# Aliquot sequence classifications

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Aliquot sequence classifications
You are encouraged to solve this task according to the task description, using any language you may know.

An aliquot sequence of a positive integer K is defined recursively as the first member being K and subsequent members being the sum of the Proper divisors of the previous term.

• If the terms eventually reach 0 then the series for K is said to terminate.

There are several classifications for non termination:
• If the second term is K then all future terms are also K and so the sequence repeats from the first term with period 1 and K is called perfect.
• If the third term would be repeating K then the sequence repeats with period 2 and K is called amicable.
• If the Nth term would be repeating K for the first time, with N > 3 then the sequence repeats with period N - 1 and K is called sociable.

Perfect, amicable and sociable numbers eventually repeat the original number K; there are other repetitions...
• Some K have a sequence that eventually forms a periodic repetition of period 1 but of a number other than K, for example 95 which forms the sequence `95, 25, 6, 6, 6, ...` such K are called aspiring.
• K that have a sequence that eventually forms a periodic repetition of period >= 2 but of a number other than K, for example 562 which forms the sequence `562, 284, 220, 284, 220, ...` such K are called cyclic.

And finally:
• Some K form aliquot sequences that are not known to be either terminating or periodic; these K are to be called non-terminating.
For the purposes of this task, K is to be classed as non-terminating if it has not been otherwise classed after generating 16 terms or if any term of the sequence is greater than 2**47 = 140,737,488,355,328.

1. Create routine(s) to generate the aliquot sequence of a positive integer enough to classify it according to the classifications given above.
2. Use it to display the classification and sequences of the numbers one to ten inclusive.
3. Use it to show the classification and sequences of the following integers, in order:
11, 12, 28, 496, 220, 1184, 12496, 1264460, 790, 909, 562, 1064, 1488, and optionally 15355717786080.

## 11l

Translation of: Python
```F pdsum(n)
R sum((1 .. (n + 1) I/ 2).filter(x -> @n % x == 0 & @n != x))

F aliquot(n, maxlen = 16, maxterm = 2 ^ 30)
I n == 0
R (‘terminating’, [0])
V s = [n]
V slen = 1
V new = n
L slen <= maxlen & new < maxterm
new = pdsum(s.last)
I new C s
I s[0] == new
I slen == 1
R (‘perfect’, s)
E I slen == 2
R (‘amicable’, s)
E
R (‘sociable of length #.’.format(slen), s)
E I s.last == new
R (‘aspiring’, s)
E
R (‘cyclic back to #.’.format(new), s)
E I new == 0
R (‘terminating’, s [+] [0])
E
s.append(new)
slen++
L.was_no_break
R (‘non-terminating’, s)

L(n) 1..10
V (cls, seq) = aliquot(n)
print(‘#.: #.’.format(cls, seq))
print()
L(n) [11, 12, 28, 496, 220, 1184, 12496, 1264460, 790, 909, 562, 1064, 1488]
V (cls, seq) = aliquot(n)
print(‘#.: #.’.format(cls, seq))```
Output:
```terminating: [1, 0]
terminating: [2, 1, 0]
terminating: [3, 1, 0]
terminating: [4, 3, 1, 0]
terminating: [5, 1, 0]
perfect: [6]
terminating: [7, 1, 0]
terminating: [8, 7, 1, 0]
terminating: [9, 4, 3, 1, 0]
terminating: [10, 8, 7, 1, 0]

terminating: [11, 1, 0]
terminating: [12, 16, 15, 9, 4, 3, 1, 0]
perfect: [28]
perfect: [496]
amicable: [220, 284]
amicable: [1184, 1210]
sociable of length 5: [12496, 14288, 15472, 14536, 14264]
sociable of length 4: [1264460, 1547860, 1727636, 1305184]
aspiring: [790, 650, 652, 496]
aspiring: [909, 417, 143, 25, 6]
cyclic back to 284: [562, 284, 220]
cyclic back to 1184: [1064, 1336, 1184, 1210]
non-terminating: [1488, 2480, 3472, 4464, 8432, 9424, 10416, 21328, 22320, 55056, 95728, 96720, 236592, 459792, 881392, 882384, 1474608]
```

## AArch64 Assembly

Works with: as version Raspberry Pi 3B version Buster 64 bits
or android 64 bits with application Termux
```/* ARM assembly AARCH64 Raspberry PI 3B or android 64 bits */
/* program aliquotSeq64.s   */

/*******************************************/
/* Constantes file                         */
/*******************************************/
/* for this file see task include a file in language AArch64 assembly*/
.include "../includeConstantesARM64.inc"

.equ MAXINUM,      10
.equ MAXI,         16
.equ NBDIVISORS,   1000

/*******************************************/
/* Initialized data                        */
/*******************************************/
.data
szMessStartPgm:          .asciz "Program 64 bits start \n"
szMessEndPgm:            .asciz "Program normal end.\n"
szMessErrorArea:         .asciz "\033[31mError : area divisors too small.\033[0m \n"
szMessError:             .asciz "\033[31m\nError  !!!\033[0m \n"
szMessErrGen:            .asciz "\033[31mError end program.\033[0m \n"
szMessOverflow:          .asciz "\033[31mOverflow function isPrime.\033[0m \n"

szCarriageReturn:        .asciz "\n"
szLibPerf:               .asciz "Perfect       \n"
szLibAmic:               .asciz "Amicable      \n"
szLibSoc:                .asciz "Sociable      \n"
szLibAspi:               .asciz "Aspiring      \n"
szLibCycl:               .asciz "Cyclic        \n"
szLibTerm:               .asciz "Terminating   \n"
szLibNoTerm:             .asciz "No terminating\n"

/* datas message display */
szMessResult:            .asciz " @ "

.align 4
.equ NBNUMBER,  (. - tbNumber ) / 8

/*******************************************/
/* UnInitialized data                      */
/*******************************************/
.bss
.align 4
sZoneConv:               .skip 24
tbZoneDecom:             .skip 8 * NBDIVISORS       // facteur 4 octets
tbNumberSucc:            .skip 8 * MAXI
/*******************************************/
/*  code section                           */
/*******************************************/
.text
.global main
main:                               // program start
ldr x0,qAdrszMessStartPgm       // display start message
bl affichageMess

mov x4,#1
1:
mov x0,x4                       //  number
bl aliquotClassif               // aliquot classification
cmp x0,#-1                      // error ?
beq 99f
cmp x4,#MAXINUM
ble 1b

mov x4,#0
2:
ldr x0,[x5,x4,lsl #3]           // load a number
bl aliquotClassif               // aliquot classification
cmp x0,#-1                      // error ?
beq 99f
cmp x4,#NBNUMBER                // maxi ?
blt 2b                          // no -> loop

ldr x0,qAdrszMessEndPgm         // display end message
bl affichageMess
b 100f
99:                                 // display error message
bl affichageMess
100:                                // standard end of the program
mov x0, #0                      // return code
mov x8, #EXIT                   // request to exit program
svc 0                           // perform system call
/******************************************************************/
/*     function aliquot classification                            */
/******************************************************************/
/* x0 contains number */
aliquotClassif:
stp x4,lr,[sp,-16]!        // save  registres
stp x5,x6,[sp,-16]!        // save  registres
stp x7,x8,[sp,-16]!        // save  registres
mov x5,x0                    // save number
bl conversion10              // convert ascii string
strb wzr,[x1,x0]
bl strInsertAtCharInc        // put in head message
bl affichageMess             // and display
mov x0,x5                    // restaur number
ldr x7,qAdrtbNumberSucc      // number successif array
mov x4,#0                    // counter number successif
1:
mov x6,x0                    // previous number
bl decompFact                // create area of divisors
cmp x0,#0                    // error ?
blt 99f
sub x3,x1,x6                 // sum
mov x0,x3
bl conversion10              // convert ascii string
strb wzr,[x1,x0]
bl strInsertAtCharInc        // and put in message
bl affichageMess
cmp x3,#0                    // sum = zero
bne 11f
bl affichageMess
b 100f
11:
cmp x5,x3                    // compare number and sum
bne 4f
cmp x4,#0                    // first loop ?
bne 2f
bl affichageMess
b 100f
2:
cmp x4,#1                    // second loop ?
bne 3f
bl affichageMess
b 100f
3:                               // other loop
bl affichageMess
b 100f

4:
cmp x6,x3                 // compare sum and (sum - 1)
bne 5f
bl affichageMess
b 100f
5:
cmp x3,#1                 // if one ,no search in array
beq 7f
mov x2,#0                 // search indice
6:                            // search number in array
ldr x9,[x7,x2,lsl #3]
cmp x9,x3                 // equal ?
beq 8f                    // yes -> cycling
cmp x2,x4                 // end ?
blt 6b                    // no -> loop
7:
cmp x4,#MAXI
blt 10f
bl affichageMess
b 100f
8:                            // cycling
bl affichageMess
b 100f

10:
str x3,[x7,x4,lsl #3]     // store new sum in array
mov x0,x3                 // new number = new sum
b 1b                      // and loop

99:                           // display error
bl affichageMess
mov x0,-1
100:
ldp x7,x8,[sp],16          // restaur des  2 registres
ldp x5,x6,[sp],16          // restaur des  2 registres
ldp x4,lr,[sp],16          // restaur des  2 registres
ret
/******************************************************************/
/*     decomposition en facteur                                               */
/******************************************************************/
/* x0 contient le nombre à decomposer */
/* x1 contains factor area address */
decompFact:
stp x3,lr,[sp,-16]!          // save  registres
stp x4,x5,[sp,-16]!          // save  registres
stp x6,x7,[sp,-16]!          // save  registres
stp x8,x9,[sp,-16]!          // save  registres
stp x10,x11,[sp,-16]!        // save  registres
mov x5,x1
mov x1,x0
cmp x0,1
beq 100f
mov x8,x0                    // save number
bl isPrime                   // prime ?
cmp x0,#1
beq 98f                      // yes is prime
mov x1,#1
str x1,[x5]                  // first factor
mov x12,#1                   // divisors sum
mov x4,#1                    // indice divisors table
mov x1,#2                    // first divisor
mov x6,#0                    // previous divisor
mov x7,#0                    // number of same divisors
2:
mov x0,x8                    // dividende
udiv x2,x0,x1                //  x1 divisor x2 quotient x3 remainder
msub x3,x2,x1,x0
cmp x3,#0
bne 5f                       // if remainder <> zero  -> no divisor
mov x8,x2                    // else quotient -> new dividende
cmp x1,x6                    // same divisor ?
beq 4f                       // yes
mov x7,x4                    // number factors in table
mov x9,#0                    // indice
21:
ldr x10,[x5,x9,lsl #3 ]      // load one factor
mul x10,x1,x10               // multiply
str x10,[x5,x7,lsl #3]       // and store in the table
bcs 99f
add x7,x7,#1                 // and increment counter
cmp x9,x4
blt 21b
mov x4,x7
mov x6,x1                    // new divisor
b 7f
4:                               // same divisor
sub x9,x4,#1
mov x7,x4
41:
ldr x10,[x5,x9,lsl #3 ]
cmp x10,x1
sub x13,x9,1
csel x9,x13,x9,ne
bne 41b
sub x9,x4,x9
42:
ldr  x10,[x5,x9,lsl #3 ]
mul x10,x1,x10
str x10,[x5,x7,lsl #3]       // and store in the table
bcs 99f
add x7,x7,#1                 // and increment counter
cmp x9,x4
blt 42b
mov x4,x7
b 7f                         // and loop

/* not divisor -> increment next divisor */
5:
cmp x1,#2                    // if divisor = 2 -> add 1
csel x1,x13,x14,eq
b 2b

/* divisor -> test if new dividende is prime */
7:
mov x3,x1                    // save divisor
cmp x8,#1                    // dividende = 1 ? -> end
beq 10f
mov x0,x8                    // new dividende is prime ?
mov x1,#0
bl isPrime                   // the new dividende is prime ?
cmp x0,#1
bne 10f                      // the new dividende is not prime

cmp x8,x6                    // else dividende is same divisor ?
beq 9f                       // yes
mov x7,x4                    // number factors in table
mov x9,#0                    // indice
71:
ldr x10,[x5,x9,lsl #3 ]      // load one factor
mul x10,x8,x10               // multiply
str x10,[x5,x7,lsl #3]       // and store in the table
bcs 99f
add x7,x7,#1                 // and increment counter
cmp x9,x4
blt 71b
mov x4,x7
mov x7,#0
b 11f
9:
sub x9,x4,#1
mov x7,x4
91:
ldr x10,[x5,x9,lsl #3 ]
cmp x10,x8
sub x13,x9,#1
csel x9,x13,x9,ne
bne 91b
sub x9,x4,x9
92:
ldr  x10,[x5,x9,lsl #3 ]
mul x10,x8,x10
str x10,[x5,x7,lsl #3]       // and store in the table
bcs 99f                      // overflow
add x7,x7,#1                 // and increment counter
cmp x9,x4
blt 92b
mov x4,x7
b 11f

10:
mov x1,x3                    // current divisor = new divisor
cmp x1,x8                    // current divisor  > new dividende ?
ble 2b                       // no -> loop

/* end decomposition */
11:
mov x0,x4                    // return number of table items
mov x1,x12                   // return sum
mov x3,#0
str x3,[x5,x4,lsl #3]        // store zéro in last table item
b 100f

98:
mov x0,#0                   // return code
b 100f
99:
bl   affichageMess
mov x0,#-1                  // error code
b 100f

100:
ldp x10,x11,[sp],16          // restaur des  2 registres
ldp x8,x9,[sp],16          // restaur des  2 registres
ldp x6,x7,[sp],16          // restaur des  2 registres
ldp x4,x5,[sp],16          // restaur des  2 registres
ldp x3,lr,[sp],16          // restaur des  2 registres
ret                        // retour adresse lr x30
/***************************************************/
/*   Verification si un nombre est premier         */
/***************************************************/
/* x0 contient le nombre à verifier */
/* x0 retourne 1 si premier  0 sinon */
isPrime:
stp x1,lr,[sp,-16]!        // save  registres
stp x2,x3,[sp,-16]!        // save  registres
mov x2,x0
sub x1,x0,#1
cmp x2,0
beq 99f                    // retourne zéro
cmp x2,2                   // pour 1 et 2 retourne 1
ble 2f
mov x0,#2
bl moduloPux64
bcs 100f                   // erreur overflow
cmp x0,#1
bne 99f                    // Pas premier
cmp x2,3
beq 2f
mov x0,#3
bl moduloPux64
blt 100f                   // erreur overflow
cmp x0,#1
bne 99f

cmp x2,5
beq 2f
mov x0,#5
bl moduloPux64
bcs 100f                   // erreur overflow
cmp x0,#1
bne 99f                    // Pas premier

cmp x2,7
beq 2f
mov x0,#7
bl moduloPux64
bcs 100f                   // erreur overflow
cmp x0,#1
bne 99f                    // Pas premier

cmp x2,11
beq 2f
mov x0,#11
bl moduloPux64
bcs 100f                   // erreur overflow
cmp x0,#1
bne 99f                    // Pas premier

cmp x2,13
beq 2f
mov x0,#13
bl moduloPux64
bcs 100f                   // erreur overflow
cmp x0,#1
bne 99f                    // Pas premier
2:
cmn x0,0                   // carry à zero pas d'erreur
mov x0,1                   // premier
b 100f
99:
cmn x0,0                   // carry à zero pas d'erreur
mov x0,#0                  // Pas premier
100:
ldp x2,x3,[sp],16          // restaur des  2 registres
ldp x1,lr,[sp],16          // restaur des  2 registres
ret                        // retour adresse lr x30

/**************************************************************/
/********************************************************/
/*   Calcul modulo de b puissance e modulo m  */
/*    Exemple 4 puissance 13 modulo 497 = 445         */
/********************************************************/
/* x0  nombre  */
/* x1 exposant */
/* x2 modulo   */
moduloPux64:
stp x1,lr,[sp,-16]!        // save  registres
stp x3,x4,[sp,-16]!        // save  registres
stp x5,x6,[sp,-16]!        // save  registres
stp x7,x8,[sp,-16]!        // save  registres
stp x9,x10,[sp,-16]!        // save  registres
cbz x0,100f
cbz x1,100f
mov x8,x0
mov x7,x1
mov x6,1                   // resultat
udiv x4,x8,x2
msub x9,x4,x2,x8           // contient le reste
1:
tst x7,1
beq 2f
mul x4,x9,x6
umulh x5,x9,x6
mov x6,x4
mov x0,x6
mov x1,x5
bl divisionReg128U
cbnz x1,99f                // overflow
mov x6,x3
2:
mul x8,x9,x9
umulh x5,x9,x9
mov x0,x8
mov x1,x5
bl divisionReg128U
cbnz x1,99f                // overflow
mov x9,x3
lsr x7,x7,1
cbnz x7,1b
mov x0,x6                  // result
cmn x0,0                   // carry à zero pas d'erreur
b 100f
99:
bl  affichageMess
cmp x0,0                   // carry à un car erreur
mov x0,-1                  // code erreur

100:
ldp x9,x10,[sp],16          // restaur des  2 registres
ldp x7,x8,[sp],16          // restaur des  2 registres
ldp x5,x6,[sp],16          // restaur des  2 registres
ldp x3,x4,[sp],16          // restaur des  2 registres
ldp x1,lr,[sp],16          // restaur des  2 registres
ret                        // retour adresse lr x30
/***************************************************/
/*   division d un nombre de 128 bits par un nombre de 64 bits */
/***************************************************/
/* x0 contient partie basse dividende */
/* x1 contient partie haute dividente */
/* x2 contient le diviseur */
/* x0 retourne partie basse quotient */
/* x1 retourne partie haute quotient */
/* x3 retourne le reste */
divisionReg128U:
stp x6,lr,[sp,-16]!        // save  registres
stp x4,x5,[sp,-16]!        // save  registres
mov x5,#0                  // raz du reste R
mov x3,#128                // compteur de boucle
mov x4,#0                  // dernier bit
1:
lsl x5,x5,#1               // on decale le reste de 1
tst x1,1<<63               // test du bit le plus à gauche
lsl x1,x1,#1               // on decale la partie haute du quotient de 1
beq 2f
orr  x5,x5,#1              // et on le pousse dans le reste R
2:
tst x0,1<<63
lsl x0,x0,#1               // puis on decale la partie basse
beq 3f
orr x1,x1,#1               // et on pousse le bit de gauche dans la partie haute
3:
orr x0,x0,x4               // position du dernier bit du quotient
mov x4,#0                  // raz du bit
cmp x5,x2
blt 4f
sub x5,x5,x2                // on enleve le diviseur du reste
mov x4,#1                   // dernier bit à 1
4:
// et boucle
subs x3,x3,#1
bgt 1b
lsl x1,x1,#1               // on decale le quotient de 1
tst x0,1<<63
lsl x0,x0,#1              // puis on decale la partie basse
beq 5f
orr x1,x1,#1
5:
orr x0,x0,x4                  // position du dernier bit du quotient
mov x3,x5
100:
ldp x4,x5,[sp],16          // restaur des  2 registres
ldp x6,lr,[sp],16          // restaur des  2 registres
ret                        // retour adresse lr x30

/********************************************************/
/*        File Include fonctions                        */
/********************************************************/
/* for this file see task include a file in language AArch64 assembly */
.include "../includeARM64.inc"```
```Program 64 bits start
Number 1 : 0 Terminating
Number 2 : 1  0 Terminating
Number 3 : 1  0 Terminating
Number 4 : 3  1  0 Terminating
Number 5 : 1  0 Terminating
Number 6 : 6 Perfect
Number 7 : 1  0 Terminating
Number 8 : 7  1  0 Terminating
Number 9 : 4  3  1  0 Terminating
Number 10 : 8  7  1  0 Terminating
Number 11 : 1  0 Terminating
Number 12 : 16  15  9  4  3  1  0 Terminating
Number 28 : 28 Perfect
Number 496 : 496 Perfect
Number 220 : 284  220 Amicable
Number 1184 : 1210  1184 Amicable
Number 12496 : 14288  15472  14536  14264  12496 Sociable
Number 1264460 : 1547860  1727636  1305184  1264460 Sociable
Number 790 : 650  652  496  496 Aspiring
Number 909 : 417  143  25  6  6 Aspiring
Number 562 : 284  220  284 Cyclic
Number 1064 : 1336  1184  1210  1184 Cyclic
Number 1488 : 2480  3472  4464  8432  9424  10416  21328  22320  55056  95728  96720  236592  459792  881392  882384  1474608  2461648 No terminating
Program normal end.
```

## ALGOL 68

Assumes LONG INT is at least 64 bits, as in Algol 68G.

```BEGIN
# aliquot sequence classification                                         #
# maximum sequence length we consider                                     #
INT max sequence length = 16;
# possible classifications                                                #
STRING         perfect classification    = "perfect        ";
STRING        amicable classification    = "amicable       ";
STRING        sociable classification    = "sociable       ";
STRING        aspiring classification    = "aspiring       ";
STRING          cyclic classification    = "cyclic         ";
STRING     terminating classification    = "terminating    ";
STRING non terminating classification    = "non terminating";
# structure to hold an aliquot sequence and its classification            #
MODE ALIQUOT = STRUCT( STRING                              classification
, [ 1 : max sequence length ]LONG INT sequence
, INT                                 length
);
# maximum value for sequence elements - if any element is more than this, #
# we assume it is non-teriminating                                        #
LONG INT max element = 140 737 488 355 328;
# returns the sum of the proper divisors of n                             #
OP DIVISORSUM = ( LONG INT n )LONG INT:
BEGIN
LONG INT abs n = ABS n;
IF abs n < 2 THEN
0 # -1, 0 and 1 have no proper divisors                       #
ELSE
# have a number with possible divisors                        #
LONG INT result := 1; # 1 is always a divisor                  #
# a FOR loop counter can only be an INT, hence the WHILE loop  #
LONG INT d      := ENTIER long sqrt( abs n );
WHILE d > 1 DO
IF abs n MOD d = 0 THEN
# found another divisor                                #
result +:= d;
IF d * d /= abs n THEN
# add the other divisor                            #
result +:= abs n OVER d
FI
FI;
d -:= 1
OD;
result
FI
END # DIVISORSUM # ;
# generates the aliquot sequence of the number k and its classification   #
# at most max elements of the sequence are considered                     #
OP CLASSIFY = ( LONG INT k )ALIQUOT :
BEGIN
ALIQUOT result;
classification OF result := "non-terminating";
INT lb = LWB sequence OF result;
INT ub = UPB sequence OF result;
( sequence OF result )[ lb ] := k; # the first element is always k #
length     OF result         := 1;
FOR i FROM lb + 1 TO ub DO
( sequence OF result )[ i ] := 0
OD;
BOOL classified := FALSE;
LONG INT prev k := k;
FOR i FROM lb + 1 TO ub WHILE NOT classified DO
length OF result +:= 1;
LONG INT next k := ( sequence OF result )[ i ] := DIVISORSUM prev k;
classified := TRUE;
IF   next k = 0 THEN # the sequence terminates                 #
classification OF result := terminating classification
ELIF next k > max element THEN # the sequence gets too large   #
classification OF result := non terminating classification
ELIF next k = k THEN # the sequence that returns to k          #
classification OF result
:= IF   i = lb + 1 THEN  perfect classification
ELIF i = lb + 2 THEN amicable classification
ELSE                 sociable classification
FI
ELIF next k = prev k THEN # the sequence repeats with non-k    #
classification OF result := aspiring classification
ELSE # check for repeating sequence with a period more than 1  #
classified := FALSE;
FOR prev pos FROM lb TO i - 2 WHILE NOT classified DO
IF classified := ( sequence OF result )[ prev pos ] = next k THEN
# found a repeatition                              #
classification OF result := cyclic classification
FI
OD
FI;
prev k := next k
OD;
result
END # CLASSIFY # ;
# test cases as per the task                                              #
[]LONG INT test cases =
(   1,    2,   3,   4,   5,    6,     7,       8,   9,  10
,  11,   12,  28, 496, 220, 1184, 12496, 1264460, 790, 909
, 562, 1064, 1488
,  15355717786080
);
FOR i FROM LWB test cases TO UPB test cases DO
LONG INT k   := test cases[ i ];
ALIQUOT  seq  = CLASSIFY k;
print( ( whole( k, -14 ), ": ", classification OF seq, ":" ) );
FOR e FROM LWB sequence OF seq + 1 TO length OF seq DO
print( ( " ", whole( ( sequence OF seq )[ e ], 0 ) ) )
OD;
print( ( newline ) )
OD
END```
Output:
```             1: terminating    : 0
2: terminating    : 1 0
3: terminating    : 1 0
4: terminating    : 3 1 0
5: terminating    : 1 0
6: perfect        : 6
7: terminating    : 1 0
8: terminating    : 7 1 0
9: terminating    : 4 3 1 0
10: terminating    : 8 7 1 0
11: terminating    : 1 0
12: terminating    : 16 15 9 4 3 1 0
28: perfect        : 28
496: perfect        : 496
220: amicable       : 284 220
1184: amicable       : 1210 1184
12496: sociable       : 14288 15472 14536 14264 12496
1264460: sociable       : 1547860 1727636 1305184 1264460
790: aspiring       : 650 652 496 496
909: aspiring       : 417 143 25 6 6
562: cyclic         : 284 220 284
1064: cyclic         : 1336 1184 1210 1184
1488: non-terminating: 2480 3472 4464 8432 9424 10416 21328 22320 55056 95728 96720 236592 459792 881392 882384
15355717786080: non terminating: 44534663601120 144940087464480
```

## AppleScript

```on aliquotSum(n)
if (n < 2) then return 0
set sum to 1
set sqrt to n ^ 0.5
set limit to sqrt div 1
if (limit = sqrt) then
set sum to sum + limit
set limit to limit - 1
end if
repeat with i from 2 to limit
if (n mod i is 0) then set sum to sum + i + n div i
end repeat

return sum
end aliquotSum

on aliquotSequence(k, maxLength, maxN)
-- Generate the sequence within the specified limitations.
set sequence to {k}
set n to k
repeat (maxLength - 1) times
set n to aliquotSum(n)
set repetition to (sequence contains n)
if (repetition) then exit repeat
set end of sequence to n
if ((n = 0) or (n > maxN)) then exit repeat
end repeat
-- Analyse it.
set sequenceLength to (count sequence)
if (sequenceLength is 1) then
set classification to "perfect"
else if (n is 0) then
set classification to "terminating"
else if (n = k) then
if (sequenceLength is 2) then
set classification to "amicable"
else
set classification to "sociable"
end if
else if (repetition) then
if (sequence ends with n) then
set classification to "aspiring"
else
set classification to "cyclic"
end if
else
set classification to "non-terminating"
end if

return {sequence:sequence, classification:classification}
end aliquotSequence

local output, maxLength, maxN, spacing, astid, k
set output to {""}
set {maxLength, maxN} to {16, 2 ^ 47}
set spacing to "                    "
set astid to AppleScript's text item delimiters
set AppleScript's text item delimiters to ", "
repeat with k in {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ¬
11, 12, 28, 496, 220, 1184, 12496, 1264460, 790, 909, 562, 1064, 1488, 1.535571778608E+13}
set thisResult to aliquotSequence(k's contents, maxLength, maxN)
set end of output to text -18 thru -1 of (spacing & k) & ":  " & ¬
text 1 thru 17 of (thisResult's classification & spacing) & thisResult's sequence
end repeat
set AppleScript's text item delimiters to linefeed
set output to output as text
set AppleScript's text item delimiters to astid
return output
```
Output:
```"
1:  terminating      1, 0
2:  terminating      2, 1, 0
3:  terminating      3, 1, 0
4:  terminating      4, 3, 1, 0
5:  terminating      5, 1, 0
6:  perfect          6
7:  terminating      7, 1, 0
8:  terminating      8, 7, 1, 0
9:  terminating      9, 4, 3, 1, 0
10:  terminating      10, 8, 7, 1, 0
11:  terminating      11, 1, 0
12:  terminating      12, 16, 15, 9, 4, 3, 1, 0
28:  perfect          28
496:  perfect          496
220:  amicable         220, 284
1184:  amicable         1184, 1210
12496:  sociable         12496, 14288, 15472, 14536, 14264
1264460:  sociable         1264460, 1547860, 1727636, 1305184
790:  aspiring         790, 650, 652, 496
909:  aspiring         909, 417, 143, 25, 6
562:  cyclic           562, 284, 220
1064:  cyclic           1064, 1336, 1184, 1210
1488:  non-terminating  1488, 2480, 3472, 4464, 8432, 9424, 10416, 21328, 22320, 55056, 95728, 96720, 236592, 459792, 881392, 882384
1.535571778608E+13:  non-terminating  1.535571778608E+13, 4.453466360112E+13, 1.449400874645E+14"
```

## ARM Assembly

Works with: as version Raspberry Pi
or android 32 bits with application Termux
```/* ARM assembly Raspberry PI  */
/* program aliquotSeq.s   */

/* REMARK 1 : this program use routines in a include file
see task Include a file language arm assembly
for the routine affichageMess conversion10
see at end of this program the instruction include */
/* for constantes see task include a file in arm assembly */
/************************************/
/* Constantes                       */
/************************************/
.include "../constantes.inc"

.equ MAXINUM,      10
.equ MAXI,         16
.equ NBDIVISORS,   1000

/*******************************************/
/* Initialized data                        */
/*******************************************/
.data
szMessStartPgm:          .asciz "Program start \n"
szMessEndPgm:            .asciz "Program normal end.\n"
szMessErrorArea:         .asciz "\033[31mError : area divisors too small.\033[0m \n"
szMessError:             .asciz "\033[31mError  !!!\033[0m \n"
szMessErrGen:            .asciz "Error end program.\033[0m \n"

szCarriageReturn:        .asciz "\n"
szLibPerf:               .asciz "Perfect       \n"
szLibAmic:               .asciz "Amicable      \n"
szLibSoc:                .asciz "Sociable      \n"
szLibAspi:               .asciz "Aspiring      \n"
szLibCycl:               .asciz "Cyclic        \n"
szLibTerm:               .asciz "Terminating   \n"
szLibNoTerm:             .asciz "No terminating\n"

/* datas message display */
szMessResult:            .asciz " @ "

.align 4
tbNumber:                 .int 11,12,28,496,220,1184,12496,1264460,790,909,562,1064,1488
.equ NBNUMBER,  (. - tbNumber ) / 4

/*******************************************/
/* UnInitialized data                      */
/*******************************************/
.bss
.align 4
sZoneConv:               .skip 24
tbZoneDecom:             .skip 4 * NBDIVISORS       // facteur 4 octets
tbNumberSucc:            .skip 4 * MAXI
/*******************************************/
/*  code section                           */
/*******************************************/
.text
.global main
main:                               @ program start
ldr r0,iAdrszMessStartPgm       @ display start message
bl affichageMess

mov r4,#1
1:
mov r0,r4                       @  number
bl aliquotClassif               @ aliquot classification
cmp r0,#-1                      @ error ?
beq 99f
cmp r4,#MAXINUM
ble 1b

mov r4,#0
2:
ldr r0,[r5,r4,lsl #2]           @ load a number
bl aliquotClassif               @ aliquot classification
cmp r0,#-1                      @ error ?
beq 99f
cmp r4,#NBNUMBER                @ maxi ?
blt 2b                          @ no -> loop

ldr r0,iAdrszMessEndPgm         @ display end message
bl affichageMess
b 100f
99:                                 @ display error message
bl affichageMess
100:                                @ standard end of the program
mov r0, #0                      @ return code
mov r7, #EXIT                   @ request to exit program
svc 0                           @ perform system call
/******************************************************************/
/*     function aliquot classification                            */
/******************************************************************/
/* r0 contains number */
aliquotClassif:
push {r3-r8,lr}              @ save  registers
mov r5,r0                    @ save number
bl conversion10              @ convert ascii string
mov r2,#0
strb r2,[r1,r0]
bl strInsertAtCharInc        @ put in head message
bl affichageMess             @ and display
mov r0,r5                    @ restaur number
ldr r7,iAdrtbNumberSucc      @ number successif array
mov r4,#0                    @ counter number successif
1:
mov r6,r0                    @ previous number
bl decompFact                @ create area of divisors
cmp r0,#0                    @ error ?
blt 99f
sub r3,r1,r6                 @ sum
mov r0,r3
bl conversion10              @ convert ascii string
mov r2,#0
strb r2,[r1,r0]
bl strInsertAtCharInc        @ and put in message
bl affichageMess
cmp r3,#0                    @ sum = zero
bne 11f
bl affichageMess
b 100f
11:
cmp r5,r3                    @ compare number and sum
bne 4f
cmp r4,#0                    @ first loop ?
bne 2f
bl affichageMess
b 100f
2:
cmp r4,#1                    @ second loop ?
bne 3f
bl affichageMess
b 100f
3:                               @ other loop
bl affichageMess
b 100f

4:
cmp r6,r3                 @ compare sum and (sum - 1)
bne 5f
bl affichageMess
b 100f
5:
cmp r3,#1                 @ if one ,no search in array
beq 7f
mov r2,#0                 @ search indice
6:                            @ search number in array
ldr r8,[r7,r2,lsl #2]
cmp r8,r3                 @ equal ?
beq 8f                    @ yes -> cycling
cmp r2,r4                 @ end ?
blt 6b                    @ no -> loop
7:
cmp r4,#MAXI
blt 10f
bl affichageMess
b 100f
8:                            @ cycling
bl affichageMess
b 100f

10:
str r3,[r7,r4,lsl #2]     @ store new sum in array
mov r0,r3                 @ new number = new sum
b 1b                      @ and loop

99:                           @ display error
bl affichageMess
100:
pop {r3-r8,lr}            @ restaur registers
bx lr
/******************************************************************/
/*     factor decomposition                                               */
/******************************************************************/
/* r0 contains number */
/* r1 contains address of divisors area */
/* r0 return divisors items in array    */
/* r1 return the sum of divisors  */
decompFact:
push {r3-r12,lr}              @ save  registers
cmp r0,#1
moveq r1,#1
beq 100f
mov r5,r1
mov r8,r0                    @ save number
bl isPrime                   @ prime ?
cmp r0,#1
beq 98f                      @ yes is prime
mov r1,#1
str r1,[r5]                  @ first factor
mov r12,#1                   @ divisors sum
mov r10,#1                   @ indice divisors table
mov r9,#2                    @ first divisor
mov r6,#0                    @ previous divisor
mov r7,#0                    @ number of same divisors

/*  division loop  */
2:
mov r0,r8                    @ dividende
mov r1,r9                    @ divisor
bl division                  @ r2 quotient r3 remainder
cmp r3,#0
beq 3f                       @ if remainder  zero  ->  divisor

/* not divisor -> increment next divisor */
cmp r9,#2                    @ if divisor = 2 -> add 1
b 2b

/* divisor   compute the new factors of number */
3:
mov r8,r2                    @ else quotient -> new dividende
cmp r9,r6                    @ same divisor ?
beq 4f                       @ yes

mov r1,r10                   @ number factors in table
mov r2,r9                    @ divisor
mov r3,r12                   @ somme
mov r4,#0
bl computeFactors
cmp r0,#-1
beq 100f
mov r10,r1
mov r12,r0
mov r6,r9                    @ new divisor
b 7f

4:                               @ same divisor
sub r7,r10,#1
5:                              @ search in table the first use of divisor
ldr r3,[r5,r7,lsl #2 ]
cmp r3,r9
subne r7,#1
bne 5b
@ and compute new factors after factors
sub r4,r10,r7                @ start indice
mov r0,r5
mov r1,r10
mov r2,r9                    @ divisor
mov r3,r12
bl computeFactors
cmp r0,#-1
beq 100f
mov r12,r0
mov r10,r1

/* divisor -> test if new dividende is prime */
7:
cmp r8,#1                    @ dividende = 1 ? -> end
beq 10f
mov r0,r8                    @ new dividende is prime ?
mov r1,#0
bl isPrime                   @ the new dividende is prime ?
cmp r0,#1
bne 10f                      @ the new dividende is not prime

cmp r8,r6                    @ else dividende is same divisor ?
beq 8f                       @ yes

mov r0,r5
mov r1,r10
mov r2,r8
mov r3,r12
mov r4,#0
bl computeFactors
cmp r0,#-1
beq 100f
mov r12,r0
mov r10,r1
mov r7,#0
b 11f
8:
sub r7,r10,#1
9:
ldr r3,[r5,r7,lsl #2 ]
cmp r3,r8
subne r7,#1
bne 9b

mov r0,r5
mov r1,r10
sub r4,r10,r7
mov r2,r8
mov r3,r12
bl computeFactors
cmp r0,#-1
beq 100f
mov r12,r0
mov r10,r1

b 11f

10:
cmp r9,r8                    @ current divisor  > new dividende ?
ble 2b                       @ no -> loop

/* end decomposition */
11:
mov r0,r10                  @ return number of table items
mov r1,r12                  @ return sum
mov r3,#0
str r3,[r5,r10,lsl #2]      @ store zéro in last table item
b 100f

98:                             @ prime number
mov r0,#0                   @ return code
b 100f
99:
bl   affichageMess
mov r0,#-1                  @ error code
b 100f
100:
pop {r3-r12,pc}             @ restaur registers
/******************************************************************/
/*    compute all factors                                         */
/******************************************************************/

/*   r0 table factors address */
/*   r1 number factors in table */
/*   r2 new divisor */
/*   r3 sum  */
/*   r4 start indice */
/*   r0 return sum */
/*   r1 return number factors in table */
computeFactors:
push {r2-r6,lr}              @ save registers
mov r6,r1                    @ number factors in table
1:
ldr r5,[r0,r4,lsl #2 ]       @ load one factor
mul r5,r2,r5                 @ multiply
str r5,[r0,r1,lsl #2]        @ and store in the table

movcs r0,#-1                 @ overflow
bcs 100f
add r1,r1,#1                 @ and increment counter
cmp r4,r6
blt 1b
mov r0,r3                    @ factors sum
100:                             @ fin standard de la fonction
pop {r2-r6,pc}               @ restaur des registres
/***************************************************/
/*   check if a number is prime              */
/***************************************************/
/* r0 contains the number            */
/* r0 return 1 if prime  0 else */
isPrime:
push {r1-r6,lr}    @ save registers
cmp r0,#0
beq 90f
cmp r0,#17
bhi 1f
cmp r0,#3
bls 80f            @ for 1,2,3 return prime
cmp r0,#5
beq 80f            @ for 5 return prime
cmp r0,#7
beq 80f            @ for 7 return prime
cmp r0,#11
beq 80f            @ for 11 return prime
cmp r0,#13
beq 80f            @ for 13 return prime
cmp r0,#17
beq 80f            @ for 17 return prime
1:
tst r0,#1          @ even ?
beq 90f            @ yes -> not prime
mov r2,r0          @ save number
sub r1,r0,#1       @ exposant n - 1
mov r0,#3          @ base
bl moduloPuR32     @ compute base power n - 1 modulo n
cmp r0,#1
bne 90f            @ if <> 1  -> not prime

mov r0,#5
bl moduloPuR32
cmp r0,#1
bne 90f

mov r0,#7
bl moduloPuR32
cmp r0,#1
bne 90f

mov r0,#11
bl moduloPuR32
cmp r0,#1
bne 90f

mov r0,#13
bl moduloPuR32
cmp r0,#1
bne 90f

mov r0,#17
bl moduloPuR32
cmp r0,#1
bne 90f
80:
mov r0,#1        @ is prime
b 100f
90:
mov r0,#0        @ no prime
100:                 @ fin standard de la fonction
pop {r1-r6,pc}   @ restaur des registres
/********************************************************/
/*   Calcul modulo de b puissance e modulo m  */
/*    Exemple 4 puissance 13 modulo 497 = 445         */
/*                                             */
/********************************************************/
/* r0  nombre  */
/* r1 exposant */
/* r2 modulo   */
/* r0 return result  */
moduloPuR32:
push {r1-r7,lr}    @ save registers
cmp r0,#0          @ verif <> zero
beq 100f
cmp r2,#0          @ verif <> zero
beq 100f           @ TODO: v鲩fier les cas d erreur
1:
mov r4,r2          @ save modulo
mov r5,r1          @ save exposant
mov r6,r0          @ save base
mov r3,#1          @ start result

mov r1,#0          @ division de r0,r1 par r2
bl division32R
mov r6,r2          @ base <- remainder
2:
tst r5,#1          @  exposant even or odd
beq 3f
umull r0,r1,r6,r3
mov r2,r4
bl division32R
mov r3,r2          @ result <- remainder
3:
umull r0,r1,r6,r6
mov r2,r4
bl division32R
mov r6,r2          @ base <- remainder

lsr r5,#1          @ left shift 1 bit
cmp r5,#0          @ end ?
bne 2b
mov r0,r3
100:                   @ fin standard de la fonction
pop {r1-r7,pc}     @ restaur des registres

/***************************************************/
/*   division number 64 bits in 2 registers by number 32 bits */
/***************************************************/
/* r0 contains lower part dividende   */
/* r1 contains upper part dividende   */
/* r2 contains divisor   */
/* r0 return lower part quotient    */
/* r1 return upper part quotient    */
/* r2 return remainder               */
division32R:
push {r3-r9,lr}    @ save registers
mov r6,#0          @ init upper upper part remainder  !!
mov r7,r1          @ init upper part remainder with upper part dividende
mov r8,r0          @ init lower part remainder with lower part dividende
mov r9,#0          @ upper part quotient
mov r4,#0          @ lower part quotient
mov r5,#32         @ bits number
1:                     @ begin loop
lsl r6,#1          @ shift upper upper part remainder
lsls r7,#1         @ shift upper  part remainder
orrcs r6,#1
lsls r8,#1         @ shift lower  part remainder
orrcs r7,#1
lsls r4,#1         @ shift lower part quotient
lsl r9,#1          @ shift upper part quotient
orrcs r9,#1
@ divisor sustract  upper  part remainder
subs r7,r2
sbcs  r6,#0        @ and substract carry
bmi 2f             @ n駡tive ?

@ positive or equal
orr r4,#1          @ 1 -> right bit quotient
b 3f
2:                     @ negative
orr r4,#0          @ 0 -> right bit quotient
adds r7,r2         @ and restaur remainder
3:
subs r5,#1         @ decrement bit size
bgt 1b             @ end ?
mov r0,r4          @ lower part quotient
mov r1,r9          @ upper part quotient
mov r2,r7          @ remainder
100:                   @ function end
pop {r3-r9,pc}     @ restaur registers

/***************************************************/
/*      ROUTINES INCLUDE                 */
/***************************************************/
.include "../affichage.inc"```
```Program start
Number 1 : 0 Terminating
Number 2 : 1  0 Terminating
Number 3 : 1  0 Terminating
Number 4 : 3  1  0 Terminating
Number 5 : 1  0 Terminating
Number 6 : 6 Perfect
Number 7 : 1  0 Terminating
Number 8 : 7  1  0 Terminating
Number 9 : 4  3  1  0 Terminating
Number 10 : 8  7  1  0 Terminating
Number 11 : 1  0 Terminating
Number 12 : 16  15  9  4  3  1  0 Terminating
Number 28 : 28 Perfect
Number 496 : 496 Perfect
Number 220 : 284  220 Amicable
Number 1184 : 1210  1184 Amicable
Number 12496 : 14288  15472  14536  14264  12496 Sociable
Number 1264460 : 1547860  1727636  1305184  1264460 Sociable
Number 790 : 650  652  496  496 Aspiring
Number 909 : 417  143  25  6  6 Aspiring
Number 562 : 284  220  284 Cyclic
Number 1064 : 1336  1184  1210  1184 Cyclic
Number 1488 : 2480  3472  4464  8432  9424  10416  21328  22320  55056  95728  96720  236592  459792  881392  882384  1474608  2461648 No terminating
Program normal end.
```

## AWK

```#!/bin/gawk -f
function sumprop(num,   i,sum,root) {
if (num == 1) return 0
sum=1
root=sqrt(num)
for ( i=2; i < root; i++) {
if (num % i == 0 )
{
sum = sum + i + num/i
}
}
if (num % root == 0)
{
sum = sum + root
}
return sum
}
function class(k,    oldk,newk,seq){
# first term
oldk = k
seq = " "
# second term
newk = sumprop(oldk)
oldk = newk
seq = seq " " newk
if (newk == 0) return "terminating " seq
if (newk == k) return "perfect " seq
#  third term
newk = sumprop(oldk)
oldk = newk
seq = seq " " newk
if (newk == 0) return "terminating " seq
if (newk == k) return "amicable " seq
for (t=4; t<17; t++) {
newk = sumprop(oldk)
seq = seq " " newk
if (newk == 0) return "terminating " seq
if (newk == k) return "sociable (period " t-1 ") "seq
if (newk == oldk) return "aspiring " seq
if (index(seq," " newk " ") > 0) return "cyclic (at " newk ") " seq
if (newk > 140737488355328) return "non-terminating (term > 140737488355328) " seq
oldk = newk
}
return "non-terminating (after 16 terms)  " seq
}
BEGIN{
print "Number classification sequence"
for (j=1; j < 11; j++)
{
print j,class(j)}
print 11,class(11)
print 12,class(12)
print 28,class(28)
print 496,class(496)
print 220,class(220)
print 1184,class(1184)
print 12496,class(12496)
print 1264460,class(1264460)
print 790,class(790)
print 909,class(909)
print 562,class(562)
print 1064,class(1064)
print 1488,class(1488)
print 15355717786080,class(15355717786080)

}
```
Output:
```Number classification sequence
1 terminating   0
2 terminating   1 0
3 terminating   1 0
4 terminating   3 1 0
5 terminating   1 0
6 perfect   6
7 terminating   1 0
8 terminating   7 1 0
9 terminating   4 3 1 0
10 terminating   8 7 1 0
11 terminating   1 0
12 terminating   16 15 9 4 3 1 0
28 perfect   28
496 perfect   496
220 amicable   284 220
1184 amicable   1210 1184
12496 sociable (period 5)   14288 15472 14536 14264 12496
1264460 sociable (period 4)   1547860 1727636 1305184 1264460
790 aspiring   650 652 496 496
909 aspiring   417 143 25 6 6
562 cyclic (at 284)   284 220 284
1064 cyclic (at 1184)   1336 1184 1210 1184
1488 non-terminating (after 16 terms)    2480 3472 4464 8432 9424 10416 21328 22320 55056 95728 96720 236592 459792 881392 882384
1.53557e+13 non-terminating (term > 140737488355328)   4.45347e+13 1.4494e+14 4.71714e+14

```

## BASIC

### BASIC256

Translation of: FreeBASIC
```# Rosetta Code problem: http://rosettacode.org/wiki/Aliquot_sequence_classifications
# by Jjuanhdez, 06/2022

global limite
limite = 20000000

dim nums = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 28, 496, 220, 1184, 12496, 1264460, 790, 909, 562, 1064, 1488}

for n = 0 to nums[?]-1
print "Number "; nums[n]; " : ";
call PrintAliquotClassifier(nums[n])
next n
print
print "Program normal end."
end

function PDtotal (n)
total = 0
for y = 2 to n
if (n mod y) = 0 then total += (n / y)
next y
end function

subroutine PrintAliquotClassifier (K)
longit = 52: n = K: clase = 0: priorn = 0: inc = 0
dim Aseq(longit)

for element = 2 to longit
Aseq[element] = PDtotal(n)
n = int(Aseq[element])
print n; " ";
begin case
case n = 0
print " Terminating": clase = 1: exit for
case n = K and element = 2
print " Perfect"    : clase = 2: exit for
case n = K and element = 3
print " Amicable": clase = 3: exit for
case n = K and element > 3
print " Sociable": clase = 4: exit for
case n <> K and Aseq[element - 1] = Aseq[element]
print " Aspiring": clase = 5: exit for
case n <> K and Aseq[element - 2] = n
print " Cyclic": clase = 6: exit for
end case

if n > priorn then priorn = n: inc += 1 else inc = 0: priorn = 0
if inc = 11 or n > limite then exit for
next element
if clase = 0 then print " non-terminating"
end subroutine```

## C

Both implementations can process integers or a file containing all the integers from the command line.

### Brute Force

The following implementation is a brute force method which takes a very, very long time for 15355717786080. To be fair to C, that's also true for many of the other implementations on this page which also implement the brute force method. See the next implementation for the best solution.

```#include<stdlib.h>
#include<string.h>
#include<stdio.h>

unsigned long long bruteForceProperDivisorSum(unsigned long long n){
unsigned long long i,sum = 0;

for(i=1;i<(n+1)/2;i++)
if(n%i==0 && n!=i)
sum += i;

return sum;
}

void printSeries(unsigned long long* arr,int size,char* type){
int i;

printf("\nInteger : %llu, Type : %s, Series : ",arr[0],type);

for(i=0;i<size-1;i++)
printf("%llu, ",arr[i]);
printf("%llu",arr[i]);
}

void aliquotClassifier(unsigned long long n){
unsigned long long arr[16];
int i,j;

arr[0] = n;

for(i=1;i<16;i++){
arr[i] = bruteForceProperDivisorSum(arr[i-1]);

if(arr[i]==0||arr[i]==n||(arr[i]==arr[i-1] && arr[i]!=n)){
printSeries(arr,i+1,(arr[i]==0)?"Terminating":(arr[i]==n && i==1)?"Perfect":(arr[i]==n && i==2)?"Amicable":(arr[i]==arr[i-1] && arr[i]!=n)?"Aspiring":"Sociable");
return;
}

for(j=1;j<i;j++){
if(arr[j]==arr[i]){
printSeries(arr,i+1,"Cyclic");
return;
}
}
}

printSeries(arr,i+1,"Non-Terminating");
}

void processFile(char* fileName){
FILE* fp = fopen(fileName,"r");
char str[21];

while(fgets(str,21,fp)!=NULL)
aliquotClassifier(strtoull(str,(char**)NULL,10));

fclose(fp);
}

int main(int argC,char* argV[])
{
if(argC!=2)
printf("Usage : %s <positive integer>",argV[0]);
else{
if(strchr(argV[1],'.')!=NULL)
processFile(argV[1]);
else
aliquotClassifier(strtoull(argV[1],(char**)NULL,10));
}
return 0;
}
```

Input file, you can include 15355717786080 or similar numbers in this list but be prepared to wait for a very, very long time.:

```1
2
3
4
5
6
7
8
9
10
11
12
28
496
220
1184
12496
1264460
790
909
562
1064
1488
```

Invocation and output for both individual number and input file:

```C:\rosettaCode>bruteAliquot.exe 10

Integer : 10, Type : Terminating, Series : 10, 8, 7, 1, 0
C:\rosettaCode>bruteAliquot.exe aliquotData.txt

Integer : 1, Type : Terminating, Series : 1, 0
Integer : 2, Type : Terminating, Series : 2, 1, 0
Integer : 3, Type : Terminating, Series : 3, 1, 0
Integer : 4, Type : Terminating, Series : 4, 3, 1, 0
Integer : 5, Type : Terminating, Series : 5, 1, 0
Integer : 6, Type : Perfect, Series : 6, 6
Integer : 7, Type : Terminating, Series : 7, 1, 0
Integer : 8, Type : Terminating, Series : 8, 7, 1, 0
Integer : 9, Type : Terminating, Series : 9, 4, 3, 1, 0
Integer : 10, Type : Terminating, Series : 10, 8, 7, 1, 0
Integer : 11, Type : Terminating, Series : 11, 1, 0
Integer : 12, Type : Terminating, Series : 12, 16, 15, 9, 4, 3, 1, 0
Integer : 28, Type : Perfect, Series : 28, 28
Integer : 496, Type : Perfect, Series : 496, 496
Integer : 220, Type : Amicable, Series : 220, 284, 220
Integer : 1184, Type : Amicable, Series : 1184, 1210, 1184
Integer : 12496, Type : Sociable, Series : 12496, 14288, 15472, 14536, 14264, 12496
Integer : 1264460, Type : Sociable, Series : 1264460, 1547860, 1727636, 1305184, 1264460
Integer : 790, Type : Aspiring, Series : 790, 650, 652, 496, 496
Integer : 909, Type : Aspiring, Series : 909, 417, 143, 25, 6, 6
Integer : 562, Type : Cyclic, Series : 562, 284, 220, 284
Integer : 1064, Type : Cyclic, Series : 1064, 1336, 1184, 1210, 1184
Integer : 1488, Type : Non-Terminating, Series : 1488, 2480, 3472, 4464, 8432, 9424, 10416, 21328, 22320, 55056, 95728, 96720, 236592, 459792, 881392, 882384, 68719476751
```

### Number Theoretic

The following implementation, based on Number Theory, is the best solution for such a problem. All cases are handled, including 15355717786080, with all the numbers being processed and the output written to console practically instantaneously. The above brute force implementation is the original one and it remains to serve as a comparison of the phenomenal difference the right approach can make to a problem.

```#include<string.h>
#include<stdlib.h>
#include<stdio.h>

unsigned long long raiseTo(unsigned long long base, unsigned long long power){
unsigned long long result = 1,i;
for (i=0; i<power;i++) {
result*=base;
}
return result;
}

unsigned long long properDivisorSum(unsigned long long n){
unsigned long long prod = 1;
unsigned long long temp = n,i,count = 0;

while(n%2 == 0){
count++;
n /= 2;
}

if(count!=0)
prod *= (raiseTo(2,count + 1) - 1);

for(i=3;i*i<=n;i+=2){
count = 0;

while(n%i == 0){
count++;
n /= i;
}

if(count==1)
prod *= (i+1);
else if(count > 1)
prod *= ((raiseTo(i,count + 1) - 1)/(i-1));
}

if(n>2)
prod *= (n+1);

return prod - temp;
}

void printSeries(unsigned long long* arr,int size,char* type){
int i;

printf("\nInteger : %llu, Type : %s, Series : ",arr[0],type);

for(i=0;i<size-1;i++)
printf("%llu, ",arr[i]);
printf("%llu",arr[i]);
}

void aliquotClassifier(unsigned long long n){
unsigned long long arr[16];
int i,j;

arr[0] = n;

for(i=1;i<16;i++){
arr[i] = properDivisorSum(arr[i-1]);

if(arr[i]==0||arr[i]==n||(arr[i]==arr[i-1] && arr[i]!=n)){
printSeries(arr,i+1,(arr[i]==0)?"Terminating":(arr[i]==n && i==1)?"Perfect":(arr[i]==n && i==2)?"Amicable":(arr[i]==arr[i-1] && arr[i]!=n)?"Aspiring":"Sociable");
return;
}

for(j=1;j<i;j++){
if(arr[j]==arr[i]){
printSeries(arr,i+1,"Cyclic");
return;
}
}
}

printSeries(arr,i+1,"Non-Terminating");
}

void processFile(char* fileName){
FILE* fp = fopen(fileName,"r");
char str[21];

while(fgets(str,21,fp)!=NULL)
aliquotClassifier(strtoull(str,(char**)NULL,10));

fclose(fp);
}

int main(int argC,char* argV[])
{
if(argC!=2)
printf("Usage : %s <positive integer>",argV[0]);
else{
if(strchr(argV[1],'.')!=NULL)
processFile(argV[1]);
else
aliquotClassifier(strtoull(argV[1],(char**)NULL,10));
}
return 0;
}
```

Input file, to emphasize the effectiveness of this approach, the last number in the file is 153557177860800, 10 times the special case mentioned in the task.

```1
2
3
4
5
6
7
8
9
10
11
12
28
496
220
1184
12496
1264460
790
909
562
1064
1488
15355717786080
153557177860800
```

Invocation and output for both individual number and input file:

```C:\rosettaCode>bruteAliquot.exe 10

Integer : 10, Type : Terminating, Series : 10, 8, 7, 1, 0
C:\rosettaCode>aliquotProper.exe aliquotData.txt

Integer : 1, Type : Terminating, Series : 1, 0
Integer : 2, Type : Terminating, Series : 2, 1, 0
Integer : 3, Type : Terminating, Series : 3, 1, 0
Integer : 4, Type : Terminating, Series : 4, 3, 1, 0
Integer : 5, Type : Terminating, Series : 5, 1, 0
Integer : 6, Type : Perfect, Series : 6, 6
Integer : 7, Type : Terminating, Series : 7, 1, 0
Integer : 8, Type : Terminating, Series : 8, 7, 1, 0
Integer : 9, Type : Terminating, Series : 9, 4, 3, 1, 0
Integer : 10, Type : Terminating, Series : 10, 8, 7, 1, 0
Integer : 11, Type : Terminating, Series : 11, 1, 0
Integer : 12, Type : Terminating, Series : 12, 16, 15, 9, 4, 3, 1, 0
Integer : 28, Type : Perfect, Series : 28, 28
Integer : 496, Type : Perfect, Series : 496, 496
Integer : 220, Type : Amicable, Series : 220, 284, 220
Integer : 1184, Type : Amicable, Series : 1184, 1210, 1184
Integer : 12496, Type : Sociable, Series : 12496, 14288, 15472, 14536, 14264, 12496
Integer : 1264460, Type : Sociable, Series : 1264460, 1547860, 1727636, 1305184, 1264460
Integer : 790, Type : Aspiring, Series : 790, 650, 652, 496, 496
Integer : 909, Type : Aspiring, Series : 909, 417, 143, 25, 6, 6
Integer : 562, Type : Cyclic, Series : 562, 284, 220, 284
Integer : 1064, Type : Cyclic, Series : 1064, 1336, 1184, 1210, 1184
Integer : 1488, Type : Non-Terminating, Series : 1488, 2480, 3472, 4464, 8432, 9424, 10416, 21328, 22320, 55056, 95728, 96720, 236592, 459792, 881392, 882384, 68719476751
Integer : 15355717786080, Type : Non-Terminating, Series : 15355717786080, 44534663601120, 144940087464480, 471714103310688, 1130798979186912, 2688948041357088, 6050151708497568, 13613157922
102611548462968, 1977286128289819992, 3415126495450394808, 68719476751
Integer : 153557177860800, Type : Non-Terminating, Series : 153557177860800, 470221741508000, 685337334283120, 908681172226160, 1276860840159280, 1867115442105104, 1751034184622896, 16436297
336056, 1405725265675144, 1230017019320456, 68719476751
```

## C#

Translation of: Java
```using System;
using System.Collections.Generic;
using System.Linq;

public class AliquotSequenceClassifications
{
private static long ProperDivsSum(long n)
{
return Enumerable.Range(1, (int)(n / 2)).Where(i => n % i == 0).Sum(i => (long)i);
}

public static bool Aliquot(long n, int maxLen, long maxTerm)
{
List<long> s = new List<long>(maxLen) {n};
long newN = n;

while (s.Count <= maxLen && newN < maxTerm)
{
newN = ProperDivsSum(s.Last());

if (s.Contains(newN))
{
if (s[0] == newN)
{
switch (s.Count)
{
case 1:
return Report("Perfect", s);
case 2:
return Report("Amicable", s);
default:
return Report("Sociable of length " + s.Count, s);
}
}
else if (s.Last() == newN)
{
return Report("Aspiring", s);
}
else
{
return Report("Cyclic back to " + newN, s);
}
}
else
{
if (newN == 0)
return Report("Terminating", s);
}
}

return Report("Non-terminating", s);
}

static bool Report(string msg, List<long> result)
{
Console.WriteLine(msg + ": " + string.Join(", ", result));
return false;
}

public static void Main(string[] args)
{
long[] arr = {
11, 12, 28, 496, 220, 1184, 12496, 1264460,
790, 909, 562, 1064, 1488
};

Enumerable.Range(1, 10).ToList().ForEach(n => Aliquot(n, 16, 1L << 47));
Console.WriteLine();
foreach (var n in arr)
{
Aliquot(n, 16, 1L << 47);
}
}
}
```
Output:
```Terminating: 1, 0
Terminating: 2, 1, 0
Terminating: 3, 1, 0
Terminating: 4, 3, 1, 0
Terminating: 5, 1, 0
Perfect: 6
Terminating: 7, 1, 0
Terminating: 8, 7, 1, 0
Terminating: 9, 4, 3, 1, 0
Terminating: 10, 8, 7, 1, 0

Terminating: 11, 1, 0
Terminating: 12, 16, 15, 9, 4, 3, 1, 0
Perfect: 28
Perfect: 496
Amicable: 220, 284
Amicable: 1184, 1210
Sociable of length 5: 12496, 14288, 15472, 14536, 14264
Sociable of length 4: 1264460, 1547860, 1727636, 1305184
Aspiring: 790, 650, 652, 496
Aspiring: 909, 417, 143, 25, 6
Cyclic back to 284: 562, 284, 220
Cyclic back to 1184: 1064, 1336, 1184, 1210
Non-terminating: 1488, 2480, 3472, 4464, 8432, 9424, 10416, 21328, 22320, 55056, 95728, 96720, 236592, 459792, 881392, 882384, 1474608

```

## C++

This one follows the trail blazed by the "Number Theoretic" C example above.

```#include <cstdint>
#include <iostream>
#include <string>

using integer = uint64_t;

// See https://en.wikipedia.org/wiki/Divisor_function
integer divisor_sum(integer n) {
integer total = 1, power = 2;
// Deal with powers of 2 first
for (; n % 2 == 0; power *= 2, n /= 2)
total += power;
// Odd prime factors up to the square root
for (integer p = 3; p * p <= n; p += 2) {
integer sum = 1;
for (power = p; n % p == 0; power *= p, n /= p)
sum += power;
total *= sum;
}
// If n > 1 then it's prime
if (n > 1)
total *= n + 1;
}

// See https://en.wikipedia.org/wiki/Aliquot_sequence
void classify_aliquot_sequence(integer n) {
constexpr int limit = 16;
integer terms[limit];
terms[0] = n;
std::string classification("non-terminating");
int length = 1;
for (int i = 1; i < limit; ++i) {
++length;
terms[i] = divisor_sum(terms[i - 1]) - terms[i - 1];
if (terms[i] == n) {
classification =
(i == 1 ? "perfect" : (i == 2 ? "amicable" : "sociable"));
break;
}
int j = 1;
for (; j < i; ++j) {
if (terms[i] == terms[i - j])
break;
}
if (j < i) {
classification = (j == 1 ? "aspiring" : "cyclic");
break;
}
if (terms[i] == 0) {
classification = "terminating";
break;
}
}
std::cout << n << ": " << classification << ", sequence: " << terms[0];
for (int i = 1; i < length && terms[i] != terms[i - 1]; ++i)
std::cout << ' ' << terms[i];
std::cout << '\n';
}

int main() {
for (integer i = 1; i <= 10; ++i)
classify_aliquot_sequence(i);
for (integer i : {11, 12, 28, 496, 220, 1184, 12496, 1264460, 790, 909, 562,
1064, 1488})
classify_aliquot_sequence(i);
classify_aliquot_sequence(15355717786080);
classify_aliquot_sequence(153557177860800);
return 0;
}
```
Output:
```1: terminating, sequence: 1 0
2: terminating, sequence: 2 1 0
3: terminating, sequence: 3 1 0
4: terminating, sequence: 4 3 1 0
5: terminating, sequence: 5 1 0
6: perfect, sequence: 6
7: terminating, sequence: 7 1 0
8: terminating, sequence: 8 7 1 0
9: terminating, sequence: 9 4 3 1 0
10: terminating, sequence: 10 8 7 1 0
11: terminating, sequence: 11 1 0
12: terminating, sequence: 12 16 15 9 4 3 1 0
28: perfect, sequence: 28
496: perfect, sequence: 496
220: amicable, sequence: 220 284 220
1184: amicable, sequence: 1184 1210 1184
12496: sociable, sequence: 12496 14288 15472 14536 14264 12496
1264460: sociable, sequence: 1264460 1547860 1727636 1305184 1264460
790: aspiring, sequence: 790 650 652 496
909: aspiring, sequence: 909 417 143 25 6
562: cyclic, sequence: 562 284 220 284
1064: cyclic, sequence: 1064 1336 1184 1210 1184
1488: non-terminating, sequence: 1488 2480 3472 4464 8432 9424 10416 21328 22320 55056 95728 96720 236592 459792 881392 882384
15355717786080: non-terminating, sequence: 15355717786080 44534663601120 144940087464480 471714103310688 1130798979186912 2688948041357088 6050151708497568 13613157922639968 35513546724070632 74727605255142168 162658586225561832 353930992506879768 642678347124409032 1125102611548462968 1977286128289819992 3415126495450394808
153557177860800: non-terminating, sequence: 153557177860800 470221741508000 685337334283120 908681172226160 1276860840159280 1867115442105104 1751034184622896 1643629718341256 1441432897905784 1647351883321016 1557892692704584 1363939602434936 1194001297910344 1597170567336056 1405725265675144 1230017019320456
```

## CLU

Translation of: C++
```% This program uses the 'bigint' cluster from PCLU's 'misc.lib'

strip = proc (s: string) returns (string)
ac = array[char]
sc = sequence[char]
cs: ac := string\$s2ac(s)
while ~ac\$empty(cs) cand ac\$bottom(cs)=' ' do ac\$reml(cs) end
while ~ac\$empty(cs) cand ac\$top(cs)=' ' do ac\$remh(cs) end
% There's a bug in ac2s that makes it not return all elements
% This is a workaround
return(string\$sc2s(sc\$a2s(cs)))
end strip

divisor_sum = proc (n: bigint) returns (bigint)
own zero: bigint := bigint\$i2bi(0)
own one: bigint := bigint\$i2bi(1)
own two: bigint := bigint\$i2bi(2)
own three: bigint := bigint\$i2bi(3)

total: bigint := one
power: bigint := two
while n//two=zero do
total := total + power
power := power * two
n := n / two
end
p: bigint := three
while p*p <= n do
sum: bigint := one
power := p
while n//p = zero do
sum := sum + power
power := power * p
n := n/p
end
total := total * sum
p := p + two
end
if n>one then total := total * (n+one) end
return(total)
end divisor_sum

classify_aliquot_sequence = proc (n: bigint)
LIMIT = 16
abi = array[bigint]
own zero: bigint := bigint\$i2bi(0)
po: stream := stream\$primary_output()

terms: array[bigint] := abi\$predict(0,LIMIT)

classification: string := "non-terminating"
for i: int in int\$from_to(1, limit-1) do
if abi\$top(terms) = n then
if i=1 then classification := "perfect"
elseif i=2 then classification := "amicable"
else classification := "sociable"
end
break
end
j: int := 1
while j<i cand terms[i] ~= terms[i-j] do j := j+1 end
if j<i then
if j=1 then classification := "aspiring"
else classification := "cyclic"
end
break
end
if abi\$top(terms) = zero then
classification := "terminating"
break
end
end

stream\$puts(po, strip(bigint\$unparse(n)) || ": " || classification || ", sequence: "
|| strip(bigint\$unparse(terms[0])))
for i: int in int\$from_to(1, abi\$high(terms)) do
if terms[i] = terms[i-1] then break end
stream\$puts(po, " " || strip(bigint\$unparse(terms[i])))
end
stream\$putl(po, "")
end classify_aliquot_sequence

start_up = proc ()
for i: int in int\$from_to(1, 10) do
classify_aliquot_sequence(bigint\$i2bi(i))
end
for i: int in array[int]\$elements(array[int]\$
[11,12,28,496,220,1184,12496,1264460,790,909,562,1064,1488]) do
classify_aliquot_sequence(bigint\$i2bi(i))
end
classify_aliquot_sequence(bigint\$parse("15355717786080"))
classify_aliquot_sequence(bigint\$parse("153557177860800"))
end start_up```
Output:
```1: terminating, sequence: 1 0
2: terminating, sequence: 2 1 0
3: terminating, sequence: 3 1 0
4: terminating, sequence: 4 3 1 0
5: terminating, sequence: 5 1 0
6: perfect, sequence: 6
7: terminating, sequence: 7 1 0
8: terminating, sequence: 8 7 1 0
9: terminating, sequence: 9 4 3 1 0
10: terminating, sequence: 10 8 7 1 0
11: terminating, sequence: 11 1 0
12: terminating, sequence: 12 16 15 9 4 3 1 0
28: perfect, sequence: 28
496: perfect, sequence: 496
220: amicable, sequence: 220 284 220
1184: amicable, sequence: 1184 1210 1184
12496: sociable, sequence: 12496 14288 15472 14536 14264 12496
1264460: sociable, sequence: 1264460 1547860 1727636 1305184 1264460
790: aspiring, sequence: 790 650 652 496
909: aspiring, sequence: 909 417 143 25 6
562: cyclic, sequence: 562 284 220 284
1064: cyclic, sequence: 1064 1336 1184 1210 1184
1488: non-terminating, sequence: 1488 2480 3472 4464 8432 9424 10416 21328 22320 55056 95728 96720 236592 459792 881392 882384
15355717786080: non-terminating, sequence: 15355717786080 44534663601120 144940087464480 471714103310688 1130798979186912 2688948041357088 6050151708497568 13613157922639968 35513546724070632 74727605255142168 162658586225561832 353930992506879768 642678347124409032 1125102611548462968 1977286128289819992 3415126495450394808
153557177860800: non-terminating, sequence: 153557177860800 470221741508000 685337334283120 908681172226160 1276860840159280 1867115442105104 1751034184622896 1643629718341256 1441432897905784 1647351883321016 1557892692704584 1363939602434936 1194001297910344 1597170567336056 1405725265675144 1230017019320456```

## Common Lisp

Uses the Lisp function proper-divisors-recursive from Task:Proper Divisors.

```(defparameter *nlimit* 16)
(defparameter *klimit* (expt 2 47))
(defparameter *asht* (make-hash-table))

(defun ht-insert (v n)
(setf (gethash v *asht*) n))

(defun ht-find (v n)
(let ((nprev (gethash v *asht*)))
(if nprev (- n nprev) nil)))

(defun ht-list ()
(defun sort-keys (&optional (res '()))
(maphash #'(lambda (k v) (push (cons k v) res)) *asht*)
(sort (copy-list res) #'< :key (lambda (p) (cdr p))))
(let ((sorted (sort-keys)))
(dotimes (i (length sorted)) (format t "~A " (car (nth i sorted))))))

(defun aliquot-generator (K1)
"integer->function::fn to generate aliquot sequence"
(let ((Kn K1))
#'(lambda () (setf Kn (reduce #'+ (proper-divisors-recursive Kn) :initial-value 0)))))

(defun aliquot (K1)
"integer->symbol|nil::classify aliquot sequence"
(defun aliquot-sym (Kn n)
(let* ((period (ht-find Kn n))
(sym (if period
(cond ; period event
((= Kn K1)
(case period (1 'PERF) (2 'AMIC) (otherwise 'SOCI)))
((= period 1) 'ASPI)
(t 'CYCL))
(cond ; else check for limit event
((= Kn 0) 'TERM)
((> Kn *klimit*) 'TLIM)
((= n *nlimit*) 'NLIM)
(t nil)))))
;; if period event store the period, if no event insert the value
(if sym (when period (setf (symbol-plist sym) (list period)))
(ht-insert Kn n))
sym))

(defun aliquot-str (sym &optional (period 0))
(case sym (TERM "terminating") (PERF "perfect") (AMIC "amicable") (ASPI "aspiring")
(SOCI (format nil "sociable (period ~A)" (car (symbol-plist sym))))
(CYCL (format nil "cyclic (period ~A)" (car (symbol-plist sym))))
(NLIM (format nil "non-terminating (no classification before added term limit of ~A)" *nlimit*))
(TLIM (format nil "non-terminating (term threshold of ~A exceeded)" *klimit*))
(otherwise "unknown")))

(clrhash *asht*)
(let ((fgen (aliquot-generator K1)))
(setf (symbol-function 'aliseq) #'(lambda () (funcall fgen))))
(ht-insert K1 0)
(do* ((n 1 (1+ n))
(Kn (aliseq) (aliseq))
(alisym (aliquot-sym Kn n) (aliquot-sym Kn n)))
(alisym (format t "~A:" (aliquot-str alisym)) (ht-list) (format t "~A~%" Kn) alisym)))

(defun main ()
(princ "The last item in each sequence triggers classification.") (terpri)
(dotimes (k 10)
(aliquot (+ k 1)))
(dolist (k '(11 12 28 496 220 1184 12496 1264460 790 909 562 1064 1488 15355717786080))
(aliquot k)))
```
Output:
```CL-USER(45): (main)
The last item in each sequence triggers classification.
terminating:1 0
terminating:2 1 0
terminating:3 1 0
terminating:4 3 1 0
terminating:5 1 0
perfect:6 6
terminating:7 1 0
terminating:8 7 1 0
terminating:9 4 3 1 0
terminating:10 8 7 1 0
terminating:11 1 0
terminating:12 16 15 9 4 3 1 0
perfect:28 28
perfect:496 496
amicable:220 284 220
amicable:1184 1210 1184
sociable (period 5):12496 14288 15472 14536 14264 12496
sociable (period 4):1264460 1547860 1727636 1305184 1264460
aspiring:790 650 652 496 496
aspiring:909 417 143 25 6 6
cyclic (period 2):562 284 220 284
cyclic (period 2):1064 1336 1184 1210 1184
non-terminating (no classification before added term limit of 16):1488 2480 3472 4464 8432 9424 10416 21328 22320 55056 95728 96720 236592 459792 881392 882384 1474608
non-terminating (term threshold of 140737488355328 exceeded):15355717786080 44534663601120 144940087464480
NIL
```

## D

Translation of: Python
```import std.stdio, std.range, std.algorithm, std.typecons, std.conv;

auto properDivisors(in ulong n) pure nothrow @safe /*@nogc*/ {
return iota(1UL, (n + 1) / 2 + 1).filter!(x => n % x == 0 && n != x);
}

enum pDivsSum = (in ulong n) pure nothrow @safe /*@nogc*/ =>
n.properDivisors.sum;

auto aliquot(in ulong n,
in size_t maxLen=16,
in ulong maxTerm=2UL^^47) pure nothrow @safe {
if (n == 0)
return tuple("Terminating", [0UL]);
ulong[] s = [n];
size_t sLen = 1;
ulong newN = n;

while (sLen <= maxLen && newN < maxTerm) {
newN = s.back.pDivsSum;
if (s.canFind(newN)) {
if (s[0] == newN) {
if (sLen == 1) {
return tuple("Perfect", s);
} else if (sLen == 2) {
return tuple("Amicable", s);
} else
return tuple(text("Sociable of length ", sLen), s);
} else if (s.back == newN) {
return tuple("Aspiring", s);
} else
return tuple(text("Cyclic back to ", newN), s);
} else if (newN == 0) {
return tuple("Terminating", s ~ 0);
} else {
s ~= newN;
sLen++;
}
}

return tuple("Non-terminating", s);
}

void main() {
foreach (immutable n; 1 .. 11)
writefln("%s: %s", n.aliquot[]);
writeln;
foreach (immutable n; [11, 12, 28, 496, 220, 1184,  12496, 1264460,
790, 909, 562, 1064, 1488])
writefln("%s: %s", n.aliquot[]);
}
```
Output:
```Terminating: [1, 0]
Terminating: [2, 1, 0]
Terminating: [3, 1, 0]
Terminating: [4, 3, 1, 0]
Terminating: [5, 1, 0]
Perfect: [6]
Terminating: [7, 1, 0]
Terminating: [8, 7, 1, 0]
Terminating: [9, 4, 3, 1, 0]
Terminating: [10, 8, 7, 1, 0]

Terminating: [11, 1, 0]
Terminating: [12, 16, 15, 9, 4, 3, 1, 0]
Perfect: [28]
Perfect: [496]
Amicable: [220, 284]
Amicable: [1184, 1210]
Sociable of length 5: [12496, 14288, 15472, 14536, 14264]
Sociable of length 4: [1264460, 1547860, 1727636, 1305184]
Aspiring: [790, 650, 652, 496]
Aspiring: [909, 417, 143, 25, 6]
Cyclic back to 284: [562, 284, 220]
Cyclic back to 1184: [1064, 1336, 1184, 1210]
Non-terminating: [1488, 2480, 3472, 4464, 8432, 9424, 10416, 21328, 22320, 55056, 95728, 96720, 236592, 459792, 881392, 882384, 1474608]```

## EasyLang

Translation of: AWK
```fastfunc sumprop num .
if num = 1
return 0
.
sum = 1
root = sqrt num
i = 2
while i < root
if num mod i = 0
sum += i + num / i
.
i += 1
.
if num mod root = 0
sum += root
.
return sum
.
func\$ tostr ar[] .
for v in ar[]
s\$ &= " " & v
.
return s\$
.
func\$ class k .
oldk = k
newk = sumprop oldk
oldk = newk
seq[] &= newk
if newk = 0
return "terminating " & tostr seq[]
.
if newk = k
return "perfect " & tostr seq[]
.
newk = sumprop oldk
oldk = newk
seq[] &= newk
if newk = 0
return "terminating " & tostr seq[]
.
if newk = k
return "amicable " & tostr seq[]
.
for t = 4 to 16
newk = sumprop oldk
seq[] &= newk
if newk = 0
return "terminating " & tostr seq[]
.
if newk = k
return "sociable (period " & t - 1 & ") " & tostr seq[]
.
if newk = oldk
return "aspiring " & tostr seq[]
.
for i to len seq[] - 1
if newk = seq[i]
return "cyclic (at " & newk & ") " & tostr seq[]
.
.
if newk > 140737488355328
return "non-terminating (term > 140737488355328) " & tostr seq[]
.
oldk = newk
.
return "non-terminating (after 16 terms)  " & tostr seq[]
.
print "Number classification sequence"
for j = 1 to 12
print j & " " & class j
.
for j in [ 28 496 220 1184 12496 1264460 790 909 562 1064 1488 15355717786080 ]
print j & " " & class j
.```

## EchoLisp

```;; implementation of Floyd algorithm to find cycles in a graph
;; see Wikipedia https://en.wikipedia.org/wiki/Cycle_detection
;; returns (cycle-length cycle-starter steps)
;; steps = 0 if no cycle found
;; it's all about a tortoise  🐢 running at speed f(x) after a hare 🐰 at speed f(f (x))
;; when they meet, a cycle is found

(define (floyd f x0 steps maxvalue)
(define lam 1) ; cycle length
(define tortoise (f x0))
(define hare (f (f x0)))

;; cyclic  ? yes if steps > 0
(while (and (!= tortoise hare) (> steps 0))
(set!-values (tortoise hare) (values (f tortoise) (f (f hare))))
#:break (and (> hare maxvalue) (set! steps 0))
(set! steps (1- steps)))

;; first repetition = cycle starter
(set! tortoise x0)
(while (and (!= tortoise hare) (> steps 0))
(set!-values (tortoise hare) (values (f tortoise) (f hare))))

;; length of shortest cycle
(set! hare (f tortoise))
(while (and (!= tortoise hare) (> steps 0))
(set! hare (f hare))
(set! lam (1+ lam)))
(values lam tortoise steps))

;; find cycle and classify
(define (taxonomy n (steps 16) (maxvalue 140737488355328))
(define-values (cycle starter steps) (floyd sum-divisors n steps maxvalue))
(write  n
(cond
(( = steps 0) 'non-terminating)
(( = starter 0) 'terminating)
((and (= starter n) (= cycle 1)) 'perfect)
((and (= starter n) (= cycle 2)) 'amicable)
((= starter n)  'sociable )
((= cycle 1)  'aspiring )
(else 'cyclic)))

(aliquote n starter)
)

;; print sequence
(define (aliquote x0  (starter -1) (end -1 )(n 8))
(for ((i n))
(write x0)
(set! x0 (sum-divisors x0))
#:break (and (= x0 end) (write x0))
(when (= x0 starter) (set! end starter)))
(writeln ...))
```
Output:
```(lib 'math)
(lib 'bigint)

(for-each taxonomy (range 1 13))

1 terminating 1 0 0 ...
2 terminating 2 1 0 0 ...
3 terminating 3 1 0 0 ...
4 terminating 4 3 1 0 0 ...
5 terminating 5 1 0 0 ...
6 perfect 6 6 6 ...
7 terminating 7 1 0 0 ...
8 terminating 8 7 1 0 0 ...
9 terminating 9 4 3 1 0 0 ...
10 terminating 10 8 7 1 0 0 ...
11 terminating 11 1 0 0 ...
12 terminating 12 16 15 9 4 3 1 0 0 ...

(for-each taxonomy '( 28 496 220 1184 12496 1264460 790 909 562 1064 1488 15355717786080))

28 perfect 28 28 28 ...
496 perfect 496 496 496 ...
220 amicable 220 284 220 284 220 ...
1184 amicable 1184 1210 1184 1210 1184 ...
12496 sociable 12496 14288 15472 14536 14264 12496 14288 15472 ...
1264460 sociable 1264460 1547860 1727636 1305184 1264460 1547860 1727636 1305184 1264460 ...
790 aspiring 790 650 652 496 496 ...
909 aspiring 909 417 143 25 6 6 ...
562 cyclic 562 284 220 284 ...
1064 cyclic 1064 1336 1184 1210 1184 ...
1488 non-terminating 1488 2480 3472 4464 8432 9424 10416 21328 ...
15355717786080 non-terminating 15355717786080 44534663601120 144940087464480 471714103310688 1130798979186912 2688948041357088 6050151708497568 13613157922639968 ...

(taxonomy 1000) ;; 1000 non-terminating after 16 steps
1000 non-terminating 1000 1340 1516 1144 1376 1396 1054 674 ...

(taxonomy 1000 32) ;; but terminating if we increase the number of steps
1000 terminating
1000 1340 1516 1144 1376 1396 1054 674 340 416 466 236 184 176 196 203 37 1 0 0 ...
```

## Elixir

Translation of: Ruby
```defmodule Proper do
def divisors(1), do: []
def divisors(n), do: [1 | divisors(2,n,:math.sqrt(n))] |> Enum.sort

defp divisors(k,_n,q) when k>q, do: []
defp divisors(k,n,q) when rem(n,k)>0, do: divisors(k+1,n,q)
defp divisors(k,n,q) when k * k == n, do: [k | divisors(k+1,n,q)]
defp divisors(k,n,q)                , do: [k,div(n,k) | divisors(k+1,n,q)]
end

defmodule Aliquot do
def sequence(n, maxlen\\16, maxterm\\140737488355328)
def sequence(0, _maxlen, _maxterm), do: "terminating"
def sequence(n, maxlen, maxterm) do
{msg, s} = sequence(n, maxlen, maxterm, [n])
{msg, Enum.reverse(s)}
end

defp sequence(n, maxlen, maxterm, s) when length(s) < maxlen and n < maxterm do
m = Proper.divisors(n) |> Enum.sum
cond do
m in s ->
case {m, List.last(s), hd(s)} do
{x,x,_} ->
case length(s) do
1 -> {"perfect", s}
2 -> {"amicable", s}
_ -> {"sociable of length #{length(s)}", s}
end
{x,_,x} -> {"aspiring", [m | s]}
_       -> {"cyclic back to #{m}", [m | s]}
end
m == 0 -> {"terminating", [0 | s]}
true -> sequence(m, maxlen, maxterm, [m | s])
end
end
defp sequence(_, _, _, s), do: {"non-terminating", s}
end

Enum.each(1..10, fn n ->
{msg, s} = Aliquot.sequence(n)
:io.fwrite("~7w:~21s: ~p~n", [n, msg, s])
end)
IO.puts ""
[11, 12, 28, 496, 220, 1184, 12496, 1264460, 790, 909, 562, 1064, 1488, 15355717786080]
|> Enum.each(fn n ->
{msg, s} = Aliquot.sequence(n)
if n<10000000, do: :io.fwrite("~7w:~21s: ~p~n", [n, msg, s]),
else: :io.fwrite("~w: ~s: ~p~n", [n, msg, s])
end)
```
Output:
```      1:          terminating: [1,0]
2:          terminating: [2,1,0]
3:          terminating: [3,1,0]
4:          terminating: [4,3,1,0]
5:          terminating: [5,1,0]
6:              perfect: [6]
7:          terminating: [7,1,0]
8:          terminating: [8,7,1,0]
9:          terminating: [9,4,3,1,0]
10:          terminating: [10,8,7,1,0]

11:          terminating: [11,1,0]
12:          terminating: [12,16,15,9,4,3,1,0]
28:              perfect: [28]
496:              perfect: [496]
220:             amicable: [220,284]
1184:             amicable: [1184,1210]
12496: sociable of length 5: [12496,14288,15472,14536,14264]
1264460: sociable of length 4: [1264460,1547860,1727636,1305184]
790:             aspiring: [790,650,652,496,496]
909:             aspiring: [909,417,143,25,6,6]
562:   cyclic back to 284: [562,284,220,284]
1064:  cyclic back to 1184: [1064,1336,1184,1210,1184]
1488:      non-terminating: [1488,2480,3472,4464,8432,9424,10416,21328,
22320,55056,95728,96720,236592,459792,881392,
882384]
15355717786080: non-terminating: [15355717786080,44534663601120,
144940087464480]
```

## Factor

For convenience, the term that caused termination is always included in the output sequence.

```USING: combinators combinators.short-circuit formatting kernel
literals locals math math.functions math.primes.factors
math.ranges namespaces pair-rocket sequences sets ;
FROM: namespaces => set ;
IN: rosetta-code.aliquot

SYMBOL: terms
CONSTANT: 2^47 \$[ 2 47 ^ ]
CONSTANT: test-cases {
11 12 28 496 220 1184 12496 1264460 790
909 562 1064 1488 15355717786080
}

: next-term ( n -- m ) dup divisors sum swap - ;

: continue-aliquot? ( hs term -- hs term ? )
{
[ terms get 15 < ]
[ swap in? not   ]
[ nip zero? not  ]
[ nip 2^47 <     ]
} 2&& ;

: next-aliquot ( hs term -- hs next-term term )
[ swap [ adjoin    ] keep ]
[ dup  [ next-term ] dip  ] bi terms inc ;

: aliquot ( k -- seq )
0 terms set HS{ } clone swap
[ continue-aliquot? ] [ next-aliquot ] produce
[ drop ] 2dip swap suffix ;

: non-terminating? ( seq -- ? )
{ [ length 15 > ] [ [ 2^47 > ] any? ] } 1|| ;

:: classify ( seq -- classification-str )
{
[ seq non-terminating? ] => [ "non-terminating" ]
[ seq last zero?       ] => [ "terminating"     ]
[ seq length 2 =       ] => [ "perfect"         ]
[ seq length 3 =       ] => [ "amicable"        ]
[ seq first seq last = ] => [ "sociable"        ]
[ seq 2 tail* first2 = ] => [ "aspiring"        ]
[ "cyclic" ]
} cond ;

: .classify ( k -- )
dup aliquot [ classify ] keep "%14u: %15s: %[%d, %]\n"
printf ;

: main ( -- )
10 [1,b] test-cases append [ .classify ] each ;

MAIN: main
```
Output:
```             1:     terminating: { 1, 0 }
2:     terminating: { 2, 1, 0 }
3:     terminating: { 3, 1, 0 }
4:     terminating: { 4, 3, 1, 0 }
5:     terminating: { 5, 1, 0 }
6:         perfect: { 6, 6 }
7:     terminating: { 7, 1, 0 }
8:     terminating: { 8, 7, 1, 0 }
9:     terminating: { 9, 4, 3, 1, 0 }
10:     terminating: { 10, 8, 7, 1, 0 }
11:     terminating: { 11, 1, 0 }
12:     terminating: { 12, 16, 15, 9, 4, 3, 1, 0 }
28:         perfect: { 28, 28 }
496:         perfect: { 496, 496 }
220:        amicable: { 220, 284, 220 }
1184:        amicable: { 1184, 1210, 1184 }
12496:        sociable: { 12496, 14288, 15472, 14536, 14264, 12496 }
1264460:        sociable: { 1264460, 1547860, 1727636, 1305184, 1264460 }
790:        aspiring: { 790, 650, 652, 496, 496 }
909:        aspiring: { 909, 417, 143, 25, 6, 6 }
562:          cyclic: { 562, 284, 220, 284 }
1064:          cyclic: { 1064, 1336, 1184, 1210, 1184 }
1488: non-terminating: { 1488, 2480, 3472, 4464, 8432, 9424, 10416, 21328, 22320, 55056, 95728, 96720, 236592, 459792, 881392, 882384 }
15355717786080: non-terminating: { 15355717786080, 44534663601120, 144940087464480 }
```

## Fortran

This is straightforward for Fortran compilers that allow 64-bit integers, as with INTEGER*8 - though one must have faith in the correct functioning of the computer for such large numbers....

Output:

```       After 1, terminates! 1
After 2, terminates! 2,1
After 2, terminates! 3,1
After 3, terminates! 4,3,1
After 2, terminates! 5,1
Perfect! 6
After 2, terminates! 7,1
After 3, terminates! 8,7,1
After 4, terminates! 9,4,3,1
After 4, terminates! 10,8,7,1
After 2, terminates! 11,1
After 7, terminates! 12,16,15,9,4,3,1
Perfect! 28
Perfect! 496
Amicable: 220,284
Amicable: 1184,1210
Sociable 5: 12496,14288,15472,14536,14264
Sociable 4: 1264460,1547860,1727636,1305184
Aspiring: 790,650,652,496
Aspiring: 909,417,143,25,6
Cyclic end 2, to 284: 562,284,220
Cyclic end 2, to 1184: 1064,1336,1184,1210
After 16, non-terminating? 1488,2480,3472,4464,8432,9424,10416,21328,22320,55056,95728,96720,
236592,459792,881392,882384
After 2, overflows! 15355717786080,44534663601120
```

Allowing more rope leads 1488 to overflow after the 83'rd value. Extending TOOBIG to 2**48 produces overflow from step 88, and the monster test value manages one more step, to 144940087464480 and confirmed via the Mathematica example. Because the task involves only a few numbers to test, there is not so much advantage to be gained by pre-calculating a set of sums of proper divisors, but it does mean that no special tests are needed for N = 1 in function SUMF.

A more flexible syntax (such as Algol's) would enable the double scan of the TRAIL array to be avoided, as in if TRAIL[I:=MinLoc(Abs(TRAIL(1:L) - SF))] = SF then... That is, find the first index of array TRAIL such that ABS(TRAIL(1:L) - SF) is minimal, save that index in I, then access that element of TRAIL and test if it is equal to SF. The INDEX function could be use to find the first match, except that it is defined only for character variables. Alternatively, use an explicit DO-loop to search for equality, thus not employing fancy syntax, and not having to wonder if the ANY function will stop on the first match rather than wastefully continue the testing for all array elements. The modern style in manual writing is to employ vaguely general talk about arrays and omit specific details.

```      MODULE FACTORSTUFF	!This protocol evades the need for multiple parameters, or COMMON, or one shapeless main line...
Concocted by R.N.McLean, MMXV.
c       INTEGER*4 I4LIMIT
c       PARAMETER (I4LIMIT = 2147483647)
INTEGER*8 TOOBIG		!Some bounds.
PARAMETER (TOOBIG = 2**47)	!Computer arithmetic is not with real numbers.
INTEGER LOTS			!Nor is computer storage infinite.
PARAMETER (LOTS = 10000)	!So there can't be all that many of these.
INTEGER*8 KNOWNSUM(LOTS)	!If multiple references are expected, it is worthwhile calculating these.
CONTAINS			!Assistants.
INTEGER*8 FUNCTION SUMF(N)	!Sum of the proper divisors of N.
INTEGER*8 N			!The number in question.
INTEGER*8 F,F2		!Candidate factor, and its square.
INTEGER*8 S,INC,BOOST		!Assistants.
IF (N.LE.LOTS) THEN		!If we're within reach,
SUMF = KNOWNSUM(N)			!The result is to hand.
ELSE			!Otherwise, some on-the-spot effort ensues.
Could use SUMF in place of S, but some compilers have been confused by such usage.
S = 1			!1 is always a factor of N, but N is deemed not proper.
F = 1			!Prepare a crude search for factors.
INC = 1			!One by plodding one.
IF (MOD(N,2) .EQ. 1) INC = 2!Ah, but an odd number cannot have an even number as a divisor.
1       F = F + INC			!So half the time we can doubleplod.
F2 = F*F				!Up to F2 < N rather than F < SQRT(N) and worries over inexact arithmetic.
IF (F2 .LT. N) THEN			!F2 = N handled below.
IF (MOD(N,F) .EQ. 0) THEN		!Does F divide N?
BOOST = F + N/F			!Yes. The divisor and its counterpart.
IF (S .GT. TOOBIG - BOOST) GO TO 666	!Would their augmentation cause an overflow?
S = S + BOOST			!No, so count in the two divisors just discovered.
END IF				!So much for a divisor discovered.
GO TO 1				!Try for another.
END IF			!So much for N = p*q style factors.
IF (F2 .EQ. N) THEN	!Special case: N may be a perfect square, not necessarily of a prime number.
IF (S .GT. TOOBIG - F) GO TO 666	!It is. And it too might cause overflow.
S = S + F			!But if not, count F once only.
END IF			!All done.
SUMF = S			!This is the result.
END IF			!Whichever way obtained,
RETURN			!Done.
Cannot calculate the sum, because it exceeds the INTEGER*8 limit.
666     SUMF = -666		!An expression of dismay that the caller will notice.
END FUNCTION SUMF	!Alternatively, find the prime factors, and combine them...
SUBROUTINE PREPARESUMF	!Initialise the KNOWNSUM array.
Convert the Sieve of Eratoshenes to have each slot contain the sum of the proper divisors of its slot number.
Changes to instead count the number of factors, or prime factors, etc. would be simple enough.
INTEGER*8 F		!A factor for numbers such as 2F, 3F, 4F, 5F, ...
KNOWNSUM(1) = 0		!Proper divisors of N do not include N.
KNOWNSUM(2:LOTS) = 1		!So, although 1 divides all N without remainder, 1 is excluded for itself.
DO F = 2,LOTS/2		!Step through all the possible divisors of numbers not exceeding LOTS.
FORALL(I = F + F:LOTS:F) KNOWNSUM(I) = KNOWNSUM(I) + F	!And augment each corresponding slot.
END DO			!Different divisors can hit the same slot. For instance, 6 by 2 and also by 3.
SUBROUTINE CLASSIFY(N)	!Traipse along the SumF trail.
INTEGER*8 N		!The starter.
INTEGER ROPE		!The size of my memory is not so great..
PARAMETER(ROPE = 16)	!Indeed, this is strictly limited.
INTEGER*8 TRAIL(ROPE)	!But the numbers can be large.
INTEGER*8 SF		!The working sum of proper divisors.
INTEGER I,L		!Indices, merely.
CHARACTER*28 THIS	!A perfect scratchpad for remarks.
L = 1		!Every journey starts with its first step.
TRAIL(1) = N		!Which is this.
SF = N		!Syncopation.
10     SF = SUMF(SF)		!Step onwards.
IF (SF .LT. 0) THEN		!Trouble?
WRITE (THIS,11) L,"overflows!"	!Yes. Too big a number.
11       FORMAT ("After ",I0,", ",A)		!Describe the situation.
CALL REPORT(ADJUSTR(THIS))		!And give the report.
ELSE IF (SF .EQ. 0) THEN		!Otherwise, a finish?
WRITE (THIS,11) L,"terminates!"	!Yay!
CALL REPORT(ADJUSTR(THIS))		!This sequence is finished.
ELSE IF (ANY(TRAIL(1:L) .EQ. SF)) THEN	!Otherwise, is there an echo somewhere?
IF (L .EQ. 1) THEN				!Yes!
CALL REPORT("Perfect!")			!Are we at the start?
ELSE IF (L .EQ. 2) THEN			!Or perhaps not far along.
CALL REPORT("Amicable:")			!These are held special.
ELSE					!Otherwise, we've wandered further along.
I = MINLOC(ABS(TRAIL(1:L) - SF),DIM=1)	!Damnit, re-scan the array to finger the first matching element.
IF (I .EQ. 1) THEN		!If all the way back to the start,
WRITE (THIS,12) L		!Then there are this many elements in the sociable ring.
12           FORMAT ("Sociable ",I0,":")	!Computers are good at counting.
ELSE IF (I .EQ. L) THEN		!Perhaps we've hit a perfect number!
CALL REPORT("Aspiring:")	!A cycle of length one.
ELSE				!But otherwise,
WRITE (THIS,13) L - I + 1,SF	!A longer cycle. Amicable, or sociable.
13           FORMAT ("Cyclic end ",I0,", to ",I0,":")	!Name the flashback value too.
END IF				!So much for cycles.
END IF			!So much for finding an echo.
ELSE				!Otherwise, nothing special has happened.
IF (L .GE. ROPE) THEN		!So, how long is a piece of string?
WRITE (THIS,11) L,"non-terminating?"	!Not long enough!
CALL REPORT(ADJUSTR(THIS))		!So we give up.
ELSE				!But if there is more scope,
L = L + 1			!Advance one more step.
TRAIL(L) = SF			!Save the latest result.
GO TO 10				!And try for the next.
END IF			!So much for continuing.
END IF		!So much for the classification.
RETURN		!Finished.
CONTAINS		!Not quite.
SUBROUTINE REPORT(WHAT)	!There is this service routine.
CHARACTER*(*) WHAT		!Whatever the length of the text, the FORMAT's A28 shows 28 characters, right-aligned.
WRITE (6,1) WHAT,TRAIL(1:L)!Mysteriously, a fresh line after every twelve elements.
1       FORMAT (A28,1X,12(I0:","))	!And obviously, the : signifies "do not print what follows unless there is another number to go.
END SUBROUTINE REPORT	!That was easy.
END SUBROUTINE CLASSIFY	!Enough.
END MODULE FACTORSTUFF	!Enough assistants.
PROGRAM CLASSIFYTHEM	!Report on the nature of the sequence N, Sumf(N), Sumf(Sumf(N)), etc.
USE FACTORSTUFF		!This should help.
INTEGER*8 I,N		!Steppers.
INTEGER*8 THIS(14)	!A testing collection.
DATA THIS/11,12,28,496,220,1184,12496,1264460,790,909,     !Old-style continuation character in column six.
1  562,1064,1488,15355717786080/	!Monster value far exceeds the INTEGER*4 limit
CALL PREPARESUMF		!Prepare for 1:LOTS, even though this test run will use only a few.
DO I = 1,10			!As specified, the first ten integers.
CALL CLASSIFY(I)
END DO
DO I = 1,SIZE(THIS)		!Now for the specified list.
CALL CLASSIFY(THIS(I))
END DO
END			!Done.
```

## FreeBASIC

Translation of: C
```function raiseTo( bas as ulongint, power as ulongint ) as ulongint
dim as ulongint result = 1, i
for i = 1 to power
result*=bas
next i
return result
end function

function properDivisorSum( n as ulongint ) as ulongint
dim as ulongint prod = 1, temp = n, i = 3, count = 0
while n mod 2 = 0
count += 1
n /= 2
wend
if count<>0 then prod *= (raiseTo(2,count + 1) - 1)
while i*i <= n
count = 0
while n mod i = 0
count += 1
n /= i
wend
if count = 1 then
prod *= (i+1)
elseif count > 1 then
prod *= ((raiseTo(i,count + 1) - 1)/(i-1))
end if
i += 2
wend
if n>2 then	prod *= (n+1)
return prod - temp
end function

sub printSeries( arr() as ulongint ptr, size as integer, ty as string)
dim as integer i
dim as string outstr = "Integer: "+str(arr(0))+", Type: "+ty+", Series: "
for i=0 to size-2
outstr = outstr + str(arr(i))+", "
next i
outstr = outstr + str(arr(i))
print outstr
end sub

sub aliquotClassifier(n as ulongint)
dim as ulongint arr(0 to 15)
dim as integer i, j
dim as string ty = "Sociable"
arr(0) = n
for i = 1 to 15
arr(i) = properDivisorSum(arr(i-1))
if arr(i)=0 orelse arr(i)=n orelse (arr(i) = arr(i-1) and arr(i)<>n) then
if arr(i) = 0 then
ty = "Terminating"
elseif arr(i) = n and i = 1 then
ty = "Perfect"
elseif arr(i) = n and i = 2 then
ty = "Amicable"
elseif arr(i) = arr(i-1) and arr(i)<>n then
ty = "Aspiring"
end if
printSeries(arr(),i+1,ty)
return
end if
for j = 1 to i-1
if arr(j) = arr(i) then
printSeries(arr(),i+1,"Cyclic")
return
end if
next j
next i
printSeries(arr(),i+1,"Non-Terminating")
end sub

dim as ulongint nums(0 to 22) = {_
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 28, 496, 220, 1184,_
12496, 1264460, 790, 909, 562, 1064, 1488}

for n as ubyte = 0 to 22
aliquotClassifier(nums(n))
next n
```

## Go

Translation of: Kotlin
```package main

import (
"fmt"
"math"
"strings"
)

const threshold = uint64(1) << 47

func indexOf(s []uint64, search uint64) int {
for i, e := range s {
if e == search {
return i
}
}
return -1
}

func contains(s []uint64, search uint64) bool {
return indexOf(s, search) > -1
}

func maxOf(i1, i2 int) int {
if i1 > i2 {
return i1
}
return i2
}

func sumProperDivisors(n uint64) uint64 {
if n < 2 {
return 0
}
sqrt := uint64(math.Sqrt(float64(n)))
sum := uint64(1)
for i := uint64(2); i <= sqrt; i++ {
if n % i != 0 {
continue
}
sum += i + n / i
}
if sqrt * sqrt == n {
sum -= sqrt
}
return sum
}

func classifySequence(k uint64) ([]uint64, string) {
if k == 0 {
panic("Argument must be positive.")
}
last := k
var seq []uint64
seq = append(seq, k)
for {
last = sumProperDivisors(last)
seq = append(seq, last)
n := len(seq)
aliquot := ""
switch {
case last == 0:
aliquot = "Terminating"
case n == 2 && last == k:
aliquot = "Perfect"
case n == 3 && last == k:
aliquot = "Amicable"
case n >= 4 && last == k:
aliquot = fmt.Sprintf("Sociable[%d]", n - 1)
case last == seq[n - 2]:
aliquot = "Aspiring"
case contains(seq[1 : maxOf(1, n - 2)], last):
aliquot = fmt.Sprintf("Cyclic[%d]", n - 1 - indexOf(seq[:], last))
case n == 16 || last > threshold:
aliquot = "Non-Terminating"
}
if aliquot != "" {
return seq, aliquot
}
}
}

func joinWithCommas(seq []uint64) string {
res := fmt.Sprint(seq)
res = strings.Replace(res, " ", ", ", -1)
return res
}

func main() {
fmt.Println("Aliquot classifications - periods for Sociable/Cyclic in square brackets:\n")
for k := uint64(1); k <= 10; k++ {
seq, aliquot := classifySequence(k)
fmt.Printf("%2d: %-15s %s\n", k, aliquot, joinWithCommas(seq))
}
fmt.Println()

s := []uint64{
11, 12, 28, 496, 220, 1184, 12496, 1264460, 790, 909, 562, 1064, 1488,
}
for _, k := range s {
seq, aliquot := classifySequence(k)
fmt.Printf("%7d: %-15s %s\n",  k, aliquot, joinWithCommas(seq))
}
fmt.Println()

k := uint64(15355717786080)
seq, aliquot := classifySequence(k)
fmt.Printf("%d: %-15s %s\n", k, aliquot, joinWithCommas(seq))
}
```
Output:
```Aliquot classifications - periods for Sociable/Cyclic in square brackets:

1: Terminating     [1, 0]
2: Terminating     [2, 1, 0]
3: Terminating     [3, 1, 0]
4: Terminating     [4, 3, 1, 0]
5: Terminating     [5, 1, 0]
6: Perfect         [6, 6]
7: Terminating     [7, 1, 0]
8: Terminating     [8, 7, 1, 0]
9: Terminating     [9, 4, 3, 1, 0]
10: Terminating     [10, 8, 7, 1, 0]

11: Terminating     [11, 1, 0]
12: Terminating     [12, 16, 15, 9, 4, 3, 1, 0]
28: Perfect         [28, 28]
496: Perfect         [496, 496]
220: Amicable        [220, 284, 220]
1184: Amicable        [1184, 1210, 1184]
12496: Sociable[5]     [12496, 14288, 15472, 14536, 14264, 12496]
1264460: Sociable[4]     [1264460, 1547860, 1727636, 1305184, 1264460]
790: Aspiring        [790, 650, 652, 496, 496]
909: Aspiring        [909, 417, 143, 25, 6, 6]
562: Cyclic[2]       [562, 284, 220, 284]
1064: Cyclic[2]       [1064, 1336, 1184, 1210, 1184]
1488: Non-Terminating [1488, 2480, 3472, 4464, 8432, 9424, 10416, 21328, 22320, 55056, 95728, 96720, 236592, 459792, 881392, 882384]

15355717786080: Non-Terminating [15355717786080, 44534663601120, 144940087464480]
```

```divisors :: (Integral a) => a -> [a]
divisors n = filter ((0 ==) . (n `mod`)) [1 .. (n `div` 2)]

data Class
= Terminating
| Perfect
| Amicable
| Sociable
| Aspiring
| Cyclic
| Nonterminating
deriving (Show)

aliquot :: (Integral a) => a -> [a]
aliquot 0 = [0]
aliquot n = n : (aliquot \$ sum \$ divisors n)

classify :: (Num a, Eq a) => [a] -> Class
classify []             = Nonterminating
classify [0]            = Terminating
classify [_]            = Nonterminating
classify [a,b]
| a == b              = Perfect
| b == 0              = Terminating
| otherwise           = Nonterminating
classify x@(a:b:c:_)
| a == b              = Perfect
| a == c              = Amicable
| a `elem` (drop 1 x) = Sociable
| otherwise           =
case classify (drop 1 x) of
Perfect  -> Aspiring
Amicable -> Cyclic
Sociable -> Cyclic
d        -> d

main :: IO ()
main = do
let cls n = let ali = take 16 \$ aliquot n in (classify ali, ali)
mapM_ (print . cls) \$ [1..10] ++
[11, 12, 28, 496, 220, 1184, 12496, 1264460, 790, 909, 562, 1064, 1488]
```
Output:
```(Terminating,[1,0])
(Terminating,[2,1,0])
(Terminating,[3,1,0])
(Terminating,[4,3,1,0])
(Terminating,[5,1,0])
(Perfect,[6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6])
(Terminating,[7,1,0])
(Terminating,[8,7,1,0])
(Terminating,[9,4,3,1,0])
(Terminating,[10,8,7,1,0])
(Terminating,[11,1,0])
(Terminating,[12,16,15,9,4,3,1,0])
(Perfect,[28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28])
(Perfect,[496,496,496,496,496,496,496,496,496,496,496,496,496,496,496,496])
(Amicable,[220,284,220,284,220,284,220,284,220,284,220,284,220,284,220,284])
(Amicable,[1184,1210,1184,1210,1184,1210,1184,1210,1184,1210,1184,1210,1184,1210,1184,1210])
(Sociable,[12496,14288,15472,14536,14264,12496,14288,15472,14536,14264,12496,14288,15472,14536,14264,12496])
(Sociable,[1264460,1547860,1727636,1305184,1264460,1547860,1727636,1305184,1264460,1547860,1727636,1305184,1264460,1547860,1727636,1305184])
(Aspiring,[790,650,652,496,496,496,496,496,496,496,496,496,496,496,496,496])
(Aspiring,[909,417,143,25,6,6,6,6,6,6,6,6,6,6,6,6])
(Cyclic,[562,284,220,284,220,284,220,284,220,284,220,284,220,284,220,284])
(Cyclic,[1064,1336,1184,1210,1184,1210,1184,1210,1184,1210,1184,1210,1184,1210,1184,1210])
(Nonterminating,[1488,2480,3472,4464,8432,9424,10416,21328,22320,55056,95728,96720,236592,459792,881392,882384])```

## J

Implementation:

```proper_divisors=: [: */@>@}:@,@{ [: (^ i.@>:)&.>/ 2 p: x:
aliquot=: +/@proper_divisors ::0:
rc_aliquot_sequence=: aliquot^:(i.16)&>
rc_classify=: 3 :0
if. 16 ~:# y                 do. ' invalid        '
elseif. 6 > {: y                 do. ' terminate      '
elseif. (+./y>2^47) +. 16 = #~.y do. ' non-terminating'
elseif. 1=#~. y                  do. ' perfect        '
elseif. 8= st=. {.#/.~ y         do. ' amicable       '
elseif. 1 < st                   do. ' sociable       '
elseif. =/_2{. y                 do. ' aspiring       '
elseif. 1                        do. ' cyclic         '
end.
)
rc_display_aliquot_sequence=: (rc_classify,' ',":)@:rc_aliquot_sequence
```

```   rc_display_aliquot_sequence&> >: i.10
terminate       1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
terminate       2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
terminate       3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
terminate       4 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0
terminate       5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
perfect         6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
terminate       7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
terminate       8 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0
terminate       9 4 3 1 0 0 0 0 0 0 0 0 0 0 0 0
terminate       10 8 7 1 0 0 0 0 0 0 0 0 0 0 0 0

rc_display_aliquot_sequence&>11, 12, 28, 496, 220, 1184, 12496, 1264460, 790, 909, 562, 1064, 1488, 15355717786080x
terminate       11 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
terminate       12 16 15 9 4 3 1 0 0 0 0 0 0 0 0 0
perfect         28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28
perfect         496 496 496 496 496 496 496 496 496 496 496 496 496 496 496 496
amicable        220 284 220 284 220 284 220 284 220 284 220 284 220 284 220 284
amicable        1184 1210 1184 1210 1184 1210 1184 1210 1184 1210 1184 1210 1184 1210 1184 1210
sociable        12496 14288 15472 14536 14264 12496 14288 15472 14536 14264 12496 14288 15472 14536 14264 12496
sociable        1264460 1547860 1727636 1305184 1264460 1547860 1727636 1305184 1264460 1547860 1727636 1305184 1264460 1547860 1727636 1305184
aspiring        790 650 652 496 496 496 496 496 496 496 496 496 496 496 496 496
aspiring        909 417 143 25 6 6 6 6 6 6 6 6 6 6 6 6
cyclic          562 284 220 284 220 284 220 284 220 284 220 284 220 284 220 284
cyclic          1064 1336 1184 1210 1184 1210 1184 1210 1184 1210 1184 1210 1184 1210 1184 1210
non-terminating 1488 2480 3472 4464 8432 9424 10416 21328 22320 55056 95728 96720 236592 459792 881392 882384
non-terminating 15355717786080 44534663601120 144940087464480 471714103310688 1130798979186912 2688948041357088 6050151708497568 13613157922639968 35513546724070632 74727605255142168 162658586225561832 353930992506879768 642678347124409032 1125102611548462968 1977286128289819992 3415126495450394808
```

## Java

Translation of Python via D

Works with: Java version 8
```import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.stream.LongStream;

public class AliquotSequenceClassifications {

private static Long properDivsSum(long n) {
return LongStream.rangeClosed(1, (n + 1) / 2).filter(i -> n % i == 0 && n != i).sum();
}

static boolean aliquot(long n, int maxLen, long maxTerm) {
List<Long> s = new ArrayList<>(maxLen);
long newN = n;

while (s.size() <= maxLen && newN < maxTerm) {

newN = properDivsSum(s.get(s.size() - 1));

if (s.contains(newN)) {

if (s.get(0) == newN) {

switch (s.size()) {
case 1:
return report("Perfect", s);
case 2:
return report("Amicable", s);
default:
return report("Sociable of length " + s.size(), s);
}

} else if (s.get(s.size() - 1) == newN) {
return report("Aspiring", s);

} else
return report("Cyclic back to " + newN, s);

} else {
if (newN == 0)
return report("Terminating", s);
}
}

return report("Non-terminating", s);
}

static boolean report(String msg, List<Long> result) {
System.out.println(msg + ": " + result);
return false;
}

public static void main(String[] args) {
long[] arr = {
11, 12, 28, 496, 220, 1184, 12496, 1264460,
790, 909, 562, 1064, 1488};

LongStream.rangeClosed(1, 10).forEach(n -> aliquot(n, 16, 1L << 47));
System.out.println();
Arrays.stream(arr).forEach(n -> aliquot(n, 16, 1L << 47));
}
}
```
```Terminating: [1, 0]
Terminating: [2, 1, 0]
Terminating: [3, 1, 0]
Terminating: [4, 3, 1, 0]
Terminating: [5, 1, 0]
Perfect: [6]
Terminating: [7, 1, 0]
Terminating: [8, 7, 1, 0]
Terminating: [9, 4, 3, 1, 0]
Terminating: [10, 8, 7, 1, 0]

Terminating: [11, 1, 0]
Terminating: [12, 16, 15, 9, 4, 3, 1, 0]
Perfect: [28]
Perfect: [496]
Amicable: [220, 284]
Amicable: [1184, 1210]
Sociable of length 5: [12496, 14288, 15472, 14536, 14264]
Sociable of length 4: [1264460, 1547860, 1727636, 1305184]
Aspiring: [790, 650, 652, 496]
Aspiring: [909, 417, 143, 25, 6]
Cyclic back to 284: [562, 284, 220]
Cyclic back to 1184: [1064, 1336, 1184, 1210]
Non-terminating: [1488, 2480, 3472, 4464, 8432, 9424, 10416, 21328, 22320,
55056, 95728, 96720, 236592, 459792, 881392, 882384, 1474608]```

## jq

Works with: jq version 1.4
```# "until" is available in more recent versions of jq
# than jq 1.4
def until(cond; next):
def _until:
if cond then . else (next|_until) end;
_until;

# unordered
def proper_divisors:
. as \$n
| if \$n > 1 then 1,
( range(2; 1 + (sqrt|floor)) as \$i
| if (\$n % \$i) == 0 then \$i,
((\$n / \$i) | if . == \$i then empty else . end)
else empty
end)
else empty
end;

# sum of proper divisors, or 0
def pdsum:

# input is n
# maxlen defaults to 16;
# maxterm defaults to 2^47
def aliquot(maxlen; maxterm):
(maxlen // 15) as \$maxlen
| (maxterm // 40737488355328) as \$maxterm
| if . == 0 then "terminating at 0"
else
# [s, slen, new] = [[n], 1, n]
[ [.], 1, .]
| until( type == "string" or .[1] > \$maxlen or .[2] > \$maxterm;
.[0] as \$s | .[1] as \$slen
| (\$s | .[length-1] | pdsum) as \$new
| if (\$s|index(\$new)) then
if \$s[0] == \$new then
if \$slen == 1 then "perfect \(\$s)"
elif \$slen == 2 then "amicable: \(\$s)"
else "sociable of length \(\$slen): \(\$s)"
end
elif (\$s | .[length-1]) == \$new then "aspiring: \(\$s)"
else "cyclic back to \(\$new): \(\$s)"
end
elif \$new == 0 then "terminating: \(\$s + [0])"
else [ (\$s + [\$new]), (\$slen + 1), \$new ]
end )
| if type == "string" then . else "non-terminating: \(.[0])" end
end;

def pp: "\(.): \(aliquot(null;null))";
(range(1; 11) | pp),
"",
((11, 12, 28, 496, 220, 1184, 12496, 1264460,
790, 909, 562, 1064, 1488, 15355717786080) | pp);

Output:
```\$ jq -n -r -f aliquot.jq
1: terminating: [1,0]
2: terminating: [2,1,0]
3: terminating: [3,1,0]
4: terminating: [4,3,1,0]
5: terminating: [5,1,0]
6: perfect [6]
7: terminating: [7,1,0]
8: terminating: [8,7,1,0]
9: terminating: [9,4,3,1,0]
10: terminating: [10,8,7,1,0]

11: terminating: [11,1,0]
12: terminating: [12,16,15,9,4,3,1,0]
28: perfect [28]
496: perfect [496]
220: amicable: [220,284]
1184: amicable: [1184,1210]
12496: sociable of length 5: [12496,14288,15472,14536,14264]
1264460: sociable of length 4: [1264460,1547860,1727636,1305184]
790: aspiring: [790,650,652,496]
909: aspiring: [909,417,143,25,6]
562: cyclic back to 284: [562,284,220]
1064: cyclic back to 1184: [1064,1336,1184,1210]
1488: non-terminating: [1488,2480,3472,4464,8432,9424,10416,21328,22320,55056,95728,96720,236592,459792,881392,882384]
15355717786080: non-terminating: [15355717786080,44534663601120]
```

## Julia

Core Function

```function aliquotclassifier{T<:Integer}(n::T)
a = T[n]
b = divisorsum(a[end])
len = 1
while len < 17 && !(b in a) && 0 < b && b < 2^47+1
push!(a, b)
b = divisorsum(a[end])
len += 1
end
if b in a
1 < len || return ("Perfect", a)
if b == a[1]
2 < len || return ("Amicable", a)
return ("Sociable", a)
elseif b == a[end]
return ("Aspiring", a)
else
return ("Cyclic", push!(a, b))
end
end
push!(a, b)
b != 0 || return ("Terminating", a)
return ("Non-terminating", a)
end
```

Supporting Functions

```function pcontrib{T<:Integer}(p::T, a::T)
n = one(T)
pcon = one(T)
for i in 1:a
n *= p
pcon += n
end
return pcon
end

function divisorsum{T<:Integer}(n::T)
dsum = one(T)
for (p, a) in factor(n)
dsum *= pcontrib(p, a)
end
dsum -= n
end
```

Main

```using Printf

println("Classification Tests:")
tests = [1:12, 28, 496, 220, 1184, 12496, 1264460, 790, 909, 562, 1064, 1488]
for i in tests
(class, a) = aliquotclassifier(i)
println(@sprintf("%8d => ", i), @sprintf("%16s, ", class), a)
end
```
Output:
```Classification Tests:
1 =>      Terminating, [1,0]
2 =>      Terminating, [2,1,0]
3 =>      Terminating, [3,1,0]
4 =>      Terminating, [4,3,1,0]
5 =>      Terminating, [5,1,0]
6 =>          Perfect, [6]
7 =>      Terminating, [7,1,0]
8 =>      Terminating, [8,7,1,0]
9 =>      Terminating, [9,4,3,1,0]
10 =>      Terminating, [10,8,7,1,0]
11 =>      Terminating, [11,1,0]
12 =>      Terminating, [12,16,15,9,4,3,1,0]
28 =>          Perfect, [28]
496 =>          Perfect, [496]
220 =>         Amicable, [220,284]
1184 =>         Amicable, [1184,1210]
12496 =>         Sociable, [12496,14288,15472,14536,14264]
1264460 =>         Sociable, [1264460,1547860,1727636,1305184]
790 =>         Aspiring, [790,650,652,496]
909 =>         Aspiring, [909,417,143,25,6]
562 =>           Cyclic, [562,284,220,284]
1064 =>           Cyclic, [1064,1336,1184,1210,1184]
1488 =>  Non-terminating, [1488,2480,3472,4464,8432,9424,10416,21328,22320,55056,95728,96720,236592,459792,881392,882384,1474608,2461648]
```

## Kotlin

```// version 1.1.3

data class Classification(val sequence: List<Long>, val aliquot: String)

const val THRESHOLD = 1L shl 47

fun sumProperDivisors(n: Long): Long {
if (n < 2L) return 0L
val sqrt = Math.sqrt(n.toDouble()).toLong()
var sum = 1L + (2L..sqrt)
.filter { n % it == 0L }
.map { it + n / it }
.sum()
if (sqrt * sqrt == n) sum -= sqrt
return sum
}

fun classifySequence(k: Long): Classification {
require(k > 0)
var last = k
val seq = mutableListOf(k)
while (true) {
last = sumProperDivisors(last)
val n = seq.size
val aliquot = when {
last == 0L                  -> "Terminating"
n == 2 && last == k         -> "Perfect"
n == 3 && last == k         -> "Amicable"
n >= 4 && last == k         -> "Sociable[\${n - 1}]"
last == seq[n - 2]          -> "Aspiring"
last in seq.slice(1..n - 3) -> "Cyclic[\${n - 1 - seq.indexOf(last)}]"
n == 16 || last > THRESHOLD -> "Non-Terminating"
else                        -> ""
}
if (aliquot != "") return Classification(seq, aliquot)
}
}

fun main(args: Array<String>) {
println("Aliqot classifications - periods for Sociable/Cyclic in square brackets:\n")
for (k in 1L..10) {
val (seq, aliquot) = classifySequence(k)
}

val la = longArrayOf(
11, 12, 28, 496, 220, 1184, 12496, 1264460, 790, 909, 562, 1064, 1488
)
println()

for (k in la) {
val (seq, aliquot) = classifySequence(k)
}

println()

val k = 15355717786080L
val (seq, aliquot) = classifySequence(k)
}
```
Output:
```Aliqot classifications - periods for Sociable/Cyclic in square brackets:

1: Terminating     [1, 0]
2: Terminating     [2, 1, 0]
3: Terminating     [3, 1, 0]
4: Terminating     [4, 3, 1, 0]
5: Terminating     [5, 1, 0]
6: Perfect         [6, 6]
7: Terminating     [7, 1, 0]
8: Terminating     [8, 7, 1, 0]
9: Terminating     [9, 4, 3, 1, 0]
10: Terminating     [10, 8, 7, 1, 0]

11: Terminating     [11, 1, 0]
12: Terminating     [12, 16, 15, 9, 4, 3, 1, 0]
28: Perfect         [28, 28]
496: Perfect         [496, 496]
220: Amicable        [220, 284, 220]
1184: Amicable        [1184, 1210, 1184]
12496: Sociable[5]     [12496, 14288, 15472, 14536, 14264, 12496]
1264460: Sociable[4]     [1264460, 1547860, 1727636, 1305184, 1264460]
790: Aspiring        [790, 650, 652, 496, 496]
909: Aspiring        [909, 417, 143, 25, 6, 6]
562: Cyclic[2]       [562, 284, 220, 284]
1064: Cyclic[2]       [1064, 1336, 1184, 1210, 1184]
1488: Non-Terminating [1488, 2480, 3472, 4464, 8432, 9424, 10416, 21328, 22320, 55056, 95728, 96720, 236592, 459792, 881392, 882384]

15355717786080: Non-Terminating [15355717786080, 44534663601120, 144940087464480]
```

## Liberty BASIC

Based on my analysis of integers up to 10,000 I have revised the criteria for non-termination as follows: 52 elements, or 11 consecutive increases of elements, or an element greater than 30 million. This is not a perfect algorithm, but seems to me to be a reasonable compromise between accuracy and speed. I'll stay away from the really large numbers - at least for now.

Of integers below 10,000--

4004 is the longest non-terminating integer by the revised criteria. The elements range from a minimum of 2,440 to a maximum of 302,666. I suspect that if the sequence were run out far enough, it would terminate in some fashion.

4344 has the longest terminating sequence.

6672 has the longest aspiring sequence.

6420 has the longest cyclic sequence.

8128 is the largest perfect integer.

There are no sociable sequences.

```print "ROSETTA CODE - Aliquot sequence classifications"
[Start]
input "Enter an integer: "; K
K=abs(int(K)): if K=0 then goto [Quit]
call PrintAS K
goto [Start]

[Quit]
print "Program complete."
end

sub PrintAS K
Length=52
dim Aseq(Length)
n=K: class=0
for element=2 to Length
Aseq(element)=PDtotal(n)
print Aseq(element); " ";
select case
case Aseq(element)=0
print " terminating": class=1: exit for
case Aseq(element)=K and element=2
print " perfect": class=2: exit for
case Aseq(element)=K and element=3
print " amicable": class=3: exit for
case Aseq(element)=K and element>3
print " sociable": class=4: exit for
case Aseq(element)<>K and Aseq(element-1)=Aseq(element)
print " aspiring": class=5: exit for
case Aseq(element)<>K and Aseq(element-2)= Aseq(element)
print " cyclic": class=6: exit for
end select
n=Aseq(element)
if n>priorn then priorn=n: inc=inc+1 else inc=0: priorn=0
if inc=11 or n>30000000 then exit for
next element
if class=0 then print " non-terminating"
end sub

function PDtotal(n)
for y=2 to n
if (n mod y)=0 then PDtotal=PDtotal+(n/y)
next
end function```
Output:
```ROSETTA CODE - Aliquot sequence classifications
Enter an integer: 1
0  terminating
Enter an integer: 2
1 0  terminating
Enter an integer: 3
1 0  terminating
Enter an integer: 4
3 1 0  terminating
Enter an integer: 5
1 0  terminating
Enter an integer: 6
6  perfect
Enter an integer: 7
1 0  terminating
Enter an integer: 8
7 1 0  terminating
Enter an integer: 9
4 3 1 0  terminating
Enter an integer: 10
8 7 1 0  terminating
Enter an integer: 11
1 0  terminating
Enter an integer: 12
16 15 9 4 3 1 0  terminating
Enter an integer: 28
28  perfect
Enter an integer: 496
496  perfect
Enter an integer: 220
284 220  amicable
Enter an integer: 1184
1210 1184  amicable
Enter an integer: 12496
14288 15472 14536 14264 12496  sociable
Enter an integer: 1264460
1547860 1727636 1305184 1264460  sociable
Enter an integer: 790
650 652 496 496  aspiring
Enter an integer: 909
417 143 25 6 6  aspiring
Enter an integer: 562
284 220 284  cyclic
Enter an integer: 1064
1336 1184 1210 1184  cyclic
Enter an integer: 1488
2480 3472 4464 8432 9424 10416 21328 22320 55056 95728 96720  non-terminating
- - - - - - - - - - - -
Enter an integer: 4004
5404 5460 13356 25956 49756 49812 83244 138964 144326 127978 67322 36250 34040 48040 60140 71572 58208 64264 60836 47692 35776 42456 69144 110376 244824 373356 594884 446170 356954 219706 118874 88720 117740 174916 174972 291844 302666 2564
38 217322 185014 92510 95626 49274 25894 17198 8602 6950 6070 4874 2440 3140  non-terminating
Enter an integer: 4344
6576 10536 15864 23856 47568 75440 112048 111152 104236 105428 79078 45842 22924 20924 15700 18586 9296 11536 14256 30756 47868 63852 94404 125900 147520 204524 153400 237200 333634 238334 121306 62438 31222 16514 9406 4706 2938 1850 1684 1
270 1034 694 350 394 200 265 59 1 0  terminating
Enter an integer: 6672
10688 10648 11312 13984 16256 16384 16383 6145 1235 445 95 25 6 6  aspiring
Enter an integer: 6420
11724 15660 34740 71184 112832 121864 106646 53326 45458 37486 18746 16198 14042 11878 5942 2974 1490 1210 1184 1210  cyclic
Enter an integer: 8128
8128  perfect
Enter an integer:
Program complete.
```

## Mathematica / Wolfram Language

```seq[n_] :=
NestList[If[# == 0, 0,
DivisorSum[#, # &, Function[div, div != #]]] &, n, 16];
class[seq_] :=
Which[Length[seq] < 2, "Non-terminating", MemberQ[seq, 0],
"Terminating", seq[[1]] == seq[[2]], "Perfect",
Length[seq] > 2 && seq[[1]] == seq[[3]], "Amicable",
Length[seq] > 3 && MemberQ[seq[[4 ;;]], seq[[1]]], "Sociable",
MatchQ[class[Rest[seq]], "Perfect" | "Aspiring"], "Aspiring",
MatchQ[class[Rest[seq]], "Amicable" | "Sociable" | "Cyclic"],
"Cyclic", True, "Non-terminating"];
notate[seq_] :=
Which[seq == {}, {},
MemberQ[Rest[seq],
seq[[1]]], {Prepend[TakeWhile[Rest[seq], # != seq[[1]] &],
seq[[1]]]}, True, Prepend[notate[Rest[seq]], seq[[1]]]];
Print[{#, class[seq[#]], notate[seq[#]] /. {0} -> 0}] & /@ {1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 28, 496, 220, 1184, 12496, 1264460, 790, 909,
562, 1064, 1488, 15355717786080};
```
Output:
```{1, Terminating, {1, 0}}
{2, Terminating, {2, 1, 0}}
{3, Terminating, {3, 1, 0}}
{4, Terminating, {4, 3, 1, 0}}
{5, Terminating, {5, 1, 0}}
{6, Perfect, {{6}}}
{7, Terminating, {7, 1, 0}}
{8, Terminating, {8, 7, 1, 0}}
{9, Terminating, {9, 4, 3, 1, 0}}
{10, Terminating, {10, 8, 7, 1, 0}}
{11, Terminating, {11, 1, 0}}
{12, Terminating, {12, 16, 15, 9, 4, 3, 1, 0}}
{28, Perfect, {{28}}}
{496, Perfect, {{496}}}
{220, Amicable, {{220, 284}}}
{1184, Amicable, {{1184, 1210}}}
{12496, Sociable, {{12496, 14288, 15472, 14536, 14264}}}
{1264460, Sociable, {{1264460, 1547860, 1727636, 1305184}}}
{790, Aspiring, {790, 650, 652, {496}}}
{909, Aspiring, {909, 417, 143, 25, {6}}}
{562, Cyclic, {562, {284, 220}}}
{1064, Cyclic, {1064, 1336, {1184, 1210}}}
{1488, Non-terminating, {1488, 2480, 3472, 4464, 8432, 9424, 10416, 21328, 22320, 55056, 95728, 96720, 236592, 459792, 881392, 882384, 1474608}}
{15355717786080, Non-terminating, {15355717786080, 44534663601120, 144940087464480, 471714103310688, 1130798979186912, 2688948041357088, 6050151708497568, 13613157922639968, 35513546724070632, 74727605255142168, 162658586225561832, 353930992506879768, 642678347124409032, 1125102611548462968, 1977286128289819992, 3415126495450394808, 7156435369823219592}}```

## Nim

```import std/[math, strformat, times]

type

# Classification categories.
Category {.pure.} = enum
Unknown
Terminating = "terminating"
Perfect = "perfect"
Amicable = "amicable"
Sociable = "sociable"
Aspiring = "aspiring"
Cyclic = "cyclic"
NonTerminating = "non-terminating"

# Aliquot sequence.
AliquotSeq = seq[int64]

const Limit = 2^47    # Limit beyond which the category is considered to be "NonTerminating".

#---------------------------------------------------------------------------------------------------

proc sumProperDivisors(n: int64): int64 =
## Compute the sum of proper divisors.*

if n == 1: return 0
result = 1
for d in 2..sqrt(n.float).int:
if n mod d == 0:
inc result, d
if n div d != d:
result += n div d

#---------------------------------------------------------------------------------------------------

iterator aliquotSeq(n: int64): int64 =
## Yield the elements of the aliquot sequence of "n".
## Stopped if the current value is null or equal to "n".

var k = n
while true:
k = sumProperDivisors(k)
yield k

#---------------------------------------------------------------------------------------------------

proc `\$`(a: AliquotSeq): string =
## Return the representation of an allquot sequence.

for n in a:

#---------------------------------------------------------------------------------------------------

proc classification(n: int64): tuple[cat: Category, values: AliquotSeq] =
## Return the category of the aliquot sequence of a number "n" and the sequence itself.

var count = 0         # Number of elements currently generated.
var prev = n          # Previous element in the sequence.
result.cat = Unknown
for k in aliquotSeq(n):
inc count
if k == 0:
result.cat = Terminating
elif k == n:
result.cat = case count
of 1: Perfect
of 2: Amicable
else: Sociable
elif k > Limit or count > 16:
result.cat = NonTerminating
elif k == prev:
result.cat = Aspiring
elif k in result.values:
result.cat = Cyclic
prev = k
if result.cat != Unknown:
break

#---------------------------------------------------------------------------------------------------

let t0 = getTime()

for n in 1..10:
let (cat, aseq) = classification(n)
echo fmt"{n:14}:  {cat:<20} {aseq}"

echo ""
for n in [int64 11, 12, 28, 496, 220, 1184, 12496, 1264460,
790, 909, 562, 1064, 1488, 15355717786080]:
let (cat, aseq) = classification(n)
echo fmt"{n:14}:  {cat:<20} {aseq}"

echo ""
echo fmt"Processed in {(getTime() - t0).inMilliseconds} ms."
```
Output:
```             1:  terminating          0
2:  terminating          1, 0
3:  terminating          1, 0
4:  terminating          3, 1, 0
5:  terminating          1, 0
6:  perfect              6
7:  terminating          1, 0
8:  terminating          7, 1, 0
9:  terminating          4, 3, 1, 0
10:  terminating          8, 7, 1, 0

11:  terminating          1, 0
12:  terminating          16, 15, 9, 4, 3, 1, 0
28:  perfect              28
496:  perfect              496
220:  amicable             284, 220
1184:  amicable             1210, 1184
12496:  sociable             14288, 15472, 14536, 14264, 12496
1264460:  sociable             1547860, 1727636, 1305184, 1264460
790:  aspiring             650, 652, 496, 496
909:  aspiring             417, 143, 25, 6, 6
562:  cyclic               284, 220, 284
1064:  cyclic               1336, 1184, 1210, 1184
1488:  non-terminating      2480, 3472, 4464, 8432, 9424, 10416, 21328, 22320, 55056, 95728, 96720, 236592, 459792, 881392, 882384, 1474608, 2461648
15355717786080:  non-terminating      44534663601120, 144940087464480

Processed in 105 ms.
```

## Oforth

```import: mapping
import: quicksort
import: math

Object method: sum ( coll -- m )
#+ self reduce dup ifNull: [ drop 0 ] ;

Integer method: properDivs
| i l |
Array new dup 1 over add ->l
2 self nsqrt tuck for: i [ self i mod ifFalse: [ i l add  self i / l add ] ]
sq self == ifTrue: [ l pop drop ]
dup sort
;

: aliquot( n -- [] )	\ Returns aliquot sequence of n
| end l |
2 47 pow ->end
Array new dup n over add ->l
while ( l size 16 <  l last 0 <> and  l last end <= and ) [ l last properDivs sum  l add ]
;

: aliquotClass( n -- [] s )   \ Returns aliquot sequence and classification
| l i j |
n aliquot dup ->l
l last 0   == ifTrue: [ "terminate" return ]
l second n == ifTrue: [ "perfect" return ]
3 l at   n == ifTrue: [ "amicable" return ]
l indexOfFrom(n, 2) ifNotNull: [ "sociable" return ]

l size loop: i [
l indexOfFrom(l at(i), i 1+ ) -> j
j i 1+ == ifTrue: [ "aspiring" return ]
j ifNotNull: [ "cyclic" return ]
]
"non-terminating"
;```
Output:
```>#[ dup . aliquotClass . ":" . . printcr ] 10 each
1 terminate : [1, 0]
2 terminate : [2, 1, 0]
3 terminate : [3, 1, 0]
4 terminate : [4, 3, 1, 0]
5 terminate : [5, 1, 0]
6 perfect : [6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6]
7 terminate : [7, 1, 0]
8 terminate : [8, 7, 1, 0]
9 terminate : [9, 4, 3, 1, 0]
10 terminate : [10, 8, 7, 1, 0]
ok
```
```>#[ dup . aliquotClass . ":" . . printcr ] [ 11, 12, 28, 496, 220, 1184, 12496, 1264460, 790, 909, 562, 1064, 1488, 15355717786080 ] apply
11 terminate : [11, 1, 0]
12 terminate : [12, 16, 15, 9, 4, 3, 1, 0]
28 perfect : [28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28]
496 perfect : [496, 496, 496, 496, 496, 496, 496, 496, 496, 496, 496, 496, 496, 496, 496, 496]
220 amicable : [220, 284, 220, 284, 220, 284, 220, 284, 220, 284, 220, 284, 220, 284, 220, 284]
1184 amicable : [1184, 1210, 1184, 1210, 1184, 1210, 1184, 1210, 1184, 1210, 1184, 1210, 1184, 1210, 1184, 1210]
12496 sociable : [12496, 14288, 15472, 14536, 14264, 12496, 14288, 15472, 14536, 14264, 12496, 14288, 15472, 14536, 14264, 12496]
1264460 sociable : [1264460, 1547860, 1727636, 1305184, 1264460, 1547860, 1727636, 1305184, 1264460, 1547860, 1727636, 1305184, 1264460, 1547860, 1727636, 1305184]
790 aspiring : [790, 650, 652, 496, 496, 496, 496, 496, 496, 496, 496, 496, 496, 496, 496, 496]
909 aspiring : [909, 417, 143, 25, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6]
562 cyclic : [562, 284, 220, 284, 220, 284, 220, 284, 220, 284, 220, 284, 220, 284, 220, 284]
1064 cyclic : [1064, 1336, 1184, 1210, 1184, 1210, 1184, 1210, 1184, 1210, 1184, 1210, 1184, 1210, 1184, 1210]
1488 non-terminating : [1488, 2480, 3472, 4464, 8432, 9424, 10416, 21328, 22320, 55056, 95728, 96720, 236592, 459792, 881392, 882384]
15355717786080 non-terminating : [15355717786080, 44534663601120, 144940087464480]
ok
>
```

## PARI/GP

```aliquot(x) =
{
my (L = List(x), M = Map(Mat([x,1])), k, m = "non-term.", n = x);

for (i = 2, 16, n = vecsum(divisors(n)) - n;
if (n > 2^47, break,
n == 0, m = "terminates"; break,
mapisdefined(M, n, &k),
m = if (k == 1,
if (i == 2, "perfect",
i == 3, "amicable",
i > 3, concat("sociable-",i-1)),
k < i-1, concat("cyclic-",i-k),
"aspiring"); break,
mapput(M, n, i); listput(L, n));
);
printf("%16d: %10s, %s\n", x, m, Vec(L));
}```

Output:

```gp > apply(aliquot, concat([1..10],[11,12,28,496,220,1184,12496,1264460,790,909,562,1064,1488,15355717786080]));

1: terminates, [1]
2: terminates, [2, 1]
3: terminates, [3, 1]
4: terminates, [4, 3, 1]
5: terminates, [5, 1]
6:    perfect, [6]
7: terminates, [7, 1]
8: terminates, [8, 7, 1]
9: terminates, [9, 4, 3, 1]
10: terminates, [10, 8, 7, 1]
11: terminates, [11, 1]
12: terminates, [12, 16, 15, 9, 4, 3, 1]
28:    perfect, [28]
496:    perfect, [496]
220:   amicable, [220, 284]
1184:   amicable, [1184, 1210]
12496: sociable-5, [12496, 14288, 15472, 14536, 14264]
1264460: sociable-4, [1264460, 1547860, 1727636, 1305184]
790:   aspiring, [790, 650, 652, 496]
909:   aspiring, [909, 417, 143, 25, 6]
562:   cyclic-2, [562, 284, 220]
1064:   cyclic-2, [1064, 1336, 1184, 1210]
1488:  non-term., [1488, 2480, 3472, 4464, 8432, 9424, 10416, 21328, 22320, 55056, 95728, 96720, 236592, 459792, 881392, 882384]
15355717786080:  non-term., [15355717786080, 44534663601120]```

## Perl

Library: ntheory
```use ntheory qw/divisor_sum/;

sub aliquot {
my(\$n, \$maxterms, \$maxn) = @_;
\$maxterms = 16 unless defined \$maxterms;
\$maxn = 2**47 unless defined \$maxn;

my %terms = (\$n => 1);
my @allterms = (\$n);
for my \$term (2 .. \$maxterms) {
\$n = divisor_sum(\$n)-\$n;
# push onto allterms here if we want the cyclic term to display
last if \$n > \$maxn;
return ("terminates",@allterms, 0) if \$n == 0;
if (defined \$terms{\$n}) {
return ("perfect",@allterms)  if \$term == 2 && \$terms{\$n} == 1;
return ("amicible",@allterms) if \$term == 3 && \$terms{\$n} == 1;
return ("sociable-".(\$term-1),@allterms) if \$term >  3 && \$terms{\$n} == 1;
return ("aspiring",@allterms) if \$terms{\$n} == \$term-1;
return ("cyclic-".(\$term-\$terms{\$n}),@allterms)   if \$terms{\$n} < \$term-1;
}
\$terms{\$n} = \$term;
push @allterms, \$n;
}
("non-term",@allterms);
}

for my \$n (1..10) {
my(\$class, @seq) = aliquot(\$n);
printf "%14d %10s [@seq]\n", \$n, \$class;
}
print "\n";
for my \$n (qw/11 12 28 496 220 1184 12496 1264460 790 909 562 1064 1488 15355717786080/) {
my(\$class, @seq) = aliquot(\$n);
printf "%14d %10s [@seq]\n", \$n, \$class;
}
```
Output:
```             1 terminates [1 0]
2 terminates [2 1 0]
3 terminates [3 1 0]
4 terminates [4 3 1 0]
5 terminates [5 1 0]
6    perfect [6]
7 terminates [7 1 0]
8 terminates [8 7 1 0]
9 terminates [9 4 3 1 0]
10 terminates [10 8 7 1 0]

11 terminates [11 1 0]
12 terminates [12 16 15 9 4 3 1 0]
28    perfect [28]
496    perfect [496]
220   amicible [220 284]
1184   amicible [1184 1210]
12496 sociable-5 [12496 14288 15472 14536 14264]
1264460 sociable-4 [1264460 1547860 1727636 1305184]
790   aspiring [790 650 652 496]
909   aspiring [909 417 143 25 6]
562   cyclic-2 [562 284 220]
1064   cyclic-2 [1064 1336 1184 1210]
1488   non-term [1488 2480 3472 4464 8432 9424 10416 21328 22320 55056 95728 96720 236592 459792 881392 882384]
15355717786080   non-term [15355717786080 44534663601120]```

## Phix

Translated from the Python example

```function aliquot(atom n)
sequence s = {n}
integer k
if n=0 then                             return {"terminating",{0}} end if
while length(s)<16
and n<140737488355328 do
n = sum(factors(n,-1))
k = find(n,s)
if k then
if k=1 then
if length(s)=1 then         return {"perfect",s}
elsif length(s)=2 then      return {"amicable",s}
end if                      return {"sociable",s}
elsif k=length(s) then          return {"aspiring",s}
end if                          return {"cyclic",append(s,n)}
elsif n=0 then                      return {"terminating",s}
end if
s = append(s,n)
end while
return {"non-terminating",s}
end function

constant n = tagset(12)&{28, 496, 220, 1184, 12496, 1264460, 790, 909, 562, 1064, 1488, 15355717786080}
for i=1 to length(n) do
{string classification, sequence dseq} = aliquot(n[i])
dseq = join(apply(true,sprintf,{{"%d"},dseq}),",")
printf(1,"%14d => %15s, {%s}\n",{n[i],classification,dseq})
end for
```
Output:
```             1 =>     terminating, {1}
2 =>     terminating, {2,1}
3 =>     terminating, {3,1}
4 =>     terminating, {4,3,1}
5 =>     terminating, {5,1}
6 =>         perfect, {6}
7 =>     terminating, {7,1}
8 =>     terminating, {8,7,1}
9 =>     terminating, {9,4,3,1}
10 =>     terminating, {10,8,7,1}
11 =>     terminating, {11,1}
12 =>     terminating, {12,16,15,9,4,3,1}
28 =>         perfect, {28}
496 =>         perfect, {496}
220 =>        amicable, {220,284}
1184 =>        amicable, {1184,1210}
12496 =>        sociable, {12496,14288,15472,14536,14264}
1264460 =>        sociable, {1264460,1547860,1727636,1305184}
790 =>        aspiring, {790,650,652,496}
909 =>        aspiring, {909,417,143,25,6}
562 =>          cyclic, {562,284,220,284}
1064 =>          cyclic, {1064,1336,1184,1210,1184}
1488 => non-terminating, {1488,2480,3472,4464,8432,9424,10416,21328,22320,55056,95728,96720,236592,459792,881392,882384}
15355717786080 => non-terminating, {15355717786080,44534663601120,144940087464480}
```

## Picat

Translation of: C++
```divisor_sum(N) = R =>
Total = 1,
Power = 2,
% Deal with powers of 2 first
while (N mod 2 == 0)
Total := Total + Power,
Power := Power*2,
N := N div 2
end,
% Odd prime factors up to the square root
P = 3,
while (P*P =< N)
Sum = 1,
Power1 = P,
while (N mod P == 0)
Sum := Sum + Power1,
Power1 := Power1*P,
N := N div P
end,
Total := Total * Sum,
P := P+2
end,
% If n > 1 then it's prime
if N > 1 then
Total := Total*(N + 1)
end,
R = Total.

% See https://en.wikipedia.org/wiki/Aliquot_sequence
aliquot_sequence(N,Limit,Seq,Class) =>
aliquot_sequence(N,Limit,[N],Seq,Class).

aliquot_sequence(_,0,_,Seq,Class) => Seq = [], Class = 'non-terminating'.
aliquot_sequence(_,_,[0|_],Seq,Class) => Seq = [0], Class = terminating.
aliquot_sequence(N,_,[N,N|_],Seq,Class) => Seq = [], Class = perfect.
aliquot_sequence(N,_,[N,_,N|_],Seq,Class) => Seq = [N], Class = amicable.
aliquot_sequence(N,_,[N|S],Seq,Class), membchk(N,S) =>
Seq = [N], Class = sociable.
aliquot_sequence(_,_,[Term,Term|_],Seq,Class) => Seq = [], Class = aspiring.
aliquot_sequence(_,_,[Term|S],Seq,Class), membchk(Term,S) =>
Seq = [Term], Class = cyclic.
aliquot_sequence(N,Limit,[Term|S],Seq,Class) =>
Seq = [Term|Rest],
Sum = divisor_sum(Term),
Term1 is Sum - Term,
aliquot_sequence(N,Limit-1,[Term1,Term|S],Rest,Class).

main =>
foreach (N in [11,12,28,496,220,1184,12496,1264460,790,909,562,1064,1488,15355717786080,153557177860800])
aliquot_sequence(N,16,Seq,Class),
printf("%w: %w, sequence: %w ", N, Class, Seq[1]),
foreach (I in 2..len(Seq), break(Seq[I] == Seq[I-1]))
printf("%w ", Seq[I])
end,
nl
end.```
Output:
```11: terminating, sequence: 11 1 0
12: terminating, sequence: 12 16 15 9 4 3 1 0
28: perfect, sequence: 28
496: perfect, sequence: 496
220: amicable, sequence: 220 284 220
1184: amicable, sequence: 1184 1210 1184
12496: sociable, sequence: 12496 14288 15472 14536 14264 12496
1264460: sociable, sequence: 1264460 1547860 1727636 1305184 1264460
790: aspiring, sequence: 790 650 652 496
909: aspiring, sequence: 909 417 143 25 6
562: cyclic, sequence: 562 284 220 284
1064: cyclic, sequence: 1064 1336 1184 1210 1184
1488: non-terminating, sequence: 1488 2480 3472 4464 8432 9424 10416 21328 22320 55056 95728 96720 236592 459792 881392 882384
15355717786080: non-terminating, sequence: 15355717786080 44534663601120 144940087464480 471714103310688 1130798979186912 2688948041357088 6050151708497568 13613157922639968 35513546724070632 74727605255142168 162658586225561832 353930992506879768 642678347124409032 1125102611548462968 1977286128289819992 3415126495450394808
153557177860800: non-terminating, sequence: 153557177860800 470221741508000 685337334283120 908681172226160 1276860840159280 1867115442105104 1751034184622896 1643629718341256 1441432897905784 1647351883321016 1557892692704584 1363939602434936 1194001297910344 1597170567336056 1405725265675144 1230017019320456
```

## PowerShell

Works with: PowerShell version 2.0

To make the PowerShell 4.0 code below work with PowerShell 2.0:
Replace any instances of ".Where{...}" with " | Where {...}"
Replace any instances of ".ForEach{...}" with " | ForEach {...}"

Works with: PowerShell version 3.0

To make the PowerShell 4.0 code below work with PowerShell 3.0:
Replace any instances of ".Where{...}" with ".Where({...})"
Replace any instances of ".ForEach{...}" with ".ForEach({...})"

Works with: PowerShell version 4.0

Simple

```function Get-NextAliquot ( [int]\$X )
{
If ( \$X -gt 1 )
{
\$NextAliquot = 0
(1..(\$X/2)).Where{ \$x % \$_ -eq 0 }.ForEach{ \$NextAliquot += \$_ }.Where{ \$_ }
return \$NextAliquot
}
}

function Get-AliquotSequence ( [int]\$K, [int]\$N )
{
\$X = \$K
\$X
(1..(\$N-1)).ForEach{ \$X = Get-NextAliquot \$X; \$X }
}

function Classify-AlliquotSequence ( [int[]]\$Sequence )
{
\$K = \$Sequence[0]
\$LastN = \$Sequence.Count
If ( \$Sequence[-1] -eq 0 ) { return "terminating" }
If ( \$Sequence[-1] -eq 1 ) { return "terminating" }
If ( \$Sequence[1] -eq \$K ) { return "perfect"     }
If ( \$Sequence[2] -eq \$K ) { return "amicable"    }
If ( \$Sequence[3..(\$Sequence.Count-1)] -contains \$K ) { return "sociable" }
If ( \$Sequence[-1] -eq \$Sequence[-2] ) { return "aspiring" }
If ( \$Sequence.Count -gt ( \$Sequence | Select -Unique ).Count ) { return "cyclic" }
return "non-terminating and non-repeating through N = \$(\$Sequence.Count)"
}

(1..10).ForEach{ [string]\$_ + " is " + ( Classify-AlliquotSequence -Sequence ( Get-AliquotSequence -K \$_ -N 16 ) ) }

( 11, 12, 28, 496, 220, 1184, 790, 909, 562, 1064, 1488 ).ForEach{ [string]\$_ + " is " + ( Classify-AlliquotSequence -Sequence ( Get-AliquotSequence -K \$_ -N 16 ) ) }
```

Optimized

```function Get-NextAliquot ( [int]\$X )
{
If ( \$X -gt 1 )
{
\$NextAliquot = 1
If ( \$X -gt 2 )
{
\$XSquareRoot = [math]::Sqrt( \$X )

(2..\$XSquareRoot).Where{ \$X % \$_ -eq 0 }.ForEach{ \$NextAliquot += \$_ + \$x / \$_ }

If ( \$XSquareRoot % 1 -eq 0 ) { \$NextAliquot -= \$XSquareRoot }
}
return \$NextAliquot
}
}

function Get-AliquotSequence ( [int]\$K, [int]\$N )
{
\$X = \$K
\$X
\$i = 1
While ( \$X -and \$i -lt \$N )
{
\$i++
\$Next = Get-NextAliquot \$X
If ( \$Next )
{
If ( \$X -eq \$Next )
{
(\$i..\$N).ForEach{ \$X }
\$i = \$N
}
Else
{
\$X = \$Next
\$X
}
}
Else
{
\$i = \$N
}
}
}

function Classify-AlliquotSequence ( [int[]]\$Sequence )
{
\$K = \$Sequence[0]
\$LastN = \$Sequence.Count
If ( \$Sequence[-1] -eq 0 ) { return "terminating" }
If ( \$Sequence[-1] -eq 1 ) { return "terminating" }
If ( \$Sequence[1] -eq \$K ) { return "perfect"     }
If ( \$Sequence[2] -eq \$K ) { return "amicable"    }
If ( \$Sequence[3..(\$Sequence.Count-1)] -contains \$K ) { return "sociable" }
If ( \$Sequence[-1] -eq \$Sequence[-2] ) { return "aspiring" }
If ( \$Sequence.Count -gt ( \$Sequence | Select -Unique ).Count ) { return "cyclic" }
return "non-terminating and non-repeating through N = \$(\$Sequence.Count)"
}

(1..10).ForEach{ [string]\$_ + " is " + ( Classify-AlliquotSequence -Sequence ( Get-AliquotSequence -K \$_ -N 16 ) ) }

( 11, 12, 28, 496, 220, 1184, 12496, 1264460, 790, 909, 562, 1064, 1488 ).ForEach{ [string]\$_ + " is " + ( Classify-AlliquotSequence -Sequence ( Get-AliquotSequence -K \$_ -N 16 ) ) }
```
Output:
```1 is terminating
2 is terminating
3 is terminating
4 is terminating
5 is terminating
6 is perfect
7 is terminating
8 is terminating
9 is terminating
10 is terminating
11 is terminating
12 is terminating
28 is perfect
496 is perfect
220 is amicable
1184 is amicable
12496 is sociable
1264460 is sociable
790 is aspiring
909 is aspiring
562 is cyclic
1064 is cyclic
1488 is non-terminating and non-repeating through N = 16```

### Version 3.0

```function Get-Aliquot
{
[CmdletBinding()]
[OutputType([PScustomObject])]
Param
(
[Parameter(Mandatory=\$true,
ValueFromPipeline=\$true,
ValueFromPipelineByPropertyName=\$true)]
[int]
\$InputObject
)

Begin
{
function Get-NextAliquot ([int]\$X)
{
if (\$X -gt 1)
{
\$nextAliquot = 1

if (\$X -gt 2)
{
\$xSquareRoot = [Math]::Sqrt(\$X)

2..\$xSquareRoot | Where-Object {\$X % \$_ -eq 0} | ForEach-Object {\$nextAliquot += \$_ + \$x / \$_}

if (\$xSquareRoot % 1 -eq 0) {\$nextAliquot -= \$xSquareRoot}
}

\$nextAliquot
}
}

function Get-AliquotSequence ([int]\$K, [int]\$N)
{
\$X = \$K
\$X
\$i = 1

while (\$X -and \$i -lt \$N)
{
\$i++
\$next = Get-NextAliquot \$X

if (\$next)
{
if (\$X -eq \$next)
{
\$i..\$N  | ForEach-Object {\$X}
\$i = \$N
}
else
{
\$X = \$next
\$X
}
}
else
{
\$i = \$N
}
}
}

function Classify-AlliquotSequence ([int[]]\$Sequence)
{
\$k = \$Sequence[0]

if (\$Sequence[-1] -eq 0)                                     {return "terminating"}
if (\$Sequence[-1] -eq 1)                                     {return "terminating"}
if (\$Sequence[1]  -eq \$k)                                    {return "perfect"    }
if (\$Sequence[2]  -eq \$k)                                    {return "amicable"   }
if (\$Sequence[3..(\$Sequence.Count-1)] -contains \$k)          {return "sociable"   }
if (\$Sequence[-1] -eq \$Sequence[-2] )                        {return "aspiring"   }
if (\$Sequence.Count -gt (\$Sequence | Select -Unique).Count ) {return "cyclic"     }

return "non-terminating and non-repeating through N = \$(\$Sequence.Count)"
}
}
Process
{
\$_ | ForEach-Object {
[PSCustomObject]@{
Number         = \$_
Classification = (Classify-AlliquotSequence -Sequence (Get-AliquotSequence -K \$_ -N 16))
}
}
}
}
```
```\$oneToTen = 1..10 | Get-Aliquot
\$selected = 11, 12, 28, 496, 220, 1184, 12496, 1264460, 790, 909, 562, 1064, 1488 | Get-Aliquot

\$numbers = \$oneToTen, \$selected
\$numbers
```
Output:
``` Number Classification
------ --------------
1 terminating
2 terminating
3 terminating
4 terminating
5 terminating
6 perfect
7 terminating
8 terminating
9 terminating
10 terminating
11 terminating
12 terminating
28 perfect
496 perfect
220 amicable
1184 amicable
12496 sociable
1264460 sociable
790 aspiring
909 aspiring
562 cyclic
1064 cyclic
1488 non-terminating and non-repeating through N = 16
```

## Prolog

Translation of: C++
Works with: SWI Prolog
```% See https://en.wikipedia.org/wiki/Divisor_function
divisor_sum(N, Total):-
divisor_sum_prime(N, 2, 2, Total1, 1, N1),
divisor_sum(N1, 3, Total, Total1).

divisor_sum(1, _, Total, Total):-
!.
divisor_sum(N, Prime, Total, Running_total):-
Prime * Prime =< N,
!,
divisor_sum_prime(N, Prime, Prime, P, 1, M),
Next_prime is Prime + 2,
Running_total1 is P * Running_total,
divisor_sum(M, Next_prime, Total, Running_total1).
divisor_sum(N, _, Total, Running_total):-
Total is (N + 1) * Running_total.

divisor_sum_prime(N, Prime, Power, Total, Running_total, M):-
0 is N mod Prime,
!,
Running_total1 is Running_total + Power,
Power1 is Power * Prime,
N1 is N // Prime,
divisor_sum_prime(N1, Prime, Power1, Total, Running_total1, M).
divisor_sum_prime(N, _, _, Total, Total, N).

% See https://en.wikipedia.org/wiki/Aliquot_sequence
aliquot_sequence(N, Limit, Sequence, Class):-
aliquot_sequence(N, Limit, [N], Sequence, Class).

aliquot_sequence(_, 0, _, [], 'non-terminating'):-!.
aliquot_sequence(_, _, [0|_], [0], terminating):-!.
aliquot_sequence(N, _, [N, N|_], [], perfect):-!.
aliquot_sequence(N, _, [N, _, N|_], [N], amicable):-!.
aliquot_sequence(N, _, [N|S], [N], sociable):-
memberchk(N, S),
!.
aliquot_sequence(_, _, [Term, Term|_], [], aspiring):-!.
aliquot_sequence(_, _, [Term|S], [Term], cyclic):-
memberchk(Term, S),
!.
aliquot_sequence(N, Limit, [Term|S], [Term|Rest], Class):-
divisor_sum(Term, Sum),
Term1 is Sum - Term,
L1 is Limit - 1,
aliquot_sequence(N, L1, [Term1, Term|S], Rest, Class).

write_aliquot_sequence(N, Sequence, Class):-
writef('%w: %w, sequence:', [N, Class]),
write_aliquot_sequence(Sequence).

write_aliquot_sequence([]):-
nl,
!.
write_aliquot_sequence([Term|Rest]):-
writef(' %w', [Term]),
write_aliquot_sequence(Rest).

main:-
between(1, 10, N),
aliquot_sequence(N, 16, Sequence, Class),
write_aliquot_sequence(N, Sequence, Class),
fail.
main:-
member(N, [11, 12, 28, 496, 220, 1184, 12496, 1264460, 790, 909, 562, 1064, 1488]),
aliquot_sequence(N, 16, Sequence, Class),
write_aliquot_sequence(N, Sequence, Class),
fail.
main.
```
Output:
```1: terminating, sequence: 1 0
2: terminating, sequence: 2 1 0
3: terminating, sequence: 3 1 0
4: terminating, sequence: 4 3 1 0
5: terminating, sequence: 5 1 0
6: perfect, sequence: 6
7: terminating, sequence: 7 1 0
8: terminating, sequence: 8 7 1 0
9: terminating, sequence: 9 4 3 1 0
10: terminating, sequence: 10 8 7 1 0
11: terminating, sequence: 11 1 0
12: terminating, sequence: 12 16 15 9 4 3 1 0
28: perfect, sequence: 28
496: perfect, sequence: 496
220: amicable, sequence: 220 284 220
1184: amicable, sequence: 1184 1210 1184
12496: sociable, sequence: 12496 14288 15472 14536 14264 12496
1264460: sociable, sequence: 1264460 1547860 1727636 1305184 1264460
790: aspiring, sequence: 790 650 652 496
909: aspiring, sequence: 909 417 143 25 6
562: cyclic, sequence: 562 284 220 284
1064: cyclic, sequence: 1064 1336 1184 1210 1184
1488: non-terminating, sequence: 1488 2480 3472 4464 8432 9424 10416 21328 22320 55056 95728 96720 236592 459792 881392 882384
```

## Python

Importing Proper divisors from prime factors:

```from proper_divisors import proper_divs
from functools import lru_cache

@lru_cache()
def pdsum(n):
return sum(proper_divs(n))

def aliquot(n, maxlen=16, maxterm=2**47):
if n == 0:
return 'terminating', [0]
s, slen, new = [n], 1, n
while slen <= maxlen and new < maxterm:
new = pdsum(s[-1])
if new in s:
if s[0] == new:
if slen == 1:
return 'perfect', s
elif slen == 2:
return 'amicable', s
else:
return 'sociable of length %i' % slen, s
elif s[-1] == new:
return 'aspiring', s
else:
return 'cyclic back to %i' % new, s
elif new == 0:
return 'terminating', s + [0]
else:
s.append(new)
slen += 1
else:
return 'non-terminating', s

if __name__ == '__main__':
for n in range(1, 11):
print('%s: %r' % aliquot(n))
print()
for n in [11, 12, 28, 496, 220, 1184,  12496, 1264460, 790, 909, 562, 1064, 1488, 15355717786080]:
print('%s: %r' % aliquot(n))
```
Output:
```terminating: [1, 0]
terminating: [2, 1, 0]
terminating: [3, 1, 0]
terminating: [4, 3, 1, 0]
terminating: [5, 1, 0]
perfect: [6]
terminating: [7, 1, 0]
terminating: [8, 7, 1, 0]
terminating: [9, 4, 3, 1, 0]
terminating: [10, 8, 7, 1, 0]

terminating: [11, 1, 0]
terminating: [12, 16, 15, 9, 4, 3, 1, 0]
perfect: [28]
perfect: [496]
amicable: [220, 284]
amicable: [1184, 1210]
sociable of length 5: [12496, 14288, 15472, 14536, 14264]
sociable of length 4: [1264460, 1547860, 1727636, 1305184]
aspiring: [790, 650, 652, 496]
aspiring: [909, 417, 143, 25, 6]
cyclic back to 284: [562, 284, 220]
cyclic back to 1184: [1064, 1336, 1184, 1210]
non-terminating: [1488, 2480, 3472, 4464, 8432, 9424, 10416, 21328, 22320, 55056, 95728, 96720, 236592, 459792, 881392, 882384, 1474608]
non-terminating: [15355717786080, 44534663601120, 144940087464480]```

## QBasic

Works with: QBasic version 1.1
Translation of: Liberty BASIC
```DECLARE FUNCTION PDtotal! (n!)
DECLARE SUB PrintAliquotClassifier (K!)
CLS
CONST limite = 10000000

DIM nums(22)
DATA 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 28, 496
DATA 220, 1184, 12496, 790, 909, 562, 1064, 1488

FOR n = 1 TO UBOUND(nums)
PRINT "Number"; nums(n); " :";
PrintAliquotClassifier (nums(n))
NEXT n

PRINT "Program normal end."
END

FUNCTION PDtotal (n)
total = 0
FOR y = 2 TO n
IF (n MOD y) = 0 THEN total = total + (n / y)
NEXT y
PDtotal = total
END FUNCTION

SUB PrintAliquotClassifier (K)
longit = 52: n = K: clase = 0: priorn = 0: inc = 0
DIM Aseq(longit)

FOR element = 2 TO longit
Aseq(element) = PDtotal(n)
PRINT Aseq(element); " ";
COLOR 3
SELECT CASE Aseq(element)
CASE 0
PRINT " Terminating": clase = 1: EXIT FOR
CASE K AND element = 2
PRINT " Perfect": clase = 2: EXIT FOR
CASE K AND element = 3
PRINT " Amicable": clase = 3: EXIT FOR
CASE K AND element > 3
PRINT " Sociable": clase = 4: EXIT FOR
CASE Aseq(element) <> K AND Aseq(element - 1) = Aseq(element)
PRINT " Aspiring": clase = 5: EXIT FOR
CASE Aseq(element) <> K AND Aseq(element - 2) = Aseq(element)
PRINT " Cyclic": clase = 6: EXIT FOR
END SELECT
COLOR 7
n = Aseq(element)
IF n > priorn THEN priorn = n: inc = inc + 1 ELSE inc = 0: priorn = 0
IF inc = 11 OR n > limite THEN EXIT FOR
NEXT element
IF clase = 0 THEN COLOR 12: PRINT " non-terminating"
COLOR 7
END SUB
```
Output:
```Number 1 : 0  Terminating
Number 2 : 1  0  Terminating
Number 3 : 1  0  Terminating
Number 4 : 3  1  0  Terminating
Number 5 : 1  0  Terminating
Number 6 : 6  Perfect
Number 7 : 1  0  Terminating
Number 8 : 7  1  0  Terminating
Number 9 : 4  3  1  0  Terminating
Number 10 : 8  7  1  0  Terminating
Number 11 : 1  0  Terminating
Number 12 : 16  15  9  4  3  1  0  Terminating
Number 28 : 28  Perfect
Number 496 : 496  Perfect
Number 220 : 284  220  Amicable
Number 1184 : 1210  1184  Amicable
Number 12496 : 14288  15472  14536  14264  12496  Sociable
Number 790 : 650  652  496  496  496  496  496  496  496  496  496  496  496  496  496  496  496  496  496  496  496  496  496  496  496  496  496  496  496  496  496  496  496  496  496  496  496  496  496  496  496  496  496  496  496  496  496  496  496  496  496  non-terminating
Number 909 : 417  143  25  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  non-terminating
Number 562 : 284  220  284  220  284  220  284  220  284  220  284  220  284  220  284  220  284  220  284  220  284  220  284  220  284  220  284  220  284  220  284  220  284  220  284  220  284  220  284  220  284  220  284  220  284  220  284  220  284  220  284  non-terminating
Number 1064 : 1336  1184  1210  1184  1210  1184  1210  1184  1210  1184  1210  1184  1210  1184  1210  1184  1210  1184  1210  1184  1210  1184  1210  1184  1210  1184  1210  1184  1210  1184  1210  1184  1210  1184  1210  1184  1210  1184  1210  1184  1210  1184  1210  1184  1210  1184  1210  1184  1210  1184  1210  non-terminating
Number 1488 : 2480  3472  4464  8432  9424  10416  21328  22320  55056  95728  96720  non-terminating
Program normal end.```

## Racket

fold-divisors is used from Proper_divisors#Racket, but for the truly big numbers, we use divisors from math/number-theory.

```#lang racket
(require "proper-divisors.rkt" math/number-theory)

(define SCOPE 20000)

(define P
(let ((P-v (vector)))
(λ (n)
(cond
[(> n SCOPE)
(apply + (drop-right (divisors n) 1))]
[else
(set! P-v (fold-divisors P-v n 0 +))
(vector-ref P-v n)]))))

;; initialise P-v
(void (P SCOPE))

(define (aliquot-sequence-class K)
;; note that seq is reversed as a list, since we're consing
(define (inr-asc seq)
(match seq
[(list 0 _ ...)
(values "terminating" seq)]
[(list (== K) (== K) _ ...)
(values "perfect" seq)]
[(list n n _ ...)
(values (format "aspiring to ~a" n) seq)]
[(list (== K) ami (== K) _ ...)
(values (format "amicable with ~a" ami) seq)]
[(list (== K) cycle ... (== K))
(values (format "sociable length ~a" (add1 (length cycle))) seq)]
[(list n cycle ... n _ ...)
(values (format "cyclic on ~a length ~a" n (add1 (length cycle))) seq)]
[(list X _ ...)
#:when (> X 140737488355328)
(values "non-terminating big number" seq)]
[(list seq ...)
#:when (> (length seq) 16)
(values "non-terminating long sequence" seq)]
[(list seq1 seq ...) (inr-asc (list* (P seq1) seq1 seq))]))
(inr-asc (list K)))

(define (report-aliquot-sequence-class n)
(define-values (c s) (aliquot-sequence-class n))
(printf "~a:\t~a\t~a~%" n c (reverse s)))

(for ((i (in-range 1 10)))
(report-aliquot-sequence-class i))
(newline)

(for ((i (in-list '(11 12 28 496 220 1184 12496 1264460 790 909 562 1064 1488 15355717786080))))
(report-aliquot-sequence-class i))
```
Output:
```1:	terminating	(1 0)
2:	terminating	(2 1 0)
3:	terminating	(3 1 0)
4:	terminating	(4 3 1 0)
5:	terminating	(5 1 0)
6:	perfect	(6 6)
7:	terminating	(7 1 0)
8:	terminating	(8 7 1 0)
9:	terminating	(9 4 3 1 0)

11:	terminating	(11 1 0)
12:	terminating	(12 16 15 9 4 3 1 0)
28:	perfect	(28 28)
496:	perfect	(496 496)
220:	amicable with 284	(220 284 220)
1184:	amicable with 1210	(1184 1210 1184)
12496:	sociable length 5	(12496 14288 15472 14536 14264 12496)
1264460:	sociable length 4	(1264460 1547860 1727636 1305184 1264460)
790:	aspiring to 496	(790 650 652 496 496)
909:	aspiring to 6	(909 417 143 25 6 6)
562:	cyclic on 284 length 2	(562 284 220 284)
1064:	cyclic on 1184 length 2	(1064 1336 1184 1210 1184)
1488:	non-terminating long sequence	(1488 2480 3472 4464 8432 9424 10416 21328 22320 55056 95728 96720 236592 459792 881392 882384 1474608)
15355717786080:	non-terminating big number	(15355717786080 44534663601120 144940087464480)
```

## Raku

(formerly Perl 6)

Works with: rakudo version 2018.10
```sub propdivsum (\x) {
my @l = x > 1;
(2 .. x.sqrt.floor).map: -> \d {
unless x % d { my \y = x div d; y == d ?? @l.push: d !! @l.append: d,y }
}
sum @l;
}

multi quality (0,1)  { 'perfect ' }
multi quality (0,2)  { 'amicable' }
multi quality (0,\$n) { "sociable-\$n" }
multi quality (\$,1)  { 'aspiring' }
multi quality (\$,\$n) { "cyclic-\$n" }

sub aliquotidian (\$x) {
my %seen;
my @seq = \$x, &propdivsum ... *;
for 0..16 -> \$to {
my \$this = @seq[\$to] or return "\$x\tterminating\t[@seq[^\$to]]";
last if \$this > 140737488355328;
if %seen{\$this}:exists {
my \$from = %seen{\$this};
return "\$x\t&quality(\$from, \$to-\$from)\t[@seq[^\$to]]";
}
%seen{\$this} = \$to;
}
"\$x non-terminating\t[{@seq}]";
}

aliquotidian(\$_).say for flat
1..10,
11, 12, 28, 496, 220, 1184, 12496, 1264460,
790, 909, 562, 1064, 1488,
15355717786080;
```
Output:
```1	terminating	[1]
2	terminating	[2 1]
3	terminating	[3 1]
4	terminating	[4 3 1]
5	terminating	[5 1]
6	perfect 	[6]
7	terminating	[7 1]
8	terminating	[8 7 1]
9	terminating	[9 4 3 1]
10	terminating	[10 8 7 1]
11	terminating	[11 1]
12	terminating	[12 16 15 9 4 3 1]
28	perfect 	[28]
496	perfect 	[496]
220	amicable	[220 284]
1184	amicable	[1184 1210]
12496	sociable-5	[12496 14288 15472 14536 14264]
1264460	sociable-4	[1264460 1547860 1727636 1305184]
790	aspiring	[790 650 652 496]
909	aspiring	[909 417 143 25 6]
562	cyclic-2	[562 284 220]
1064	cyclic-2	[1064 1336 1184 1210]
1488 non-terminating	[1488 2480 3472 4464 8432 9424 10416 21328 22320 55056 95728 96720 236592 459792 881392 882384 1474608 ...]
15355717786080 non-terminating	[15355717786080 44534663601120 144940087464480 ...]
```

## REXX

Programming notes:

This REXX version uses memoization.

Two versions of   classifications   of   non-terminating   are used:

•   (lowercase)   non-terminating           ───   due to more than sixteen cyclic numbers
•   (uppercase)   NON-TERMINATING     ───   due to a cyclic number that is larger than   247

Both of the above limitations are imposed by this Rosetta Code task's restriction requirements:   For the purposes of this task, ···.

```/*REXX program classifies various positive integers For types of aliquot sequences.*/
Parse Arg low high LL                       /*obtain optional arguments from the CL*/
high=word(high low 10,1)
low=word(low 1,1)                           /*obtain the  LOW  and  HIGH  (range). */
If LL='' Then
LL=11 12 28 496 220 1184 12496 1264460 790 909 562 1064 1488 15355717786080
Numeric Digits 20                           /*be able To compute the number:  BIG  */
big=2**47
NTlimit=16+1                                /*limit for a non-terminating sequence */
Numeric Digits max(9,length(big))           /*be able To handle big numbers For // */
digs=digits()                               /*used For align numbers For the output*/
dsum.=.
dsum.0=0
dsum.1=0                                    /* dsum. are the proper divisor sums.  */
Say 'Numbers from ' low ' ---> ' high ' (inclusive):'
Do n=low To high                            /* process specified range             */
Call classify n                           /* call subroutine To classify number. */
End
Say
Say 'First numbers for each classification:'
class.=0                                    /* [?]  ensure one number of each class*/
Do q=1 Until class.sociable\==0             /*the only one that has To be counted. */
_=translate(what)                         /*obtain the class and uppercase it.   */
class._=class._+1                         /*bump counter For this class sequence.*/
If class._==1 Then                        /*first number of this class           */
Call out q,what,dd
End
Say                                         /* [?]  process Until all classes found*/
Say 'Classifications for specific numbers:'
Do i=1 To words(LL)                         /* process a list of "special numbers" */
Call classify word(LL,i)                  /*call subroutine To classify number.  */
End
Exit                                        /*stick a fork in it,we're all done.   */
out:
Parse arg number,class,dd
dd.=''
Do di=1 By 1 While length(dd)>50
do dj=50 To 10 By -1
If substr(dd,dj,1)=' ' Then Leave
End
dd.di=left(dd,dj)
dd=substr(dd,dj+1)
End
dd.di=dd
Say right(number,digs)':' center(class,digs) dd.1||conti(1)
Do di=2 By 1 While dd.di>''
Say copies(' ',33)dd.di||conti(di)
End
Return
conti:
Parse arg this
next=this+1
If dd.next>'' Then Return '...'
Else Return ''
/*---------------------------------------------------------------------------------*/
classify:
Parse Arg a 1 aa
a=abs(a)                                  /*obtain number that's to be classified*/
If dsum.a\==. Then
Else
s=dsum(a)                               /*No,Then classify number the hard way */
dsum.a=s                                  /*define sum of the  proper divisors.  */
dd=s                                      /*define the start of integer sequence.*/
what='terminating'                        /*assume this kind of classification.  */
c.=0                                      /*clear all cyclic sequences (to zero).*/
c.s=1                                     /*set the first cyclic sequence.       */
If dd==a Then
what='perfect'                          /*check For a  "perfect"  number.      */
Else Do t=1 By 1 While s>0                /*loop Until sum isn't  0   or   > big.*/
m=s                                     /*obtain the last number in sequence.  */
If dsum.m==. Then                       /*Not defined?                         */
s=dsum(m)                             /* compute sum pro of per divisors     */
Else
s=dsum.m                              /*use the previously found integer.    */
If m==s Then
If m>=0 Then Do
what='aspiring'
Leave
End
If word(dd,2)=a Then Do
what='amicable'
Leave
End
dd=dd s                                /*append a sum To the integer sequence.*/
If s==a Then
If t>3 Then Do
what='sociable'
Leave
End
If c.s Then
If m>0 Then Do
what='cyclic'
Leave
End
c.s=1                                  /*assign another possible cyclic number*/
/* [?]  Rosetta Code task's limit: >16 */
If t>NTlimit Then Do
what='non-terminating'
Leave
End
If s>big Then Do
what='NON-TERMINATING'
Leave
End
End
If aa>0 Then                             /*  display only if  AA  is positive   */
Call out a,what,dd
Return
/*---------------------------------------------------------------------------------*/
dsum: Procedure Expose dsum.                /* compute the sum of proper divisors  */
Parse Arg x
If x<2 Then
Return 0
odd=x//2
s=1                                       /* use EVEN or ODD integers.           */
Do j=2+odd by 1+odd While j*j<x           /* divide by all the integers )        */
/* up to but excluding sqrt(x)         */
If x//j==0 Then                         /* j is a divisor, so is x%j           */
s=s+j+x%j                             /*add the two divisors To the sum.     */
End
If j*j==x Then                            /* if x is a square                    */
dsum.x=s                                  /* memoize proper divisor sum of X     */
Return s                                  /* return the proper divisor sum       */
```
output   when using the default input:
```Numbers from  1  --->  10  (inclusive):
1:   terminating   0
2:   terminating   1 0
3:   terminating   1 0
4:   terminating   3 1 0
5:   terminating   1 0
6:     perfect     6
7:   terminating   1 0
8:   terminating   7 1 0
9:   terminating   4 3 1 0
10:   terminating   8 7 1 0

First numbers for each classification:
1:   terminating   0
6:     perfect     6
25:    aspiring     6
138: non-terminating 150 222 234 312 528 960 2088 3762 5598 6570 10746 ...
13254 13830 19434 20886 21606 25098 26742 26754
220:    amicable     284 220
562:     cyclic      284 220 284
12496:    sociable     14288 15472 14536 14264 12496

Classifications for specific numbers:
11:   terminating   1 0
12:   terminating   16 15 9 4 3 1 0
28:     perfect     28
496:     perfect     496
220:    amicable     284 220
1184:    amicable     1210 1184
12496:    sociable     14288 15472 14536 14264 12496
1264460:     cyclic      1547860 1727636 1305184 1264460 1547860
790:    aspiring     650 652 496
909:    aspiring     417 143 25 6
562:     cyclic      284 220 284
1064:     cyclic      1336 1184 1210 1184
1488: non-terminating 2480 3472 4464 8432 9424 10416 21328 22320 55056 ...
95728 96720 236592 459792 881392 882384 1474608 ...
2461648 3172912 3173904
15355717786080: NON-TERMINATING 44534663601120 144940087464480

```

## Ring

```# Project : Aliquot sequence classnifications

see "Rosetta Code - aliquot sequence classnifications" + nl
while true
see "enter an integer: "
give k
k=fabs(floor(number(k)))
if k=0
exit
ok
printas(k)
end
see "program complete."

func printas(k)
length=52
aseq = list(length)
n=k
classn=0
priorn = 0
inc = 0
for element=2 to length
aseq[element]=pdtotal(n)
see aseq[element] + " " + nl
if aseq[element]=0
see " terminating" + nl
classn=1
exit
ok
if aseq[element]=k and element=2
see " perfect" + nl
classn=2
exit
ok
if aseq[element]=k and element=3
see " amicable" + nl
classn=3
exit
ok
if aseq[element]=k and element>3
see " sociable" + nl
classn=4
exit
ok
if aseq[element]!=k and aseq[element-1]=aseq[element]
see " aspiring" + nl
classn=5
exit
ok
if aseq[element]!=k and element>2 and aseq[element-2]= aseq[element]
see " cyclic" + nl
classn=6
exit
ok
n=aseq[element]
if n>priorn
priorn=n
inc=inc+1
but n<=priorn
inc=0
priorn=0
ok
if inc=11 or n>30000000
exit
ok
next
if classn=0
see " non-terminating" + nl
ok

func pdtotal(n)
pdtotal = 0
for y=2 to n
if (n % y)=0
pdtotal=pdtotal+(n/y)
ok
next
return pdtotal```

Output:

```ROSETTA CODE - Aliquot sequence classifications
Enter an integer: 1
0  terminating
Enter an integer: 2
1 0  terminating
Enter an integer: 3
1 0  terminating
Enter an integer: 4
3 1 0  terminating
Enter an integer: 5
1 0  terminating
Enter an integer: 6
6  perfect
Enter an integer: 7
1 0  terminating
Enter an integer: 8
7 1 0  terminating
Enter an integer: 9
4 3 1 0  terminating
Enter an integer: 10
8 7 1 0  terminating
Enter an integer: 11
1 0  terminating
Enter an integer: 12
16 15 9 4 3 1 0  terminating
Enter an integer: 28
28  perfect
Enter an integer: 496
496  perfect
Enter an integer: 220
284 220  amicable
Enter an integer: 1184
1210 1184  amicable
Enter an integer: 12496
14288 15472 14536 14264 12496  sociable
Enter an integer: 1264460
1547860 1727636 1305184 1264460  sociable
Enter an integer: 790
650 652 496 496  aspiring
Enter an integer: 909
417 143 25 6 6  aspiring
Enter an integer: 562
284 220 284  cyclic
Enter an integer: 1064
1336 1184 1210 1184  cyclic
Enter an integer: 1488
2480 3472 4464 8432 9424 10416 21328 22320 55056 95728 96720  non-terminating
- - - - - - - - - - - -
Enter an integer: 4004
5404 5460 13356 25956 49756 49812 83244 138964 144326 127978 67322 36250 34040 48040 60140 71572 58208 64264 60836 47692 35776 42456 69144 110376 244824 373356 594884 446170 356954 219706 118874 88720 117740 174916 174972 291844 302666 2564
38 217322 185014 92510 95626 49274 25894 17198 8602 6950 6070 4874 2440 3140  non-terminating
Enter an integer: 4344
6576 10536 15864 23856 47568 75440 112048 111152 104236 105428 79078 45842 22924 20924 15700 18586 9296 11536 14256 30756 47868 63852 94404 125900 147520 204524 153400 237200 333634 238334 121306 62438 31222 16514 9406 4706 2938 1850 1684 1
270 1034 694 350 394 200 265 59 1 0  terminating
Enter an integer: 6672
10688 10648 11312 13984 16256 16384 16383 6145 1235 445 95 25 6 6  aspiring
Enter an integer: 6420
11724 15660 34740 71184 112832 121864 106646 53326 45458 37486 18746 16198 14042 11878 5942 2974 1490 1210 1184 1210  cyclic
Enter an integer: 8128
8128  perfect
Enter an integer:
Program complete.
```

## RPL

Works with: HP version 49
```≪ DIVIS DUP SIZE
IF DUP 2 ≤ THEN 1 - NIP ELSE 1 SWAP 1 - SUB ∑LIST END
R→I
≫ ≫ ‘∑PFAC’ STO

≪ 16 2 47 ^ → smax vmax
≪ { } OVER +
DO
SWAP ∑PFAC SWAP OVER +
UNTIL OVER NOT LASTARG vmax ≥ OR OVER SIZE smax ≥ OR
END NIP
≫ ≫ ‘ALIQT’ STO

≪ ALIQT DUP HEAD → seq k
≪ CASE
seq 0 POS THEN "terminating" END
seq 2 GET k == THEN "perfect" END
seq 3 GET k == THEN "amicable" END
seq 4 OVER SIZE SUB k POS THEN "sociable" END
seq ΔLIST 0 POS THEN "aspiring" END
seq SORT ΔLIST 0 POS THEN "cyclic" END
"non-terminating"
END
≫ ≫ ‘ALIQLASS’ STO
```
```≪ n ALIQLASS ≫ 'n' 1 10 1 SEQ
{11 12 28 496 220 1184 12496 1264460 790 909 562 1064 1488 15355717786080} 1 ≪ ALIQLASS ≫ DOLIST

```
Output:
```2: { "terminating" "terminating" "terminating" "terminating" "terminating" "terminating" "perfect" "terminating" "terminating" "terminating" }
1: { "terminating" "terminating" "perfect" "perfect" "amicable" "amicable" "sociable" "sociable" "aspiring" "aspiring" "cyclic" "cyclic" "non-terminating" "non-terminating" }
```

## Ruby

With proper_divisors#Ruby in place:

Translation of: Python
```def aliquot(n, maxlen=16, maxterm=2**47)
return "terminating", [0] if n == 0
s = []
while (s << n).size <= maxlen and n < maxterm
n = n.proper_divisors.inject(0, :+)
if s.include?(n)
case n
when s[0]
case s.size
when 1   then   return "perfect", s
when 2   then   return "amicable", s
else            return "sociable of length #{s.size}", s
end
when s[-1] then   return "aspiring", s
else              return "cyclic back to #{n}", s
end
elsif n == 0 then   return "terminating", s << 0
end
end
return "non-terminating", s
end

for n in 1..10
puts "%20s: %p" % aliquot(n)
end
puts
for n in [11, 12, 28, 496, 220, 1184,  12496, 1264460, 790, 909, 562, 1064, 1488, 15355717786080]
puts "%20s: %p" % aliquot(n)
end
```
Output:
```         terminating: [1, 0]
terminating: [2, 1, 0]
terminating: [3, 1, 0]
terminating: [4, 3, 1, 0]
terminating: [5, 1, 0]
perfect: [6]
terminating: [7, 1, 0]
terminating: [8, 7, 1, 0]
terminating: [9, 4, 3, 1, 0]
terminating: [10, 8, 7, 1, 0]

terminating: [11, 1, 0]
terminating: [12, 16, 15, 9, 4, 3, 1, 0]
perfect: [28]
perfect: [496]
amicable: [220, 284]
amicable: [1184, 1210]
sociable of length 5: [12496, 14288, 15472, 14536, 14264]
sociable of length 4: [1264460, 1547860, 1727636, 1305184]
aspiring: [790, 650, 652, 496]
aspiring: [909, 417, 143, 25, 6]
cyclic back to 284: [562, 284, 220]
cyclic back to 1184: [1064, 1336, 1184, 1210]
non-terminating: [1488, 2480, 3472, 4464, 8432, 9424, 10416, 21328, 22320, 55056, 95728, 96720, 236592, 459792, 881392, 882384, 1474608]
non-terminating: [15355717786080, 44534663601120, 144940087464480]
```

## Rust

```#[derive(Debug)]
enum AliquotType { Terminating, Perfect, Amicable, Sociable, Aspiring, Cyclic, NonTerminating }

fn classify_aliquot(num: i64) -> (AliquotType, Vec<i64>) {
let limit = 1i64 << 47; //140737488355328
let mut terms = Some(num).into_iter().collect::<Vec<_>>();
for i in 0..16 {
let n = terms[i];
let divsum = (1..(n + 1) / 2 + 1).filter(|&x| n % x == 0 && n != x).fold(0, |sum, x| sum + x);
let classification = if divsum == 0 {
Some(AliquotType::Terminating)
}
else if divsum > limit {
Some(AliquotType::NonTerminating)
}
else if let Some(prev_idx) = terms.iter().position(|&x| x == divsum) {
let cycle_len = terms.len() - prev_idx;
Some(if prev_idx == 0 {
match cycle_len {
1 => AliquotType::Perfect,
2 => AliquotType::Amicable,
_ => AliquotType::Sociable
}
}
else {
if cycle_len == 1 {AliquotType::Aspiring} else {AliquotType::Cyclic}
})
}
else {
None
};
terms.push(divsum);
if let Some(result) = classification {
return (result, terms);
}
}
(AliquotType::NonTerminating, terms)
}

fn main() {
let nums = [1i64, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 28, 496, 220, 1184, 12496, 1264460, 790, 909, 562, 1064, 1488/*, 15355717786080*/];
for num in &nums {
println!("{} {:?}", num, classify_aliquot(*num));
}
}
```
Output:
```1 (Terminating, [1, 0])
2 (Terminating, [2, 1, 0])
3 (Terminating, [3, 1, 0])
4 (Terminating, [4, 3, 1, 0])
5 (Terminating, [5, 1, 0])
6 (Perfect, [6, 6])
7 (Terminating, [7, 1, 0])
8 (Terminating, [8, 7, 1, 0])
9 (Terminating, [9, 4, 3, 1, 0])
10 (Terminating, [10, 8, 7, 1, 0])
11 (Terminating, [11, 1, 0])
12 (Terminating, [12, 16, 15, 9, 4, 3, 1, 0])
28 (Perfect, [28, 28])
496 (Perfect, [496, 496])
220 (Amicable, [220, 284, 220])
1184 (Amicable, [1184, 1210, 1184])
12496 (Sociable, [12496, 14288, 15472, 14536, 14264, 12496])
1264460 (Sociable, [1264460, 1547860, 1727636, 1305184, 1264460])
790 (Aspiring, [790, 650, 652, 496, 496])
909 (Aspiring, [909, 417, 143, 25, 6, 6])
562 (Cyclic, [562, 284, 220, 284])
1064 (Cyclic, [1064, 1336, 1184, 1210, 1184])
1488 (NonTerminating, [1488, 2480, 3472, 4464, 8432, 9424, 10416, 21328, 22320, 55056, 95728, 96720, 236592, 459792, 881392, 882384, 1474608])
```

## Scala

Put proper_divisors#Scala the full /Proper divisors for big (long) numbers/ section to the beginning:

```def createAliquotSeq(n: Long, step: Int, list: List[Long]): (String, List[Long]) = {
val sum = properDivisors(n).sum
if (sum == 0) ("terminate", list ::: List(sum))
else if (step >= 16 || sum > 140737488355328L) ("non-term", list)
else {
list.indexOf(sum) match {
case -1 => createAliquotSeq(sum, step + 1, list ::: List(sum))
case 0 => if (step == 0) ("perfect", list ::: List(sum))
else if (step == 1) ("amicable", list ::: List(sum))
else ("sociable-" + (step + 1), list ::: List(sum))
case index => if (step == index) ("aspiring", list ::: List(sum))
else ("cyclic-" + (step - index + 1), list ::: List(sum))
}
}
}
val numbers = List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 28, 496, 220, 1184,
12496, 1264460, 790, 909, 562, 1064, 1488, 15355717786080L)
val result = numbers.map(i => createAliquotSeq(i, 0, List(i)))

result foreach { v => println(f"\${v._2.head}%14d \${v._1}%10s [\${v._2 mkString " "}]" ) }
```
Output:
```             1  terminate [1 0]
2  terminate [2 1 0]
3  terminate [3 1 0]
4  terminate [4 3 1 0]
5  terminate [5 1 0]
6    perfect [6 6]
7  terminate [7 1 0]
8  terminate [8 7 1 0]
9  terminate [9 4 3 1 0]
10  terminate [10 8 7 1 0]
11  terminate [11 1 0]
12  terminate [12 16 15 9 4 3 1 0]
28    perfect [28 28]
496    perfect [496 496]
220   amicable [220 284 220]
1184   amicable [1184 1210 1184]
12496 sociable-5 [12496 14288 15472 14536 14264 12496]
1264460 sociable-4 [1264460 1547860 1727636 1305184 1264460]
790   aspiring [790 650 652 496 496]
909   aspiring [909 417 143 25 6 6]
562   cyclic-2 [562 284 220 284]
1064   cyclic-2 [1064 1336 1184 1210 1184]
1488   non-term [1488 2480 3472 4464 8432 9424 10416 21328 22320 55056 95728 96720 236592 459792 881392 882384 1474608]
15355717786080   non-term [15355717786080 44534663601120]```

## Swift

```extension BinaryInteger {
@inlinable
public func factors(sorted: Bool = true) -> [Self] {
let maxN = Self(Double(self).squareRoot())
var res = Set<Self>()

for factor in stride(from: 1, through: maxN, by: 1) where self % factor == 0 {
res.insert(factor)
res.insert(self / factor)
}

return sorted ? res.sorted() : Array(res)
}
}

struct SeqClass: CustomStringConvertible {
var seq: [Int]
var desc: String

var description: String {
return "\(desc):    \(seq)"
}
}

func classifySequence(k: Int, threshold: Int = 1 << 47) -> SeqClass {
var last = k
var seq = [k]

while true {
last = last.factors().dropLast().reduce(0, +)
seq.append(last)

let n = seq.count

if last == 0 {
return SeqClass(seq: seq, desc: "Terminating")
} else if n == 2 && last == k {
return SeqClass(seq: seq, desc: "Perfect")
} else if n == 3 && last == k {
return SeqClass(seq: seq, desc: "Amicable")
} else if n >= 4 && last == k {
return SeqClass(seq: seq, desc: "Sociable[\(n - 1)]")
} else if last == seq[n - 2] {
return SeqClass(seq: seq, desc: "Aspiring")
} else if seq.dropFirst().dropLast(2).contains(last) {
return SeqClass(seq: seq, desc: "Cyclic[\(n - 1 - seq.firstIndex(of: last)!)]")
} else if n == 16 || last > threshold {
return SeqClass(seq: seq, desc: "Non-terminating")
}
}

fatalError()
}

for i in 1...10 {
print("\(i): \(classifySequence(k: i))")
}

print()

for i in [11, 12, 28, 496, 220, 1184, 12496, 1264460, 790, 909, 562, 1064, 1488] {
print("\(i): \(classifySequence(k: i))")
}

print()

print("\(15355717786080): \(classifySequence(k: 15355717786080))")
```
Output:
```1: Terminating:    [1, 0]
2: Terminating:    [2, 1, 0]
3: Terminating:    [3, 1, 0]
4: Terminating:    [4, 3, 1, 0]
5: Terminating:    [5, 1, 0]
6: Perfect:    [6, 6]
7: Terminating:    [7, 1, 0]
8: Terminating:    [8, 7, 1, 0]
9: Terminating:    [9, 4, 3, 1, 0]
10: Terminating:    [10, 8, 7, 1, 0]

11: Terminating:    [11, 1, 0]
12: Terminating:    [12, 16, 15, 9, 4, 3, 1, 0]
28: Perfect:    [28, 28]
496: Perfect:    [496, 496]
220: Amicable:    [220, 284, 220]
1184: Amicable:    [1184, 1210, 1184]
12496: Sociable[5]:    [12496, 14288, 15472, 14536, 14264, 12496]
1264460: Sociable[4]:    [1264460, 1547860, 1727636, 1305184, 1264460]
790: Aspiring:    [790, 650, 652, 496, 496]
909: Aspiring:    [909, 417, 143, 25, 6, 6]
562: Cyclic[2]:    [562, 284, 220, 284]
1064: Cyclic[2]:    [1064, 1336, 1184, 1210, 1184]
1488: Non-terminating:    [1488, 2480, 3472, 4464, 8432, 9424, 10416, 21328, 22320, 55056, 95728, 96720, 236592, 459792, 881392, 882384]

15355717786080: Non-terminating:    [15355717786080, 44534663601120, 144940087464480]```

## Tcl

This solution creates an iterator from a coroutine to generate aliquot sequences. al_classify uses a "RESULT" exception to achieve some unusual control flow.

```proc ProperDivisors {n} {
if {\$n == 1} {return 0}
set divs 1
set sum 1
for {set i 2} {\$i*\$i <= \$n} {incr i} {
if {! (\$n % \$i)} {
lappend divs \$i
incr sum \$i
if {\$i*\$i<\$n} {
lappend divs [set d [expr {\$n / \$i}]]
incr sum \$d
}
}
}
list \$sum \$divs
}

proc al_iter {n} {
yield [info coroutine]
while {\$n} {
yield \$n
lassign [ProperDivisors \$n] n
}
yield 0
return -code break
}

proc al_classify {n} {
coroutine iter al_iter \$n
set items {}
try {
set type "non-terminating"
while {[llength \$items] < 16} {
set i [iter]
if {\$i == 0} {
set type "terminating"
}
set ix [lsearch -exact \$items \$i]
set items [linsert \$items 0 \$i]
switch \$ix {
-1 { continue }
0 { throw RESULT "perfect" }
1 { throw RESULT "amicable" }
default { throw RESULT "sociable" }
}
}
} trap {RESULT} {type} {
rename iter {}
set map {
perfect aspiring
amicable cyclic
sociable cyclic
}
if {\$ix != [llength \$items]-2} {
set type [dict get \$map \$type]
}
}
list \$type [lreverse \$items]
}

for {set i 1} {\$i <= 10} {incr i} {
puts [format "%8d -> %-16s : %s" \$i {*}[al_classify \$i]]
}

foreach i {11 12 28 496 220 1184 12496 1264460 790 909 562 1064 1488 } {
puts [format "%8d -> %-16s : %s" \$i {*}[al_classify \$i]]
}

;# stretch goal .. let's time it:
set i 15355717786080
puts [time {
puts [format "%8d -> %-16s : %s" \$i {*}[al_classify \$i]]
}]
```
Output:
```       1 -> terminating      : 1 0
2 -> terminating      : 2 1 0
3 -> terminating      : 3 1 0
4 -> terminating      : 4 3 1 0
5 -> terminating      : 5 1 0
6 -> perfect          : 6 6
7 -> terminating      : 7 1 0
8 -> terminating      : 8 7 1 0
9 -> terminating      : 9 4 3 1 0
10 -> terminating      : 10 8 7 1 0
11 -> terminating      : 11 1 0
12 -> terminating      : 12 16 15 9 4 3 1 0
28 -> perfect          : 28 28
496 -> perfect          : 496 496
220 -> amicable         : 220 284 220
1184 -> amicable         : 1184 1210 1184
12496 -> sociable         : 12496 14288 15472 14536 14264 12496
1264460 -> sociable         : 1264460 1547860 1727636 1305184 1264460
790 -> aspiring         : 790 650 652 496 496
909 -> aspiring         : 909 417 143 25 6 6
562 -> cyclic           : 562 284 220 284
1064 -> cyclic           : 1064 1336 1184 1210 1184
1488 -> non-terminating  : 1488 2480 3472 4464 8432 9424 10416 21328 22320 55056 95728 96720 236592 459792 881392 882384

15355717786080 -> non-terminating  : 15355717786080 44534663601120 144940087464480 471714103310688 1130798979186912 2688948041357088 6050151708497568 13613157922639968 35513546724070632 74727605255142168 162658586225561832 353930992506879768 642678347124409032 1125102611548462968 1977286128289819992 3415126495450394808
556214046 microseconds per iteration
```

The large number finished (notice native bignums), but it took over 500 seconds ...

## VBA

```Option Explicit

Private Type Aliquot
Sequence() As Double
Classification As String
End Type

Sub Main()
Dim result As Aliquot, i As Long, j As Double, temp As String
'display the classification and sequences of the numbers one to ten inclusive
For j = 1 To 10
result = Aliq(j)
temp = vbNullString
For i = 0 To UBound(result.Sequence)
temp = temp & result.Sequence(i) & ", "
Next i
Debug.Print "Aliquot seq of " & j & " : " & result.Classification & "   " & Left(temp, Len(temp) - 2)
Next j
'show the classification and sequences of the following integers, in order:
Dim a
'15 355 717 786 080 : impossible in VBA ==> out of memory
a = Array(11, 12, 28, 496, 220, 1184, 12496, 1264460, 790, 909, 562, 1064, 1488)
For j = LBound(a) To UBound(a)
result = Aliq(CDbl(a(j)))
temp = vbNullString
For i = 0 To UBound(result.Sequence)
temp = temp & result.Sequence(i) & ", "
Next i
Debug.Print "Aliquot seq of " & a(j) & " : " & result.Classification & "   " & Left(temp, Len(temp) - 2)
Next
End Sub

Private Function Aliq(Nb As Double) As Aliquot
Dim s() As Double, i As Long, temp, j As Long, cpt As Long
temp = Array("non-terminating", "Terminate", "Perfect", "Amicable", "Sociable", "Aspiring", "Cyclic")
ReDim s(0)
s(0) = Nb
For i = 1 To 15
cpt = cpt + 1
ReDim Preserve s(cpt)
s(i) = SumPDiv(s(i - 1))
If s(i) > 140737488355328# Then Exit For
If s(i) = 0 Then j = 1
If s(1) = s(0) Then j = 2
If s(i) = s(0) And i > 1 And i <> 2 Then j = 4
If s(i) = s(i - 1) And i > 1 Then j = 5
If i >= 2 Then
If s(2) = s(0) Then j = 3
If s(i) = s(i - 2) And i <> 2 Then j = 6
End If
If j > 0 Then Exit For
Next
Aliq.Classification = temp(j)
Aliq.Sequence = s
End Function

Private Function SumPDiv(n As Double) As Double
'returns the sum of the Proper divisors of n
Dim j As Long, t As Long
If n > 1 Then
For j = 1 To n \ 2
If n Mod j = 0 Then t = t + j
Next
End If
SumPDiv = t
End Function
```
Output:
```Aliquot seq of 1 : Terminate   1, 0
Aliquot seq of 2 : Terminate   2, 1, 0
Aliquot seq of 3 : Terminate   3, 1, 0
Aliquot seq of 4 : Terminate   4, 3, 1, 0
Aliquot seq of 5 : Terminate   5, 1, 0
Aliquot seq of 6 : Perfect   6, 6
Aliquot seq of 7 : Terminate   7, 1, 0
Aliquot seq of 8 : Terminate   8, 7, 1, 0
Aliquot seq of 9 : Terminate   9, 4, 3, 1, 0
Aliquot seq of 10 : Terminate   10, 8, 7, 1, 0
Aliquot seq of 11 : Terminate   11, 1, 0
Aliquot seq of 12 : Terminate   12, 16, 15, 9, 4, 3, 1, 0
Aliquot seq of 28 : Perfect   28, 28
Aliquot seq of 496 : Perfect   496, 496
Aliquot seq of 220 : Amicable   220, 284, 220
Aliquot seq of 1184 : Amicable   1184, 1210, 1184
Aliquot seq of 12496 : Sociable   12496, 14288, 15472, 14536, 14264, 12496
Aliquot seq of 1264460 : Sociable   1264460, 1547860, 1727636, 1305184, 1264460
Aliquot seq of 790 : Aspiring   790, 650, 652, 496, 496
Aliquot seq of 909 : Aspiring   909, 417, 143, 25, 6, 6
Aliquot seq of 562 : Cyclic   562, 284, 220, 284
Aliquot seq of 1064 : Cyclic   1064, 1336, 1184, 1210, 1184
Aliquot seq of 1488 : non-terminating   1488, 2480, 3472, 4464, 8432, 9424, 10416, 21328, 22320, 55056, 95728, 96720, 236592, 459792, 881392, 882384
```

## V (Vlang)

Translation of: Go
```import math
const threshold = u64(1) << 47

fn index_of(s []u64, search u64) int {
for i, e in s {
if e == search {
return i
}
}
return -1
}

fn contains(s []u64, search u64) bool {
return index_of(s, search) > -1
}

fn max_of(i1 int, i2 int) int {
if i1 > i2 {
return i1
}
return i2
}

fn sum_proper_divisors(n u64) u64 {
if n < 2 {
return 0
}
sqrt := u64(math.sqrt(f64(n)))
mut sum := u64(1)
for i := u64(2); i <= sqrt; i++ {
if n % i != 0 {
continue
}
sum += i + n / i
}
if sqrt * sqrt == n {
sum -= sqrt
}
return sum
}

fn classify_sequence(k u64) ([]u64, string) {
if k == 0 {
panic("Argument must be positive.")
}
mut last := k
mut seq := []u64{}
seq << k
for {
last = sum_proper_divisors(last)
seq << last
n := seq.len
mut aliquot := ""
match true {
last == 0 {
aliquot = "Terminating"
}
n == 2 && last == k {
aliquot = "Perfect"
}
n == 3 && last == k {
aliquot = "Amicable"
}
n >= 4 && last == k {
aliquot = "Sociable[\${n-1}]"
}
last == seq[n - 2] {
aliquot = "Aspiring"
}
contains(seq[1 .. max_of(1, n - 2)], last) {
aliquot = "Cyclic[\${n - 1 - index_of(seq, last)}]"
}
n == 16 || last > threshold {
aliquot = "Non-Terminating"
}
else {}
}
if aliquot != "" {
return seq, aliquot
}
}
return seq, ''
}

fn main() {
println("Aliquot classifications - periods for Sociable/Cyclic in square brackets:\n")
for k := u64(1); k <= 10; k++ {
seq, aliquot := classify_sequence(k)
println("\${k:2}: \${aliquot:-15} \$seq")
}
println('')

s := [
u64(11), 12, 28, 496, 220, 1184, 12496, 1264460, 790, 909, 562, 1064, 1488,
]
for k in s {
seq, aliquot := classify_sequence(k)
println("\${k:7}: \${aliquot:-15} \$seq")
}
println('')

k := u64(15355717786080)
seq, aliquot := classify_sequence(k)
println("\$k: \${aliquot:-15} \$seq")
}```
Output:
```Aliquot classifications - periods for Sociable/Cyclic in square brackets:

1: Terminating     [1, 0]
2: Terminating     [2, 1, 0]
3: Terminating     [3, 1, 0]
4: Terminating     [4, 3, 1, 0]
5: Terminating     [5, 1, 0]
6: Perfect         [6, 6]
7: Terminating     [7, 1, 0]
8: Terminating     [8, 7, 1, 0]
9: Terminating     [9, 4, 3, 1, 0]
10: Terminating     [10, 8, 7, 1, 0]

11: Terminating     [11, 1, 0]
12: Terminating     [12, 16, 15, 9, 4, 3, 1, 0]
28: Perfect         [28, 28]
496: Perfect         [496, 496]
220: Amicable        [220, 284, 220]
1184: Amicable        [1184, 1210, 1184]
12496: Sociable[5]     [12496, 14288, 15472, 14536, 14264, 12496]
1264460: Sociable[4]     [1264460, 1547860, 1727636, 1305184, 1264460]
790: Aspiring        [790, 650, 652, 496, 496]
909: Aspiring        [909, 417, 143, 25, 6, 6]
562: Cyclic[2]       [562, 284, 220, 284]
1064: Cyclic[2]       [1064, 1336, 1184, 1210, 1184]
1488: Non-Terminating [1488, 2480, 3472, 4464, 8432, 9424, 10416, 21328, 22320, 55056, 95728, 96720, 236592, 459792, 881392, 882384]

15355717786080: Non-Terminating [15355717786080, 44534663601120, 144940087464480]
```

## Wren

Translation of: Kotlin
Library: Wren-fmt
Library: Wren-math
Library: Wren-seq
```import "./fmt" for Conv, Fmt
import "./math" for Int, Nums
import "./seq" for Lst

class Classification {
construct new(seq, aliquot) {
_seq = seq
_aliquot = aliquot
}
seq { _seq}
aliquot { _aliquot }
}

var THRESHOLD = 2.pow(47)

var classifySequence = Fn.new { |k|
if (k <= 0) Fiber.abort("K must be positive")
var last = k
var seq = [k]
while (true) {
last = Nums.sum(Int.properDivisors(last))
var n = seq.count
var aliquot =
(last == 0) ? "Terminating" :
(n == 2 && last == k) ? "Perfect" :
(n == 3 && last == k) ? "Amicable" :
(n >= 4 && last == k) ? "Sociable[%(n-1)]" :
(last == seq[n-2]) ? "Aspiring" :
(n > 3 && seq[1..n-3].contains(last)) ? "Cyclic[%(n-1-Lst.indexOf(seq, last))]" :
(n == 16 || last > THRESHOLD) ? "Non-terminating" : ""
if (aliquot != "") return Classification.new(seq, aliquot)
}
}

System.print("Aliquot classifications - periods for Sociable/Cyclic in square brackets:\n")
for (k in 1..10) {
var c = classifySequence.call(k)
Fmt.print("\$2d: \$-15s \$n", k, c.aliquot, c.seq)
}

System.print()
var a = [11, 12, 28, 496, 220, 1184, 12496, 1264460, 790, 909, 562, 1064, 1488]
for (k in a) {
var c = classifySequence.call(k)
Fmt.print("\$7d: \$-15s \$n", k, c.aliquot, c.seq)
}

System.print()
var k = 15355717786080
var c = classifySequence.call(k)
var seq = c.seq.map { |i| Conv.dec(i) }.toList // ensure 15 digit integer is printed in full
Fmt.print("\$d: \$-15s \$n", k, c.aliquot, seq)
```
Output:
```Aliquot classifications - periods for Sociable/Cyclic in square brackets:

1: Terminating     [1, 0]
2: Terminating     [2, 1, 0]
3: Terminating     [3, 1, 0]
4: Terminating     [4, 3, 1, 0]
5: Terminating     [5, 1, 0]
6: Perfect         [6, 6]
7: Terminating     [7, 1, 0]
8: Terminating     [8, 7, 1, 0]
9: Terminating     [9, 4, 3, 1, 0]
10: Terminating     [10, 8, 7, 1, 0]

11: Terminating     [11, 1, 0]
12: Terminating     [12, 16, 15, 9, 4, 3, 1, 0]
28: Perfect         [28, 28]
496: Perfect         [496, 496]
220: Amicable        [220, 284, 220]
1184: Amicable        [1184, 1210, 1184]
12496: Sociable[5]     [12496, 14288, 15472, 14536, 14264, 12496]
1264460: Sociable[4]     [1264460, 1547860, 1727636, 1305184, 1264460]
790: Aspiring        [790, 650, 652, 496, 496]
909: Aspiring        [909, 417, 143, 25, 6, 6]
562: Cyclic[2]       [562, 284, 220, 284]
1064: Cyclic[2]       [1064, 1336, 1184, 1210, 1184]
1488: Non-terminating [1488, 2480, 3472, 4464, 8432, 9424, 10416, 21328, 22320, 55056, 95728, 96720, 236592, 459792, 881392, 882384]

15355717786080: Non-terminating [15355717786080, 44534663601120, 144940087464480]
```

## Yabasic

Translation of: FreeBASIC
```// Rosetta Code problem: http://rosettacode.org/wiki/Aliquot_sequence_classifications
// by Galileo, 05/2022

sub sumFactors(n)
local i, s

for i = 1 to n / 2
if not mod(n, i) s = s + i
next
return s
end sub

sub printSeries(arr(), size, ty\$)
local i

print "Integer: ", arr(0), ", Type: ", ty\$, ", Series: ";
for i=0 to size-2
print arr(i), " ";
next i
print
end sub

sub alliquot(n)
local arr(16), i, j, ty\$

ty\$ = "Sociable"
arr(0) = n

for i = 1 to 15
arr(i) = sumFactors(arr(i-1))
if arr(i)=0 or arr(i)=n or (arr(i) = arr(i-1) and arr(i)<>n) then
if arr(i) = 0 then
ty\$ = "Terminating"
elsif arr(i) = n and i = 1 then
ty\$ = "Perfect"
elsif arr(i) = n and i = 2 then
ty\$ = "Amicable"
elsif arr(i) = arr(i-1) and arr(i)<>n then
ty\$ = "Aspiring"
end if
printSeries(arr(),i+1,ty\$)
return
end if
for j = 1 to i-1
if arr(j) = arr(i) then
printSeries(arr(),i+1,"Cyclic")
return
end if
next j
next i
printSeries(arr(),i+1,"Non-Terminating")
end sub

data 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 28, 496, 220, 1184
data 12496, 1264460, 790, 909, 562, 1064, 1488, 0

do
if not n break
alliquot(n)
loop```
Output:
```Integer: 1, Type: Terminating, Series: 1
Integer: 2, Type: Terminating, Series: 2 1
Integer: 3, Type: Terminating, Series: 3 1
Integer: 4, Type: Terminating, Series: 4 3 1
Integer: 5, Type: Terminating, Series: 5 1
Integer: 6, Type: Perfect, Series: 6
Integer: 7, Type: Terminating, Series: 7 1
Integer: 8, Type: Terminating, Series: 8 7 1
Integer: 9, Type: Terminating, Series: 9 4 3 1
Integer: 10, Type: Terminating, Series: 10 8 7 1
Integer: 11, Type: Terminating, Series: 11 1
Integer: 12, Type: Terminating, Series: 12 16 15 9 4 3 1
Integer: 28, Type: Perfect, Series: 28
Integer: 496, Type: Perfect, Series: 496
Integer: 220, Type: Amicable, Series: 220 284
Integer: 1184, Type: Amicable, Series: 1184 1210
Integer: 12496, Type: Sociable, Series: 12496 14288 15472 14536 14264
Integer: 1264460, Type: Sociable, Series: 1264460 1547860 1727636 1305184
Integer: 790, Type: Aspiring, Series: 790 650 652 496
Integer: 909, Type: Aspiring, Series: 909 417 143 25 6
Integer: 562, Type: Cyclic, Series: 562 284 220
Integer: 1064, Type: Cyclic, Series: 1064 1336 1184 1210
Integer: 1488, Type: Non-Terminating, Series: 1488 2480 3472 4464 8432 9424 10416 21328 22320 55056 95728 96720 236592 459792 881392 882384
---Program done, press RETURN---```

## zkl

```fcn properDivs(n){ [1.. (n + 1)/2 + 1].filter('wrap(x){ n%x==0 and n!=x }) }
fcn aliquot(k){  //-->Walker
Walker(fcn(rk){ k:=rk.value; if(k)rk.set(properDivs(k).sum()); k }.fp(Ref(k)))
}(10).walk(15).println();```

Or, refactoring to remove saving the intermediate divisors (and adding white space):

```fcn aliquot(k){  //-->Walker
Walker(fcn(rk){
k:=rk.value;
rk.set((1).reduce((k + 1)/2, fcn(s,n,k){
s + (k%n==0 and k!=n and n) // s + False == s + 0
},0,k));
k
}.fp(Ref(k)))
}(10).walk(15).println();```
```fcn classify(k){
const MAX=(2).pow(47);  // 140737488355328
ak,aks:=aliquot(k), ak.walk(16);
_,a2,a3:=aks;
if(a2==k) return("perfect");
if(a3==k) return("amicable");
aspiring:='wrap(){
foreach n in (aks.len()-1){ if(aks[n]==aks[n+1]) return(True) }
False
};
cyclic:='wrap(){
foreach n in (aks.len()-1){ if(aks[n+1,*].holds(aks[n])) return(aks[n]) }
False
};
(if(aks.filter1('==(0))!=False) "terminating"
else if(n:=aks[1,*].filter1n('==(k))) "sociable of length " + (n+1)
else if(aks.filter1('>(MAX)))  "non-terminating"
else if(aspiring())            "aspiring"
else if((c:=cyclic())!=False)  "cyclic on " + c
else                           "non-terminating" )
+ " " + aks.filter();
}```
```[1..10].pump(fcn(k){ "%6d is %s".fmt(k,classify(k)).println() });
T(11,12,28,496,220,1184,12496,1264460,790,909,562,1064,1488)
.pump(fcn(k){ "%6d is %s".fmt(k,classify(k)).println() });```
Output:
```L(10,8,7,1,0,0,0,0,0,0,0,0,0,0,0)
1 is terminating L(1)
2 is terminating L(2,1)
3 is terminating L(3,1)
4 is terminating L(4,3,1)
5 is terminating L(5,1)
6 is perfect
7 is terminating L(7,1)
8 is terminating L(8,7,1)
9 is terminating L(9,4,3,1)
10 is terminating L(10,8,7,1)
11 is terminating L(11,1)
12 is terminating L(12,16,15,9,4,3,1)
28 is perfect
496 is perfect
220 is amicable
1184 is amicable
12496 is sociable of length 5 L(12496,14288,15472,14536,14264,12496,14288,15472,14536,14264,12496,14288,15472,14536,14264,12496)
1264460 is sociable of length 4 L(1264460,1547860,1727636,1305184,1264460,1547860,1727636,1305184,1264460,1547860,1727636,1305184,1264460,1547860,1727636,1305184)
790 is aspiring L(790,650,652,496,496,496,496,496,496,496,496,496,496,496,496,496)
909 is aspiring L(909,417,143,25,6,6,6,6,6,6,6,6,6,6,6,6)
562 is cyclic on 284 L(562,284,220,284,220,284,220,284,220,284,220,284,220,284,220,284)
1064 is cyclic on 1184 L(1064,1336,1184,1210,1184,1210,1184,1210,1184,1210,1184,1210,1184,1210,1184,1210)
1488 is non-terminating L(1488,2480,3472,4464,8432,9424,10416,21328,22320,55056,95728,96720,236592,459792,881392,882384)
```

The loop to calculate 15355717786080 takes forever (literally)

## ZX Spectrum Basic

Translation of: AWK

This program is correct. However, a bug in the ROM of the ZX Spectrum makes the number 909 of an erroneous result. However, the same program running on Sam BASIC (a superset of Sinclair BASIC that ran on the computer Sam Coupé) provides the correct results.

```10 PRINT "Number classification sequence"
20 INPUT "Enter a number (0 to end): ";k: IF k>0 THEN GO SUB 2000: PRINT k;" ";s\$: GO TO 20
40 STOP
1000 REM sumprop
1010 IF oldk=1 THEN LET newk=0: RETURN
1020 LET sum=1
1030 LET root=SQR oldk
1040 FOR i=2 TO root-0.1
1050 IF oldk/i=INT (oldk/i) THEN LET sum=sum+i+oldk/i
1060 NEXT i
1070 IF oldk/root=INT (oldk/root) THEN LET sum=sum+root
1080 LET newk=sum
1090 RETURN
2000 REM class
2010 LET oldk=k: LET s\$=" "
2020 GO SUB 1000
2030 LET oldk=newk
2040 LET s\$=s\$+" "+STR\$ newk
2050 IF newk=0 THEN LET s\$="terminating"+s\$: RETURN
2060 IF newk=k THEN LET s\$="perfect"+s\$: RETURN
2070 GO SUB 1000
2080 LET oldk=newk
2090 LET s\$=s\$+" "+STR\$ newk
2100 IF newk=0 THEN LET s\$="terminating"+s\$: RETURN
2110 IF newk=k THEN LET s\$="amicable"+s\$: RETURN
2120 FOR t=4 TO 16
2130 GO SUB 1000
2140 LET s\$=s\$+" "+STR\$ newk
2150 IF newk=0 THEN LET s\$="terminating"+s\$: RETURN
2160 IF newk=k THEN LET s\$="sociable (period "+STR\$ (t-1)+")"+s\$: RETURN
2170 IF newk=oldk THEN LET s\$="aspiring"+s\$: RETURN
2180 LET b\$=" "+STR\$ newk+" ": LET ls=LEN s\$: LET lb=LEN b\$: LET ls=ls-lb
2190 FOR i=1 TO ls
2200 IF s\$(i TO i+lb-1)=b\$ THEN LET s\$="cyclic (at "+STR\$ newk+") "+s\$: LET i=ls
2210 NEXT i
2220 IF LEN s\$<>(ls+lb) THEN RETURN
2300 IF newk>140737488355328 THEN LET s\$="non-terminating (term > 140737488355328)"+s\$: RETURN
2310 LET oldk=newk
2320 NEXT t
2330 LET s\$="non-terminating (after 16 terms)"+s\$
2340 RETURN
```
Output:
```Number classification sequence
1 terminating   0
2 terminating   1 0
3 terminating   1 0
4 terminating   3 1 0
5 terminating   1 0
6 perfect   6
7 terminating   1 0
8 terminating   7 1 0
9 terminating   4 3 1 0
10 terminating   8 7 1 0
11 terminating   1 0
12 terminating   16 15 9 4 3 1 0
28 perfect   28
496 perfect   496
220 amicable   284 220
1184 amicable   1210 1184
12496 sociable (period 5)   14288 15472 14536 14264 12496
1264460 sociable (period 4)   1547860 1727636 1305184 1264460
790 aspiring   650 652 496 496
909 aspiring   417 143 25 6 6
562 cyclic (at 284)   284 220 284
1064 cyclic (at 1184)   1336 1184 1210 1184
1488 non-terminating (after 16 terms)    2480 3472 4464 8432 9424 10416 21328 22320 55056 95728 96720 236592 459792 881392 882384```