer, or supplied in a wrapper-macro definition. But this is not idiomatic C by any stretch.
C#
Named parameters were added in C# 4.0. The examples below demonstrate how named parameters and optional parameters are a single concept in the language.
<lang csharp>using System;
namespace NamedParams {
class Program { static void AddWidget(string parent, float x = 0, float y = 0, string text = "Default") { Console.WriteLine("parent = {0}, x = {1}, y = {2}, text = {3}", parent, x, y, text); }
static void Main(string[] args) { AddWidget("root", 320, 240, "First"); AddWidget("root", text: "Origin"); AddWidget("root", 500); AddWidget("root", text: "Footer", y: 400); } }
}</lang>
Output:
parent = root, x = 320, y = 240, text = First parent = root, x = 0, y = 0, text = Origin parent = root, x = 500, y = 0, text = Default parent = root, x = 0, y = 400, text = Footer
C++
C++ does not support name parameters, but they can be simulated with the "Named Parameter Idiom" (http://www.parashift.com/c++-faq-lite/ctors.html#faq-10.18).
You wrap the parameters in a class, and make the function a friend of the parameter class.
<lang cpp>class foo_params{ friend void foo(foo_params p); public:
foo_params(int r): required_param_(r),
optional_x_(0), optional_y_(1), optional_z_(3.1415) {}
foo_params& x(int i){
optional_x_=i; return *this;
} foo_params& y(int i){
optional_y_=i; return *this;
} foo_params& z(float f){
optional_z_=f; return *this;
}
private:
int required_param_;
int optional_x_; int optional_y_; float optional_z_; };</lang>
Declare the function to take the parameter class as its only parameter.
<lang cpp>void foo(foo_params p){ . . .}</lang>
Call the function using the parameter object constructor with the required parameters and chaining the optional parameters.
<lang cpp>foo(foo_params(42).x(7).z(23.54));</lang>
If you want real named parameters you can use The Boost Parameter Library. <lang cpp>#include <boost/parameter/name.hpp>
- include <boost/parameter/preprocessor.hpp>
- include <string>
BOOST_PARAMETER_NAME(foo) BOOST_PARAMETER_NAME(bar) BOOST_PARAMETER_NAME(baz) BOOST_PARAMETER_NAME(bonk)
BOOST_PARAMETER_FUNCTION(
(int), // the return type of the function, the parentheses are required. function_with_named_parameters, // the name of the function. tag, // part of the deep magic. If you use BOOST_PARAMETER_NAME you need to put "tag" here. (required // names and types of all required parameters, parentheses are required. (foo, (int)) (bar, (float)) ) (optional // names, types, and default values of all optional parameters. (baz, (bool) , false) (bonk, (std::string), "default value") )
) {
if (baz && (bar > 1.0)) return foo; return bonk.size();
}</lang>
Once the definition is written, using it is easy, by name or position.
<lang cpp>function_with_named_parameters(1, 10.0); function_with_named_parameters(7, _bar = 3.14); function_with_named_parameters( _bar = 0.0, _foo = 42); function_with_named_parameters( _bar = 2.5, _bonk= "Hello", _foo = 9); function_with_named_parameters(9, 2.5, true, "Hello");</lang>
Clojure
Clojure doesn't have built-in support for named or keyword arguments, but you can use destructuring to achieve a similar effect.
<lang clojure>(defn foo [& opts]
(let [opts (merge {:bar 1 :baz 2} (apply hash-map opts)) {:keys [bar baz]} opts] [bar baz]))</lang>
Clojure 1.2 supports destructuring of trailing arguments as a map:
<lang clojure>(defn foo [& {:keys [bar baz] :or {bar 1, baz 2}}]
[bar baz])</lang>
You can also use defnk
from clojure.contrib.def
, which is a macro that works similarly.
<lang clojure>(use 'clojure.contrib.def) (defnk foo [:bar 1 :baz 2]
[bar baz])</lang>
Sample output for all variants:
user> (foo :baz 123) [1 123] user> (foo :bar 456) [456 2]
Common Lisp
<lang lisp>(defun print-name (&key first (last "?"))
(princ last) (when first (princ ", ") (princ first)) (values))</lang>
&key
indicates that further parameters are named (keyword parameters); a bare symbol (e.g. first) has a default of NIL, whereas a list (e.g. (last "?")
) gives the variable name and the default value (which is evaluated when the function is called, unlike Python).
<lang lisp>CL-USER> (print-name) ? CL-USER> (print-name :first "John") ?, John CL-USER> (print-name :first "John" :last "Doe") Doe, John CL-USER> (print-name :last "Doe") Doe</lang>
In Common Lisp, the arguments to a function are always a simple list of values; the &key
facility merely defines an interpretation of that list by the function: alternating keys and values. (As a result of this, mixing varargs (&rest
) with named parameters is not recommended as it requires some additional means of distinguishing them. On the other hand, functions which pass their arguments on to other functions need not handle named arguments distinctly.)
Dyalect
Dyalect supports both named and optional parameters.
<lang dyalect>func fun(x, y = 0, z = 12.2, dsc = "Useless text") {
print("x=\(x), y=\(y), z=\(z), dsc=\(dsc)")
}
fun(12, z = 24.4, dsc = "Foo", y = 3) fun(y = 42, x = 12)</lang>
- Output:
x=12, y=3, z=24.4, dsc=Foo x=12, y=42, z=12.2, dsc=Useless text
E
Since E supports arbitrary pattern matching (in the sense of Pattern Matching in parameter lists, a map-pattern can be used to provide named parameters, though the syntax is sufficiently noisy that this is not used casually.
<lang e>def printName([=> first := null, => last := null]) {
if (last == null) { print("?") } else { print(last) } if (first != null) { print(", ") print(first) }
}</lang>
(Note: In map literals and map patterns, “=> x
” is shorthand for “"x" => x
”.)
<lang e>? printName(["first" => "John"]) ?, John
? printName(["last" => "Doe"]) Doe
? printName(["first" => "John", "last" => "Doe"]) Doe, John</lang>
Elixir
The easiest and visually most appealing way to have named parameters is using a proplist as last parameter of the function.
<lang Elixir> def fun(bar: bar, baz: baz), do: IO.puts "#{bar}, #{baz}."
fun(bar: "bar", baz: "baz") </lang>
For this way to use them, order matters, as well as you can't define default values for arguments.
Erlang
At a guess "named parameters" are supposed to be used like proplists in Erlang. <lang Erlang> Fun = fun( Proplists ) ->
Argument1 = proplists:get_value( argument1, Proplists, 1 ), Kalle = proplists:get_value( kalle, Proplists, "hobbe" ), io:fwrite( "~p ~s~n", [Argument1, Kalle] )
end. </lang>
The function can now be called like these examples.
25> Fun( [] ). 1 hobbe 26> Fun( [{argument1, 99}] ). 99 hobbe 27> Fun( [{kalle, "gustav"}, {argument1, 9}] ). 9 gustav
Factor
Named parameters in Factor are as simple as changing the :
word to ::
and using the variables defined in the stack effect declaration.
<lang Factor>
- my-named-params ( a b -- c ) a b * ;
</lang>
Forth
As with many of the other languages here, Forth does not have named parameters, but it does have practices that arise in situations where a Forth programmer might want named parameters. In Forth's case, these practices also arise when a more natural control language is wanted (e.g., LEFT ARM 36 DEGREES LIFT) or when a word would otherwise take excessively many arguments.
Two regrettably unnatural examples:
<lang forth>256 buffer: first-name 256 buffer: last-name
- is ( a "name" -- ) parse-name rot place ;
- greet ( -- )
cr ." Hello, " first-name count type space last-name count type ." !" ;
first-name is Bob last-name is Hall greet
require mini-oof2.fs
require string.fs
object class
field: given-name field: surname
end-class Person
- hiya ( -- )
cr ." Hiya, " given-name $. space surname $. ." !" ;
Person new >o s" Bob" given-name $! s" Hall" surname $! hiya o></lang>
- Output:
Hello, Bob Hall! Hiya, Bob Hall!
Fortran
Fortran accepts named parameter and optional parameter. Arguments are always named: if the name is omitted, the order used in the definition of the function / subroutine must be used.
<lang fortran>subroutine a_sub(arg1, arg2, arg3)
integer, intent(in) :: arg1, arg2 integer, intent(out), optional :: arg3 ! ...
end subroutine a_sub</lang>
<lang fortran>! usage
integer :: r call a_sub(1,2, r) call a_sub(arg2=2, arg1=1)</lang>
The presence of an optional argument can be tested with PRESENT; if optional arguments come before a non optional argument, the usage of the name of the argument is mandatory.
<lang fortran>subroutine b_sub(arg1, arg2)
integer, intent(in), optional :: arg1 integer, intent(in) :: arg2 !...
end subroutine b_sub</lang>
<lang fortran>call b_sub(1) ! error: missing non optional arg2 call b_sub(arg2=1) ! ok call b_sub(1, 2) ! ok: arg1 is 1, arg2 is 2 call b_sub(arg2=2, arg1=1) ! the same as the previous line</lang>
Go
Although Go doesn't support named parameters as such, they can be simulated using a struct with fields corresponding in name and type to the desired parameters.
A struct literal can then be passed to the function labelling the individual fields with their names. The fields need not appear in the same order as they are declared and, if one or more are omitted, they are given their 'zero' values.
Here's a simple example. <lang go>package main
import (
"fmt"
)
type params struct {x, y, z int}
func myFunc(p params) int {
return p.x + p.y + p.z
}
func main() {
r := myFunc(params{x: 1, y: 2, z: 3}) // all fields, same order fmt.Println("r =", r) s := myFunc(params{z: 3, y: 2, x: 1}) // all fields, different order fmt.Println("s =", s) t := myFunc(params{y: 2}) // only one field, others set to zero fmt.Println("t =", t)
}</lang>
- Output:
r = 6 s = 6 t = 2
Haskell
We can simulate named, but not moveable arguments, with nullary data constructors:
<lang Haskell>data X = X data Y = Y data Point = Point Int Int deriving Show
createPointAt :: X -> Int -> Y -> Int -> Point createPointAt X x Y y = Point x y
main = print $ createPointAt X 5 Y 3</lang>
We can also emulate named, moveable, optional arguments with record syntax:
<lang Haskell>data Point = Point {x, y :: Int} deriving Show defaultPoint = Point {x = 0, y = 0}
createPointAt :: Point -> Point createPointAt = id main = print $ createPointAt (defaultPoint { y = 3, x = 5 })</lang>
Though this is cumbersome without using template Haskell, as the call site must supply the defaults.
Icon and Unicon
Icon and Unicon do not support named parameters. There are a couple of approaches that could be adapted to provide this kind of functionality. The basic considerations are:
- writing a string like "parm1=value" would be limiting as the value would have to be parsed and this form would be challenged to represent all data types
- using two parameters like this (...,"parm1:=",x,"parm2:=",y,...) removes this limitation
The test procedure below includes a list of valid parameter names to check against
<lang Icon>procedure main()
testproc("x:=",1,"y:=",2,"z:=",3) testproc("x:=",3,"y:=",1,"z:=",2) testproc("z:=",4,"x:=",2,"y:=",3) testproc("i:=",1,"y:=",2,"z:=",3)
end
procedure testproc(A[]) #: demo to test named parameters
write("Calling testproc")
while a := get(A) do # implement named parameters here (( a ? (v := =!["x","y","z"], =":=") | # valid parameter name? stop("No parameter ",a)) & # . . no ((variable(a[1:-2]) := get(A)) | # assign runerr(205,a))) # . . problem write(" x:=",x) write(" y:=",y) write(" z:=",z)
end</lang>
Output:
Calling testproc x:=1 y:=2 z:=3 Calling testproc x:=3 y:=1 z:=2 Calling testproc x:=2 y:=3 z:=4 Calling testproc No parameter i:=
J
J is similar to Perl in that all arguments to functions come in as separate elements in an array. But it is possible to emulate more complex calling conventions. For example, using the calling convention J script, one could write:
<lang j>NB. Strand notation myFunc['c:\file.txt' 906 'blue' fs]
NB. Commas, like other langs myFunc['c:\file.txt', 906, 'blue' fs]
NB. Unspecified args are defaulted ("optional") myFunc['c:\file.txt' fs]
NB. Can use named arguments, like eg VB myFunc[color='blue' fs]
NB. Often values needn't be quoted myFunc[color= blue fs]
NB. Combination of comma syntax and name=value myFunc[max=906, color=blue fs]
NB. Spelling of names is flexible myFunc[MAX=906, COLOR=blue fs]
NB. Order of names is flexible myFunc[COLOR=blue, MAX=906 fs]
NB. Even the delimiters are flexible... myFunc<MAX=906, COLOR=blue fs></lang>
For further discussion, see the corresponding thread in the J Forums.
Java
Like C++, Java also does not support named parameters. Named parameters can however be simulated simply with the "Builder pattern". (Joshua Bloch: Builder Pattern) <lang java>processNutritionFacts(new NutritionFacts.Builder(240, 8).calories(100).sodium(35).carbohydrate(27).build());</lang> Follow the link for extra details about the 'NutritionFacts' class example.
JavaScript
JavaScript only has positional parameters, but named parameters can be emulated by passing an object with the appropriate properties: <lang javascript>function example(options) {
// assign some defaults where the user's has not provided a value opts = {} opts.foo = options.foo || 0; opts.bar = options.bar || 1; opts.grill = options.grill || 'pork chops'
alert("foo is " + opts.foo + ", bar is " + opts.bar + ", and grill is " + opts.grill);
}
example({grill: "lamb kebab", bar: 3.14}); // => "foo is 0, bar is 3.14, and grill is lamb kebab"</lang>
ECMAScript 2015 (ES6) variants
With this version, ECMAScript adds destrucuring assignments and destructuring in function parameters. Thus you could do something like this (this works in ES6 Fiddle, but is syntax error in Mozilla SpiderMonkey JS Shell, so uses console.log instead of print):<lang javascript>let
example = // The member name in the object can either be the same as the parameter (as in bar, grill), // or a different parameter name as in the case of member foo being assigned to parameter a here. ({foo: a=0, bar=1, grill='pork chops'}={}) => ( console.log('foo is ',a,', bar is ',bar,', and grill is '+grill));
example(); // foo is 0 , bar is 1 , and grill is pork chops example({grill: "lamb kebab", bar: 3.14}); // foo is 0 , bar is 3.14 , and grill is lamb kebab example({foo:null}); // foo is , bar is 1 , and grill is pork chops</lang>
jq
jq does not strictly speaking support named function arguments, but since jq is JSON-oriented, it is possible to achieve the desired effect by using JSON objects.
For example, here is the jq analog of "print-name" defined in the Common Lisp section above. Here we format the full name and return it as a string: <lang jq> def formatName(obj):
({ "name": "?"} + obj) as $obj # the default default value is null | ($obj|.name) as $name | ($obj|.first) as $first | if ($first == null) then $name else $name + ", " + $first end;
</lang>
Here are examples of how the function can be invoked: <lang jq> formatName({"first": "George", "name": "Eliot"})
formatName({"name": "Eliot", "first": "George"})
formatName({"name": "Eliot"})
formatName({"first": "George"})
formatName({}) </lang>
Julia
Julia supports arbitrary named keyword arguments, which are listed (with their default values) after a ;
in the function definition:
<lang Julia>function surround(string ; border = :default, padding = 0)
ve, ho, ul, ur, dl, dr = border == :round ? ("\u2502","\u2500","\u256d","\u256e","\u2570","\u256f") : border == :bold ? ("\u2503","\u2501","\u250F","\u2513","\u2517","\u251b") : border == :double? ("\u2551","\u2550","\u2554","\u2557","\u255a","\u255d") : border == :dotted? ("\u254e","\u254c","\u250c","\u2510","\u2514","\u2518") : border == :cross ? ("\u2502","\u2500","\u253c","\u253c","\u253c","\u253c") : ("\u2502","\u2500","\u250c","\u2510","\u2514","\u2518")
println(ul, ho^(length(string) + 2padding), ur, "\n", ve, " "^padding, string," "^padding, ve, "\n", dl, ho^(length(string) + 2padding), dr)
end</lang>
- Output:
julia> surround("♡", border = :round) ╭─╮ │♡│ ╰─╯ julia> surround("Julia", padding = 1, border = :double) ╔═══════╗ ║ Julia ║ ╚═══════╝
Kotlin
<lang scala>// version 1.0.6
fun someFunction(first: String, second: Int = 2, third: Double) {
println("First = ${first.padEnd(10)}, Second = $second, Third = $third")
}
fun main(args: Array<String>) {
// using positional parameters someFunction("positional", 1, 2.0)
// using named parameters someFunction(first = "named", second = 1, third = 2.0)
// omitting 2nd parameter which is optional because it has a default value someFunction(first = "omitted", third = 2.0)
// using first and third parameters in reverse someFunction(third = 2.0, first = "reversed")
}</lang>
- Output:
First = positional, Second = 1, Third = 2.0 First = named , Second = 1, Third = 2.0 First = omitted , Second = 2, Third = 2.0 First = reversed , Second = 2, Third = 2.0
LabVIEW
Function calls in LabVIEW are implemented as instantiated VIs, small icons representing the function to be called. All parameters are positional, by drawing wires to different points along the icon edge. By right-clicking on the VI icon and unchecking "View as Icon", the parameter names can be shown. The parameter names are mainly informational for the user.
This image shows a VI with "View as Icon" unchecked.
This image is a VI Snippet, an executable image of LabVIEW code. The LabVIEW version is shown on the top-right hand corner. You can download it, then drag-and-drop it onto the LabVIEW block diagram from a file browser, and it will appear as runnable, editable code.
Lasso
<lang Lasso>define mymethod( -first::integer, // with no default value the param is required -second::integer, -delimiter::string = ':' // when given a default value the param becomes optional ) => #first + #delimiter + #second
mymethod(
-first = 54,
-second = 45
)
'
'
mymethod(
-second = 45, // named params can be given in any order
-first = 54,
-delimiter = '#'
)</lang>
-> 54:45
54#45
Lingo
Lingo does not support named function parameters. But this can be simulated by using a single property list (hash) with named properties as function argument. You can also create functions that support both calling methods, like e.g. this function that accepts either 3 integers or a single property list with such named properties: <lang lingo>-- accepts either 3 integers or a single property list on foo (arg1, arg2, arg3)
if ilk(arg1)=#propList then args = arg1 arg1 = args[#arg1] arg2 = args[#arg2] arg3 = args[#arg3] end if put "arg1="&arg1 put "arg2="&arg2 put "arg3="&arg3
end
foo(1,2) -- 3rd argument omitted -- "arg1=1" -- "arg2=2" -- "arg3="
foo([#arg3:3]) -- only 3rd argument specified -- "arg1=" -- "arg2=" -- "arg3=3"</lang>
Lua
<lang Lua> function CreatePet(options)
local name=options.name local species=options.species local breed=options.breed print('Created a '..breed..' '..species..' named '..name)
end CreatePet{name='Rex',species='Dog',breed='Irish Setter'} --position does not matter here. </lang>
M2000 Interpreter
We can use named parameters for modules only. Modules are like functions but can't be called from expressions. We can use current stack to return values using Push statement. Here we define type and we set values to make them optionals. Passing optionals in modules may cause problems if we have values in stack, so we can use Stack New {] to open an empty current stack (the old one is hidden until exit from that block), or using ? as "use standard value".
<lang M2000 Interpreter> module namedparam (x as decimal=10, y as integer=50) {
Print type$(x), x Print type$(y), y
} namedparam 10, 20 namedparam ?, ? Push 1, 2 : namedparam Stack New {
\\ it is empty namedparam namedparam %y=500 namedparam %x=20
} namedparam %x=1, %y=1 </lang>
Maple
<lang maple>f := proc(a, {b:= 1, c:= 1})
print (a*(c+b));
end proc:
- a is a mandatory positional parameter, b and c are optional named parameters
f(1);#you must have a value for a for the procedure to work
2
f(1, c = 1, b = 2);
3
f(2, b = 5, c = 3);#b and c can be put in any order
16</lang>
Mathematica
<lang Mathematica>Options[fn]={Add->False,Offset-> 0}; fn[x_,y_,OptionsPattern[]]:=If[OptionValue[Add]==True,x+y+OptionValue[Offset],{x,y,OptionValue[Offset]}]
fn[3,4,{Add->True,Offset->2}] ->9 fn[3,4,{Offset->2,Add->True}] ->9</lang>
MATLAB / Octave
Named parameters are not natively supported. However, the following code can be used to implement them.
<lang Matlab> function foo(varargin)
for k= 1:2:length(varargin); switch (varargin{k}) case {'param1'} param1 = varargin{k+1}; case {'param2'} param2 = varargin{k+1};
end;
end; printf('param1: %s\n',param1); printf('param2: %s\n',param2); end; foo('param1','a1','param2','b2'); foo('param2','b2','param1','a1'); </lang>
Output:
>> foo('param1','a1','param2','b2'); param1: a1 param2: b2 >> foo('param2','b2','param1','a1'); param1: a1 param2: b2
Modula-3
Much like Ada, Modula-3 allows either positional or keyed association of actual parameters. Defaults can also be ignored.
<lang modula3>PROCEDURE Foo(Arg1: INTEGER; Arg2: REAL := 0.0);</lang> It can be equivalently called as: <lang modula3>Foo(1, 0.0); Foo(1); Foo(Arg2 := 0.0, Arg1 := 1); Foo(Arg1 := 1);</lang>
Nemerle
<lang Nemerle>Foo(number : int, word = "Default", option = true) : void // note type inference with default values
Foo(word = "Bird", number = 3) // an argument with a default value can be omitted from function call Foo(3, option = false, word = "Bird") // unnamed arguments must be in same order as function definition and precede named arguments </lang>
Nim
In Nim, a regular parameter of a procedure can be used as either a positional or a named parameter.
<lang nim>proc subtract(x, y): auto = x - y
echo subtract(5, 3) # used as positional parameters echo subtract(y = 3, x = 5) # used as named parameters</lang>
Parameters can be made optional by providing a default argument.
Objective-C
Objective-C, like Smalltalk, has a method call syntax that is visually identical to named arguments, but they are not optional and may not be reordered. (Optional arguments may be simulated by defining multiple methods with the same leading name part.) <lang objc>@interface Demo : NSObject {
// Omitted ...
}
- (double) hypotenuseOfX: (double)x andY: (double)y; - (double) hypotenuseOfX: (double)x andY: (double)y andZ: (double)z;
@end</lang> <lang objc>@implementation Demo
- (double) hypotenuseOfX: (double)x andY: (double)y {
return hypot(x,y);
} - (double) hypotenuseOfX: (double)x andY: (double)y andZ: (double)z {
return hypot(hypot(x, y), z);
}
@end</lang>
<lang objc>Demo *example = [[Demo alloc] init];
double h = [example hypotenuseOfX:1.23 andY:3.79];</lang>
Note in the example above that the name of the method, the selector; is actually “hypotenuseOfX:andY:
”.
OCaml
You can make a named argument (called labels in OCaml) by putting a tilde (~) before the name: <lang ocaml># let foo ~arg1 ~arg2 = arg1 + arg2;; val foo : arg1:int -> arg2:int -> int = <fun>
- let foo ~arg1:x ~arg2:y = x + y;; (* you can also use different variable names internally if you want *)
val foo : arg1:int -> arg2:int -> int = <fun>
- foo ~arg2:17 ~arg1:42;;
- : int = 59</lang>
Named arguments can be re-ordered, but two arguments of the same label cannot be re-ordered relative to each other.
Named arguments can be curried. If you partially apply a function on a named argument (even if the named argument is not first in the function declaration), it will evaluate to a function of the remaining arguments.
Named arguments can be made optional, with the ?(arg = value)
syntax in the parameter declaration. See the optional parameters task for more details.
Oz
For methods, Oz does support named parameters with default values. The named parameters can be freely reordered. <lang oz>declare class Foo
meth init skip end meth bar(PP %% positional parameter
named1:N1 named2:N2 namedWithDefault:NWD <= 42)
{System.showInfo "PP: "#PP#", N1: "#N1#", N2: "#N2#", NWD: "#NWD} end
end
O = {New Foo init} {O bar(1 named1:2 named2:3 namedWithDefault:4)} %% ok {O bar(1 named2:2 named1:3)} %% ok {O bar(1 named1:2)} %% not ok, "missing message feature in object application"</lang>
For procedures only positional parameters are supported. However, you can emulate named parameters by using records: <lang oz> declare proc {Foo PP Other=unit(named1:N1 named2:N2 ...)}
NWD = {CondSelect Other namedWithDefault 42}
in
{System.showInfo "PP: "#PP#", N1: "#N1#", N2: "#N2#", NWD: "#NWD}
end
{Foo 1 unit(named1:2 named2:3 namedWithDefault:4)} {Foo 1 unit(named2:2 named1:3)} {Foo 1 unit(named1:2)} %% not ok...</lang>
The procedure Foo is defined with pattern matching in the argument list. The ellipsis means that additional record fields are allowed. To access optional record fields, we have to explicitly try to select a field and provide a default value in case it is missing ("CondSelect").
Perl
Perl has no non-experimental formal parameters. Instead, Perl subroutines access all of their arguments through the special array @_
. You can easily implement named arguments by making your function interpret @_
(or part of it) as a hash.
<lang perl>sub funkshun { my %h = @_;
# Print every argument and its value. print qq(Argument "$_" has value "$h{$_}".\n) foreach sort keys %h; # If a 'verbosity' argument was passed in, print its value # whatever that value may be. print "Verbosity specified as $h{verbosity}.\n" if exists $h{verbosity}; # Say that safe mode is on if 'safe' is set to a true value. # Otherwise, say that it's off. print "Safe mode ", ($h{safe} ? 'on' : 'off'), ".\n";
}</lang> The semantics of calling such a function follow directly from the semantics of using a hash. For instance, if you provide multiple values for the same named argument, only the last one will be used. An example call:
<lang perl>funkshun(
verbosity => 3, password => 'foobie blech', extra_lives => 3, '42' => 'answer', password => 'joshua'
);</lang> Its output:
Argument "42" has value "answer". Argument "extra_lives" has value "3". Argument "password" has value "joshua". Argument "verbosity" has value "3". Verbosity specified as 3. Safe mode off.
Further flexibility can be obtained by using Pass by reference semantics:<lang Perl>sub event {
my ($params_ref, $name) = @_; my %params = %$params_ref; my @known_params = qw(attendees event food time);
printf "%s called event() with the following named parameters:\n", $name // 'Anonymous';
say sort map { sprintf "%s: %s\n", ucfirst $_, ref $params{$_} eq ref [] ? join ', ', @{ $params{$_} } : $params{$_}; } grep exists $params{$_}, @known_params; delete $params{$_} foreach @known_params;
say "But I didn't recognize these ones:"; while (my ($key, $val) = each %params) { say "$key: $val"; }
}
event(
{ # Curly braces with no label (e.g. 'sub' before it) # create a reference to an anonymous hash attendees => ['Bob', 'Betty', 'George', 'Bertha'], event => 'birthday', foo => 'bar', food => 'cake', frogblast => 'vent core', time => 3, }, "Joe Schmoe"
);</lang>Prints:
Joe Schmoe called event() with the following named parameters: Attendees: Bob, Betty, George, Bertha Event: birthday Food: cake Time: 3 But I didn't recognize these ones: frogblast: vent core foo: bar
This is useful when you want your function to take both named (the hash) and positional (Joe Schmoe's $name) parameters.
Phix
Phix supports named and optional parameters in a very simple, natural, and intuitive way, erring on the side of caution when faced with any potential ambiguity.
Optional parameters are specified simply by providing a default, any non-defaulted parameters must occur before (to the left of) any defaulted parameters.
Named parameters can be given (when invoking a routine) in any order, but must be grouped together after (to the right of) any non-named parameters.
Note that low-level builtins (those defined using AutoAsm() in psym.e/syminit()) do not support named parameters (maybe one day..), but everything else does.
<lang Phix>global function timedelta(atom weeks=0, atom days=0, atom hours=0, atom minutes=0, atom seconds=0, atom milliseconds=0, atom microseconds=0)
-- can be invoked as:
constant fourdays = timedelta(days:=4)
-- fourdays = timedelta(0,4) -- equivalent
-- **NB** a plain '=' is a very different thing
constant oneday = timedelta(days=1) -- equivalent to timedelta([weeks:=]iff((equal(days,1)?true:false))
-- - with an error if no local variable days exists.
constant shift = timedelta(hours:=hours) -- perfectly valid (param hours:=local hours) -- timedelta(0,hours:=15,3) -- illegal (it is not clear whether you meant days:=3 or minutes:=3)</lang>
PHP
PHP doesn't support named parameters but you can simulate the behavior with PHP arrays. <lang PHP>function named($args) {
$args += ["gbv" => 2, "motor" => "away", "teenage" => "fbi"]; echo $args["gbv"] . " men running " . $args['motor'] . " from the " . $args['teenage'];
}
named(["teenage" => "cia", "gbv" => 10]);</lang> Output:
10 men running away from the cia
PicoLisp
PicoLisp uses normally positional parameters, but 'bind' can be used to establish bindings to passed names.
Passing symbol-value pairs
<lang PicoLisp>(de foo @
(bind (rest) # Bind symbols in CARs to values in CDRs (println 'Bar 'is Bar) (println 'Mumble 'is Mumble) ) )
(foo '(Bar . 123) '(Mumble . "def"))</lang>
Passing a name list followed by values
<lang PicoLisp>(de foo @
(bind (next) # Save all symbols in first argument (mapc set (arg) (rest)) # then bind them to remaining arguments (println 'Bar 'is Bar) (println 'Mumble 'is Mumble) ) )
(foo '(Bar Mumble) 123 "def")</lang> Output in both cases:
Bar is 123 Mumble is "def"
PowerShell
Positional parameters
When writing a function and not stating any parameters explicitly, such as the following function <lang powershell>function Test {
Write-Host Argument 1 is $args[0]
}</lang>
the only option are positional parameters using the $args
array.
Named parameters
Stating any number of parameters directly in the function definition, such as <lang powershell>function Test ($SomeArgument, $AnotherArgument, $ThirdArgument) {
Write-Host "Some argument: $SomeArgument" Write-Host "Another argument: $AnotherArgument" Write-Host "Third argument: $ThirdArgument"
}</lang> will cause them to be named automatically which enables the caller to state the arguments in any order. The syntax follows the convention used with cmdlets as well:
PS> Test -ThirdArgument foo -AnotherArgument bar -SomeArgument baz Some argument: baz Another argument: bar Third argument: foo
However, one can still just give the arguments in order without explicitly having to state the names of the parameters.
Arbitrary arguments can be omitted as well:
PS> Test -ThirdArgument foo -AnotherArgument bar Some argument: Another argument: bar Third argument: foo
This will cause the omitted arguments to have the value $null
Switch parameters
Functions can have so-called switch parameters which are always boolean and either present or not. There is no need to give a value for them. <lang powershell>function SwitchTest ([switch] $on) {
Write-Host Switched $(if ($on) { "on" } else { "off" })
}</lang> When calling a function with such a parameter the switch is simply given directly (which sets its value to true) or omitted (which causes it to evaluate to false):
PS> SwitchTest Switched off PS> SwitchTest -on Switched on
Optional parameters and default values
Usually all parameters can be omitted. In the case of switch parameters this will cause them to assume the value false, for normal parameters they will have the value $null
. This is not always the desired value, though. Default values can be given too:
<lang powershell>function Greeting ($Name = "Nobody") {
Write-Host Hello, $Name!
}</lang>
If the Name
argument is omitted now, its value will be "Nobody"
instead of $null
:
PS> Greeting Hello Nobody! PS> Greeting John Hello John!
Prolog
<lang prolog>:- initialization(main).
main :- sum(b=2,output=Output,a=1), writeln(Output).
sum(A1,B1,C1) :- named_args([A1,B1,C1],[a=A,b=B,output=Output]), Output is A + B.
named_args([],_). named_args([A|B],C) :- member(A,C), named_args(B,C). </lang>
Python
Basic explanation
A more detailed explanation of parameters, arguments, and how they are used is in the sections below. This is a simplified explanation:
In Python, a regular parameter of a function can be used as either a positional or a named parameter. The variable name that you use for the parameter when you declare the function becomes the "name" for the parameter, should you use it as a named parameter. When you call a function, you use the "name = value" syntax to provide the argument to a named parameter. The named arguments must come after all the positional arguments.
<lang python>def subtract(x, y):
return x - y
subtract(5, 3) # used as positional parameters; evaluates to 2 subtract(y = 3, x = 5) # used as named parameters; evaluates to 2</lang>
Parameters can be made optional by providing a default argument, as described in the optional parameters article.
Detailed Explanation
Function Definition Parameters
Function definitions in Python allow for the following parameter types:
- Optional default parameter types which are explicitly specified by name, and may have an optional default value.
- An optional positional parameter which is an identifier preceded by
"*"
. - And an optional keyword parameter which is an identifier preceded by
"**"
.
If any of the parameter types are given then they must appear in the order specified above.
The syntax of function parameter declarations is more formally defined as:
funcdef ::= "def" funcname "(" [parameter_list] ")" ":" suite dotted_name ::= identifier ("." identifier)* parameter_list ::= (defparameter ",")* ( posparameter [, keyparameter] | keyparameter | defparameter [","] ) defparameter ::= parameter ["=" expression] posparameter ::= "*" identifier keyparameter ::= "**" identifier sublist ::= parameter ("," parameter)* [","] parameter ::= identifier | "(" sublist ")"
Function Call Arguments
The call of a function in python can use the following argument types:
- Positional arguments that are mapped by their position in the call argument list to the
defparameter
name in the corresponding position of the function definition. - Sequence arguments that are the character
"*"
followed by an expression evaluating to a sequence (such as a list or tuple). The values from the sequence are unpacked and mapped like individual positional arguments todefparameter
s of the function definition. Sequence arguments are “evaluated before any keyword argument, irrespecctive of their relative positions in an argument list”. - All positional arguments must appear before any keyword argument.
- Keyword arguments of the form
parameter_name "=" value
will map the value to thedefparameter
in the definition of the same name. - Mapping arguments that are the characters
"**"
followed by an expression evaluating to a mapping (such as a dict/hash). The key, value pairs from the mapping are unpacked and mapped like individual keyword arguments todefparameter
s of the function definition. - If the function definition includes a positional parameter, then if the assignment of positional arguments and sequence arguments in the call gives more values than the
defparameters
of the definition, then these extra arguments are assembled, in order, into a tuple that is assigned to theposparameter
of the definition. - If the function definition includes a keyword parameter, then if the parameter name of any keyword arguments and mapping arguments in the call is unknown in the
defparameters
of the function definition, then these extra keyword/value pairs are assembled into a dict that is assigned to thekeyparameter
of the definition. - Any default parameter of the function definition that is not assigned a value at this point, but which has a default value, will be aassigned this default value, without re-evaluating the default value.
- Any default parameter of the function definition that is still un-assigned will cause a
TypeError
exception to be raised. - In addition, multiple mappings to any parameter will raise a
TypeError
exception. (This includes multiple mappings into akeyparameter
or keyword arguments clashing with positional/sequence arguments).
The more formal definition of a function call's syntax is
call ::= primary "(" [argument_list [","] | expression genexpr_for] ")" argument_list ::= positional_arguments ["," keyword_arguments] ["," sequence_argument] ["," keyword_arguments] ["," mapping_argument] | keyword_arguments ["," sequence_argument] ["," mapping_argument] | sequence_argument ["," sequence_argument] ["," mapping_argument] | mapping_argument positional_arguments ::= expression ("," expression)* keyword_arguments ::= keyword_item ("," keyword_item)* sequence_argument ::= "*" expression mapping_argument ::= "**" expression keyword_item ::= identifier "=" expression
Examples
<lang python>>>> from __future__ import print_function >>> >>> def show_args(defparam1, defparam2 = 'default value', *posparam, **keyparam):
"Straight-forward function to show its arguments" print (" Default Parameters:") print (" defparam1 value is:", defparam1) print (" defparam2 value is:", defparam2)
print (" Positional Arguments:") if posparam: n = 0 for p in posparam: print (" positional argument:", n, "is:", p) n += 1 else: print (" <None>")
print (" Keyword Arguments (by sorted key name):") if keyparam: for k,v in sorted(keyparam.items()): print (" keyword argument:", k, "is:", v) else: print (" <None>")
>>> show_args('POSITIONAL', 'ARGUMENTS')
Default Parameters: defparam1 value is: POSITIONAL defparam2 value is: ARGUMENTS Positional Arguments: <None> Keyword Arguments (by sorted key name): <None>
>>> show_args(defparam2='ARGUMENT', defparam1='KEYWORD')
Default Parameters: defparam1 value is: KEYWORD defparam2 value is: ARGUMENT Positional Arguments: <None> Keyword Arguments (by sorted key name): <None>
>>> show_args( *('SEQUENCE', 'ARGUMENTS') )
Default Parameters: defparam1 value is: SEQUENCE defparam2 value is: ARGUMENTS Positional Arguments: <None> Keyword Arguments (by sorted key name): <None>
>>> show_args( **{'defparam2':'ARGUMENTS', 'defparam1':'MAPPING'} )
Default Parameters: defparam1 value is: MAPPING defparam2 value is: ARGUMENTS Positional Arguments: <None> Keyword Arguments (by sorted key name): <None>
>>> show_args('ONLY DEFINE defparam1 ARGUMENT')
Default Parameters: defparam1 value is: ONLY DEFINE defparam1 ARGUMENT defparam2 value is: default value Positional Arguments: <None> Keyword Arguments (by sorted key name): <None>
>>> show_args('POSITIONAL', 'ARGUMENTS',
'EXTRA', 'POSITIONAL', 'ARGUMENTS') Default Parameters: defparam1 value is: POSITIONAL defparam2 value is: ARGUMENTS Positional Arguments: positional argument: 0 is: EXTRA positional argument: 1 is: POSITIONAL positional argument: 2 is: ARGUMENTS Keyword Arguments (by sorted key name): <None>
>>> show_args('POSITIONAL', 'ARGUMENTS',
kwa1='EXTRA', kwa2='KEYWORD', kwa3='ARGUMENTS') Default Parameters: defparam1 value is: POSITIONAL defparam2 value is: ARGUMENTS Positional Arguments: <None> Keyword Arguments (by sorted key name): keyword argument: kwa1 is: EXTRA keyword argument: kwa2 is: KEYWORD keyword argument: kwa3 is: ARGUMENTS
>>> show_args('POSITIONAL',
'ARGUMENTS', 'EXTRA', 'POSITIONAL', 'ARGUMENTS', kwa1='EXTRA', kwa2='KEYWORD', kwa3='ARGUMENTS') Default Parameters: defparam1 value is: POSITIONAL defparam2 value is: ARGUMENTS Positional Arguments: positional argument: 0 is: EXTRA positional argument: 1 is: POSITIONAL positional argument: 2 is: ARGUMENTS Keyword Arguments (by sorted key name): keyword argument: kwa1 is: EXTRA keyword argument: kwa2 is: KEYWORD keyword argument: kwa3 is: ARGUMENTS
>>> # But note: >>> show_args('POSITIONAL', 'ARGUMENTS',
kwa1='EXTRA', kwa2='KEYWORD', kwa3='ARGUMENTS', 'EXTRA', 'POSITIONAL', 'ARGUMENTS')
SyntaxError: non-keyword arg after keyword arg >>></lang>
R
R parameters are all named; arguments can be passed either positionally or with explicit naming. The named arguments are matched to their parameters first, then the unnamed arguments fill in remaining slots. A parameter whose name begins with a period will not be matched to unnamed arguments. R allows abbreviated names to be used as long as they match uniquely to an argument.
<lang rsplus>divide <- function(numerator, denominator) {
numerator / denominator
}
divide(3, 2) # 1.5 divide(numerator=3, denominator=2) # 1.5 divide(n=3, d=2) # 1.5 divide(den=3, num=2) # 0.66 divide(den=3, 2) # 0.66 divide(3, num=2) # 0.66</lang>
Racket
Racket has built-in keyword and optional arguments:
<lang racket>
- lang racket
(define (pizza sauce
;; mandatory keyword argument #:topping topping ;; optional keyword argument with default #:type [type "deep dish"]) (printf "~a pizza with ~a sauce topped with ~a~n" type sauce topping))
(pizza "tomato" #:topping "onion") (pizza #:topping "onion" "garlic" #:type "pan") </lang>
Raku
(formerly Perl 6)
Raku's support for optional parameters is much like Python's. Consider this declaration:
<lang perl6>sub funkshun ($a, $b?, $c = 15, :$d, *@e, *%f) {
...
}</lang>
In the above signature:
$a
is a mandatory parameter accepted by position (funkshun 15, ...
).$b
is an optional parameter that can be passed by position or by name. By default, it's undefined.$c
is an optional parameter that can be passed by position or by name. Its default value is15
.$d
is an optional parameter that can only be passed by name. By default, it's undefined.@e
is a slurpy array: it receives any leftover positional arguments.%f
is a slurpy hash: it receives any leftover named arguments.
So, if we defined the function like this:
<lang perl6>sub funkshun ($a, $b?, :$c = 15, :$d, *@e, *%f) {
say "$a $b $c $d"; say join ' ', @e; say join ' ', keys %f;
}
- this particularly thorny call:
funkshun
'Alfa', k1 => 'v1', c => 'Charlie', 'Bravo', 'e1', d => 'Delta', 'e2', k2 => 'v2';</lang>
would print this:
Alfa Bravo Charlie Delta e1 e2 k1 k2
REXX
version 1
<lang rexx>/*REXX pgm shows named parameters when called as a subroutine/function*/ /*┌────────────────────────────────────────────────────────────────────┐
│ The syntax of: xxx = func1(parmName2=arg2, parmName1=arg1) │ │ │ │ in the REXX language is interpreted specifically as: │ │ │ │ xxx = func1( yyy , zzz ) │ │ │ │ where yyy is the logical result of comparing (the REXX variables)│ │ │ │ parmName2 with arg2 and │ │ │ │ where zzz is the logical result of comparing (the REXX variables)│ │ │ │ parmName1 with arg1 │ │ │ │ (either as two strings, or arithmetically if both "parmName2" and │ │ "arg2" are both valid REXX numbers. In the REXX language, there │ │ is no way to declare (define) what a variable is [or its type], as │ │ each literal that can be a variable is assumed to be one. If it's │ │ not defined, then its uppercase name is used for the value. │ │ │ │ Consider the one-line REXX program: say Where are you? │ │ causes REXX to consider that four-word expression as a "SAY" │ │ statement, followed by three REXX variables, each of which aren't │ │ defined (that is, have a value), so REXX uses a value which is the │ │ uppercased value of the REXX variable name, namely three values in │ │ this case, so the following is displayed: WHERE ARE YOU? │ │ │ │ [There is a mechanism in REXX to catch this behavior and raise the │ │ NOVALUE condition.] │ │ │ │ To allow a solution to be used for this task's requirement, and │ │ and not get tangled up with the legal REXX syntactical expressions │ │ shown, this REXX programming example uses a variation of the │ │ task's illustration to allow a method in REXX of using named │ │ parameters: xxx = func1('parmName2=' arg2, "parmName1=" arg1) │ │ │ │ Also, REXX allows the omitting of arguments by just specifying a │ │ comma (or nothing at all, in the case of a single argument): │ │ │ │ xxx = func1(,zzz) │ │ │ │ would indicate that the 1st argument has been omitted. │ │ │ │ xxx = func1(yyy) │ │ │ │ would indicate that the 2nd argument (and all other subsequent │ │ arguments) has/have been omitted. │ └────────────────────────────────────────────────────────────────────┘*/
parse arg count,itemX /*assume 2 values have been used,*/
/*or whatever ... just to show...*/ do j=1 for arg(); _=arg(1) /*now, lets examine each argument*/ if arg(j,'Omitted') then iterate /*skip examining if argJ omitted.*/ /*(above) This is superfluous, */ /* but it demonstrates a method. */ if \arg(j,"Exists") then iterate /*exactly the same as previous. */ /*Only 1st char (2nd arg) is used*/ first=strip(word(_,1)) /*extract the 1st word in arg(j).*/ if right(first,1)\=='=' then iterate /*skip if 1st word isn't: xxx= */ parse var _ varname '= ' value /*parse the named variable &value*/ if varname== then iterate /*not the correct format, so skip*/ /*(above) fix this for real pgm. */ call value varname,value /*use BIF to set REXX variable. */ end /*j*/
/* ∙∙∙ perform some REXX magic here with specified parameters and stuff:*/ /* do this, do that, perform dis & dat, compute, gears whiz, cogs */ /* turn, wheels spin, belts move, things get assigned, stuff gets */ /* computed, wheels spin, belts move, things get assigned, motors*/ /* humm, engines roar, coal gets burned, water turns to steam, real */ /* work (some of it useful) gets done, and something is produced. */
return 'the final meaning of life, or 42 --- whichever is appropriate.'
/*stick a fork in it, we're done.*/</lang>
version 2
<lang rexx>/* REXX ---------------------------------------------------------------
- 01.07.2014 Walter Pachl
- Argument values must not start with 'arg'
- --------------------------------------------------------------------*/
x=f(2,3) Say x Say y=f('arg2='3,'arg1='2) Say y Exit f: Procedure Parse Arg p1,p2 Do i=1 to arg()
If left(arg(i),3)='arg' Then Parse Value arg(i) With 'arg' j '=' p.j Else p.i=arg(i) End
Do i=1 To arg()
Say 'p.'i'='p.i End
Return p.1**p.2</lang>
- Output:
p.1=2 p.2=3 8 p.1=2 p.2=3 8
Ruby
Ruby 2.0 adds keyword arguments to the language. All keyword arguments are optional, because they have default values. Ruby 2.0 rejects unknown keys; example(typo: 4)
raises ArgumentError. In Ruby 2.1 the mandatory default values were dropped.
<lang ruby>def example(foo: 0, bar: 1, grill: "pork chops")
puts "foo is #{foo}, bar is #{bar}, and grill is #{grill}"
end
- Note that :foo is omitted and :grill precedes :bar
example(grill: "lamb kebab", bar: 3.14)</lang>
Ruby 1.9 can fake the effect with a Hash. If a caller passes name: value
pairs, Ruby makes a Hash, and the called method sees this Hash in its last argument. To complete the effect, the method may declare an optional last argument that defaults to an empty Hash {}
. In this version, example(typo: 4)
causes no error.
<lang ruby>def example(opts = {})
# Hash#merge raises TypeError if _opts_ is not a Hash. # Nothing checks if _opts_ contains unknown keys. defaults = {foo: 0, bar: 1, grill: "pork chops"} opts = defaults.merge(opts)
printf("foo is %s, bar is %s, and grill is %s\n", opts[:foo], opts[:bar], opts[:grill])
end
example(grill: "lamb kebab", bar: 3.14)</lang>
Ruby 1.8 and older versions can do the same, but must use the old syntax :name => value
.
<lang ruby>def example(opts = {})
defaults = {:foo => 0, :bar => 1, :grill => "pork chops"} opts = defaults.merge(opts) printf("foo is %s, bar is %s, and grill is %s\n", opts[:foo], opts[:bar], opts[:grill])
end
example(:grill => "lamb kebab", :bar => 3.14)</lang>
Scala
Scala 2.8 utilizes named parameters and default values:
<lang scala> def add(x: Int, y: Int = 1) = x + y </lang>
<lang scala> scala> add(5) 6
scala> add(y=10, x=4) 14 </lang>
Scheme
<lang scheme> (define (keyarg-parser argdefs args kont)
(apply kont
(map (lambda (argdef) (let loop ((args args)) (cond ((null? args) (cadr argdef)) ((eq? (car argdef) (car args)) (cadr args)) (else (loop (cdr args)))))) argdefs)))
(define (print-name . args)
(keyarg-parser '((first #f)(last "?"))
args (lambda (first last) (display last) (cond (first (display ", ") (display first))) (newline)))) </lang>
<lang scheme> => (print-name) ? => (print-name 'first "John") ?, John =>(print-name 'first "John" 'last "Doe") Doe, John =>(print-name 'last "Doe") Doe </lang>
Sidef
<lang ruby>func example(foo: 0, bar: 1, grill: "pork chops") {
say "foo is #{foo}, bar is #{bar}, and grill is #{grill}";
}
- Note that :foo is omitted and :grill precedes :bar
example(grill: "lamb kebab", bar: 3.14);</lang>
- Output:
foo is 0, bar is 3.14, and grill is lamb kebab
Smalltalk
As for Objective-C the methods signature is made of "Symbol:[OtherSymbol:]*" (* stands for 0 or more repetition of the part in the brackets), without the possibility to reorder them (it would be another signature) or to make them optional.
<lang smalltalk>Object subclass: AnotherClass [
"..." initWithArray: anArray [ "single argument" ] initWithArray: anArray andString: aString [ "two args; these two methods in usage resemble a named argument, with optional andString argument" ] "..."
]</lang>
Standard ML
This example uses Standard ML "fields". <lang sml>fun dosomething (a, b, c) = print ("a = " ^ a ^ "\nb = " ^ Real.toString b ^ "\nc = " ^ Int.toString c ^ "\n")
fun example {a, b, c} = dosomething (a, b, c)</lang>
To call the procedure example, use: <lang sml>example {a="Hello World!", b=3.14, c=42}</lang> However, this does not support optional parameters. To emulate them, we can process a parameter list: <lang sml>datatype param = A of string | B of real | C of int
fun args xs = let (* Default values *) val a = ref "hello world" val b = ref 3.14 val c = ref 42 in map (fn (A x) => a := x | (B x) => b := x | (C x) => c := x) xs; (!a, !b, !c) end</lang> To process the argument list and call example, use: <lang sml>dosomething (args [A "tam", B 42.0]);</lang>
Suneido
Suneido can handle named and unnamed parameters. When using a combination, unnamed parameters must come before named ones and must be in the correct order. Named parameters can be in any order. Named parameters are given a default value so they are not mandatory. <lang Suneido> test = function (one, two, three = , four = , five = )
{ Print('one: ' $ one $ ', two: ' $ two $ ', three: ' $ three $ ', four: ' $ four $ ', five: ' $ five) }
test('1', '2', five: '5', three: '3') </lang> Output: <lang Suneido>one: 1, two: 2, three: 3, four: , five: 5</lang>
Swift
Each function parameter has both an argument label and a parameter name. The argument label is used when calling the function; each argument is written in the function call with its argument label before it. The parameter name is used in the implementation of the function. By default, parameters use their parameter name as their argument label.
<lang Swift>func greet(person: String, hometown: String) -> String {
return "Hello \(person)! Glad you could visit from \(hometown)."
} print(greet(person: "Bill", hometown: "Cupertino"))</lang> You write an argument label before the parameter name, separated by a space: <lang Swift>func greet(person: String, from hometown: String) -> String {
return "Hello \(person)! Glad you could visit from \(hometown)."
} print(greet(person: "Bill", from: "Cupertino"))</lang>
If you don’t want an argument label for a parameter, write an underscore (_) instead of an explicit argument label for that parameter. If a parameter has an argument label, the argument must be labeled when you call the function. <lang Swift>func greet(_ person: String, _ hometown: String) -> String {
return "Hello \(person)! Glad you could visit from \(hometown)."
} print(greet("Bill", "Cupertino"))</lang>
You can define a default value for any parameter in a function by assigning a value to the parameter after that parameter’s type. If a default value is defined, you can omit that parameter when calling the function. <lang Swift>func greet(person: String, from hometown: String = "Cupertino") -> String {
return "Hello \(person)! Glad you could visit from \(hometown)."
} print(greet(person: "Bill"))</lang>
Tcl
The simplest way of passing named parameters is to use the Tcl language's strong support for variadic commands together with its arrays. By convention (originally from Tk) the named parameters names start with a hyphen (“-”) and are called options. <lang tcl>proc example args {
# Set the defaults array set opts {-foo 0 -bar 1 -grill "hamburger"} # Merge in the values from the caller array set opts $args # Use the arguments return "foo is $opts(-foo), bar is $opts(-bar), and grill is $opts(-grill)"
}
- Note that -foo is omitted and -grill precedes -bar
example -grill "lamb kebab" -bar 3.14
- => ‘foo is 0, bar is 3.14, and grill is lamb kebab’</lang>
More complex option parsing is possible, e.g., with the opt package (of which only a small fraction of the functionality is shown here). This package also allows you to specify type constraints, though that is usually not necessary, and will generate a standard help message that can be obtained with the -help option: <lang tcl>package require opt tcl::OptProc example {
{-foo -int 0 "The number of foos"} {-bar -float 1.0 "How much bar-ness"} {-grill -any "hamburger" "What to cook on the grill"}
} {
return "foo is $foo, bar is $bar, and grill is $grill"
} example -grill "lamb kebab" -bar 3.14
- => ‘foo is 0, bar is 3.14, and grill is lamb kebab’
example -help
- Usage information:
- Var/FlagName Type Value Help
- ------------ ---- ----- ----
- ( -help gives this help )
- -foo int (0) The number of foos
- -bar float (1.0) How much bar-ness
- -grill any (hamburger) What to cook on the grill</lang>
According to wiki.tcl.tk discussions, ::tcl::OptProc is deprecated. The recommended replacement is cmdline in tcllib. "This is probably the most standard and widely-used of these packages."
VBA
<lang vb>
Public Function timedelta(Optional weeks As Integer = 0, Optional days As Integer = 0, _
Optional hours As Integer = 0, Optional minutes As Integer = 0, Optional seconds As Integer = 0, _ Optional milliseconds As Integer = 0, Optional microseconds As Integer = 0) As Variant
End Function Public Sub main()
'-- can be invoked as: fourdays = timedelta(days:=4) '-- fourdays = timedelta(0,4) '-- equivalent '-- **NB** a plain '=' is a very different thing oneday = timedelta(days = 1) '-- equivalent to timedelta([weeks:=]IIf((days=1,-1:0)) '-- with NO error if no local variable days exists. 'VBA will assume local variable days=0 Dim hours As Integer shift = timedelta(hours:=hours) '-- perfectly valid (param hours:=local hours) '-- timedelta(0,hours:=15,3) '-- illegal (it is not clear whether you meant days:=3 or minutes:=3) 'VBA expects a named parameter for 3
End Sub</lang>
Visual Basic
<lang vb>'the function Sub whatever(foo As Long, bar As Integer, baz As Byte, qux As String)
'...
End Sub 'calling the function -- note the Pascal-style assignment operator Sub crap()
whatever bar:=1, baz:=2, foo:=-1, qux:="Why is ev'rybody always pickin' on me?"
End Sub</lang>
Wren
Wren doesn't support named parameters as such though they can be simulated using a map. <lang ecmascript>var printName = Fn.new { |name|
if (!(name is Map && name["first"] != null && name["last"] != null)) { Fiber.abort("Argument must be a map with keys \"first\" and \"last\"") } System.print("%(name["first"]) %(name["last"])")
}
printName.call({"first": "Abraham", "last": "Lincoln"}) // normal order printName.call({"last": "Trump", "first": "Donald"}) // reverse order printName.call({"forename": "Boris", "lastname": "Johnson"}) // wrong parameter names</lang>
- Output:
Abraham Lincoln Donald Trump Argument must be a map with keys "first" and "last" [./named_params line 3] in new(_) block argument [./named_params line 10] in (script)
XSLT
XSLT only allows specification of template parameters by name, not position. <lang xml><xsl:template name="table-header">
<xsl:param name="title"/> ...
</xsl:template></lang>
- Programming Tasks
- Basic language learning
- 11l
- Ada
- ALGOL 68
- AppleScript
- Applesoft BASIC
- AutoHotkey
- Bracmat
- C
- C sharp
- C++
- Boost
- Clojure
- COBOL/Omit
- Common Lisp
- D/Omit
- Dyalect
- E
- Elixir
- Erlang
- Factor
- Forth
- Fortran
- Go
- Haskell
- Icon
- Unicon
- Icon examples needing attention
- Examples needing attention
- J
- Java
- JavaScript
- Jq
- Julia
- Kotlin
- LabVIEW
- Lasso
- Lingo
- Lua
- M2000 Interpreter
- Maple
- Mathematica
- MATLAB
- Octave
- Modula-3
- Nemerle
- Nim
- Objective-C
- OCaml
- Oz
- Perl
- Phix
- PHP
- PicoLisp
- PowerShell
- Prolog
- Python
- R
- Racket
- Raku
- REXX
- Ruby
- Rust/Omit
- Scala
- Scheme
- Sidef
- Smalltalk
- Standard ML
- Suneido
- Swift
- Tcl
- VBA
- Visual Basic
- Wren
- XSLT
- Axe/Omit
- BASIC/Omit
- BBC BASIC/Omit
- Bc/Omit
- Dc/Omit
- F sharp/Omit
- GUISS/Omit
- Joy/Omit
- PARI/GP/Omit
- PureBasic/Omit
- TI-83 BASIC/Omit
- TI-89 BASIC/Omit
- UNIX Shell/Omit
- Zkl/Omit
- ZX Spectrum Basic/Omit
- Functions and subroutines